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Abstract

In the age of mobile internet, user data, often
referred to as memories, is continuously gen-
erated on personal devices. Effectively manag-
ing and utilizing this data to deliver services
to users is a compelling research topic. In
this paper, we introduce a novel task of craft-
ing personalized agents powered by large lan-
guage models (LLMs), which utilize a user’s
smartphone memories to enhance downstream
applications with advanced LLM capabilities.
To achieve this goal, we introduce EMG-RAG, a
solution that combines Retrieval-Augmented
Generation (RAG) techniques with an Editable
Memory Graph (EMG). This approach is fur-
ther optimized using Reinforcement Learning
to address three distinct challenges: data col-
lection, editability, and selectability. Extensive
experiments on a real-world dataset validate
the effectiveness of EMG-RAG, achieving an im-
provement of approximately 10% over the best
existing approach. Additionally, the personal-
ized agents have been transferred into a real
smartphone Al assistant, which leads to en-
hanced usability.

1 Introduction

In the era of mobile internet, personal information
is constantly being generated on smartphones. This
data, referred to as personal memories, is often
scattered across everyday conversations with Al
assistants (e.g., Apple’s Siri), or within a user’s
apps (e.g., screenshots), including emails, calen-
dars, location histories, travel activities, and more.
As aresult, managing and utilizing these personal
memories to provide services for users becomes a
challenging yet attractive task. With the emergence
of advanced large language models (LLMs), new
opportunities arise to leverage their semantic un-
derstanding and reasoning capabilities to develop
personal LLM-driven Al assistants.

Motivated by this trend, we study the problem
of crafting personalized agents that enhance the Al

assistants with the capabilities of LLMs by lever-
aging users’ memories on smartphones. Unlike
existing personal LLM agents (Li et al., 2024b),
such as those designed for psychological counsel-
ing (Zhong et al., 2024), housekeeping (Han et al.,
2024), and medical assistance (Zhang et al., 2023),
the personalized agents face unique challenges due
to practical scenarios and remains relatively unex-
plored in current methods.

These challenges can be summarized below.
(1) Data Collection: Personal memories should en-
compass valuable information about a user. Extract-
ing these memories from everyday trivial conver-
sations presents unique challenges in data collec-
tion, especially considering that existing datasets
like personalized chats sourced through crowd-
sourcing (Zhang et al., 2018) or psychological di-
alogues (Zhong et al., 2024) lack this property.
Moreover, constructing annotated data, such as QA
pairs, is essential for enabling effective training
of personalized agents. (2) Editability: Personal
memories are dynamic and continuously evolving,
requiring three types of editable operations: inser-
tion, deletion, and replacement. For example, 1)
insertion occurs when new memories are added;
2) deletion is necessary for time-sensitive memo-
ries, such as a hotel voucher that expires and needs
to be removed; 3) replacement is required when
an existing memory, such as a flight booking, un-
dergoes a change in departure time and needs up-
dating. Therefore, a carefully designed memory
data structure is essential to support this editability.
(3) Selectability: To enable the memory data ser-
vices for real-world applications, it often requires
querying a combination of multiple memories. For
example, in a QA scenario (illustrated in Table 1),
the Al assistant answering a question about “a sec-
retary’s boss’s flight departure time” needs several
memories: the secretary booked a flight to Ams-
terdam for her boss (M7); the flight’s number is
EK349 (M>); the departure time for EK349 is at




01:40 on 2024-05-12 (M,). To achieve this, one
intuitive approach is to use Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020) to find rel-
evant memories and form a context that is fed
into a LLM to generate answers. Here, we dis-
cuss two potential solutions and their limitations,
which motivate the proposed solution. 1) Needles
in a Haystack (NiaH) (Briakou et al., 2023): it
organizes all memories into a single context (the
“Haystack™) and inputs this into a LLM, relying on
the capability of a LLM itself to identify relevant
memories (the “Needles”) for generating an answer.
However, this method incurs significant overhead
by extending the LLM’s context window and intro-
duces noise from irrelevant memories, hindering
the LLM’s ability to generate accurate answers.
2) Advanced RAG (Wang et al., 2024; Ma et al.,
2023): many advanced RAG techniques still rely
on Top-K retrieval to identify relevant memories.
However, a fixed parameter K may limit the LLM’s
ability to uncover all relevant memories, especially
for the questions requiring diverse memory combi-
nations. Thus, an adaptive selection mechanism is
essential for the personalized applications.

To this end, we introduce a new solution called
EMG-RAG, which presents the first attempt of its
kind to address these challenges. We discuss the
solution along with the rationales behind it below.
For (1), we utilize a business dataset collected from
a real Al assistant, which includes daily conver-
sations with the assistant, and users’ app screen-
shots, to extract personal memories. Specifically,
we leverage the capabilities of GPT-4 (OpenAl,
2023) to clean the raw data into memories. We
organize the memories chronologically, and then
use GPT-4 to generate QA pairs within each ses-
sion (a set of consecutive memories). We also
tag the memories involved in generating these QA
pairs, which are then used for subsequent training
purposes. For (2), we introduce a three-layer data
structure, called Editable Memory Graph (EMG).
The first two layers form a tree structure in accor-
dance with the business scopes, while the third
layer consists of a user’s memory graph parsed
from the memory data. This design is motivated
by three considerations: 1) the tree structure allows
for partitioned management of various memory cat-
egories, facilitating expansion to other categories;
and 2) memory data is partitioned under different
categories, with the graph structure to capture their
complex relationships, and 3) this enables efficient

retrieval to locate specific memories for editing, by
searching within relevant partitions rather than the
entire dataset. For (3), we introduce a reinforce-
ment learning (RL) agent that adaptively selects
memories on the EMG, without being constrained
to a fixed Top-K approach. The rationale of us-
ing RL resembles a boosting process. Specifically,
when the agent selects relevant memories (actions),
it prompts a LLM (frozen) to generate improved
answers. The quality of these answers is evalu-
ated by a downstream task metric (reward), which
then guides the agent to refine its policy for better
memory selection. This results in an end-to-end op-
timization process aimed at achieving the desired
goal for downstream tasks.

Overall, we make the following contributions.
(1) We introduce a novel task of crafting LLM-
driven personalized agents, leveraging users’ per-
sonal memories to enhance their experience
through LLM capabilities. This task differs from
existing personal LLM agents in three key chal-
lenges: data collection, editability, and selectabil-
ity. (2) We propose EMG-RAG, a novel solution that
combines EMG and RAG to address the three chal-
lenges. We show that it enables an end-to-end op-
timization process through reinforcement learning
to achieve the goal of personalized agents. (3) We
conduct extensive experiments on a real-world busi-
ness dataset across various LLM architectures and
RAG methods for three downstream applications:
question answering, autofill forms, and user ser-
vices. Our approach demonstrates improvements
of approximately 10.6%, 9.5%, and 9.7% over the
best existing approach for these tasks, respectively.
Moreover, the personalized agents have been trans-
ferred into an Al assistant product, resulting in a
notable improvement in user experience.

2 Related Work

Personalized Dialogue System. To develop a per-
sonalized dialogue system (PDS), the PersonaChat
dataset (Zhang et al., 2018) is collected through
crowdsourcing, which comprises Personas (each
persona is defined by a set of profile sentences) and
Chats (each chat is collected by two crowdwork-
ers with two randomly assigned personas). Based
on the dataset, various techniques have been stud-
ied to address challenges in PDS, including mu-
tual persona perception (Liu et al., 2020; Xu et al.,
2022a; Kim et al., 2020), persona-sparsity (Song
et al., 2021; Welch et al., 2022), long-term persona



memory (Xu et al., 2022b; Zhong et al., 2024),
etc. For example, P?BOT (Liu et al., 2020) is
a GPT-based framework (Radford et al., 2018),
specifically designed to enrich personalized dia-
logue generation through mutual persona percep-
tion. It aims to model the underlying understanding,
such as character traits, within a conversation to
facilitate mutual acquaintance between interlocu-
tors. In addition, a PDS can be further enhanced by
integrating internal reasoning techniques (Hongru
et al., 2023) or external acting techniques (Wang
et al., 2023b), which aim to generate more per-
sonalized and factual responses. In this study, we
construct user-personalized agents using practical
memory data gathered from smartphone Al assis-
tants. Leveraging these agents, we introduce three
distinct applications: question answering, autofill
forms, and user services.

Retrieval-Augmented Generation on Knowledge
Graph. We review the literature on RAG on
knowledge graphs across various tasks, including
KBQA (Ye et al., 2021; Das et al., 2021; Wang
et al., 2023a; Shu et al., 2022), open-domain sce-
narios (Yang et al., 2023), table-related tasks (Jiang
et al., 2023), human-machine conversation (Zhang
etal., 2020), and image captioning (Hu et al., 2023).
This paper (Zhao et al., 2024) provides a detailed
survey on these tasks with RAG techniques. Specif-
ically, TIARA (Shu et al., 2022) stands out as a
KBQA model employing multi-grained retrieval
(entities, logical forms, and schema items) from
knowledge graphs. This approach aids pre-trained
language models in mitigating generation errors.
In this study, we introduce a novel EMG structure
to manage users’ personal memories. Further, we
employ RL to model the RAG process, which opti-
mizes the memory selection on the graph.

Model Editing. Model editing represents a re-
cent research area focused on correcting model
predictions in light of evolving real-world dynam-
ics. It edits the behavior of pre-trained language
models within specific domains, and preserving
performance across other domains without compro-
mise. Some existing methods (De Cao et al., 2021;
Mitchell et al., 2021) employ learnable model ed-
itors, which are trained to predict the weights of
the base model undergoing editing. Other meth-
ods (Meng et al., 2022a,b; Li et al., 2024a) are
designed to identify stored facts (such as specific
neurons in the network) and adjust corresponding
activations to reflect changed facts. Additionally,

SERAC (Mitchell et al., 2022) utilizes an external
memory to store edits, adaptively altering the base
model’s predictions by retrieving relevant edits. In
our study, we leverage a LLM to focus on user
personal memories rather than global knowledge.
Additionally, we support dynamic user edits on
the EMG and utilize RAG with a frozen LLM to
respond to these changes.

3 Problem Statement

We study the problem of developing personalized
agents for users on smartphone Al assistant plat-
forms (such as Apple’s Siri or Samsung’s Bixby).
These agents are designed to assist users in perform-
ing personalized tasks, requiring the fulfillment of
the following two properties in practical scenarios:

- Editability: The responses from the agents may
be editable based on the users’ dynamic memory
data, which involves insertion, deletion, and re-
placement operations corresponding to different
usage scenarios, as illustrated in Figure 2(a).

- Selectability: The agents can select relevant
memories to respond to users’ queries, with some
queries requiring the combination of multiple
memories to generate responses through a base
language model, as illustrated in Figure 2(b).

By satisfying these properties, the agents aim
to enhance the user experience during interactions
with their smartphone Al assistants. These agents
offer essential functionalities to support personal-
ized applications, including question answering,
autofill forms, and user services like reminders for
important events and times, and travel navigation
(further details will be discussed in Section 4.4).

4 Methodology
4.1 Data Collection

The process entails (1) gathering raw data, such as
everyday conversations or screenshots from user
interactions with the smartphone Al assistants; (2)
extracting crucial information from this raw data,
referred to as memories (denoted by M ); and (3)
generating QA pairs (denoted by < @), A >), and
outputting the required memories to facilitate this
pairing. For (1), we acquire data from real Al
assistant products and employ text processing tech-
niques like OCR to extract content from screen-
shots. Subsequently, for (2) and (3), we leverage
the capabilities of LLMs, such as GPT-4 (OpenAl,



My boss is going to Amsterdam for a
business trip next month, and | need to
help him arrange the flight and hotel.

| suggest booking a conveniently
located hotel and confirming all travel
arrangements in advance.

I've already booked the EK349 flight for
my boss and the Crowne Plaza hotel
near Central Station.

That's a very considerate arrangement.
The location of the hotel is indeed
convenient. The boss will be satisfied.

f

Booking Time 2024-04-15

Order number: 12109459340 Completed
e Singapore — Amsterdam

Emirates EK349 Changi1

2024-05-12 01:40

Order number: G0224031313 Completed

0 Crowne Plaza — Central Station

1 Queen Bed Standard Accessible Breakfast
2024-05-12 to 2024-05-18

Figure 1: An example of data collection. Step-1: Raw data is gathered on smartphone Al assistant platforms, e.g.,
everyday conversations between users and assistants, and the extraction of app screenshot contents through OCR.

Table 1: An example of data collection. Step-2: GPT-4 generates memories from raw data. Step-3: GPT-4 forms
QA pairs using several memories, and produces the required memories, which are utilized for training the EMG-RAG.

Step-2: Memories (generated by GPT-4)

Step-3: QA pairs with memories (generated by GPT-4)

M;: My boss is traveling to Amsterdam next month,
I assist with flight and hotel arrangements.

Mo: I booked the EK349 flight.

Ms3: 1 booked the Crowne Plaza near Central Station.

Q: What time is my boss’s flight to Amsterdam?
A: Your boss flight EK349 departs at 01:40 on 2024-05-12.
Required memories: My, Mo, My

My: The EK349 flight departs at 01:40 on 2024-05-12.
Ms5: The Crowne Plaza reservation is for

2024-05-12 to 2024-05-18.

Mes: The Crowne Plaza reservation includes a Queen
Bed Standard Accessible room with breakfast.

@: When dose the hotel I booked for my boss start and end?
A: The Crowne Plaza reservation is from 2024-05-12 to 2024-05-18.
Required memories: M;, M3, M5

2023), to extract key memories from the raw data
and create QA pairs. These pairs serve the purpose
of training personalized agents for the proposed
EMG-RAG. To illustrate the collection process, we
provide a running example in Figure 1 and Table 1,
which involve the three primary steps. Further de-
tails are outlined in Appendix A.1.

We discuss the rationales of the data collec-
tion. First, as a user’s personalized agent integrated
within the smartphone Al assistant, the conversa-
tions and screenshots provide natural data sources
for crafting these agents. Second, leveraging GPT-
4’s language generation capabilities enables us to
generate a wide range of memories from the raw
data, significantly reducing manual effort. Third,
the involved memories and collected QA pairs
serve as labels to supervise the training of the re-
trieval and generation processes in our framework.

4.2 [Editable Memory Graphs

The EMG Construction and Insights. Utilizing a
user’s memories, we establish the Editable Memory
Graph with a multilayered structure, depicted in
Figure 2(a), where the user is the root node.
Memory Type Layer (MTL): Aligned with the
business scope, we categorize memories into 4 pre-
defined types: Relationship, Preference, Event, and
Attribute. Details are provided in Appendix A.2.
Memory Subclass Layer (MSL): The MSL fur-
ther outlines subclasses for each type, where the

MTL and MSL are organized in a hierarchical tree
structure to manage the memories. Detailed sub-
classes with examples are listed in Appendix A.2.
Memory Graph Layer (MGL): The memory
graph is built by utilizing the collected memories,
employing entity recognition for nodes and relation
extraction for edges. In this graph, each in-degree
node is associated with its corresponding mem-
ory, e.g., the in-degree node (01:40 on 2024-05-12)
contains My, as shown in Figure 2(a). Further,
to establish the connection between the MSL and
MGL, TransE embeddings (Bordes et al., 2013) are
employed to capture semantic information of nodes
in MSL (subclasses) and MGL (entities), respec-
tively. Then, each entity is assigned to its closest
classes based on these embeddings. It is notewor-
thy that entity nodes are categorized into different
subclasses, and their connections may span across
different classes, e.g., “Boss” and “Amsterdam’
are linked across “Colleague” and “Arrangement”
classes in Figure 2(a). This design enables further
traversal across various parts of the whole graph.
We discuss the insights of the EMG construction:
1) the tree hierarchy (MTL and MSL) offers a parti-
tioned memory management approach, to facilitate
the expansion of additional types and subclasses in
accordance with business needs; 2) the entity nodes
and corresponding memories are organized into
separate subclass partitions, with the graph struc-
ture (MGL) to capture their complex relationships

bl



Insert Delete Replace

My: The EK349 flight has
been rescheduled to depart |
at 01:30 on May 12, 2024.

M7 The reserved seat for
the EK349 flight is 32D.

Mg: A $20 hotel voucher will
expire on May 14, 2024.

(a) Editability on Editable Memory Graphs *
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(b) Selectability with RAG via a MDP
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Reminder
Joey, your boss flights to Amst.

Passenger 1 Adult today, Please remind him.

O Entity Nodes O Edited Nodes |

—> Relations

Question Answering

Autofill Forms User Services

Figure 2: The architecture of the proposed EMG-RAG, demonstrated with the running example in data collection
(Section 4.1). It supports three editability operations: insertion (e.g., M7), deletion (e.g., Mg), and replacement
(e.g., My), based on the EMG structure (Section 4.2). Subsequently, the edited EMG undergoes RAG to select
relevant memories (e.g., M7, Ma, My) for a given question () via a MDP (Section 4.3). The generated answers A
by a frozen LLM further facilitates three downstream applications (Section 4.4).

between memories; 3) it enables efficient retrieval
of memories for further editing operations by first
locating a relevant partition, e.g., querying parti-
tion centers (the mean of the memory embeddings),
instead of searching through all memories.

The EMG Editing. When editing a given mem-
ory within the EMG (e.g., insertion, deletion, or
replacement), the process involves three steps. Ini-
tially, a model such as CPT-Text (Neelakantan et al.,
2022) is employed to acquire memory representa-
tions. Then, the memory is assigned to its nearest
subclass (partition), and the Top-1 retrieved mem-
ory within the partition is then returned, and edit-
ing operations are performed based on comparing
the relations between the given memory and the
retrieved memory. Specifically, as illustrated in
Figure 2, (1) Insertion: It introduces a new relation
to be added, e.g., obtaining a new memory contain-
ing flight seat number. (2) Deletion: It introduces a
new relation, but it is valid for a specific period of
time. e.g., a hotel voucher will expire on May 14,
2024. (3) Replacement: It provides an existing re-
lation, and updates the corresponding entity nodes
based on this relation, e.g., changing the departure
time to 01:30 on May 12, 2024.

4.3 MDP for Selecting Memories on EMGs

Next, we outline the task of selecting memories
based on an edited EMG. To achieve this, we em-

ploy an agent to traverse the EMG. Specifically,
given a question (), the agent selects a set of
memories from the EMG denoted by M = {M;},
where 1 < i < |M]|. The question () and mem-
ory set M are concatenated to generate an answer
A « LLM(Q @ M) using a LLM. We assess the
generation quality using A(fl, A), where A repre-
sents the collected ground truth answer for ), and
A(-, ) denotes a specific metric (e.g., ROUGE (Lin,
2004) or BLEU (Post, 2018)). We note that a high-
quality answer A benefits from the selected mem-
ories M, which can then provide feedback with
A(+, -) for subsequent selections. As a result, it iter-
ates in a boosting process, and we optimize it using
reinforcement learning. The environment, states,
actions, and rewards are introduced below.

Constructing Environment (Nodes activated by
Questions). Given an EMG, which often contains
numerous memories in practice. Here, we confine
the movement of the RL agent to a subset of memo-
ries to facilitate more focused selection. To achieve
this, we first retrieve Top- K memories for a given
question @, and based on these memories, we ac-
tivate the corresponding nodes on the EMG (e.g.,
the nodes highlighted in yellow in Figure 2(b)).
Subsequently, the agent’s traversal starts from each
activated node via depth-first search.

Modeling Memory Selection (Nodes activated
by MDPs). We model the graph traversal process



as a MDP, involving states, actions, and rewards.

States: In the context where we have an input
question (), and visit a node N¢ (associated with a
memory M; to be included into M), and its relation
R¢ on the EMG. We first extract the entity N and
relation Rg from the (), and the state s is defined
by three cosine similarities C'(+, -), i.e.,

s = {C(VNQ ) VNG)7 C(VRQ ) VRG)7 C(VQ7 VMi)}7

)

where v. denotes the embedding vector for entities,
relations, questions, or memories.

Actions: We denote an action as a, and it has
two choices during the graph traversal: including
the visiting memory M; into M, and searching its
connected nodes; or stopping the current search,
and restarting a search from other branches. Thus,
the action a is defined as:

a = 1 (including) or O (stopping). 2)

Consider the consequence of performing an action,
it transitions the environment to the next state s/,
and affects which memory to be selected for con-
structing the state.

Rewards: We denote the reward as r, which cor-
responds to the transition from the current state s;
to the next state s, after taking action a;. Specif-
ically, when a memory M is selected into M, the
generated answer by a LLM changes from Ato A/
accordingly. The quality of the generated answer
A is evaluated using a specific metric A(-, -) (e.g.,
ROUGE or BLEU), and the reward r is defined as:

r= A(Alv A) - A(Aa A)a (3)

where A denotes the ground truth answer. We note
that the objective of the MDP, which aims to max-
imize cumulative rewards, aligns with the goal of
discovering memories to answer the question. To
illustrate, consider a process through a sequence
of states: si,ss,...,sy, concluding at sy. The
rewards received at these states, except for the ter-
mination state, can be denoted as 1,792, ..., "N_1.
When future rewards are not discounted, we have:

N N
Srr= Y (AGALA) - Aldy, A))
t=2 t=2 (4)

= A(Ava) - A(Alay)7

where A(Ay,y) corresponds to the result of the
final answer found throughout the entire iteration,

and A(A;,y) represents an initial result that re-
mains constant. Therefore, maximizing cumulative
rewards is equivalent to maximizing the quality of
the final generated answer.

Training Policies of MDPs. Training the MDP
policy involves two stages: warm-start stage (WS)
and policy gradient stage (PG). In WS, we employ
supervised fine-tuning to equip the agent with the
basic ability to select memories given a question ().
Specifically, based on a state s, the agent undergoes
a binary classification task to predict whether the
memory M; should be included. This prediction is
supervised according to whether the memory falls
into the required memories (presented in the Step-
3 in Table 1). Thus, the objective is trained with
binary cross-entropy, formulated as:

Lws = —y *log(P) + (y — 1) x log(1 — P),
(5)

where y denotes the label (1 if the memory falls
into the required memory set, and 0 otherwise), and
P is the predicted probability of the positive class.

In PG, our main objective is to develop a policy
mp(als) that guides the agent in selecting actions
a based on constructed states s, aiming to maxi-
mize the cumulative reward R). We utilize the
REINFORCE algorithm (Williams, 1992; Silver
et al., 2014) for learning this policy, where the neu-
ral network parameters are denoted by 6. The loss
function is formulated as:

Lpg = —Ry Inmp(als). (6)

Inference Stage of EMG-RAG. As shown in Figure 2,
the inference involves three steps: (a) collecting
newly recorded memories from users and editing
their EMGs; (b) using the edited EMGs to traverse
the graph and retrieve relevant memories for LLM
generation; (c) integrating the generated answers to
serve users across three downstream applications.

4.4 Discussion on Applications and Cold-start

Applications of the Personalized Agents. As
shown in Figure 2(c), we explore the capabilities of
personalized agents in three scenarios: (1) question
answering, (2) autofill forms, and (3) user services.
For (1), EMG-RAG can generate answers to users’
questions when they interact with the smartphone
Al assistants. For (2), the goal is to extract personal
information from users’ EMGs to automatically fill
out various online forms, such as flight and hotel



bookings. To achieve this, we input form-related
questions (e.g., “What is the user’s mobile num-
ber?”) into the LLM and use the generated enti-
ties to complete the forms. For (3), we focus on
two specific domains. a) reminder service: It in-
volves reminding users of recent events and times.
To achieve this, we query a LLM for information
about a user’s recent events and their associated
times. b) travel service: We assist users with nav-
igation by providing the address of a destination
they might want to visit. Further, we integrate the
generated answers (e.g., events, times, addresses)
with external tools such as calendar or map apps to
provide the services for users.

Handling the Cold-start Problem. Given that
EMG-RAG relies on generated questions for train-
ing, it may encounter a potential cold-start issue
when deploying to answer real user questions. To
address this issue, we utilize online learning to con-
tinuously fine-tune the agent using newly recorded
questions and manually written answers, as out-
lined in Equation 6. This approach aims to ensure
that the model’s policy remains up-to-date for on-
line usage. We validate this method through online
A/B testing, and the results demonstrate improve-
ments in user experience, highlighting the positive
impact of this strategy in practice.

5 Experiments

5.1 Experimental Setup

Dataset and Ground Truth. We conduct experi-
ments on a real-world business dataset containing
approximately 11.35 billion raw text data (includ-
ing conversations and screenshot contents) from an
Al assistant product collected between March 2024
and June 2024. After data cleaning, the dataset
forms around 0.35 billion memories. We follow the
data distribution to randomly sample 2,000 users
for training and 500 users for testing.

As detailed in Section 4.1, we establish the
ground truth for the applications of question an-
swering and autofill forms/user services using GPT-
4 generated answers and key entities (e.g., identi-
fication number, address, and time), respectively.
For quality control, we randomly select 10% of
user data, and ask 5 participants to annotate the
answers and entities. By comparing human annota-
tions with the generated answers and entities, we
report a Rouge-L score (Lin, 2004) of 91.1% for
question answering, and Exact Match (Rajpurkar
et al., 2018) of 87.5% for autofill forms and 97.4%

for user services. These results demonstrate the
high accuracy of our evaluations.

Baselines. We compare the EMG-RAG in terms
of different RAG methods, including NiaH (Bri-
akou et al., 2023), Naive (Ma et al., 2023), M-
RAG (Wang et al., 2024), and Keqing (Wang et al.,
2023a), based on various LLM architectures, such
as GPT-4 (OpenAl, 2023), ChatGLM3-6B (Du
et al., 2022), and PanGu-38B (Ren et al., 2023).
The descriptions are included in Appendix A.3
Evaluation Metrics. We evaluate the effectiveness
of EMG-RAG in three downstream applications. For
question answering, we assess the quality of gener-
ated answers with the ground truth, and reporting
ROUGE (R-1/2/L) (Lin, 2004) and BLEU (Post,
2018) scores. For autofill forms and user ser-
vices, we generate key entities and report Exact
Match (EM) accuracy. Overall, higher values (i.e.,
ROUGE, BLEU, EM) indicate better results .
Implementation Details. We provide the imple-
mentation details in Appendix A.4.

5.2 Experimental Results

(1) Effectiveness evaluation (question answer-
ing). We compare the EMG-RAG with other RAG
methods for question answering on three LLMs. As
shown in Table 2, we observe that the performance
of EMG-RAG consistently outperforms the baselines.
For example, it improves upon the best baseline
method, M-RAG, by 5.3%, 8.3%, 3.9%, and 18.4%
in terms of R-1, R-2, R-L, and BLEU, respectively.
This improvement is due to two main factors: 1) it
captures complex relationships between memories
with the EMG, and 2) it effectively selects essential
memories for the RAG execution. Additionally,
GPT-4 demonstrates superior performance com-
pared to other LLMs, and EMG-RAG shows compa-
rable performance to M-RAG even when deployed
on the relatively smaller ChatGLM3-6B.

(2) Effectiveness evaluation (autofill forms). We
further evaluate the EMG-RAG for autofill forms, and
it shows consistent improvement, as detailed in
Table 2. For example, it surpasses M-RAG by 2.2%
in terms of exact match accuracy.

(3) Effectiveness evaluation (user services). We
target two specific domains of user services: 1)
reminders of important events and their times, and
2) travel services involving destination addresses
for navigation. We report the exact match accuracy

'We remark that all reported results are statistically signifi-
cant, as confirmed by a t-test with p < 0.05.



Table 2: Effectiveness of EMG-RAG in downstream applications.

Question Answering Autofill Forms | User Services (EM)
LIM RAG R-1 R-2 R-L BLEU (EM) Reminder Travel
GPT-4 NiaH 79.89 64.65 70.66 38.72 84.86 84.49 94.81
GPT-4 Naive | 70.87 58.34 66.82 46.65 78.40 85.34 94.52
GPT4 M-RAG | 88.71 77.18 84.74 64.16 90.87 93.75 86.67
GPT4 Keqing | 72.11 57.19 65.46 35.89 82.03 90.17 72.71
GPT4 EMG-RAG | 93.46 83.55 88.06 75.99 92.86 96.43 91.46
ChatGLM3-6B | EMG-RAG | 85.31 76.03 82.32 56.88 85.71 87.50 81.25
PanGu-38B EMG-RAG | 91.64 82.86 86.71 75.11 90.99 96.41 89.05

Table 3: Effectiveness of EMG-RAG for continuous edits.
Duration (weeks) 1 2 3 4
# of edits 2,515 9,644 2,096 6,290
Apps (GPT-4) QA AF US | QA AF US | QA AF US| QA AF US
M-RAG 88.48 91.67 90.28|86.39 88.89 89.39|85.31 87.50 87.83|85.09 83.33 83.21
EMG-RAG 95.38 93.75 93.67|96.93 95.83 95.8994.53 96.88 96.99|94.99 97.50 97.54
Table 4: Ablation study. Table 5: Online A/B Test.

Components R-1 R-2 R-L BLEU Apps Cold-start
EMG-RAG 93.46 83.55 88.06 75.99 A (old EMG-RAG) B (new EMG-RAG) Impr
w/o Act. Nodes | 90.96 82.72 86.13 65.07 QA 88.06 91.99 4.5%
w/o WS 92,95 82.52 8649 69.13 AF 92.86 95.85 3.2%
w/o PG 90.59 80.69 86.19 65.65 US 94.66 97.56 3.1%

for events and times (reminders), and addresses
(travel) in Table 2. The improvements over M-RAG
for the two tasks are 2.9% and 5.5%.

(4) Effectiveness evaluation (continuous edits).
We evaluate the effectiveness of EMG-RAG in sup-
porting continuous edits over a period of 4 weeks.
The results, in terms of R-L for question answering
(QA), and exact match accuracy for autofill forms
(AF) and user services (US, combining reminder
and travel results), are presented in Table 6. We
observe that EMG-RAG consistently outperforms M-
RAG, by approximately 10.6%, 9.5%, and 9.7%
for QA, AF, and US, respectively. This is owing to
the editability of EMG-RAG, whereas M-RAG sim-
ply incorporates edits into a database, where many
memories may become outdated for answering. Ad-
ditionally, we report the total number of edits in-
volved in the testing set for each week.

(5) Ablation study. To evaluate the effectiveness
of different components in EMG-RAG, we conduct an
ablation study. (1) We omit the design of activated
nodes, and the search starts from the root of EMG.
(2) We remove the warm-start stage (WS) and only
train the policy in the policy gradient stage (PG).
(3) We remove the PG and use the WS only. For
(1), it results in a performance drop (e.g., R-1 from
93.46 to 90.96), because many irrelevant memories
(as noises) may be retrieved if the search starts from

the root. For (2) and (3), we observe that the PG
contributes the most to the result (e.g., R-1 from
93.46 to 90.59), because it can explicitly optimize
the performance end-to-end, and WS provides a
basic memory selection ability for the agent.

(6) Parameter study (K for activated nodes). We
evaluate the effect of K, which controls the num-
ber of nodes activated during graph traversal. The
results and analysis are presented in Appendix A.5.
Overall, a moderate setting of K = 3 provides the
best balance of effectiveness and inference time.
(7) Online A/B test. We perform an online A/B
test to compare the new system with the old system
for one month. During this period, we collect real
users’ questions and manually written answers to
fine-tune the model as introduced in Section 4.4.
The results, presented in Table 5, demonstrate fur-
ther improvements across all applications.

6 Conclusion

In this paper, we present a novel task of creat-
ing personalized agents powered by LLMs, which
leverage users’ personal memories to enhance three
downstream applications. Our solution, EMG-RAG,
combines RAG techniques with an EMG to tackle
challenges in data collection, editability, and se-
lectability. Extensive experiments are conducted to
confirm the effectiveness of EMG-RAG.



7 Limitations

For limitations, while only the parameters of the
RL agent are trained and the parameters of the
LLMs remain fixed, the training efficiency is not
higher than that of a Naive RAG setup. This in-
efficiency stems from the need to query the LLM
during training to obtain answers for optimization.
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A Appendix
A.1 Data Collection Details

The data collection process involves three key steps,
which are presented below:

Step-1: Raw Data Collection. We explore two
approaches, termed Active Remember (AR) and
Passive Remember (PR), for collecting raw data
derived from users’ daily conversations with Al as-
sistants and screenshots from their apps. With AR,
the Al assistant is trained to actively classify data
(such as conversation sentences) into supported
subclasses outlined in Table 7, and filter out noise
data. With PR, users have the option to directly
let the assistant to remember specific content for
future use. Leveraging AR and PR, we remove a
significant volume of trivial data, and then extract
memories from the refined dataset.

Step-2: Memory Data Construction. We uti-
lize a LLM, such as GPT-4, with the refined dataset
to generate structured memories from the raw data.
Additionally, we integrate various natural language
processing techniques, including absolute date and



time conversion, entity anaphora resolution, and
event coreference resolution, to further clean the
memories and facilitate graph construction.
Step-3: QA Pairs Construction. We organize
the memory data chronologically and partition it
into separate conversation sessions. Then, a LLM
generates QA pairs for each session. To create
complex questions for targeted training, such as
those requiring multiple memories for answering,
we explicitly instruct the LLM to utilize multiple
associative relationships between memories to gen-
erate questions, ensuring that at least one or more
memories are needed for accurate responses.

A.2 Memory Types and Subclasses

We describe the 4 memory types: (1) Relationship,
which involves recognizing users’ surrounding rela-
tionships and attributes of related individuals, such
as birthdays and names of family members; (2)
Preference, where we identify users’ likes and dis-
likes for various topics or entities; (3) Event, fo-
cusing on key event information about users, such
as their status, recent experiences, and upcoming
schedules; and (4) Attribute, encompassing users’
personal details such as name, gender, age, posses-
sions, and other relevant information.

We enumerate the supported business subclasses
of the EMG with memory examples in Table 7.

A.3 Baseline Details

We compare EMG-RAG with the following RAG
methods, and the details are presented below:

* NiaH (Briakou et al., 2023): It simply inputs all
of the users’ memories into a LLM within the
context window size to generate the answer.

* Naive (Ma et al., 2023): It implements a basic
RAG execution process involving indexing, re-
trieval, and generation.

* M-RAG (Wang et al.,, 2024): It partitions a
database into different partitions, and employs
Multi-Agent RL to train two agents for conduct-
ing RAG. One agent (Agent-S) learns to select a
database partition, while the other agent (Agent-
R) refines the stored memories within the parti-
tion to generate a better answer. We adapt the
approach by omitting Agent-R, as in our scenario,
the generated answers should be grounded in the
user’s personal memories, which cannot be al-
tered due to potential risks.
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Table 6: Impacts of the number of K for activated nodes.

K 1 2 3 4 5
R-L 84.55 86.06 88.06 88.06 87.19
Inference (s)| 1.35 1.63 2.14 255 3.32

» Keqing (Wang et al., 2023a): It is a recent RAG
method based on knowledge graphs. It begins
by decomposing a question into various sub-
questions and retrieving candidate entities (asso-
ciated with memories) from the knowledge graph
for each sub-question. Next, it generates an an-
swer for each sub-question and integrates them
into an overall answer.

In addition, we integrate the RAG methods into
three typical LLM architectures. 1) GPT-4 (Ope-
nAl, 2023) is a Transformer-based pre-trained
model known for its human-level performance. 2)
ChatGLM3-6B (Du et al., 2022) is a long-text di-
alogue model with a sequence length of 32K. 3)
PanGu-38B (Ren et al., 2023) is a dialogue sub-
model of the PanGu series, which follows a Mix-
ture of Experts (MoE) architecture.

A.4 Implementation Details

We implement EMG-RAG and other baselines in
Python 3.7, using the Faiss library 2 for retrieval in-
dex construction. We utilize TransE (Bordes et al.,
2013) to obtain embeddings of entities and rela-
tions, and CPT-Text (Neelakantan et al., 2022) to
obtain embeddings of questions and memories. The
RL agent is implemented with a two-layer neural
network, where the hidden layer consists of 20 neu-
rons and uses the tanh activation function. The
output layer has 2 neurons corresponding to the
action space. The hyperparameter K for activated
nodes is empirically set to 3. We generate 1,000
episodes for the warm-start stage (WS) and 100
episodes for the policy gradient stage (PG). We
use the Adam stochastic gradient descent with a
learning rate of 0.001 to optimize the policy, and
the reward discount is set to 0.99. Additionally, we
cache the generated QA pairs * during training to
boost efficiency.

A.5 Parameter Study

We vary the value of K from 1 to 5 and report the
R-L score for the question answering task, along
with the corresponding inference times. As shown

“https://github.com/facebookresearch/faiss
3https://github.com/zilliztech/GPTCache



Table 7: The supported memory subclasses with memory examples.

Memory Types | Memory Subclasses Memory Examples
Spouse
Parents/Children
Relationship Relatives Tomorrow is my mom’s birthday.
Colleague/Friends
Teacher/Student
Diet preference I like spicy food.
Cultural preference (tourism, travel) i Tnjoy t.ravehng b?] alrplane.
Preference }ke going to museums.
Car preference I like BMWs.
Sports preference I like playing table tennis on weekends.
(favorite sports types, sports celebrities) James is my favorite basketball star.
Gaming preference (category, name) I like the game League of Legends.
Audio-visual entertainment preference I like science fiction movies.
(favorite videos, music, movies, TV shows) I like listening to Jay Chou’s songs.
. The college entrance examination is coming soon.
Life events A .
(academic, marriage, buying a flat, parenting) I'met a glrlfrlend onh_ne. .
Event ’ ’ ’ My family is welcoming a second child.
I’'m going to visit clients tomorrow.
Arrangement I want to travel to Amsterdam next month.
I have an oral defense next Monday.
Anniversary Next month’s fifth is our wedding anniversary.
Name/Nickname My name is Wang Xiaoming, call me Lord Radish.
I am 17 years old this year.
Birthday/Age I was born in 1998.
Attribute My birthday is April 2nd.
Gender Iam a girl.
Education I am an undergraduate student.
Personal belongings/Pets Riding my beloved electric scooter, my pink BMW.
Address I reside in Jurong West, Singapore.
Occupation I am a research scientist.

in Table 6, we observe that K = 3 provides the best
effectiveness while maintaining reasonable infer-
ence time. When K is smaller, the limited number
of activated nodes for graph traversal restricts the
ability to find crucial memories. Conversely, when
K is larger, it activates many nodes and returns
numerous memories, potentially introducing noise
that hinders the LLM generation. As expected, the
inference time increases as K increases.
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