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Abstract

Reasoning models have increasingly been used to perform complex tasks in open1

ended environments. A challenge facing such efforts is domain specific tuning2

often requiring large quantities of data and verifiability. We can construct a high-3

performance reasoning agentic workflow for chemistry that is a) verifiable and b)4

extensible through the use of tools. We further show that distilling the outputs of5

the resulting workflow into smaller models results in lighter workflows that are still6

performant.7

1 Introduction8

The development of computational chemistry tools over the past decades has enabled significant9

automation in reaction optimisation and discovery [46, 10]. However, traditional ML methods which10

rely on hand-crafted features, expert configuration, and rigid input formats do not generalise well11

across different environments [30]. With their in-context few-shot abilities, Large Language Models12

(LLMs) emerge as powerful tools that can adapt to diverse or even unseen tasks [4]. LLMs, and13

in particular, chemistry domain-specialized LLMs (e.g., ChemFormer [21], Generative Chemical14

Transformer [25]) trained on extensive corpora of chemistry-related natural language data, are15

showing promising results [14, 33, 44, 12, 16, 61]. But while these models excel at generating16

coherent and convincing scientific text, LLMs often struggle with complex reasoning problems17

[33, 45], resulting in occasional widely incorrect answers [54].18

To address this we explore the use of tool-calling agentic workflows, to capitalise on the reasoning19

capabilities of LLMs while maintaining reliability and verifiability of the output. To this end we20

developed tools for several chemistry tasks from the ether0 benchmark [35] and evaluated the ability21

of LLMs to correctly understand queries and subsequently call the correct tools with the appropriate22

input and present the result.23

Our contributions are:24

• A chemical-reasoning agentic worflow that produces verifiable results through tool-calling.25

• We further finetune smaller models on the reasoning traces of these LLMs and show26

substantial improvements in their ability to correctly use the provided tools.27

• We conduct a preliminary comparison of the workflow perfomance, as well as the under-28

lying model’s capability on other chemical reasoning benchmarks such as MMLU-Pro-29

Chemistry[5, 58] and ChemBench-Mini [34].30
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2 Related Work31

Chemistry Reasoning Models. Chain-of-Thought (CoT) prompting, where the model is asked32

to generate intermediate reasoning steps before producing a final answer [60, 29] was developed in33

an attempt to elicit deep system-2 type reasoning [24] in LLMs. Building on this technique, recent34

“reasoning models” use large-scale reinforcement learning via Group Relative Policy Optimization35

(GRPO; [50]): e.g., DeepSeek-R1 [11]. Such reasoning models have achieved state-of-the-art36

performances in a wide range of complex tasks including arithmetics and symbolic reasoning [60].37

In chemistry, however, reasoning LLMs are still scarce due to the lack of domain-specific data38

with explicit reasoning traces needed to effectively elicit CoT [17]. Distilling reasoning traces from39

stronger models or expert annotations has emerged as a practical solution, enabling the creation of40

synthetic data that smaller or domain-specific models can learn from through supervised fine-tuning41

[62]. This technique was notably adopted by FutureHouse in their ether0 model [35], which is also42

the first and only current general-purpose chemistry reasoning LLM of its kind. Even more recently,43

Li et al. [32] introduced a novel distillation strategy called Prior Regulation via In-context Distillation44

(PRID), which they use to create a high-quality reasoning dataset. They leverage this dataset and build45

Mol-R1, a specialised reasoning model tailored for text-based molecule discovery, which achieves46

competitive results on that task. These works highlight the emerging trend of domain-specific47

reasoning LLMs in chemistry, though the field remains at an early stage.48

Agentic Systems for Chemistry. The reasoning capabilities of LLMs are only valuable insofar49

as the information needed to solve a problem can be learned or inferred from their training data.50

However, some data constantly change: for example, the CAS (Chemical Abstracts Service) Registry51

is a seminal chemistry database of over 290 million reported chemical structures that is upadted daily.152

One solution is to give LLMs access to such external chemistry data sources or software that they53

can use solve tasks that they could not otherwise perform [38, 2, 47, 3, 7, 23, 40, 6, 41]. This gives54

rise to what we call “agentic” systems; systems built upon LLMs that can flexibly integrate planning55

[18, 51, 59, 20], reasoning, retrieval, and computation within one workflow [45]. In chemistry,56

tools like ChemCrow [3] and Co-scientist [2] can help automate experiment design and execution57

in chemical synthesis [22, 57]. ProtAgents [15] introduce a multi-agent system to automate protein-58

related design and analysis. LLaMP [9] propose a retrieval-augmented generation (RAG)-based59

ReAct agent [63] to simulate inorganic materials by drawing from literature databases and Wikipedia,60

and interfacing with simulation tools. Most recently, Campbell et al. [7] introduce MDCrow, an61

agentic LLM assistant capable of automating Molecular dynamics (MD) workflows. For a review of62

agents in the scientific domain, refer to Ramos et al. [43] and Zheng et al. [66]. We note that, to the63

best of our knowledge, this is the first piece of work that proposes a multi-agent approach to solving64

a variety of experimentally-grounded chemistry tasks.65

3 Methodology66

3.1 Tasks67

Narayanan et al. [35] introduced a chemical-reasoning model and its companion benchmark dataset,68

ether0. To evaluate the evolution of large-language-model performance on chemistry questions, the69

dataset is partitioned into 18 distinct subtasks. Our agent is designed to address 9 of these subtasks70

without relying on LLMs for core reasoning. Instead, we employ LLMs solely to (1) parse each71

natural-language question and (2) identify which subtask it belongs to. Each question is specified in72

natural language; the agent must interpret its semantic content, extract the relevant data, and route the73

parsed information to pre-designed tool.74

Below we describe the five generation-based tasks and include, in parenthesis, the problem_type to75

which they correspond in the ether0 benchmark.276

• IUPAC name (molecule-name): Given an IUPAC name, convert it to a valid SMILES77

string.78

1See https://www.cas.org/cas-data/cas-registry.
2The dataset is freely accessible on HuggingFace via https://huggingface.co/datasets/futurehouse/ether0-

benchmark.
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• SMILES completion (molecule-completion): Given a truncated SMILES string, return79

a completed, valid SMILES string that preserves the original prefix.80

• Molecular formula (simple-formula): Given a Hill formula, return a valid SMILES81

string corresponding to that formula.82

• Functional groups (functional-group): Given a Hill formula and one or more functional83

groups, return a valid SMILES string that matches the formula and contains those functional84

groups.85

• Elucidation (molecule-formula): Given a Hill formula, an organism, and some back-86

ground information on the organism, return a SMILES string for a compound found in that87

organism whose formula matches the Hill formula.88

Similarly, we describe below the four tasks which are framed as multiple-choice questions (MCQ):89

• Safety (property-cat-safety): Given a safety class (either Carcinogenic, Fatally toxic,90

Fertility damaging, Flammable, or Toxic), and a set of 2-5 molecules given in SMILES91

notation, select the molecule that is most (or least) expected to possess that safety hazard.92

• LD50 (property-regression-ld50): Given an LD503 value in mg/kg and a set of 493

molecules given in SMILES notation, select the molecule that is most likely to have that94

LD50 value for on a population of a given variety of test animal (e.g., mouse) and for a95

given mode of administration (e.g., intraperitoneal injection).96

• pKa (property-regression-pka/pKa1): Given a target pKa14 value and a set of 497

molecules given in SMILES notation, select the molecule that is most likely to have that98

pka1 value.99

• Aqueous solubility: Given a target aqueous solubility value given in logS (where S is a100

molecule’s aqueous solubility in mol/L) and a set of 4 molecules given in SMILES notation,101

select the molecule that is most likely to have that log solubility value.102

3.2 Tools103

To solve the tasks presented in the previous section, we built a series of tools intended to be use by104

the respective task agents. Below we present the logic of each of these:105

• iupac_to_smiles: This tool accepts an IUPAC name and submits it to the PubChem PUG106

REST API [36], which returns the corresponding SMILES string.107

• smiles_completion: This tool acceptes a truncated SMILES string and returns a com-108

pleted SMILES string. There is two stages to this tool. The first stage applies balancing109

rules: trim trailing punctuation, close unmatched brackets, pair unbalanced ring digits,110

balance parentheses, convert dangling bond symbols (=, #, /, \) into socket atoms (*), and111

append a trailing socket. The second stage performs a breadth-first search over those sockets,112

replacing each * in turn with chemically plausible elements (C, N, O, S, F, Cl, Br, I) within113

valence limits, sanitising each candidate, and continuing until all sockets are filled and a114

valid SMILES is produced.115

• formula_to_smiles: This tool accepts a HILL-format formula and submits it to the116

PubChem PUG REST API [36], which returns the corresponding SMILES strings. We use117

the first SMILES string returned as the answer.118

• functional_groups: This tool accepts a HILL-format formula and a list of functional119

groups. It retrieves all plain and isomeric SMILES strings for the formula via the PubChem120

PUG REST API [36]. It then iterates over each SMILES string, converts it to an RDKit121

molecule [31], and uses ExMol [56] to identify the functional groups. The first molecule122

containing all specified functional groups is returned as a SMILES string.123

3An LD50 value represents the lethal dose of a molecule needed to kill 50% of a test population, typically
animals, upon exposure. A lower LD50 value indicates higher toxicity.

4pKa is a measure of the acidity of a molecule. It is calculated as the negative logarithm of the acid
dissociation constant (Ka). The lower the pKa value, the stronger the acid. Specifically, pKa1 refers to the pKa
value associated with the first ionization of a polyprotic acid (an acid with multiple ionizable protons).
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• safety_mcq: This tool accepts a multiple-choice chemistry problem containing SMILES124

strings and a target safety class. It uses an LLM to extract the SMILES candidates and safety125

class in JSON format. It then queries the Globally Harmonized System (GHS) of Classifi-126

cation and Labeling of Chemicals5 of each molecule. The retrieved GHS Classifications127

are compared against the target safety class, and the SMILES that matches most closely is128

returned as the answer. For reference, we include a mapping between the safety classes and129

their respective GHS hazard codes in Table 4.130

• ld50_mcq: This tool accepts a multiple-choice chemistry problem that contains SMILES131

strings and a target LD50 value, along with the taxon (laboratory animal) and administration132

route. It first uses an LLM to extract the SMILES candidates, LD50 value, taxon, and route133

in JSON format. It then searches the LD50 dataset for matching entries. For each candidate134

SMILES, it compares the dataset’s LD50 values to the target and selects the molecule whose135

value is closest under the specified conditions. The selected SMILES string is returned as136

the answer.137

• pka_mcq: This tool accepts a multiple-choice chemistry problem containing SMILES strings138

and a target pKa value. It uses an LLM to extract the SMILES candidates and the target139

pKa value in JSON format. It then queries the pKa dataset to retrieve candidate values and140

compares them against the target. The SMILES whose dataset pKa most closely matches141

the specified value is returned as the answer.142

• solubility_mcq: This tool accepts a multiple-choice chemistry problem containing143

SMILES strings and a target solubility value (log solubility in µg/mL). It extracts the144

candidate SMILES strings and the target solubility from the problem text, then predicts145

solubility for each candidate using a ML model. The SMILES whose predicted solubility is146

closest to the target value is returned as the answer. To predict solubility we reimplement147

the DNN model from [42].148

Task name Tool name
IUPAC name iupac_to_smiles
SMILES completion smiles_completion
Molecular formula formula_to_smiles
Functional groups functional_groups
Elucidation formula_to_smiles

Safety safety_mcq
LD50 ld50_mcq
pKa pka_mcq
Aqueous solubility solubility_mcq

Table 1: Mapping between the task names and the name of their corresponding tool.

3.3 Agentic Workflow149

The agentic workflow of our system is structured as a multi-agent architecture in which a central150

supervisor agent coordinates a set of specialized sub-agents, each aligned with one of the chemistry151

tasks described in Table 1. The supervisor agent is responsible for interpreting the user’s input query,152

reasoning over its intent, and delegating the problem to the appropriate sub-agent. This delegation is153

implemented through a handoff tool, which transfers control and the complete message history to the154

selected sub-agent. Each sub-agent is equipped with task-specific prompts and one or more tools155

to carry out its designated task. Upon receiving control of the conversation history, the sub-agent156

extracts the arguments required by the necessary tools and invokes them to generate an answer. It then157

performs the chemical reasoning needed to ensure the output is valid against the task specification158

before returning the solution to the supervisor. The supervisor consolidates the workflow and delivers159

the final answer to the user. This modular design ensures that the large language model is used only160

5At the time of writing, the latest GHS Classification (Rev.10, 2023) can be accessed from
https://pubchem.ncbi.nlm.nih.gov/ghs/.
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for parsing and task routing, while domain reasoning is handled by deterministic tools and agents161

purpose-built for each chemistry task.162

3.4 Reasoning Data Generation163

As mentioned in Section 2, there is lack of datasets which include explicit reasoning traces on164

chemistry problems [17]. Such data is however required for refining the CoT reasoning of an LLM-165

based system. In this section, we describe how we re-built part of the ether0 training set and used it166

to generate a dataset of reasoning traces.167

3.4.1 Building the ether0 training set168

Following Narayanan et al. [35], we re-created a subset of the data used to train the ether0 model169

focusing on the tasks introduced in Section 3.1.170

COCONUT. The COlleCtion of Open Natural prodUcTs (COCONUT)6 is the largest open collec-171

tion of natural products, small molecules produced by living organisms with significant potential in172

pharmacology and various industries due to their bioactivity [53, 8]. This dataset was used in four173

tasks: namely IUPAC name, SMILES completion, Molecular formula and Elucidation. We detail174

below how we re-constructed the data for these task:175

• IUPAC name: Drawing from the Molecules table of the dataset, we take the iupac_name176

field as input and the canonical_smiles field as the ground-truth.177

• SMILES completion: As above, we take the canonical_smiles field as ground-truth.178

From there, we artificially create an incomplete SMILES by randomly truncating the ground-179

truth somewhere between 25% and 75% of its full lengths (to avoid overly short/long180

fragments) and check that the obtained partial SMILES is indeed no longer a valid molecule181

using RDKit’s MolFromSmiles() method [31]. An invalid fragment is then used as input.182

• Molecular formula: Again, we take the canonical_smiles field as ground-truth. The183

input, however, is obtained by joining the Molecules and Properties tables on the respective184

id and molecule_id columns and drawing from the molecular_formula.185

• Elucidation: The ground-truth for this task is also taken from the canonical_smiles186

column of the Molecules table. The input is in part the molecular_formula as in the187

previous task and on the other the organism name that can be found in the Organisms table188

after joining it with Molecules on molecule_id and id respectively.189

ChEMBL. The ChEMBL Database7 is a manually curated dataset of bioactive molecules with190

drug-like properties [64]. This dataset was used for the Functional group task only; we describe this191

process below:192

• Functional groups: We retrieve all the molecule canonical_smiles in the com-193

pound_structures table of the dataset and use these as ground-truths. For the in-194

puts, we fetch their related molecular formulas given by full_molformula in the195

the compound_properties table (joining on the molregno column), and use ExMol’s196

get_functional_groups() method [56] to find the functional groups of each molecule.197

PubChem. PubChem [28, 27, 26] is the largest public database of chemical molecules which is198

maintained by the National Center for Biotechnology Information (NCBI) at the National Library of199

Medicine (NLM). This dataset was used for two MCQ-based tasks:200

• Safety: The candidate SMILES are restricted to the records retrieved from PubChem records201

that contain GHS Hazard statements. We manually prepare a mapping between the target202

safety classes (Carcinogenic, Fatally toxic, Fertility damaging, Flammable, and Toxic) and203

its corresponding GHS Hazard code (H-code) as shown in Table4. The SMILES are then204

divided into those that possess at least one H-code belonging to the target class and those205

6The dataset can be downloaded from https://coconut.naturalproducts.net/download.
7The dataset can be downloaded from https://chembl.gitbook.io/chembl-interface-documentation/downloads.
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that do not, to form the correct and incorrect sets. To ensure that the distractor candidates206

are as similar as the correct ones, MCQs are constructed using only SMILES pairs whose207

Tanimoto similarity exceeds a certain threshold.208

• LD50: For the PubChem Toxicity data, each entry in the dataset contains a SMILES, an209

associated species (Taxon), an administration route (Route), and the corresponding LD50210

value in mg/kg. To avoid duplicates, we filter to unique combinations of (SMILES, Taxon,211

Route). Distractor choices are selected from molecules with the same species and route212

whose LD50 values differ from the ground-truth within predefined thresholds in mg/kg213

(1 ≤ ∆ ≤ 100). Similarity between candidate molecules is computed using RDKit214

fingerprints and Tanimoto similarity, and the closest candidates are chosen as distractors. If215

not enough valid candidates are found, additional distractors are sampled at random from216

the dataset. The final question prompt presents the Taxon, Route, and LD50 value, with217

several SMILES as options, one of which is correct.218

IUPAC. The IUPAC Digitized pKa Dataset [65] is an ongoing digitisation of pKa data from219

reference works of Serjeant and Dempsey [48] and Perrin [39] published by the International Union220

of Pure and Applied Chemistry (IUPAC). The original dataset can be downloaded from here.221

• pKa: Starting from 6,678 unique rows for pKa1 (based on temperature and pressure), we222

narrowed it down by keeping temperatures between 17–27°C and only rows with numerical223

answers, which gave 4,026 rows. Then, we removed entries with non-atmospheric pressure224

when that info was available, leaving 3,946 rows. To handle duplicates with different225

temperatures, we kept just one row per case, ending up with 3,596 rows. For each SMILES226

molecule, candidate distractors are identified by: (i) computing Tanimoto similarity scores227

between the query molecule and all others in the dataset using the RDKit fingerprint, and (ii)228

filtering based on the absolute difference in pKa1 values falling within predefined thresholds229

(0.2 ≤ ∆ ≤ 1.0). The filtered candidates are then ranked by similarity, and the top three230

are selected as distractors. If fewer than three valid candidates remain, random molecules231

(excluding the correct answer and already selected distractors) are added. Finally, the232

distractors and the correct answer are shuffled to produce the answer options.233

AqSolDB. The AqSolDB Dataset [52] contains a curated reference set of aqueous solubility values,234

comprising 9,982 unique compounds collected from nine publicly available solubility datasets. The235

original dataset can be downloaded here.236

• Aqueous solubility: Similar to the pKa MCQ dataset, for each SMILES molecule, candidate237

distractors are identified by: (i) computing Tanimoto similarity scores between the query238

molecule and all others in the dataset using the RDKit fingerprint, and (ii) filtering based on239

the absolute difference in solubility values falling within predefined thresholds (0.2 ≤ ∆ ≤240

1.0). The filtered candidates are then ranked by similarity, and the top three are selected as241

distractors. If fewer than three valid candidates remain, random molecules (excluding the242

correct answer and already selected distractors) are added. Finally, the distractors and the243

correct answer are shuffled to produce the answer options.244

From there, we randomly selected 500 input/ground-truth pairs from each task to form our own245

training set, making sure that there was no overlap with those present in the ether0 benchmark dataset.246

Finally, we used the selected inputs to create natural language problems using a variety of prompts247

templates8 used by Narayanan et al. [35].248

3.4.2 Generating the reasoning traces249

Our next step is to generate reasoning traces for each task using the training set presented in the250

previous section to build a CoT chemistry-specific dataset. For this, we use three different base251

LLMs: namely gpt-4o-mini [37], gpt-oss-20b [13] and qwen3-8b [55]. In each setting, we252

create different instances of the same model as the basis for the supervisor and the agents introduced253

in Section 3.3. Then, we prompt the supervisor to solve all the problems in the training set (with 500254

problems per task) and record the generated workflow trace to form our reasoning trace dataset.255

8The prompts can be found via https://github.com/Future-House/ether0/blob/main/src/ether0/problem_prompts.py.
For reference, we include a mapping between the task names and the prompt variable names in Table 5.
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Since we are building a dataset to elicit CoT reasoning in subsequent models, we want to maximise256

the correctness of the reasoning traces rather than test the performance of the tools. To this end, we257

modify the tools such that given an input present in the training set, the tool will always return the258

associated ground truth. This, however, is of course dependent on the supervisor model calling the259

right agent for a given problem and on the agent successfully recognising and parsing the inputs260

within the problem statement. We report in Table 6 the tool calling and overall accuracies of the261

workflows for each of the three base models.262

3.5 Reasoning Supervised Fine-Tuning263

Finally, we distill the generated reasoning traces into smaller LLMs through supervised fine-tuning264

(SFT). Given a query and a reasoning trace, the LLM is required to generate the "assistant" output,265

once in the role of "supervisor" and once again as the task-specific subagent for that query. Addition-266

ally, we finetune a second version of the model that includes the <think> tag outputs to determine267

the impact on overall performance.268

For our initial investigation we focus on fine-tuning small models such as Qwen3-0.6B and269

Qwen3-1.7B. Additionally, we limit SFT to the reasoning traces generated by the larger Qwen3-8B,270

as these models were both distilled from the same original flagship models [55], and there has been271

a documented tendency for LLMs to prefer their own outputs [1], making this configuration most272

likely to succeed. We show the results of this experiment in Tables ??, ??, and 2.273

3.6 Evaluation274

To evaluate our approach, we report the performance of the supervised fine-tuned models: MMLU275

Pro Chemistry [5, 58], ChemBench-Mini [34], and ether0 [35].276

MMLU-Pro-Chemistry. The MMLU-Pro-Chemistry benchmark is a subset of the larger MMLU-277

Pro dataset [58] which is itself an extension of the seminal MMLU benchmark [19]. The subset278

contains 1,132 multiple-choice questions (MCQs) which assess graduate-level knowledge across279

areas such as organic, inorganic, physical, and analytical chemistry. Overall, the benchmark primarily280

tests factual recall, conceptual understanding, and problem-solving ability, and thus serves as a281

measure of general chemistry competence.282

ChemBench-Mini. ChemBench [34] is a recent benchmark created to systematically assess the283

capabilities of LLMs in chemistry. Unlike MMLU-Pro-Chemistry which only includes MCQs,284

ChemBench also samples open-ended questions including interpretation of molecular structures and285

reactivity. As a result, it provides a direct measure of a model’s chemistry domain reasoning patterns286

beyond surface-level memorisation. ChemBench-Mini was curated to be a light-weight, diverse and287

representative subset of the full corpus, and contains only 236 questions.288

Together, these two benchmarks provide a comprehensive evaluation landscape: MMLU-Pro Chem-289

istry tests general chemistry knowledge, while ChemBench assesses chemical reasoning.290

ether0. The ether0 benchmark9 comprises 18 tasks, spanning both open-ended and multiple-choice291

formats, that evaluate a model’s ability to manipulate chemical structures and perform sophisticated292

reasoning tasks, similarly to ChemBench. Among existing benchmarks, ether0 is most closely293

aligned with our work, as we selected our tasks directly from the set of 18 defined by Narayanan294

et al. [35] (Section 3.1). While the full benchmark includes 325 questions, we restricted evaluation295

to the 181 questions corresponding to our nine chosen tasks. This choice both avoids overlap with296

ChemBench-Mini, which already covers similar capabilities and question formats, and allows for a297

more targeted assessment of our agentic workflow on the chosen tasks.298

Unlike MMLU-Pro-Chemistry and ChemBench, where models are evaluated in a direct prompting299

setup, we evaluate the models on the ether0 benchmark by instantiating each model within our agentic300

workflow. Accordingly, we report two complementary metrics: (1) tool-calling accuracy, measuring301

whether the supervisor correctly delegates to the appropriate sub-agent (aggregated across the nine302

tasks using the Macro F1 score), and (2) final-answer accuracy, measuring whether the complete303

workflow produces the correct solution.304

9The dataset can be accessed from HuggingFace via https://huggingface.co/futurehouse/ether0.
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Base models. For comparison, we evaluate our fine-tuned models against a series of base models:305

• their respective base models Qwen/Qwen3-0.6B and Qwen/Qwen3-1.7B,306

• Qwen/Qwen3-8B which we used to generate the reasoning training data (Section 3.4.2),307

• OpenAi’s gpt-4o-mini [37] a highly performant, small, closed-source model for reference,308

• and futurehouse/ether010 model [35].309

Note that we do not evaluate futurehouse/ether0 on the ether0 benchmark as it was not trained310

for tool-calling in an agentic setting, and so perfomance would not be directly comparable.311

4 Result312

The results of our evaluation (Section 3.6) are summarised in Tables 2 and 3.313

ether0. Table 2 reports tool-calling and final-answer accuracy on the nine ether0 tasks within314

our agentic workflow. We also plot the fine-grained Macro F1 results (for each task) in Figures315

1 and 2 As expected, larger base models such as Qwen/Qwen3-8B and gpt-4o-mini achieve the316

strongest performance overall, with macro F1 scores above 0.85. The smaller Qwen/Qwen3-0.6B317

and Qwen/Qwen3-1.7B struggle in this setting, reflecting their limited capacity for complex318

multi-step reasoning. Supervised fine-tuning leads to clear gains for some models. Notably,319

sft-Qwen/Qwen3-0.6B improves tool-calling accuracy from 0.254 to 0.707 and final-answer ac-320

curacy from 0.088 to 0.376. Similarly, sft-Qwen/Qwen3-1.7B yields a large jump in final-answer321

accuracy (+0.420). These improvements demonstrate that distilling reasoning traces into small models322

enables them to recover part of the reasoning ability of larger bases. However, gains are not uniform:323

sft-think-Qwen/Qwen3-0.6B underperforms compared to its base counterparts, suggesting that324

not all fine-tuning strategies are equally effective.325

Table 2: Performance of base and fine-tuned models on the ether0 benchmark, rounded to three
decimal places.

Model Tool calling Macro F1 Accuracy
Qwen/Qwen3-0.6B 0.254 0.088
Qwen/Qwen3-1.7B 0.530 0.033
Qwen/Qwen3-8B 0.856 0.812
gpt-4o-mini 0.867 0.779

sft-Qwen/Qwen3-0.6B 0.707 +0.453 0.376 +0.288

sft-Qwen/Qwen3-1.7B 0.707 +0.177 0.044 +0.011

sft-think-Qwen/Qwen3-0.6B 0.177 −0.077 0.055 −0.033

sft-think-Qwen/Qwen3-1.7B 0.669 +0.139 0.453 +0.420

ChemBench-Mini. Table 3 shows results on ChemBench-Mini. Here, base models show a326

strong scaling trend, with Qwen/Qwen3-8B reaching 0.610 accuracy, competitive with gpt-4o-mini327

(0.585). The futurehouse/ether0 model performs poorly (0.008), consistent with the fact that it328

is not instruction-tuned for general chemistry question-answering. Fine-tuning has mixed impact:329

sft-Qwen/Qwen3-1.7B improves substantially over its base (0.424 vs. 0.263), while other variants330

underperform relative to their starting points. This suggests that reasoning traces are helpful for331

models in the mid-size regime, but may not transfer straightforwardly to very small models.332

MMLU-Pro Chemistry. Results on MMLU-Pro Chemistry (Table 3) reflect a similar picture.333

Larger base models perform well (Qwen/Qwen3-8B at 0.784), though gpt-4o-mini lags behind.334

SFT models consistently fall short of their base counterparts, with drops of 0.12–0.24 in accuracy.335

This highlights that reasoning distillation is less effective on benchmarks emphasising factual recall336

and broad conceptual coverage, as opposed to structured tool-augmented reasoning.337

10The model is open-source and available on HuggingFace via https://huggingface.co/futurehouse/ether0.
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Table 3: Performance (in terms of overall accuracy) of base and fine-tuned models on ChemBench-
Mini and MMLU-Pro Chemistry, rounded to three decimal places.

Model ChemBench-Mini MMLU-Pro-Chemistry
Qwen/Qwen3-0.6B 0.127 0.349
Qwen/Qwen3-1.7B 0.263 0.652
Qwen/Qwen3-8B 0.610 0.784
gpt-4o-mini 0.585 0.092
futurehouse/ether0 0.008 0.113

sft-Qwen/Qwen3-0.6B 0.034 −0.093 0.109 −0.240

sft-Qwen/Qwen3-1.7B 0.424 +0.161 0.521 −0.131

sft-think-Qwen/Qwen3-0.6B 0.042 −0.085 0.159 −0.190

sft-think-Qwen/Qwen3-1.7B 0.178 −0.085 0.531 −0.121

Taken together, these results show that supervised fine-tuning on reasoning traces can substantially338

improve performance of small models in structured, tool-mediated workflows (as evaluated on339

the ether0 benchmark). However, the benefits are do not seem to translate to benchmarks like340

ChemBench-Mini and MMLU-Pro Chemistry that emphasise direct question-answering and factual341

recall. This divergence underscores the importance of aligning training data with the target evaluation342

setting: reasoning-focused distillation primarily enhances performance when models are embedded343

in agentic workflows rather than when they are directly prompted.344

5 Conclusion345

In this work, we evaluated the ability of tool-calling agentic workflows to reason in the chemistry346

domain. We show that LLMs are capable of utilising task-specific tools to great effect (Table 2) even347

when the LLMs themselves are not fully capable in the chemistry domain by themselves (Table 3).348

Additionally, we evaluated the effectiveness of supervised fine-tuning on reasoning traces, generated349

from a larger model (here Qwen3-8B) in an agentic workflow setting, for improving the performance350

of small and mid-sized language models on chemistry-reasoning tasks. Our results show that fine-351

tuning on this type of reasoning traces can substantially boost both tool-calling and final-answer352

accuracy for smaller models, enabling them to recover part of the reasoning ability of larger base353

model. However, these gains do not consistently transfer when evaluated in non-agentic settings354

on benchmarks such as ChemBench-Mini and MMLU-Pro Chemistry. This contrast highlights the355

importance of aligning training data with the target evaluation setting: distilling from a chemistry356

reasoning agentic system is most effective when downstream models are also embedded in said357

agentic workflows to perform the same tasks.358

Future work. We can see several avenues could further enhance model performance in structured359

reasoning tasks. These include combining supervised fine-tuning with reinforcement learning tech-360

niques such as Group Relative Policy Optimization (GRPO; [11]), developing interleaved reasoning361

architectures that dynamically alternate between reasoning and tool usage, distilling more knowledge362

from larger, stronger models, and incorporating executable tool code (e.g., Python) into the reasoning363

traces [49]. Exploring these directions may yield more robust small models capable of both complex364

reasoning and general question-answering.365
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Safety Class GHS Hazard code
Carcinogenic H300, H350i, H351

Fatally toxic H300, H304, H310, H330

Fertility damaging H360, H360F, H360D, H360FD, H360Fd, H360Df, H361, H361f,
H361d, H361fd

Flammable H205, H206, H207, H208, H220, H221, H222, H223, H224, H225,
H226, H227, H228, H229, H230, H231, H232, H241, H242, H250,
H251, H252, H260, H261, H270, H271, H272, H282, H283

Toxic H300, H301, H302, H303, H310, H311, H312, H313, H330, H331,
H332, H333, H335, H336, H370, H371, H372, H373

Table 4: Safety task classes and their GHS Hazard codes.

Task name Prompt variable name
IUPAC name NAME_IUPAC_PROMPTS
SMILES completion COMPLETE_MOL_PROMPTS
Molecular formula SMILES_FROM_FORMULA_PROMPTS
Functional groups FUNCTIONAL_GROUP_PROMPTS
Elucidation MOL_FORMULA_PROMPTS

Safety PROPERTY_PROMPTS
LD50 PROPERTY_PROMPTS
pKa PROPERTY_PROMPTS
Aqueous solubility PROPERTY_PROMPTS

Table 5: Mapping between the task names and the prompt variable names in ether0’s
problem_prompts.py.8

gpt-4o-mini gpt-oss-20b qwen3-8b
Task name Tool calling Acc. Tool calling Acc. Tool calling Acc.
IUPAC name 0.992 0.866 0.992 0.858 1.000 0.856
SMILES completion 1.000 0.894 0.992 0.774 1.000 0.740
Molecular formula 1.000 0.920 0.996 0.910 1.000 0.894
Functional groups 1.000 0.890 0.978 0.838 0.988 0.886
Elucidation 0.912 0.570 0.740 0.458 1.000 0.602
Safety 0.730 0.580 0.894 0.704 0.746 0.620
LD50 0.988 0.908 0.922 0.828 1.000 0.920
pKa 0.984 0.824 0.990 0.916 1.000 0.928
Aqueous solubility 0.984 0.760 0.990 0.868 1.000 0.886
Average 0.954 0.801 0.944 0.795 0.972 0.815

Table 6: Tool calling accuracy (did the supervisor delegate to the right agent) and overall accuracy
(Acc.; is the final answer correct) of the workflows for three base LLMs on the training set, rounded
to three decimal places.
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Figure 1: Macro F1 scores for non-MCQ tasks (Molecular formula, Elucidation, SMILES completion,
Functional groups, and IUPAC name).
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Figure 2: Macro F1 scores for MCQ tasks (pKa, LD50, Aqueous solubility, and Safety).
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