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ABSTRACT

In drug development, early phase dose-finding clinical trials are carried out to
identify an optimal dose to administer to patients in larger confirmatory clini-
cal trials. Standard trial procedures do not optimize for participant benefit and
do not consider participant heterogeneity, despite consequences to the health of
participants and downstream impacts to under-represented population subgroups.
Additionally, many newly investigated drugs do not obey modelling assumptions
made in common dose-finding procedures. We present Safe Allocation for Explo-
ration of Treatments (SAFE-T), a procedure for adaptive dose-finding that works
well with small samples sizes and improves the utility for heterogeneous partici-
pants while adhering to safety constraints for treatment arm allocation. SAFE-T
flexibly learns models for drug toxicity and efficacy without requiring strong prior
assumptions and provides final recommendations for optimal dose by participant
subgroup. We provide a preliminary evaluation of SAFE-T on a comprehensive
set of realistic synthetic dose-finding scenarios, illustrating the improved perfor-
mance of SAFE-T with respect to safety, utility, and dose recommendation accu-
racy across heterogeneous participants against a comparable baseline method.

1 INTRODUCTION

New drugs and treatments are generally first investigated in early phase dose-finding studies, which
aim to assess safety and provide recommended dose levels for future study. Dose-finding trials
often include a small number of participants due to safety concerns and difficulties with participant
recruitment. Increasingly, researchers are promoting adaptive trial methods (in contrast to rule-
based methods), where trial parameters may change based on ongoing participant outcomes, which
can improve both the efficiency of a trial and the outcomes experienced by trial participants (Villar
et al., 2015; Riviere et al., 2018).

Dose-finding studies commonly use the rule-based 3+3 method, which has been criticized for its
inefficiency (Kurzrock et al., 2021), or the adaptive continual reassessment method (CRM), which
requires a pre-selected parametric model and strict prior assumptions (Wheeler et al., 2019). These
methods assume that the patient population is homogeneous and do not account for possible varia-
tions in drug toxicity and efficacy due to patient heterogeneity. Due to these assumptions, alongside
persisting inequalities in subject selection for clinical trials (Steinberg et al., 2021; Chien et al.,
2022), optimal drug doses derived from such trials are often not generalizable to women, who re-
main under-represented in early-phase trials (Özdemir et al., 2022). Multiple analyses have shown
that women experience a far greater risk of adverse drug effects across all drug classes as com-
pared to men (Zucker & Prendergast, 2020; Unger et al., 2022). Recent work has found that race
and ethnicity can also impact drug response and has highlighted the inadequate understanding of
drug safety and efficacy across under-studied racial and ethnic populations (Ramamoorthy et al.,
2021; Dickmann & Schutzman, 2018). In addition to the issue of participant heterogeneity, newly
developed drugs may not adhere to standard prior assumptions, particularly that dose-toxicity and
dose-efficacy levels are monotonically increasing. Innovative therapies may follow plateauing or
unimodal efficacy functions (Wages et al., 2018; Zhang et al., 2006).

While complex factors surrounding inequality in clinical trials must be addressed to improve out-
comes for under-represented populations, we make a small contribution with our adaptive dose-
finding procedure, Safe Allocation for Exploration of Treatments (SAFE-T). SAFE-T models toxi-
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city and efficacy dose-response curves with multi-output Gaussian processes that capture variations
between participant subgroups and are flexible to different dose-response shapes. Using these dose-
response estimates, SAFE-T balances safety and exploration in allocation of doses to trial partici-
pants, resulting in both improved participant utility and final dose recommendation accuracy.

Related work. Recent works in machine learning for dose-finding trials have mostly concen-
trated on multi-armed bandit methods (Aziz et al., 2020), with some including explicit safety con-
straints (Lee et al., 2020; Shen et al., 2020; Wang et al., 2021). These works consider dose-finding
scenarios with monotonically increasing toxicity and efficacy curves, with Aziz et al. (2020); Shen
et al. (2020) also providing separate algorithms for plateauing efficacy curves. Lee et al. (2020) pro-
pose methods that address heterogeneous populations with pre-defined subgroups. We note that Lee
et al. (2020) addresses a dose-finding setting most similar to ours; however, their method includes
an un-safe burn-in period and uses a parametric model that is not flexible to different toxicity curve
shapes. The problem of safe exploration has been addressed more generally in the context of ban-
dits (Kazerouni et al., 2016) and Bayesian optimization with Gaussian processes (Sui et al., 2015;
2018). The issue of fair exploration (with respect to population subgroups) for bandit algorithms has
also been investigated in Raghavan et al. (2018); Baek & Farias (2021).

2 PROBLEM STATEMENT

2.1 DOSE-FINDING SETUP

We examine early phase dose-finding trials where N trial participants are sequentially, at timestep
t, allocated one of K discrete doses, indexed by k ∈ K = {1, ...,K}, with dose levels dk ∈ D
representing the dosage values. Participants belong to a known subgroup s ∈ S = {1, ..., S},
arriving at rates πs. For doses d, gs(d) defines true toxicity probabilities and fs(d) defines true
efficacy probabilities by subgroup s. At each timestep, a participant of subgroup ht ∈ S is allocated
a dose of index mt ∈ K based on a specified selection rule. Following dose allocation, we observe
the binary toxicity outcome Yt ∼ Ber(ght

(dmt
)), with Yt = 1 indicating an adverse reaction; and

the binary efficacy outcome Xt ∼ Ber(fht
(dmt

)), with Xt = 1 indicating effective treatment.

Trials using a model-based methodology will aim to accurately estimate the dose-toxicity response
relationship, ĝs(d), which describes the probability of a toxic event, and sometimes the dose-efficacy
response relationship, f̂s(d), which describes the probability of effective treatment, at doses d ∈ D
for subgroups s ∈ S. Adverse side effects are categorized as toxic events and patient responses
are categorized as effective treatment based on previous clinical knowledge and will typically be
formalized prior to implementation of a clinical trial. Trial practitioners specify a target toxicity
threshold (TTL), τT , which is the highest acceptable probability of a toxic event. Similarly, τE is
also specified as the lowest acceptable probability of efficacy for a dose. A dose d for a patient in
subgroup s is thus in an acceptable safe range when gs(d) ≤ τT and fs(d) ≥ τE .

At the conclusion of a trial, a recommendation rule is used to select a final dose recommendation
d̂s,N , which should be equivalent to the optimal dose d∗s for each subgroup s. These doses would
be examined in larger, downstream clinical trials that focus on determining the efficacy of drugs.
Commonly used dose-finding methods select the maximum tolerated dose as the optimal dose, de-
fined as d̂s,N = argmaxdk:ĝs(d)≤τT ĝs(d). However, this recommendation rule would fail in cases
where the dose-efficacy curve plateaus or is unimodal. SAFE-T provides an alternative method for
selecting optimal doses that works well to determine optimal doses across differing curve shapes.

2.2 PROBLEM CONSTRAINTS

We discuss the realistic constraints and objectives of an algorithm that can be used for dose-
finding trials. Dose-finding trials may incorporate heterogeneous patients belonging to differing
pre-defined subgroups. Each subgroup may adhere to transformed dose-toxicity and dose-efficacy
curves, although it may not be previously known what the difference may be (Thomas et al., 2018).
As such, we desire an algorithm that can flexibly learn differences between in the dose-response
relationships of patient subgroups. Our algorithm should provide accurate final dose recommen-
dations across subgroups, where d̂s,N = d∗s,∀s ∈ S. The safety of trial participants is of paramount
concern. We aim to minimize safety constraint violations and also avoid using a burn-in period as
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done in some multi-armed bandit solutions for dose-finding (Lee et al., 2020; Shen et al., 2020),
where the algorithm initializes by selecting each dose in succession regardless of safety. While stan-
dard dose-finding procedures do not consider efficacy for trial participants, we incorporate it into
our methods in order to improve participant outcomes. Recent work in ML has argued that in health-
care settings, we should aim to maximize expected utility rather than institute fairness constraints
or objectives that may reduce utility (Pfohl et al., 2022). As such, we do not provide explicit fairness
constraints or objectives in our methodology, but assess our performance with respect to utility and
safety across participant subgroups. The majority of early phase trials include a small sample size,
often below 50 participants (Can, 2022; Huang et al., 2015). An effective algorithm must be able to
learn dose-response relationships for toxicity and efficacy efficiently, with few samples.

3 THE SAFE-T ALGORITHM

Algorithm 1 SAFE-T Algorithm

1: Input: patient subgroups S, dose indices K, number of patients N , safe expansion timesteps
N0, toxicity threshold τT , efficacy threshold τE , GP prior for multi-output toxicity function
ĝ(d), GP prior for multi-output efficacy function f̂(d), utility function U(pe, pt),

2: Initialize: t← 1, Bs,0 ← ∅∀s ∈ S
3: while t ≤ N do

4: b =

{
0, if Bht,t−1 = ∅
max(Bht,t−1), otherwise

5: Aht,t ← Bht,t−1

⋃
{b+ 1}

6: if t < N0 then
7: Mht,t ← {k ∈ Aht,t |µĝht (dk) ≤ τt}
8: if max (Mht,t) /∈ Bht,t−1 then
9: mt ← max (Mht,t)

10: else
11: mt ← argmaxk∈Mht,t

ct(dk)

12: end if
13: else
14: Mht,t ← {k ∈ Aht,t |ut(dk) ≤ τt}
15: mt ← argmaxdk∈Mht,t

EI(dk)

16: end if
17: Observe outcomes Xt, Yt

18: Update ĝ(d), f̂(d)
19: Bt ← Bt−1

⋃
{mt}

20: t← t+ 1
21: end while
22: Ms,N ← {k ∈ Bs,N |ut(dk) ≤ τt}∀s ∈ S
23: k̂s,N ← argmaxk∈Ms,N

U(f̂s(dk), ĝs(dk))∀s ∈ S
24: Output: d̂s,N ← dk̂s,N

∀s ∈ S

Overview. We present pseudocode for SAFE-T in Algorithm 1 (Appendix ??). SAFE-T provides
selection rules for dose allocation during the course of a clinical trial and a final recommendation
rule at trial completion for selection of optimal doses by subgroup for future study. During the trial,
allocation occurs in two stages (with respective selection rules) to better balance safety and learn-
ing: a safe exploration stage, where allocation to unexplored doses is encouraged; and a Bayesian
optimization phase, where allocation is safely optimized with respect to efficacy. SAFE-T runs for a
pre-specified N participants, with the first stage occurring over a pre-specified N0 timesteps, where
N0 < N . Initial participants (for each subgroup) are first assigned to the lowest dose, d1.

SAFE-T models the dose-response functions of toxicity, ĝs(d), and efficacy, f̂s(d) as two sepa-
rate multi-output Gaussian processes (GP), using the linear model of co-regionalization (Journel &
Huijbregts, 1976), with the correlated outputs of each respective Gaussian process corresponding
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to each subgroup s. The GPs are trained using stochastic variational inference (Hensman et al.,
2014). While SAFE-T requires priors set on certain hyperparameters, the use of Gaussian processes
eliminates the need for specifying the explicit parametric form of the dose-responses, as is done in
the commonly used continual reassessment method and other proposed model-based dose-finding
methods (Wheeler et al., 2019; Lee et al., 2020; Shen et al., 2020). GPs allow for flexibility of the
shape of the dose-response relationships, which is beneficial as efficacy may take on a monotoni-
cally increasing, plateauing, or unimodal shape. We are also able to take advantage of GP confidence
intervals for dose allocation and informative safety constraints.

At the conclusion of a trial, SAFE-T provides a recommendation rule for determining the optimal
dose for each subgroup to be used in future study. This rule uses a notion of utility concerning dose-
finding trials as proposed by Thall & Cook (2004) and further used in (Koopmeiners & Modiano,
2014). It was proposed for use in dose allocation throughout a trial; however, we use it for both
the final dose recommendation rule and post-hoc performance analysis. It is a weighted Lp norm
that evaluates the trade-off between toxicity and efficacy. We use the slightly modified variation

proposed by Koopmeiners & Modiano (2014): U(pE , pT ) = 1 −
((

pT

τT

)p

+
(

1−pE

1−τE

)p) 1
p

; pE

refers to probability of efficacy and pT refers to probability of toxicity. The parameter p is set by an
elicitation procedure from clinical trial practitioners (Appendix A.1).

During trial: Safe exploration stage. During the safe exploration stage, SAFE-T maintains a set
of doses that have been previously sampled, Bs,t, for each subgroup s. An available set of doses,
As,t = Bs,t

⋃
{max(Bs,t) + 1}, includes all doses that have been previously sampled and the next

highest dose (unless the highest dose has been sampled already). Bs,t is empty at the beginning
of the trial; a patient belonging to a subgroup that has not yet been encountered is assigned to the
lowest dose, d1. The safe set of doses, Ms,t = {k ∈ As,t |µĝs(dk) ≤ τt}, for each subgroup s, is
determined with respect to the mean of the GP posterior on toxicity for doses in the available set.
SAFE-T allocates the highest safe dose available, if this dose has not been previously sampled by
subgroup s. If all safe doses have been previously sampled, SAFE-T selects the dose with the largest
confidence interval on ĝs(d). Confidence interval widths are referenced by ct(dk) = 2βσĝs(dk) for
each dose dk, where β is a scalar hyperparameter. Thus, dose mt is selected as follows:

mt =

{
max (Mht,t), if max (Mht,t) /∈ Bht,t

argmaxk∈Mht,t
ct(dk), otherwise

.

During trial: Safe optimization stage. During the rest of the trial, SAFE-T selects the dose from
the safe set of doses with the highest expected improvement on efficacy. First, we define the upper
bound on the confidence interval for toxicity as ut(dk) = µĝs(dk) + βσĝs(dk). While the available
set of doses, As,t, is defined as in the previous stage, the safe dose set, Ms,t = {k ∈ As,t |ut(dk) ≤
τt}, is defined slightly differently in this stage, now incorporating the confidence intervals on the
GP posterior on toxicity. SAFE-T then allocates the dose mt = argmaxk∈Mht,t

EI(dk), EI(x)

referring to expected improvement, a commonly used acquisition function (Jones et al., 1998).

After trial: Final dose recommendation. At the conclusion of the trial, SAFE-T selects a fi-
nal recommended dose for each subgroup based on a utility measure, U(pe, pt), that incorpo-
rates the final posteriors on the GP toxicity and efficacy functions. The safe dose set is com-
posed of all doses that have been allocated during the trial with upper confidence bounds on
toxicity below the toxicity threshold: Ms,N = {k ∈ Bs,N |uN (dk) ≤ τt}. The final recom-
mended dose for each subgroup is the dose with the maximum utility out of the safe dose set:
k̂s,N = argmaxk∈Ms,N

U(f̂s(dk), ĝs(dk)); d̂s,N = dk̂s,N
.

4 PRELIMINARY RESULTS

We compare SAFE-T to the C3T algorithm proposed by Lee et al. (2020), as it the only related work
that also addresses heterogeneous patients in dose-finding trials. We assess performance across 18
synthetic dose-finding scenarios that comprehensively evaluate performance with respect to differing
toxicity (monotonically increasing and plateauing) and efficacy (monotonically increasing, plateau-
ing, unimodal) curve shapes and realistic variations between subgroups, as well as possible edge
cases. We work with a population of N = 51, N0 = 18, with 2 subgroups arriving at π = [0.5, 0.5].
The reported metrics are averages over 100 trials of each method and averaged across the trial par-
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Figure 1: SAFE-T (orange) consistently outperforms C3T (blue) with (a) lower or similar dose
error in all scenarios, (b) fewer or similar number of safety constraint violations in 17/18 scenarios,
and (c) higher or similar participant utility in all scenarios. Circular points represent the metric mean
across the 2 subgroups, while line caps represent the metric for each subgroup. Further experiment
details are shown in Appendix A.2

ticipants. Results are shown in Figure 1; SAFE-T appears in orange while C3T appears in blue.
SAFE-T consistently outperforms C3T in all three categories: final recommended dose error, which
assesses whether the recommended dose is equivalent to the true optimal dose; safety constraint
violations, which records the number of times a dose with a true toxicity probability greater than the
toxicity threshold is allocated to a patient; and participant utility, which is assessed post-hoc based
on the dose allocated to each participant. We note that while the utility measure is used to determine
final dose recommendations in SAFE-T, it is not used during the dose allocation procedure; it is thus
a notable result that SAFE-T maintains high utility across many scenarios.

5 CONCLUSION

In this paper, we present a method for conducting safe dose-finding trials while maintaining high rec-
ommended dose accuracy and participant utility. Our algorithm is constructed to be compatible with
the realistic constraints of a dose-finding trial, including effectiveness with small sample sizes and
heterogeneous participants. Currently, SAFE-T is limited to settings with binary outcome variables
and also adheres to common simplifying assumptions, such as that outcomes are observed without
delay. Future work could consider more complex scenarios, such as continuous outcomes, delayed
outcomes, multiple outcomes, and missing data (as patient dropout can be common in clinical trials).
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A APPENDIX

A.1 DEFINITION OF UTILITY

In SAFE-T, we adopt the notion of utility concerning dose-finding trials as proposed by Thall &
Cook (2004) and further used in (Koopmeiners & Modiano, 2014). It was proposed for use in dose
allocation throughout the trial; however, we use it for the final dose recommendation rule and post-
hoc performance analysis. Thall utility allows for intuitive interpretation of the toxicity and efficacy
trade-off and also lends well to practitioner input. It is a weighted Lp norm that evaluates the trade-
off between toxicity and efficacy. We use the slightly modified variation proposed by Koopmeiners
& Modiano (2014):

U(pE , pT ) = 1−
((

pT
τT

)p

+

(
1− pE
1− τE

)p) 1
p

(1)

with pE referring to probability of efficacy and pT referring to probability of toxicity, while τT is
the maximum toxicity threshold and τE is the minimum efficacy threshold.

The parameter p is determined by setting the utility to 0 and plugging in a midpoint, (p∗E , p
∗
T ),

elicited from practitioners, that defines the curvature of the contour:

1 =

((
p∗T
τT

)p

+

(
1− p∗E
1− τE

)p) 1
p

(2)
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A.2 EXPERIMENT DETAILS

In our experiments, we assess the performance of SAFE-T as compared to the C3T algorithm pro-
posed in (Lee et al., 2020). A notable aspect of C3T is that it allows for patient skipping if the
patient budget, B, is less than the maximum number of timesteps, N . We do not include this aspect
in our comparison (by simply setting B = N ), as the difficulties of recruiting for dose-finding trials
and ethical considerations in subject selection indicate that skipping patients would be unlikely in
a realistic setting (Brøgger-Mikkelsen et al., 2020). In addition, C3T requires a pre-specified dose
skeleton of expected toxicity probabilities. A dose skeleton, as described in Wheeler et al. (2019),
is used to determine dose labels that will fit the domain of the parametric toxicity model well. While
the experiments in (Lee et al., 2020) use the underlying true toxicity probabilities of their synthetic
dose-finding scenarios to determine a dose skeleton, we include random noise in our dose skeleton
priors, as prior toxicity estimates are unlikely to be perfectly accurate in practice.

To mimic a realistic setting (Wheeler et al., 2019), for our experiments of SAFE-T patients arrive
in cohorts of size 3 and models are updated following outcomes observed from all cohort patients.
However, the use of cohorts is not discussed in (Lee et al., 2020) so participants are allocated doses
one at a time. In addition, the unsafe burn-in period required by C3T is kept in the experiments
although this procedure would likely not be possible in a practical setting.

SAFE-T models dose-toxicity and dose-efficacy with multi-output Gaussian process, using the
linear model of co-regionalization (LMC) (Journel & Huijbregts, 1976). The LMC model as-
sumes that each output dimension is a linear combination of Q learned latent functions, g(·) =
[g(1)(·), . . . , g(Q)(·)]:

fs(x) =

Q∑
i=1

a(i)g(i)(x) (3)

In our setting, each output dimension (also referred to as a task) corresponds to a subgroup. Thus, our
Gaussian processes learn subgroup representations that are composed of underlying latent functions,
with s ∈ {1, . . . , S}, S = 2, and Q = 3.

Due to the small sample sizes we expect to work with, we set many of the hyperparameters of the
Gaussian processes ahead of time. These hyperparameters have been manually tuned to work with
the standard value ranges of dose-finding trials. Hyperparameters remain the same across all 18 test
scenarios for comparability. Both the toxicity and efficacy GPs use constant mean functions (we
set mean= −0.3 for toxicity and mean=−0.1 for efficacy) and the radial basis function kernel (RBF
kernel) as the covariance function (we set lengthscale= 4 for toxicity and lengthscale=2 for efficacy).
We also set the matrix A, with Q rows and S columns, which is composed of the coefficients a(i)s of
the LMC model to

( 1.0 0
0.2 0.2
0 1.0

)
. These hyperparameters were manually tuned and the high performance

maintained across all 18 distinct synthetic scenarios suggests that they are applicable across variable
dose-finding settings. However, they could be further tuned for even further improved performance
for specific settings. For example, the lengthscale parameter can be informed by the range of dose
values, which will be known ahead of a trial.

The true underlying toxicity and efficacy probabilities for each of the 18 scenarios are shown in
the figures below. Green shows the probabilities for subgroup 0 and pink shows the probabilities
for subgroup 1. If only a pink curve is shown, that means both subgroups have the same true
probabilities. The red dot shows the optimal dose for subgroup 0 and the blue dot shows the optimal
dose for subgroup 0. If no optimal dot is seen, it means that there is no optimal dose (either all doses
or too toxic or not effective enough). The horizontal black lines show respectively the maximum
toxicity threshold and minimum efficacy threshold.
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