Verifiable Chemical Reasoning through Tool-Calling
Agentic Workflow

Gabrielle Gaudeau* Shinnosuke Tanaka Defne Circi*
University of Cambridge IBM Research Europe Duke University
Cambridge, United-Kingdom Daresbury, United-Kingdom Durham, NC, USA
gjg34Q@cam.ac.uk shinnosuke.tanaka@ibm.com defne.circi@duke.edu
Ian W Kennedy* Movina Moses Mohab Elkaref
University of Sheffield IBM Research IBM Research Europe
Sheffield, United-Kingdom Yorktown Heights, NY, USA Daresbury, United-Kingdom
iwkennedyl@sheffield.ac.uk movina.moses@ibm.com mohab.elkaref@ibm.com
Abstract

Reasoning models have increasingly been used to perform complex tasks in open
ended environments. A challenge facing such efforts is domain specific tuning,
often requiring large quantities of data, and verifiability. We can construct a high-
performance reasoning agentic workflow for chemistry that is a) verifiable and b)
extensible through the use of tools. We further show that distilling the outputs of
the resulting workflow into smaller models results in lighter workflows that are still
performant.

-) User prompts the supervisor
What is a valid LLM with chemistry task. LLM Agents Tools
completion of this

molecule: CC1CCOC(C? I ., 1mt - % iupac_to_smiles

- _— 10:
: : =mmd —_— % functional groups
The agent parses
Supervisor LLM The supervisor LLM identifies the task the user input and
calls the tool for

. - and delegates to corresponding agent. ’
A possible completion is 3 the given task.
CC1CCOC(C1)C=C(C)C m
(rose oxide). S — smiles_completion

The tool’s output is passed
back to the supervisor.

Figure 1: An overview of the proposed agentic workflow. (1) The user submits a chemistry-related
query to a supervisor Large Language Model (LLM): here, presenting an incomplete SMILES
formula. (2) The supervisor LLM identifies the task and delegates it to the appropriate specialised
agent. (3) The agent executes the corresponding tool (e.g., smiles_completion) and (4) returns the
result to the supervisor, which produces the final output.

*Work done while at IBM.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).

1 Introduction

The development of computational chemistry tools over the past decades has enabled significant
automation in reaction optimisation and discovery [46,[10]. However, traditional machine learning
(ML) methods which rely on hand-crafted features, expert configuration, and rigid input formats do
not generalise well across different environments [30]]. With their in-context few-shot abilities, LLMs
emerge as powerful tools that can adapt to diverse or even unseen tasks [4]. LLMs, and in particular,
chemistry domain-specialised LLMs (e.g., ChemFormer [21]], Generative Chemical Transformer [25]])
trained on extensive corpora of chemistry-related natural language data, are showing promising results
(14113311441 112,116,161]]. But while these models excel at generating coherent and convincing scientific
text, LLMs often struggle with complex reasoning problems [33| 145]], resulting in occasional, widely
incorrect answers [[54]].

To address this, we explore the use of tool-calling agentic workflows, to capitalise on the reasoning
capabilities of LLMs while maintaining reliability and verifiability of the output. To this end we
developed tools for several chemistry tasks from the ether0 benchmarkﬂ [35]] and evaluated the ability
of LLMs to correctly understand queries and subsequently call the correct tools with the appropriate
input and present the result.

Our contributions are:

* A chemical-reasoning agentic worflow that produces verifiable results through tool-calling.

* We further fine-tune smaller models on the reasoning traces of these LLMs and show
substantial improvements in their ability to correctly use the provided tools.

* We conduct a preliminary comparison of the workflow performance, as well as the under-
lying model’s capability on other chemical reasoning benchmarks such as MMLU-Pro-
Chemistry[S} 58] and ChemBench-Mini [34]].

2 Related Work

Chemistry Reasoning Models. Chain-of-Thought (CoT) prompting, where the model is asked
to generate intermediate reasoning steps before producing a final answer [60, [29] was developed in
an attempt to elicit deep system-2 type reasoning [24] in LLMs. Building on this technique, recent
“reasoning models” use large-scale reinforcement learning via Group Relative Policy Optimisation
(GRPO:; [50]): e.g., DeepSeek-R1 [11]]. Such reasoning models have achieved state-of-the-art
performances in a wide range of complex tasks including arithmetics and symbolic reasoning [60]].
In chemistry, however, reasoning LLMs are still scarce due to the lack of domain-specific data with
explicit reasoning traces needed to effectively induce CoT [17]. Distilling reasoning traces from
stronger models or expert annotations has emerged as a practical solution, enabling the creation of
synthetic data that smaller or domain-specific models can learn from through supervised fine-tuning
[62]. This technique was notably adopted by FutureHouse in their etherO model [35]], which is also
the first and only current general-purpose chemistry reasoning LLM of its kind. Even more recently,
Li et al. [32] introduced a novel distillation strategy called Prior Regulation via In-context Distillation
(PRID), which they use to create a high-quality reasoning dataset. They leverage this dataset and build
Mol-R1, a specialised reasoning model tailored for text-based molecule discovery, which achieves
competitive results on that task. These works highlight the emerging trend of domain-specific
reasoning LLMs in chemistry, though the field remains at an early stage.

Agentic Systems for Chemistry. The reasoning capabilities of LLMs are only valuable insofar
as the information needed to solve a problem can be learned or inferred from their training data.
However, some data constantly change: for example, the CAS (Chemical Abstracts Service) Registr

is a seminal chemistry database of over 290 million reported chemical structures that is updated daily}|
One solution is to give LLMs access to such external chemistry data sources or software that they
can use solve tasks that they could not otherwise perform [38, 2} 147} 13} [7] 23], /40,16, 41]]. This gives
rise to what we call “agentic” systems; systems built upon LLMs that can flexibly integrate planning

>The benchmark dataset is freely accessible on HuggingFace via
https://huggingtace.co/datasets/futurehouse/ether0-benchmark.
*See https://www.cas.org/cas-data/cas-registry.

https://huggingface.co/datasets/futurehouse/ether0-benchmark
https://www.cas.org/cas-data/cas-registry

[L8 151} [59) 20], reasoning, retrieval, and computation within one workflow [45]. In chemistry,
tools like ChemCrow [3] and Co-scientist [2]] can help automate experiment design and execution
in chemical synthesis [22,|57]. ProtAgents [[15] introduce a multi-agent system to automate protein-
related design and analysis. LLaMP [9] proposes a retrieval-augmented generation (RAG)-based
ReAct agent [63]] to simulate inorganic materials by drawing from literature databases and Wikipedia,
and interfacing with simulation tools. Most recently, Campbell et al. [7] introduce MDCrow, an
agentic LLM assistant capable of automating Molecular dynamics (MD) workflows. For a review of
agents in the scientific domain, refer to Ramos et al. [43] and Zheng et al. [66]. We note that, to the
best of our knowledge, this is the first piece of work that proposes a multi-agent approach to solving
a variety of experimentally-grounded chemistry tasks.

3 Methodology

3.1 Tasks

Narayanan et al. [35] introduced a chemical-reasoning model and its companion benchmark dataset,
ether0. To evaluate the evolution of large-language-model performance on chemistry questions, the
dataset is partitioned into 18 distinct subtasks. Our workflow covers only 9 of the 18 subtasks. Our
goal here was not to be exhaustive, but rather explore the potential for our approach, which could
subsequently be expanded to other benchmarks and tasks. To be representative however, we chose our
subtasks both from the pool of generation-based tasks and those framed as multiple-choice questions
(MCQs). These are summarised in Table[I] and defined in greater detail in Appendix [A.T]

Our workflow is designed to address these subtasks without relying on LLMs for core reasoning.
Instead, we employ LLMs solely to (1) parse each natural-language question and (2) identify which
subtask it belongs to. Each question is specified in natural language; the agent must interpret its
semantic content, extract the relevant data, and route the parsed information to pre-designed tool.

Table 1: Mapping between the task names (which match the etherO paper), the task names in the
ether0 benchmark (problem_type column) and the name of their corresponding tool in our agentic
workflow (Figure [I).

Task name Task name in the ether0 benchmark Tool name

TUPAC name molecule-name iupac_to_smiles
SMILES completion molecule-completion smiles_completion
Molecular formula simple-formula formula_to_smiles
Functional groups functional-group functional_groups
Elucidation molecule-formula formula_to_smiles
Safety property-cat-safety safety_mcq

LD50 property-regression-1d50 1d50_mcq

pKa property-regression-pka/pKal pka_mcq

Aqueous solubility regression-adme/log_solubility solubility_mcq

3.2 Tools

To solve the tasks presented in the previous section, we built a series of tools intended to be used by
the respective task agents. We present below the logic of each of these:

* iupac_to_smiles: This tool accepts an IUPAC name and submits it to the PubChem PUG
REST API [36]], which returns the corresponding SMILES string.

* smiles_completion: This tool accepts a truncated SMILES string and returns a completed
SMILES string. There are two stages to this tool. The first stage applies balancing rules:
trim trailing punctuation, close unmatched brackets, pair unbalanced ring digits, balance
parentheses, convert dangling bond symbols (=, #, /, \) into socket atoms (*), and append
a trailing socket. The second stage performs a breadth-first search over those sockets,
replacing each * in turn with chemically plausible elements (C, N, O, S, F, Cl, Br, I) within

valence limits, sanitising each candidate, and continuing until all sockets are filled and a
valid SMILES is produced.

e formula_to_smiles: This tool accepts a HILL-format formula and submits it to the
PubChem PUG REST API [36], which returns the corresponding SMILES strings. We use
the first SMILES string returned as the answer.

* functional_groups: This tool accepts a HILL-format formula and a list of functional
groups. It retrieves all plain and isomeric SMILES strings for the formula via the PubChem
PUG REST API [36]. It then iterates over each SMILES string, converts it to an RDKit
molecule [31], and uses ExMol [56] to identify the functional groups. The first molecule
containing all specified functional groups is returned as a SMILES string.

» safety_mcq: This tool accepts a multiple-choice chemistry problem containing SMILES
strings and a target safety class. It uses an LLM to extract the SMILES candidates and safety
class in JSON format. It then queries the Globally Harmonised System (GHS) of Classifi-
cation and Labeling of Chemical{’| of each molecule. The retrieved GHS Classifications
are compared against the target safety class, and the SMILES that matches most closely is
returned as the answer. For reference, we include a mapping between the safety classes and
their respective GHS hazard codes in Appendix [A.2]

* 1d50_mcq: This tool accepts a multiple-choice chemistry problem that contains SMILES
strings and a target LDS(ﬂ value, along with the taxon (laboratory animal) and administration
route. It first uses an LLM to extract the SMILES candidates, LD50 value, taxon, and route
in JSON format. It then searches the LD50 dataset for matching entries. For each candidate
SMILES, it compares the dataset’s LD50 values to the target and selects the molecule whose
value is closest under the specified conditions. The selected SMILES string is returned as
the answer.

* pka_mcq: This tool accepts a multiple-choice chemistry problem containing SMILES strings
and a target pKaE] value. It uses an LLM to extract the SMILES candidates and the target
pKa value in JSON format. It then queries the pKa dataset to retrieve candidate values and
compares them against the target. The SMILES whose dataset pKa most closely matches
the specified value is returned as the answer.

* solubility_mcq: This tool accepts a multiple-choice chemistry problem containing
SMILES strings and a target solubility value (log solubility in pg/mL). It extracts the
candidate SMILES strings and the target solubility from the problem text, then predicts
solubility for each candidate using an ML model. The SMILES whose predicted solubility
is closest to the target value is returned as the answer. To predict solubility we reimplement
the DNN model from [42].

3.3 Agentic Workflow

The agentic workflow of our system is structured as a multi-agent architecture in which a central
supervisor agent coordinates a set of specialised sub-agents, each aligned with one of the chemistry
tasks described in Table[I} The supervisor agent is responsible for interpreting the user’s input query,
reasoning over its intent, and delegating the problem to the appropriate sub-agent. This delegation is
implemented through a handoff tool, which transfers control and the complete message history to the
selected sub-agent. Each sub-agent is equipped with task-specific prompts and one or more tools
to carry out its designated task. Upon receiving control of the conversation history, the sub-agent
extracts the arguments required by the necessary tools and invokes them to generate an answer. It then
performs the chemical reasoning needed to ensure the output is valid against the task specification
before returning the solution to the supervisor. The supervisor consolidates the workflow and delivers
the final answer to the user. This modular design ensures that the large language model is used only
for parsing and task routing, while domain reasoning is handled by deterministic tools and agents
purpose-built for each chemistry task.

*The GHS Classification (Rev.10, 2023) can be accessed from https://pubchem.ncbi.nlm.nih.gov/ghs/.

3 An LD50 value represents the lethal dose of a molecule needed to kill 50% of a test population, typically
animals, upon exposure. A lower LD50 value indicates higher toxicity.

SpKa is a measure of the acidity of a molecule. It is calculated as the negative logarithm of the acid
dissociation constant (Ka). The lower the pKa value, the stronger the acid. Specifically, pKal refers to the pKa
value associated with the first ionisation of a polyprotic acid (an acid with multiple ionisable protons).

https://pubchem.ncbi.nlm.nih.gov/ghs/

3.4 Reasoning Data Generation

As mentioned in Section |2} there is a lack of datasets which include explicit reasoning traces on
chemistry problems [17]. However, such data are required for refining the CoT reasoning of an
LLM-based system. In this section, we describe how we re-built part of the ether0 training set and
used it to generate a dataset of reasoning traces.

3.4.1 Building the ether0 training set

Following Narayanan et al. [35], we re-created a subset of the data used to train the etherO model
focussing on the tasks introduced in Section

COCONUT. The COlleCtion of Open Natural prodUcTs (COCONUTﬂ] is the largest open collec-
tion of natural products, small molecules produced by living organisms with significant potential in
pharmacology and various industries due to their bioactivity [53,[8]. This dataset was used in four
tasks: namely IUPAC name, SMILES completion, Molecular formula and Elucidation. We detail
below how we re-constructed the data for these task:

* IUPAC name: Drawing from the Molecules table of the dataset, we take the iupac_name
field as input and the canonical_smiles field as the ground-truth.

* SMILES completion: As above, we take the canonical_smiles field as ground-truth.
From there, we artificially create an incomplete SMILES by randomly truncating the ground-
truth somewhere between 25% and 75% of its full lengths (to avoid overly short/long
fragments) and check that the obtained partial SMILES is indeed no longer a valid molecule
using RDKit’s MolFromSmiles () method [31]. An invalid fragment is then used as input.

* Molecular formula: Again, we take the canonical_smiles field as ground-truth. The
input, however, is obtained by joining the Molecules and Properties tables on the respective
id and molecule_id columns and drawing from the molecular_formula.

* Elucidation: The ground-truth for this task is also taken from the canonical_smiles
column of the Molecules table. The input is in part the molecular_formula as in the
previous task and on the other the organism name that can be found in the Organisms table
after joining it with Molecules on molecule_id and id respectively.

ChEMBL. The ChEMBL Database[ﬂ is a manually curated dataset of bioactive molecules with
drug-like properties [64]. This dataset was used for the Functional group task only; we describe this
process below:

* Functional groups: We retrieve all the molecule canonical_smiles in the com-
pound_structures table of the dataset and use these as ground-truths. For the in-
puts, we fetch their related molecular formulas given by full_molformula in the
the compound_properties table (joining on the molregno column), and use ExMol’s
get_functional_groups () method [56] to find the functional groups of each molecule.

PubChem. PubChem [_28 27, 26] is the largest public database of chemical molecules maintained
by the National Center for Biotechnology Information (NCBI) at the National Library of Medicine
(NLM). This dataset was used for two MCQ-based tasks:

 Safety: The candidate SMILES are restricted to the records retrieved from PubChem records
that contain GHS Hazard statements. We manually prepare a mapping between the target
safety classes (Carcinogenic, Fatally toxic, Fertility damaging, Flammable, and Toxic) and
its corresponding GHS Hazard code (H-code) as shown in Table[d] The SMILES are then
divided into those that possess at least one H-code belonging to the target class and those
that do not, to form the correct and incorrect sets. To ensure that the distractor candidates
are as similar as the correct ones, MCQs are constructed using only SMILES pairs whose
Tanimoto similarity exceeds a certain threshold.

"The dataset can be downloaded from https://coconut.naturalproducts.net/download.
8The dataset can be downloaded from https://chembl.gitbook.io/chembl-interface-documentation/downloads|

https://coconut.naturalproducts.net/download
https://chembl.gitbook.io/chembl-interface-documentation/downloads

* LD50: For the PubChem Toxicity data, each entry in the dataset contains a SMILES, an
associated species (Taxon), an administration route (Route), and the corresponding LD50
value in mg/kg. We filter duplicates to obtain only unique combinations of (SMILES,
Taxon, Route). Distractor choices are selected from molecules with the same species and
route whose LD50 values differ from the ground-truth within predefined thresholds in
mg/kg (1 < A < 100). Similarity between candidate molecules is computed using RDKit
fingerprints and Tanimoto similarity, and the closest candidates are chosen as distractors. If
not enough valid candidates are found, additional distractors are sampled at random from
the dataset. The final question prompt presents the Taxon, Route, and LD50 value, with
several SMILES as options, one of which is correct.

IUPAC. The IUPAC Digitised pKa Dataselﬂ [65] is an ongoing digitisation of pKa data from
reference works of Serjeant and Dempsey [48] and Perrin [39]] published by the International Union
of Pure and Applied Chemistry (IUPAC).

* pKa: Starting from 6,678 unique rows for pKal (based on temperature and pressure), we
narrowed it down by keeping temperatures between 17-27°C and only rows with numerical
answers, which gave 4,026 rows. Then, we removed entries with non-atmospheric pressure
when that info was available, leaving 3,946 rows. To handle duplicates with different
temperatures, we kept just one row per case, ending up with 3,596 rows. For each SMILES
molecule, candidate distractors are identified by: (i) computing Tanimoto similarity scores
between the query molecule and all others in the dataset using the RDKit fingerprint, and (ii)
filtering based on the absolute difference in pKal values falling within predefined thresholds
(0.2 < A < 1.0). The filtered candidates are then ranked by similarity, and the top three
are selected as distractors. If fewer than three valid candidates remain, random molecules
(excluding the correct answer and already selected distractors) are added. Finally, the
distractors and the correct answer are shuffled to produce the answer options.

AqSolDB. The AqSolDB Datasel@] [52] contains a curated reference set of aqueous solubility
values, comprising 9,982 unique compounds collected from nine publicly available solubility datasets.

* Aqueous solubility: Similar to the pKa MCQ dataset, for each SMILES molecule, candidate
distractors are identified by: (i) computing Tanimoto similarity scores between the query
molecule and all others in the dataset using the RDKit fingerprint, and (ii) filtering based on
the absolute difference in solubility values falling within predefined thresholds (0.2 < A <
1.0). The filtered candidates are then ranked by similarity, and the top three are selected as
distractors. If fewer than three valid candidates remain, random molecules (excluding the
correct answer and already selected distractors) are added. Finally, the distractors and the
correct answer are shuffled to produce the answer options.

From there, we randomly selected 500 input/ground-truth pairs from each task to form our own
training set, making sure that there was no overlap with those present in the ether0 benchmark dataset.
Finally, we used the selected inputs to create natural language problems using a variety of prompt
templatesE] used by Narayanan et al. [35].

3.4.2 Generating the reasoning traces

Our next step is to generate reasoning traces for each task using the training set presented in the
previous section to build a CoT chemistry-specific dataset. For this, we use three different base
LLMs: namely gpt-4o-mini [37], gpt-oss-20b [13], and qwen3-8b [55]]. In each setting, we
create different instances of the same model as the basis for the supervisor and the agents introduced
in Section[3.3] Then, we prompt the supervisor to solve all the problems in the training set (with 500
problems per task) and record the generated workflow trace to form our reasoning trace dataset.

Since we are building a dataset to elicit CoT reasoning in subsequent models, we want to maximise
the correctness of the reasoning traces rather than test the performance of the tools. To this end,

“Found here: https://github.com/[UPAC/Dissociation-Constants/blob/main/iupac_high-confidence_v2_3.csv.

10The dataset can be downloaded from https://codeocean.com/capsule/8848590/tree/v1 data_curated.csv,

"'The prompts can be found via https://github.com/Future-House/ether0/blob/main/src/ether0/problem_prompts.py.
For reference, we include a mapping between the task names and the prompt variable names in Appendix@

https://github.com/IUPAC/Dissociation-Constants/blob/main/iupac_high-confidence_v2_3.csv
https://codeocean.com/capsule/8848590/tree/v1 data_curated.csv
https://github.com/Future-House/ether0/blob/main/src/ether0/problem_prompts.py

we modify the tools so that, given an input present in the training set, the tool always returns the
associated ground truth. However, this is entirely dependent on the supervisor model calling the right
agent for a given problem and on the agent successfully recognising and parsing the inputs within
the problem statement. We report in Appendix [A.5]the tool calling and overall accuracies of the
workflows for each of the three base models.

3.5 Reasoning Supervised Fine-Tuning

Finally, we distill the generated reasoning traces into smaller LLMs through supervised fine-tuning
(SFT). Given a query and a reasoning trace, the LLM is required to generate the "assistant” output,
once in the role of "supervisor” and once again as the task-specific subagent for that query. Addition-
ally, we fine-tune a second version of the model that includes the <think> tag outputs to determine
the impact on overall performance.

For our initial investigation we focus on fine-tuning small models such as Qwen3-0.6B and
Qwen3-1.7B. Additionally, we limit SFT to the reasoning traces generated by the larger Qwen3-8B,
as these models were both distilled from the same original flagship models [55], and there has been
a documented tendency for LLMs to prefer their own outputs [1l], making this configuration most
likely to succeed. For each model we fine-tune both the base and “thinking” variants. Our fine-tuning
hyper-parameters can be found in Appendix

3.6 Evaluation

To evaluate our approach, we report the performance of the supervised fine-tuned models: MMLU
Pro Chemistry [5,158]], ChemBench-Mini [34]], and etherO [35].

MMULU-Pro-Chemistry. The MMLU-Pro-Chemistry benchmark is a subset of the larger MMLU-
Pro dataset [58]] which is itself an extension of the seminal MMLU benchmark [19]. The subset
contains 1,132 multiple-choice questions (MCQs) which assess graduate-level knowledge in areas
such as organic, inorganic, physical, and analytical chemistry. Overall, the benchmark primarily tests
factual recall, conceptual understanding, and problem-solving ability, and thus serves as a measure of
general chemistry competence.

ChemBench-Mini. ChemBench [34] is a recent benchmark created to systematically assess the
capabilities of LLMs in chemistry. Unlike MMLU-Pro-Chemistry which only includes MCQs,
ChemBench also samples open-ended questions including interpretation of molecular structures and
reactivity. As a result, it provides a direct measure of a model’s chemistry domain reasoning patterns
beyond surface-level memorisation. ChemBench-Mini was curated to be a light-weight, diverse and
representative subset of the full corpus, and contains only 236 questions.

Together, these two benchmarks provide a comprehensive evaluation landscape: MMLU-Pro Chem-
istry tests general chemistry knowledge, while ChemBench assesses chemical reasoning.

ether0. The ether0 benchmarkE] comprises 18 tasks, spanning both open-ended and multiple-choice
formats, that evaluate a model’s ability to manipulate chemical structures and perform sophisticated
reasoning tasks, similarly to ChemBench. Among existing benchmarks, etherO is most closely
aligned with our work, as we selected our tasks directly from the set of 18 defined by Narayanan
et al. [35]] (Section . While the full benchmark includes 325 questions, we restricted evaluation
to the 181 questions corresponding to our nine chosen tasks. This choice both avoids overlap with
ChemBench-Mini, which already covers similar capabilities and question formats, and allows for a
more targeted assessment of our agentic workflow on the chosen tasks.

Unlike MMLU-Pro-Chemistry and ChemBench, where models are evaluated in a direct prompting
setup, we evaluate the models on the ether0 benchmark by instantiating each model within our agentic
workflow. Accordingly, we report two complementary metrics: (1) tool-calling accuracy, measuring
whether the supervisor correctly delegates to the appropriate sub-agent (aggregated across the nine
tasks using the Macro F1 score), and (2) final-answer accuracy, measuring whether the complete
workflow produces the correct solution. Note that, as in the data generation stage (Section [3.4.2)), the

">The dataset can be accessed from HuggingFace via https://huggingface.co/futurehouse/ether0,

https://huggingface.co/futurehouse/ether0

tools will fetch and return the benchmarks’ ground truth given that the input is correctly parsed and
passed to the correct agent.

Base models. For comparison, we evaluate our fine-tuned models against a series of base models:

* their respective base models Qwen/Qwen3-0.6B and Qwen/Qwen3-1.7B,
* Quen/Qwen3-8B which we used to generate the reasoning training data (Section[3.4.2]),
* OpenAl’s gpt-4o-mini [37] a highly performant, small, closed-source model for reference,

+ and futurehouse/etherd™|model [33].

Note that we do not evaluate futurehouse/ether0 on the ether0 benchmark, as it was not trained
for tool-calling in an agentic setting, and so performance would not be directly comparable.

4 Result

The results of our evaluation (Section [3.6) are summarised in Tables [2]and[3] We also include plots
of the fine-grained (per task) Macro F1 scores in Appendix [A.6] Finally, we include some failure

analysis in Appendix

ether0. Table[2]reports tool-calling and final-answer accuracy on the nine ether0 tasks within our
agentic workflow. We also plot the fine-grained Macro F1 results (for each task) in Figures [2]and 3]
As expected, larger base models such as Qwen/Qwen3-8B and gpt-4o-mini achieve the strongest
performance overall, with macro F1 scores greater than 0.85. The smaller Qwen/Qwen3-0.6B
and Qwen/Qwen3-1.7B struggle in this setting, reflecting their limited capacity for complex
multi-step reasoning. Supervised fine-tuning leads to clear gains for some models. Notably,
sft-Qwen/Qwen3-0. 6B improves tool-calling accuracy from 0.254 to 0.707 and final-answer ac-
curacy from 0.088 to 0.376. Similarly, sft-think-Qwen/Qwen3-1.7B yields a large jump in
final-answer accuracy (+0.420). These improvements demonstrate that distilling reasoning traces into
small models enables them to recover part of the reasoning ability of larger bases. However, gains
are not uniform: sft-think-Qwen/Qwen3-0.6B underperforms compared to its base counterparts,
suggesting that not all fine-tuning strategies are equally effective.

Table 2: Performance of base and fine-tuned models on the etherO benchmark, rounded to three
decimal places.

Model Tool calling Macro F1 Accuracy
Qwen/Qwen3-0.6B 0.254 0.088
Qwen/Qwen3-1.7B 0.530 0.033
Qwen/Qwen3-8B 0.856 0.812
gpt-4o-mini 0.867 0.779
sft-Qwen/Qwen3-0.6B 0.707 +0.453 0.376 +0.288
sft-Qwen/Qwen3-1.7B 0.707 +o0.177 0.044 +o0.011
sft-think-Qwen/Qwen3-0.6B 0.177 —o.077 0.055 —0.033
sft-think-Qwen/Qwen3-1.7B 0.669 +0.139 0.453 +0.420

ChemBench-Mini. Table |3| shows the results on ChemBench-Mini. Here, base models show a

strong scaling trend, with Qwen/Qwen3-8B reaching 0.610 accuracy, competitive with gpt-4o0-mini
(0.585). The futurehouse/ether0 model performs poorly (0.008), consistent with the fact that it
is not instruction-tuned for general chemistry question-answering. Fine-tuning has mixed impact:
sft-Qwen/Qwen3-1.7B improves substantially over its base (0.424 vs. 0.263), while other variants
underperform relative to their starting points. This suggests that reasoning traces are helpful for
models in the mid-size regime but may not transfer straightforwardly to very small models.

13The model is open-source and available on HuggingFace via https://huggingface.co/futurehouse/ether0.

https://huggingface.co/futurehouse/ether0

Table 3: Performance (in terms of overall accuracy) of base and fine-tuned models on ChemBench-
Mini and MMLU-Pro Chemistry, rounded to three decimal places.

Model ChemBench-Mini MMLU-Pro-Chemistry
Qwen/Qwen3-0.6B 0.127 0.349
Qwen/Qwen3-1.7B 0.263 0.652

Qwen/Qwen3-8B 0.610 0.784

gpt-4o-mini 0.585 0.092
futurehouse/ether0 0.008 0.113
sft-Qwen/Qwen3-0.6B 0.034 —0.093 0.109 —o0.240
sft-Qwen/Qwen3-1.7B 0.424 +o.161 0.521 —o0.131
sft-think-Qwen/Qwen3-0.6B 0.042 —0.085 0.159 —o.190
sft-think-Qwen/Qwen3-1.7B 0.178 —0.085 0.531 —o0.121

MMLU-Pro Chemistry. Results on MMLU-Pro Chemistry (Table [3) reflect a similar picture.
Larger base models perform well (Qwen/Qwen3-8B at 0.784), though gpt-4o-mini lags behind.
SFT models consistently fall short of their base counterparts, with drops of 0.12-0.24 in accuracy.
This highlights that reasoning distillation is less effective on benchmarks emphasising factual recall
and broad conceptual coverage, as opposed to structured tool-augmented reasoning.

Taken together, these results show that supervised fine-tuning on reasoning traces can substantially
improve performance of small models in structured, tool-mediated workflows (as evaluated on the
ether0 benchmark). However, the benefits do not seem to translate to benchmarks like ChemBench-
Mini and MMLU-Pro Chemistry that emphasise direct question-answering and factual recall. This
divergence underscores the importance of aligning training data with the target evaluation setting:
reasoning-focused distillation primarily enhances performance when models are embedded in agentic
workflows rather than when they are directly prompted.

5 Conclusion

In this work, we evaluated the ability of tool-calling agentic workflows to reason in the chemistry
domain. We show that LLMs are capable of using task-specific tools to great effect (Table [2) even
when the LLMs themselves are not fully capable in the chemistry domain (Table [3).

Additionally, we evaluated the effectiveness of supervised fine-tuning on reasoning traces, generated
from a larger model (here Qwen3-8B) in an agentic workflow setting, for improving the performance
of small and mid-sized language models on chemistry-reasoning tasks. Our results show that fine-
tuning on this type of reasoning traces can substantially boost both tool-calling and final-answer
accuracy for smaller models, enabling them to recover part of the reasoning ability of larger base
model. However, these gains do not consistently transfer when evaluated in non-agentic settings
on benchmarks such as ChemBench-Mini and MMLU-Pro Chemistry. This contrast highlights the
importance of aligning training data with the target evaluation setting: distilling from a chemistry
reasoning agentic system is most effective when downstream models are also embedded in said
agentic workflows to perform the same tasks.

Future work. This work serves as a proof of concept for verifiable, tool-calling agentic workflows
in chemistry. Specifically, the use of nine specialised agents was chosen for clarity and verifiability
in this early-stage system. However, we recognise that this modular design may appear overly
complex for the present task scope. Future iterations will explore multi-step reasoning and planning
problems that require combining multiple tools and generating novel chemical insights. Using
our existing framework, such hybrid tasks can be automatically constructed by chaining existing
tools to form more complex, compositional workflows. Finally, we plan to extend this work by
incorporating reinforcement learning techniques such as Group Relative Policy Optimisation (GRPO;
[L1]), developing interleaved reasoning architectures that dynamically alternate between reasoning
and tool usage, distilling more knowledge from larger, stronger models, and incorporating executable
tool code (e.g., Python) into the reasoning traces [49]. Exploring these directions may yield more
robust small models capable of both complex reasoning and general question-answering.

Acknowledgments

We thank Sultan Alrowili for his invaluable guidance, support throughout the project, and thoughtful
feedback on the manuscript. We are also grateful to Fabian Thiemann for sharing his chemistry
expertise, which greatly helped our understanding of the domain. This work was conducted while the
authors were employed at IBM Research.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Derek T. Ahneman, Jesus G. Estrada, Shishi Lin, Spencer D. Dreher, and Abigail G. Doyle.
Predicting reaction performance in c—n cross-coupling using machine learning. Science, 360
(6385):186-190, 2018. doi: 10.1126/science.aar5169. URL https://www.science.org/
doi/abs/10.1126/science.aar5169.

Daniil Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624:570-578, 12 2023. doi: 10.1038/s41586-023-06792-0.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools, 2023. URL
https://arxiv.org/abs/2304.05376|

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
URL https://arxiv.org/abs/2005.14165|

Hengxing Cai, Xiaochen Cai, Junhan Chang, Sihang Li, Lin Yao, Wang Changxin, Zhifeng
Gao, Hongshuai Wang, Li Yongge, Mujie Lin, Shuwen Yang, Jiankun Wang, Mingjun Xu, Jin
Huang, Xi Fang, Jiaxi Zhuang, Yuqi Yin, Yaqi Li, Changhong Chen, Zheng Cheng, Zifeng
Zhao, Linfeng Zhang, and Guolin Ke. SciAssess: Benchmarking LLM proficiency in scientific
literature analysis. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the
Association for Computational Linguistics: NAACL 2025, pages 2335-2357, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-
195-7. doi: 10.18653/v1/2025.findings-naacl.125. URL https://aclanthology.org/2025,
findings-naacl.125/.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models
as tool makers, 2024. URL https://arxiv.org/abs/2305.17126,

Quintina Campbell, Sam Cox, Jorge Medina, Brittany Watterson, and Andrew D. White.
Mdcrow: Automating molecular dynamics workflows with large language models, 2025. URL
https://arxiv.org/abs/2502.09565.

Venkata Chandrasekhar, Kohulan Rajan, Sri Ram Sagar Kanakam, Nisha Sharma, Viktor
WeiBlenborn, Jonas Schaub, and Christoph Steinbeck. COCONUT 2.0: a comprehensive
overhaul and curation of the collection of open natural products database. Nucleic Acids Res,
53(D1):D634-D643, January 2025.

Yuan Chiang, Elvis Hsieh, Chia-Hong Chou, and Janosh Riebesell. Llamp: Large language
model made powerful for high-fidelity materials knowledge retrieval and distillation, 2024.
URL https://arxiv.org/abs/2401.17244|

Karl D Collins, Tobias Gensch, and Frank Glorius. Contemporary screening approaches to
reaction discovery and development. Nat Chem, 6(10):859-871, October 2014.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Long Phan et al. Humanity’s last exam, 2025. URL https://arxiv.org/abs/2501.14249,

10

https://www.science.org/doi/abs/10.1126/science.aar5169
https://www.science.org/doi/abs/10.1126/science.aar5169
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2025.findings-naacl.125/
https://aclanthology.org/2025.findings-naacl.125/
https://arxiv.org/abs/2305.17126
https://arxiv.org/abs/2502.09565
https://arxiv.org/abs/2401.17244
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.14249

[13] OpenAl et al. gpt-oss-120b & gpt-o0ss-20b model card, 2025. URL https://arxiv.org/
abs/2508.10925.

[14] Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui
Fan, and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for
large language models, 2024. URL https://arxiv.org/abs/2306.08018,

[15] A. Ghafarollahi and M. J. Buehler. Protagents: Protein discovery via large language model
multi-agent collaborations combining physics and machine learning, 2024. URL https:
//arxiv.org/abs/2402.04268,

[16] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V. Chawla,
Olaf Wiest, and Xiangliang Zhang. What can large language models do in chemistry? a com-
prehensive benchmark on eight tasks, 2023. URL https://arxiv.org/abs/2305.18365.

[17] Yang Han, Ziping Wan, Lu Chen, Kai Yu, and Xin Chen. From generalist to specialist: A survey
of large language models for chemistry, 2024. URL https://arxiv.org/abs/2412.19994!

[18] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model, 2023. URL https:
//arxiv.org/abs/2305.14992,

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021. URL https
//arxiv.org/abs/2009.03300,

[20] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of 1lm agents: A survey, 2024.
URL https://arxiv.org/abs/2402.02716.

[21] Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology,
3(1):015022, jan 2022. doi: 10.1088/2632-2153/ac3ffb. URL https://dx.doi.org/10!
1088/2632-2153/ac3ffh.

[22] Kevin Maik Jablonka, Qianxiang Ai, Alexander Al-Feghali, Shruti Badhwar, Joshua D. Bocarsly,
Andres M. Bran, Stefan Bringuier, L. Catherine Brinson, Kamal Choudhary, Defne Circi, Sam
Cox, Wibe A. de Jong, Matthew L. Evans, Nicolas Gastellu, Jerome Genzling, Maria Victoria
Gil, Ankur K. Gupta, Zhi Hong, Alishba Imran, Sabine Kruschwitz, Anne Labarre, Jakub
Lala, Tao Liu, Steven Ma, Sauradeep Majumdar, Garrett W. Merz, Nicolas Moitessier, Elias
Moubarak, Beatriz Mourifio, Brenden Pelkie, Michael Pieler, Mayk Caldas Ramos, Bojana
Rankovié, Samuel G. Rodriques, Jacob N. Sanders, Philippe Schwaller, Marcus Schwarting,
Jiale Shi, Berend Smit, Ben E. Smith, Joren Van Herck, Christoph Volker, Logan Ward,
Sean Warren, Benjamin Weiser, Sylvester Zhang, Xiaoqi Zhang, Ghezal Ahmad Zia, Aristana
Scourtas, K. J. Schmidt, Ian Foster, Andrew D. White, and Ben Blaiszik. 14 examples of
how Ilms can transform materials science and chemistry: a reflection on a large language
model hackathon. Digital Discovery, 2:1233-1250, 2023. doi: 10.1039/D3DD00113J. URL
http://dx.doi.org/10.1039/D3DD00113J.

[23] Yunhui Jang, Jaechyung Kim, and Sungsoo Ahn. Chain-of-thoughts for molecular understanding.
In NeurIPS 2024 Workshop on Al for New Drug Modalities, 2024. URL https://openreview!
net/forum?id=cFHjEo20Cd!|

[24] Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New
York, 2011. ISBN 9780374275631 0374275637. URL https://www.amazon.de/
Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_
nS_nC?ie=UTF8&co0l1id=151193SNGKJT9&co0liid=I30CESLZCVDFL7.

[25] Hyunseung Kim, Jonggeol Na, and Won Bo Lee. Generative chemical transformer: Neural ma-
chine learning of molecular geometric structures from chemical language via attention. Journal
of Chemical Information and Modeling, 61(12):5804-5814, December 2021. ISSN 1549-960X.
doi: 10.1021/acs.jcim.1c01289. URL http://dx.doi.org/10.1021/acs. jcim.1c01289,

11

https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2402.04268
https://arxiv.org/abs/2402.04268
https://arxiv.org/abs/2305.18365
https://arxiv.org/abs/2412.19994
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2402.02716
https://dx.doi.org/10.1088/2632-2153/ac3ffb
https://dx.doi.org/10.1088/2632-2153/ac3ffb
http://dx.doi.org/10.1039/D3DD00113J
https://openreview.net/forum?id=cFHjEo2oCd
https://openreview.net/forum?id=cFHjEo2oCd
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
http://dx.doi.org/10.1021/acs.jcim.1c01289

[26] Sunghwan Kim. Exploring chemical information in pubchem. Current protocols, 1(8):e217,
2021.

[27] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Sigian He, Qingliang Li,
Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem 2023 update. Nucleic acids
research, 51(D1):D1373-D1380, 2023.

[28] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Sigian He, Qingliang Li,
Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E
Bolton. Pubchem 2025 update. Nucleic Acids Research, 53(D1):D1516-D1525, 11 2024. ISSN
1362-4962. doi: 10.1093/nar/gkae1059. URL https://doi.org/10.1093/nar/gkae1059.

[29] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205,
11916l

[30] Brenden Lake, Tomer Ullman, Joshua Tenenbaum, and Samuel Gershman. Building machines
that learn and think like people. Center for Brains, Minds & Machines (CBMM) Memo No. 046,
arXiv, 04 2016. doi: 10.1017/S0140525X16001837.

[31] Greg Landrum. RDKit: Open-source cheminformatics. http://www.rdkit.org, 2006.

[32] Jiatong Li, Weida Wang, Qinggang Zhang, Junxian Li, Di Zhang, Changmeng Zheng, Shufei
Zhang, Xiaoyong Wei, and Qing Li. Mol-r1: Towards explicit long-cot reasoning in molecule
discovery, 2025. URL https://arxiv.org/abs/2508.08401,

[33] Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martifio Rios-Garcia, Benedict Emoek-
abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha
Aneesh, Amir Mohammad Elahi, Mehrdad Asgari, Juliane Eberhardt, Hani M. Elbeheiry,
Maria Victoria Gil, Maximilian Greiner, Caroline T. Holick, Christina Glaubitz, Tim Hoffmann,
Abdelrahman Ibrahim, Lea C. Klepsch, Yannik Koster, Fabian Alexander Kreth, Jakob Meyer,
Santiago Miret, Jan Matthias Peschel, Michael Ringleb, Nicole Roesner, Johanna Schreiber,
Ulrich S. Schubert, Leanne M. Stafast, Dinga Wonanke, Michael Pieler, Philippe Schwaller,
and Kevin Maik Jablonka. Are large language models superhuman chemists?, 2024. URL
https://arxiv.org/abs/2404.01475|

[34] Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martifio Rios-Garcia, Benedict Emoek-
abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha
Aneesh, Mehrdad Asgari, Juliane Eberhardt, Amir Mohammad Elahi, Hani M. Elbeheiry,
Maria Victoria Gil, Christina Glaubitz, Maximilian Greiner, Caroline T. Holick, Tim Hoff-
mann, Abdelrahman Ibrahim, Lea C. Klepsch, Yannik K"oster, Fabian Alexander Kreth, Jakob
Meyer, Santiago Miret, Jan Matthias Peschel, Michael Ringleb, Nicole C. Roesner, Johanna
Schreiber, Ulrich S. Schubert, Leanne M. Stafast, A. D. Dinga Wonanke, Michael Pieler,
Philippe Schwaller, and Kevin Maik Jablonka. A framework for evaluating the chemical
knowledge and reasoning abilities of large language models against the expertise of chemists.
Nature Chemistry, May 2025. ISSN 1755-4349. doi: 10.1038/s41557-025-01815-x. URL
http://dx.doi.org/10.1038/s41557-025-01815-x.

[35] Siddharth M. Narayanan, James D. Braza, Ryan-Rhys Griffiths, Albert Bou, Geemi Wellawatte,
Mayk Caldas Ramos, Ludovico Mitchener, Samuel G. Rodriques, and Andrew D. White.
Training a scientific reasoning model for chemistry, 2025. URL https://arxiv.org/abs/
2506.17238.

[36] National Center for Biotechnology Information (NCBI). PubChem pug-rest api. https:
//pubchem.ncbi.nlm.nih.gov/rest/pug, 2025. Accessed: 2025-08-05.

[37] OpenAl. Gpt-4o mini: advancing cost-efficient intelligence, 2024. URL https://
openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/. Ac-
cessed: 2025-08-20.

[38] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models, 2022. URL
https://arxiv.org/abs/2205.12255/|

12

https://doi.org/10.1093/nar/gkae1059
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
http://www.rdkit.org
https://arxiv.org/abs/2508.08401
https://arxiv.org/abs/2404.01475
http://dx.doi.org/10.1038/s41557-025-01815-x
https://arxiv.org/abs/2506.17238
https://arxiv.org/abs/2506.17238
https://pubchem.ncbi.nlm.nih.gov/rest/pug
https://pubchem.ncbi.nlm.nih.gov/rest/pug
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2205.12255

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Douglas Dalzell Perrin. Dissociation constants of organic bases in aqueous solution: supplement
1972, volume 1. Pergamon, 1972.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng
Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining
Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu,
Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning
with foundation models. ACM Comput. Surv., 57(4), December 2024. ISSN 0360-0300. doi:
10.1145/3704435. URL https://doi.org/10.1145/3704435.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu,
and Ji-rong Wen. Tool learning with large language models: a survey. Frontiers of Computer
Science, 19(8), January 2025. ISSN 2095-2236. doi: 10.1007/s11704-024-40678-2. URL
http://dx.doi.org/10.1007/s11704-024-40678-2.

Mayk Caldas Ramos and Andrew D. White. Predicting small molecules solubility on endpoint
devices using deep ensemble neural networks. Digital Discovery, 3:786-795, 2024. doi:
10.1039/D3DD00217A. URL http://dx.doi.org/10.1039/D3DD00217A.

Mayk Caldas Ramos, Christopher J. Collison, and Andrew D. White. A review of large
language models and autonomous agents in chemistry. Chem. Sci., 16:2514-2572, 2025. doi:
10.1039/D4SC03921A. URL http://dx.doi.org/10.1039/D4SC03921A.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022|

Nicholas T. Runcie, Charlotte M. Deane, and Fergus Imrie. Assessing the chemical intelligence
of large language models, 2025. URL https://arxiv.org/abs/2505.07735,

Alexander Buitrago Santanilla, Erik L. Regalado, Tony Pereira, Michael Shevlin, Kevin Bate-
man, Louis-Charles Campeau, Jonathan Schneeweis, Simon Berritt, Zhi-Cai Shi, Philippe
Nantermet, Yong Liu, Roy Helmy, Christopher J. Welch, Petr Vachal, Ian W. Davies, Tim
Cernak, and Spencer D. Dreher. Nanomole-scale high-throughput chemistry for the synthesis
of complex molecules. Science, 347(6217):49-53, 2015. doi: 10.1126/science.1259203. URL
https://www.science.org/doi/abs/10.1126/science.1259203,

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric
Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Informa-
tion Processing Systems, volume 36, pages 68539-68551. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
d842425e4bf79ba039352da0£658a906-Paper-Conference.pdf.

Eldon Percy Serjeant and Boyd Dempsey. lonisation constants of organic acids in aqueous
solution. Number 23 in Chemical data series. Pergamon, 1979.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi,
Pang Wei Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr,
2025. URL https://arxiv.org/abs/2506.10947.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models,
2023. URL https://arxiv.org/abs/2212.04088.

13

https://doi.org/10.1145/3704435
http://dx.doi.org/10.1007/s11704-024-40678-2
http://dx.doi.org/10.1039/D3DD00217A
http://dx.doi.org/10.1039/D4SC03921A
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2505.07735
https://www.science.org/doi/abs/10.1126/science.1259203
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2212.04088

[52] Murat Cihan Sorkun, Abhishek Khetan, and Siileyman Er. Aqsoldb, a curated reference set of
aqueous solubility and 2d descriptors for a diverse set of compounds. Scientific data, 6(1):143,
2019.

[53] Maria Sorokina, Peter Merseburger, Kohulan Rajan, Mehmet Yirik, and Christoph Steinbeck.
Coconut online: Collection of open natural products database. Journal of Cheminformatics, 13,
01 2021. doi: 10.1186/s13321-020-00478-9.

[54] Alex Tamkin, Miles Brundage, Jack Clark, and Deep Ganguli. Understanding the capabilities,
limitations, and societal impact of large language models, 2021. URL https://arxiv.org/
abs/2102.02503.

[55] Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

[56] ur-whitelab. exmol: Explainable molecular functional-group extraction. https://github.
com/ur-whitelab/exmol, 2024.

[57] Juan Luis Villarreal-Haro, Remy Gardier, Erick J. Canales-Rodriguez, Elda Fischi-Gomez,
Gabriel Girard, Jean-Philippe Thiran, and Jonathan Rafael-Patifio. Cactus: a computa-
tional framework for generating realistic white matter microstructure substrates. Frontiers
in Neuroinformatics, Volume 17 - 2023, 2023. ISSN 1662-5196. doi: 10.3389/fninf.
2023.1208073. URL https://www.frontiersin.org/journals/neuroinformatics/
articles/10.3389/fninf.2023.1208073.

[58] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406!
01574,

[59] Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents, 2024. URL https://arxiv.org/abs/2302.01560.

[60] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/2201.11903.

[61] Andrew D. White, Glen M. Hocky, Heta A. Gandhi, Mehrad Ansari, Sam Cox, Geemi P.
Wellawatte, Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, and Willmor J. Pefia Ccoa.
Assessment of chemistry knowledge in large language models that generate code. Digital
Discovery, 2:368-376, 2023. doi: 10.1039/D2DD00087C. URL http://dx.doi.org/10!
1039/D2DD00087C.

[62] Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models, 2024. URL
https://arxiv.org/abs/2402.13116|

[63] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023. URL https:
//arxiv.org/abs/2210.03629,

[64] Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula
Magarinos, Nicolas Bosc, Ricardo Arcila, Tevfik Kiziléren, Anna Gaulton, A Patricia Bento,
Melissa F Adasme, Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL
database in 2023: a drug discovery platform spanning multiple bioactivity data types and time
periods. Nucleic Acids Res, 52(D1):D1180-D1192, January 2024.

[65] Jonathan Zheng and Olivier Lafontant-Joseph. IUPAC Digitized pKa Dataset, 2025. URL
https://doi.org/10.5281/zenodo.15375522,

[66] Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, and
Yangqiu Song. From automation to autonomy: A survey on large language models in scientific
discovery, 2025. URL https://arxiv.org/abs/2505.13259,

14

https://arxiv.org/abs/2102.02503
https://arxiv.org/abs/2102.02503
https://arxiv.org/abs/2505.09388
https://github.com/ur-whitelab/exmol
https://github.com/ur-whitelab/exmol
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2023.1208073
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2023.1208073
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2201.11903
http://dx.doi.org/10.1039/D2DD00087C
http://dx.doi.org/10.1039/D2DD00087C
https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://doi.org/10.5281/zenodo.15375522
https://arxiv.org/abs/2505.13259

A Methodology Details

A.1 Task descriptions

For reference, we include in this section the definitions of the 9 ether(O subtasks included in our
workflow. First, we describe the five generation-based tasks:

* IUPAC name: Given an IUPAC name, convert it to a valid SMILES string.

* SMILES completion: Given a truncated SMILES string, return a completed, valid SMILES
string that preserves the original prefix.

* Molecular formula: Given a Hill formula, return a valid SMILES string corresponding to
that formula.

* Functional groups: Given a Hill formula and one or more functional groups, return a valid
SMILES string that matches the formula and contains those functional groups.

* Elucidation: Given a Hill formula, an organism, and some background information on the
organism, return a SMILES string for a compound found in that organism whose formula
matches the Hill formula.

Similarly, we describe below the four MCQ-based tasks:

» Safety: Given a safety class (refer to Appendix|A.2), and a set of 2-5 molecules given in
SMILES notation, select the molecule that is most (or least) expected to possess that safety
hazard.

« LD50: Given an LD5(F value in mg/kg and a set of 4 molecules given in SMILES notation,
select the molecule that is most likely to have that LD50 value for a population of a
given variety of test animal (e.g., mouse) and for a given mode of administration (e.g.,
intraperitoneal injection).

* pKa: Given a target pKal value and a set of 4 molecules given in SMILES notation, select
the molecule that is most likely to have that pkal value.

* Aqueous solubility: Given a target aqueous solubility value given in logS (where S is a
molecule’s aqueous solubility in mol/L) and a set of 4 molecules given in SMILES notation,
select the molecule that is most likely to have that log solubility value.

15

A.2 Safety classes

Table 4: Safety task classes and their GHS Hazard codes.

Safety Class

GHS Hazard code

Carcinogenic

H300, H350i, H351

Fatally toxic

H300, H304, H310, H330

Fertility damaging

H360, H360F, H360D, H360FD, H360Fd, H360Df, H361, H361f,
H361d, H361fd

Flammable

H205, H206, H207, H208, H220, H221, H222, H223, H224, H225,
H226, H227, H228, H229, H230, H231, H232, H241, H242, H250,
H251, H252, H260, H261, H270, H271, H272, H282, H283

Toxic

H300, H301, H302, H303, H310, H311, H312, H313, H330, H331,
H332, H333, H335, H336, H370, H371, H372, H373

16

A.3 ether0 prompts to task names

Table 5: Mapping between the task names and the prompt variable names in ether0’s
problem_prompts.py.

Task name Prompt variable name

ITUPAC name NAME_IUPAC_PROMPTS

SMILES completion COMPLETE_MOL_PROMPTS
Molecular formula SMILES_FROM_FORMULA_PROMPTS
Functional groups FUNCTIONAL_GROUP_PROMPTS

Elucidation MOL_FORMULA_PROMPTS
Safety PROPERTY_PROMPTS
LD50 PROPERTY_PROMPTS
pKa PROPERTY_PROMPTS

Aqueous solubility PROPERTY_PROMPTS

17

A.4 Hyperparameters

Table 6: Supervised Finetuning Hyper-parameters

Hyper-parameter Value
Learning Rate 1x107°
Batch Size 32
Maximum Context Length 8192
Optimiser AdamW
Warmup Ratio 10%
Weight decay 0.1
Dropout Rate 0.1
Epochs 5

18

A.5 Agentic data generation results

Table 7: Tool calling accuracy (did the supervisor delegate to the right agent) and overall accuracy
(Acc.; is the final answer correct) of the workflows for three base LLMs on the training set, rounded
to three decimal places.

gpt-4o-mini gpt-oss-20b qwen3-8b
Task name Tool calling | Acc. Tool calling | Acc. Tool calling | Acc.
TUPAC name 0.992 0.866 0.992 0.858 1.000 0.856
SMILES completion 1.000 0.894 0.992 0.774 1.000 0.740
Molecular formula 1.000 0.920 0.996 0.910 1.000 0.894
Functional groups 1.000 0.890 0.978 0.838 0.988 0.886
Elucidation 0.912 0.570 0.740 0.458 1.000 0.602
Safety 0.730 0.580 0.894 0.704 0.746 0.620
LD50 0.988 0.908 0.922 0.828 1.000 0.920
pKa 0.984 0.824 0.990 0.916 1.000 0.928
Aqueous solubility 0.984 0.760 0.990 0.868 1.000 0.886
Average 0.954 | 0.801 0.944 | 0.795 0.972 | 0.815

19

A.6 Fine-grained ether0 Macro F1 results

[Quen3-0.6B 1 Quen3-1.7B Qwen3-8B
Ir ft-Qwen3-0.6B ft-Qwen3-1.7B! I ft-think-Qwen3-0.6B
ft-think-Qwen3-1.7B [gpt-40-mini

s o o
=~ D oo

Macro F1 Score

o
B

Figure 2: Macro F1 scores for non-MCQ tasks (Molecular formula, Elucidation, SMILES completion,
Functional groups, and [IUPAC name).

[Qwen3-0.6B 1 Quen3-1.7B Qwen3-8B
I ft-Qwen3-0.6B ft-Qwen3-1.7B | ft-think-Qwen3-0.6B
ft-think-Qwen3-1.7BIN gpt-4o-mini

1 — | | -

0.8 N
L
o

2 0.6 i
=
e

3 0.4 N
p=

0.2 i

0 Q\ A\ %\
S N &
N & S
%0
0%
@0
&

Figure 3: Macro F1 scores for MCQ tasks (pKa, LD50, Aqueous solubility, and Safety).

20

A.7 Failure analysis

A common failure we observed in evaluation is incorrect input parsing by LLMs. An example below
shows a case where sft-Qwen/Qwen3-0.6B model failed to correctly parse the SMILES string in
the SMILES Completion task.

Question:
What is a valid completion of this molecule: N(C1=CC=C(C)C=C1C)=C1C=C(C27

Parsed arguments:
{"smiles": "N(C1=CC=C(C)C=C1C)=C1C=C(C2)"}

Ground truth:
N(C1=CC=C(C)C=C1C)=C1C=C(C2=CC=CC=C2) C=C1

The LLM mistakenly insert an extra) after C2, which does not appear in the original problem
statement. In this case, as the ground truth continues with =CC=CC after C2, this error prevents the
subsequent agentic workflow from recovering the correct answer.

21

A.8 Example of training data with reasoning trace

A.8.1 SMILES Completion

=== Human Message ===

I have a partial molecule represented by the SMILES string
CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (. What is a valid
completion of this molecule, providing only the remaining characters in SMILES
format?

=== AI Message ===

Name: supervisor

<think> Okay, let’s see. The user has a partial SMILES string

and wants to know the valid completion. The given SMILES is
CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (. So, the task

is to figure out what the missing part is. First, I need to check which
agent can handle this. The user is asking to complete an incomplete SMILES
string. Looking at the available agents, there’s the smiles_completion_agent.
That’s the one. The other agents are for converting formulas, IUPAC names,

or handling multiple-choice questions based on properties. Since the

user is specifically asking to complete the SMILES, the correct agent is
smiles_completion_agent. I should call that agent. The parameters for the
function transfer_to_smiles_completion_agent don’t require any arguments, so
I just need to trigger that function. Once it processes the input, it should
return the completed SMILES. Then, I can present the result to the user as the
answer. <\think>

Tool Calls: transfer_to_smiles_completion_agent
Args:

=== Tool Message ===
Name: transfer_to_smiles_completion_agent
Successfully transferred to smiles_completion_agent

=== AI Message ===
Name: smiles_completion_agent

Args: fragment: CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (

<think> Okay, let’s tackle this problem. The user provided a partial SMILES
string and wants a valid completion. First, I need to understand the input. The
SMILES given is "CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (".
Looking at this, I notice that the string ends with a parenthesis, which might

be unmatched. Also, there are several parts that could be incomplete. The
structure seems to involve rings and substituents. The part after the first

ring (C1=CCCC2C1) might be a cyclohexane ring with some substituents. The
substituents include 0C(=0) groups, which are ester groups, and there are two
instances of C1=CC=CC=C1, which looks like benzene rings. The user is asking for
the remaining characters to complete the molecule. The SMILES completion tool
can help here by filling in the missing parts. The tool uses RDKit to repair the
input, applying chemical rules to determine plausible atoms. Since the input
ends with a parenthesis, the tool might add the necessary atoms to balance the
structure. The maximum number of atoms is set to 20 by default, which should be
sufficient for this case. I should call the smiles_completion function with the
provided fragment. The tool will process it, possibly adding atoms like nitrogen
or oxygen where needed, and ensure the valence is correct. The output will be a
valid SMILES string. If the tool returns an empty string, it might be due to an
invalid fragment or inability to complete it within the atom limit. But given
the structure, it’s likely a valid completion exists. <\think>

Tool Calls:
smiles_completion
Args:

22

fragment: CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (

=== Tool Message ===
Name: smiles_completion

CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (0)C2(C)C=CC1=CC(=0)0C1

=== AI Message ===
Name: smiles_completion_agent

<think> Okay, let’s see. The user provided a partial SMILES string

and wants a valid completion. The fragment ends with C(C) (ihich

looks like a parentheses mismatch. The smiles_completion tool was

called with that fragment. The tool returned a completed SMILES:
"CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (0)C2(C)
C=CC1=CC(=0)0C1". I need to check if this makes sense. The original fragment
had some parts, like the benzene rings and oxygen groups. The completion adds
more atoms and closes the parentheses. The tool probably filled in missing atoms
and fixed the syntax. But wait, the original fragment ends with "C(C) (" which
is an open parenthesis. The completion adds "0)C2(C)..." which closes it. The
result seems to have proper syntax. The user asked for the remaining characters,
so the answer is the tool’s output. I should present it as the completed SMILES,
noting that the tool handled the syntax and valence rules. <\think>

The provided SMILES fragment ends with an unclosed parenthesis,

which the tool has resolved by adding matching parentheses and

completing the molecular structure. The completed SMILES string is:
*%CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C) (0)C2(C)C
=CC1=CC(=0)0C1** This result adheres to the tool’s output, fixing syntax issues
and completing the molecule within the default atom limit. The exact chemical
validity of the structure is not assessed here, as per instructions.

=== AI Message ===
Name: supervisor
The completed SMILES string is:

boxed{CC1=CCCC2C1(C)C(0C(=0)C1=CC=CC=C1)C(0C(=0)C1=CC=CC=C1)C(C(0)C2(C)C=CC1=CC
(=0)0C1}

23

	Introduction
	Related Work
	Methodology
	Tasks
	Tools
	Agentic Workflow
	Reasoning Data Generation
	Building the ether0 training set
	Generating the reasoning traces

	Reasoning Supervised Fine-Tuning
	Evaluation

	Result
	Conclusion
	Methodology Details
	Task descriptions
	Safety classes
	ether0 prompts to task names
	Hyperparameters
	Agentic data generation results
	Fine-grained ether0 Macro F1 results
	Failure analysis
	Example of training data with reasoning trace
	SMILES Completion

