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Abstract

Incremental model-based minimization methods have recently been proposed as a way to
mitigate numerical challenges associated with stochastic or online optimization. One of
the main desirable properties is stability w.r.t. step-size choice and loss-function weights.
Such properties make them desirable for use-cases when tuning parameters is prohibitive.
In contrast to incremental gradient methods, the main computational tool is the proximal
operator, rather than the gradient. And this operator is exactly one of the main gaps for
adoption in practice - it may be both inefficient in practice, and harder to implement for a
practitioner due to the lack of closed-form formulas and expressive calculus.

In this work, we aim to address this challenge for a specific family of losses, which are a
composition of exponential on linear functions. One prominent application in mind is that of
Poisson regression, where the negative log-likelihood is of this form. We devise a closed-form
formula for the proximal operator in terms of Lambert’s W function, whose implementation
is available in many standard numerical computing and machine-learning packages, such as
SciPy or TensorFlow. Then, we show that expressing the same formula in terms of the less-
known Wright-Omega function, that is also available in SciPy, provides substantial numerical
benefits. Finally, we provide an open-source vectorized PyTorch implementation of the Wright-
Omega function and the proximal operator, ported from SciPy. This allows practitioners
wishing to use the algorithm devised here to use the entire arsenal of tools provided by
PyTorch, such as automatic differentiation and GPU computing. We have made our code
available at https://anonymous.4open.science/r/exponential-proximal-point-B8DD.

1 Introduction

In modern machine learning, algorithms are used to incrementally minimize either the sum or expectation
of functions of the form h(w,x), where the samples x come from a training set or are sampled from a
distribution. Typically, the vector w denotes the parameters of the model we wish to learn, and h denotes
the cost of mis-prediction. In both incremental paradigms, stochastic and online, the learning algorithm
iteratively updates the current estimate of the parameters w based on the arriving samples x.

The most popular incremental1 methods ranging from stochastic (Robbins & Monro, 1951) and online
(Zinkevich, 2003; Gordon, 1999) gradient methods, AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010),
AdamW (Loshchilov & Hutter, 2019), and others, use first-order information about the (sub) gradients of the
function h w.r.t. w. These methods, while attractive either theoretically or in practice, require careful tuning
of their step-size, or learning rate. Wrong step-size selection may lead to sub-optimal performance at best, or
even divergence and floating-point over-flow.

As an example, consider the problem of regularized Poisson regression (Nelder, 1974) for predicting the
conditional mean E[y|ϕ] where y|ϕ ∼ Poisson(⟨w,ϕ⟩) by minimizing the regularized negative log-likelihood

1Since this paper’s focus is on the computational aspect, rather than the theoretical convergence properties, we shall refer to
both the stochastic and online methods as incremental methods.
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over the training samples:
1
m

m∑
i=1

(exp(⟨w,ϕi⟩) − yi⟨w,ϕi⟩) + α

2 ∥w∥2
2.

We immediately see that the summand gradients involve the exponential function, and therefore may be of a
very large magnitude. With a step-size slightly too large, the model parameters will quickly grow in norm
and cause a floating point overflow when we attempt to compute gradients for future training samples.

The recently devised model-based minimization methods, proposed by Asi & Duchi (2019); Davis & Drusvy-
atskiy (2019); Kulis & Bartlett (2010), are significantly more robust w.r.t. the step-size choice. Such
algorithms are useful when either step-size tuning is overly expensive, or when the algorithm needs to run for
a prolonged period of time without human supervision. These methods assume that ℓ is approximated by
some model2 f , which may depend on the current parameters w and the data point x, and compute the
updated parameters w+ using the proximal operator (Moreau, 1962; 1965):

w+ = proxηf (w) ≡ arg min
u

{
f(u) + 1

2η ∥u − w∥2
2

}
.

Intuitively, the idea is that our updated parameters balance minimizing the approximation of the cost, and
staying close to the current parameters. This balance is determined by the step-size η.

When f is the first-order Taylor approximation of the cost of mis-prediction h, we recover the classical
incremental gradient method. Moreover, when the model is the cost function itself, namely, f ≡ h, we obtain
the incremental proximal-point method. In this case, we use the structure of the entire cost function h
rather than just its slope. Finally, in the vast majority of cases, the cost is a composition of a loss ℓ onto a
machine-learned function m, namely, h ≡ ℓ ◦m. In this case, we can construct a model of h by composing ℓ
onto a first-order Taylor approximation of m. In this manner we obtain the Gauss-Newton or the prox-linear
method. Note, that in this formulation m may be as complex as we desire, such as a neural network. These
possible models, among others, were all studied in Asi & Duchi (2019); Davis & Drusvyatskiy (2019) and
references therein.

In general, computing proxηf heavily depends on the structure of f , and there is no efficient closed-form
solution. Indeed, f may be as complex as we desire. Thus, the main challenge, both in terms of computational
efficiency and usefulness in practice, lies in an easy to implement and efficient proximal operator.

In this work we do not propose yet another such algorithm, but rather deal with the implementation such
algorithms for specific functions that appear in machine learning applications. We propose an implementation
for model functions of the form:

f(w; θ,ϕ, b, α) = exp(⟨θ,w⟩ + b) + ⟨ϕ,w⟩ + α

2 ∥w∥2
2. (1)

By the notation f(w; θ,ϕ, b, α) we mean a function of w parametrized by the remaining arguments. We use
this notation since we study the minimization w.r.t. w, and therefore we treat the remaining arguments as
parameters. Our main application in mind is Poisson regression, where the regularized negative log-likelihood
function w.r.t. each sample is a special case of this form. The underlying Poisson regression model does
not have to be linear, and in this case the prox-linear approach discussed in Davis & Drusvyatskiy (2019);
Asi & Duchi (2019) yields functions of this form via the first-order approximation of the underlying model.
Nonetheless, additional applications exist, such as minimizing the exponentially tilted loss (Li et al., 2023),
by transforming the minimization problem to an equivalent one using exponential functions, as described in
Shtoff (2024b).

The exponential function in the cost induces a difficulty for gradient methods. From a theoretical perspective,
the cost and all its derivatives are unbounded, even if the parameters θ,ϕ, b, a are bounded. From a practical
perspective, we may encounter floating-point overflows during training due to the exponentiation of possible
large numbers. As shown in Asi & Duchi (2019), the model based minimization framework does not suffer

2in this context, a "model" is not a machine-learned model, but rather a family of approximating functions that attempt to
model the cost ℓ
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from these theoretical issues if the training data that is manifested in the parameters θ,ϕ, b is properly
normalized. Moreover, as we shall see in this paper, the framework also does not suffer from the numerical
issues of over-flows. Thus, our work facilitates a more reliable training procedure when training with cost
functions involving exponentiation.

The work of Shtoff (2024a) develops several frameworks facilitating efficient and easy to implement algorithms
for computing proximal operators of many cost function families useful in machine learning, and utilizes the
framework to devise algorithms and code for many concrete examples. Our paper can be seen as a direct
application of one of the frameworks devised in Shtoff (2024a) to tackle the family described in equation 1.

The main contributions of our work are:

• a closed-form formula for proxηf , where f is of the form in equation 1, in terms of the well-known
Lambert-W function;

• a reformulation of the above formula using the Wright-Omega function (Corless & Jeffrey, 2002),
available in SciPy, to obtain a more numerically-favorable formula;

• a vectorized implementation of the Wright-Omega function in PyTorch (Ansel et al., 2024), and a
vectorized implementation of proxηf in both PyTorch and SciPy.

2 Related work

The proximal operator of the entropy function x → x ln(x) − x has a known formula (Combettes & Pesquet,
2011, table 2) in terms of functions of the form x → W (a exp(bx)). The proximal operator x → exp(x) can be
directly derived using convex conjugation and proximal operator properties in terms of functions of the same
form. Thus, in terms of theory, our can be thought of as a mild extension of the known proximal operator of
the exponential function towards a regularized composition with a linear function. In terms of practice, we
go “all the way through” from devising a naive formula that is correct but numerically problematic, to a
reformulation in terms of known and reliable building blocks that do not suffer from numerical issues, and
then towards a Python implementation.

The proximal operator of x → ln(1 + exp(x)) is studied in Briceño-Arias et al. (2019), and is also derived in
terms of similar functions. Similarly to this work, Briceño-Arias et al. (2019) attempt to provide a remedy to
the numerical problem stemming from the exponentiation by devising a heuristic. However, in our work we
tackle the numerical issue using established numerical tools rather than trying to re-invent the wheel.

A proximal operator for the so-called piece-wise exponential penalties x → 1 − exp(−|x|/ρ) were studied in
Liu et al. (2023; 2024). These works, too, obtained formulae that rely on the Lambert W function. Beyond
the apparent similarity because of the use of the exponential function, the piecewise-exponential penalty is
fundamentally different from the functions we study in this paper in equation 1. One is non-convex and
approximates the ℓ0 “norm”, whereas the other is convex.

Moreover, several works on incremental proximal point suggest using a simple bisection search for functions
of the form L(⟨θ,w⟩), where L is a convex function, by reducing the proximal update to a solution of a scalar
equation of one variable (Asi & Duchi, 2019; Toulis & Airoldi, 2014; Kulis & Bartlett, 2010). In this work we
both deal with regularized losses with an additional squared Euclidean norm regularization, and propose a
reduction to well-known special functions whose values can be computed much more efficiently and reliably
with specialized algorithms devised by the numerical analysis community.

3 Preliminaries

Here, we recall some mathematical background, including the algorithmic framework from Shtoff (2024a).
Then, we use the results to devise our proximal operator formula.

In this section we use concepts from convex analysis that are typically presented using the formalism of
extended real-valued functions. Since in this paper we apply the preliminaries to convex functions defined on
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the entire space, we specialize all preliminaries to regular convex functions to make this paper accessible to a
wider audience without degrading its correctness.

3.1 Lambert’s W function

Euler (Euler, 1783), based on the work of Lambert (Lambert, 1758), studied the solution set for y of the
equation

y exp(y) = z

over the complex numbers. The solution set is described by a family of so-called Lambert W functions Wk(z)
for k ∈ {0, 1, 2, ...}. In this paper we focus on the solution set over the reals for z > 0, which corresponds to
W0(z). See Corless et al. (1996) for a thorough introduction.

For simplicity, we denote W0(z) by W (z), and refer to it as “the” Lambert W function. We note that Lambert
W function is implemented in SciPy (Virtanen et al., 2020) as scipy.special.lambertw, in its full generality,
for complex numbers and for any k.

Since the function y exp(y) grows faster than exponential as y gets larger, its inverse, W (z) can be thought
of as a kind of a “logarithm”. Indeed, it’s occasionally called the Product-Log function, and it grows slower
than a logarithm (Corless et al., 1996, eq 38):

W (z) = ln(z) − ln(ln(z)) + o(1).

3.2 Moreau envelope

To describe the framework, we need to recall another concept related to the proximal operator - the Moreau
Envelope (Moreau, 1962; 1965). For a function r, its Moreau envelope is:

Mr(w) = inf
u

{
r(u) + 1

2∥u − w∥2
2

}
.

Beyond the fact that the proximal operator is the minimizer of the same objective function, the Moreau
envelope has another tight relation to the proximal operator, as shown in the following Lemma.
Lemma 1 (Theorem 6.55 in Beck (2017)). Let r : Rd → R be a convex function, and let Mr be its Moreau
envelope. Then Mr is continuously differentiable, and its gradient is given by:

∇Mr(w) = w − proxr(w) (2)

3.3 Convex conjugate

The convex conjugate of the function ψ is the function ψ∗ defined by

ψ∗(y) = sup
u

{⟨u,w⟩ − ψ(w)} .

The convex conjugate is a central object in optimization, and has many applications and properties. Moreover,
tables of conjugate pairs for many useful functions have been devised in the literature. See Beck (2017) for in
depth introduction and a comprehensive table of such functions, and the associated calculus properties. In
particular, for the exponential function ψ(t) = exp(t) we have

ψ∗(s) = s ln(s) − s,

defined for s ≥ 0 with the convention that 0 ln(0) ≡ 0.

3.4 Algorithmic framework for regularized convex-on-linear proximal operator

The work of Shtoff (2024a) develops a generic framework for computing the proximal operator of functions of
the the so-called regularized convex-on-linear form:

g(w) = ψ(⟨θ,w⟩ + b) + r(w),
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where ψ is a univariate convex function, which typically has the role of a loss, and r is a convex function that
typically has the role of a regularizer. All the results below in this section were devised in the above work.

The resulting algortihmic framework for computing the proximal operator

proxηg(w) = arg min
u

{
g(u) + 1

2η ∥u − w∥2
2

}
comprises the following steps:

1. form the univariate function:

q(s) = Mηr(w − ηsθ) + (⟨θ,w⟩ + b)s− η∥θ∥2
2

2 s2 − ψ∗(s) (3)

2. compute the unique maximizer s∗ = arg max q(s);

3. output proxηg(w) = proxηr(w − ηs∗θ).

The function q(s) is always concave. Oftentimes in practice it is also differentiable, and is maximized at the
unique solution of q′(s) = 0. When ψ∗ is differentiable, so is q, and its derivative is given by:

q′(s) = ⟨θ,proxηr(w − ηsθ)⟩ − ψ∗′(s) + b. (4)

For the derivative, the only computational tools that we require is the proximal operator of r, and the convex
conjugate of ψ.

4 Deriving the closed-form formula

In this section we use the algorithmic framework for the proximal operator of regularized convex-on-linear
functions to devise a closed-form formula for the function family in equation 1.

4.1 Using the algorithmic framework

The functions having the form in equation 1 are an instance of the family used by the algorithmic framework
in section 3.4. Indeed, letting ψ = exp, we can decompose the function f as:

f(w; θ,ϕ, b, α) = exp(⟨θ,w⟩ + b)︸ ︷︷ ︸
ψ(⟨θ,w⟩+b)

+ ⟨ϕ,w⟩ + α

2 ∥w∥2
2︸ ︷︷ ︸

r(w)

. (5)

Since we already know the convex conjugate ψ∗(s) = s ln(s) − s, our missing ingredient is the proximal
operator proxηr. It is quite easy to derive, but it is just given in a variety of textbooks on optimization, such
as Beck (2017, sec 6.2.3):

proxηr(w) = w − ηϕ

1 + ηα
(6)

We are now ready to show how to maximize the function q given in equation 3, that corresponds to the
decomposition in equation 5.
Lemma 2. The function q(s) defined in equation 3 corresponding to the regularized convex-on-linear
decomposition in equation 5 has a unique maximum s∗ > 0 given by

s∗ = 1
γ

W(exp(δ + ln(γ))),

where: γ = η∥θ∥2
2

1 + ηα
,

δ = ⟨θ,w − ηϕ⟩
1 + ηα

+ b.

(7)
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Proof. ψ∗ is differentiable, and its derivative is given by ψ∗′(s) = ln(s). Since ψ∗ is differentiable, so is q(s),
and by equation 4 its derivative is given by

q′(s) = ⟨θ,proxηr(w − ηsθ)⟩ − ψ∗′(s) + b

=
〈

θ,
w − ηsθ − ηϕ

1 + ηα

〉
− ln(s) + b

= − η∥θ∥2
2

1 + ηα
s− ln(s) +

〈
θ,

w − ηϕ

1 + ηα

〉
+ b

= −γs− ln(s) + δ.

We can see that q′(s) is strictly decreasing on s > 0, and thus q is strictly concave. Thus, if the equation
q′(s) = 0 has a unique solution in s > 0, this must be the unique optimum. Adding ln(γ) to both sides of the
equation q′(s) = 0 and simplifying, we obtain

γs+ ln(γs) = δ + ln(γ).

Exponentiating both sides, we get
(γs) exp(γs) = exp(δ + ln(γ)).

By definition of the Lambert W function, the above is equivalent to

γs = W(exp(δ + ln(γ))),

and therefore the unique solution is
s∗ = 1

γ
W(exp(δ + ln(γ))),

as required.

We now have a full algorithm for computing the proximal operator proxηf of functions f having the form in
equation 1:

1. Compute s∗ according to Equation equation 7,

2. Output:
proxηf (w) = w − ηs∗θ − ηϕ

1 + ηα
.

Although it may appear that we are done, careful inspection of equation 7 shows that computing s∗ by
definition requires computing exp(δ + ln(γ)), which may lead to an overflow with floating point arithmetic.
However, intuitively we understand that W (x) acts as a kind of a logarithm, since it is the inverse function of
y exp(y), and hence it should “cancel out” the effect of the exponentiation. The next section rigorously deals
with this issue and provides a formula for computing s∗ that avoids exponentiation altogether.

4.2 Avoiding exponentiation with the Wright-Omega function

The Wright-Omega function ω(z) (Corless & Jeffrey, 2002) for a real3 argument z is defined by

ω(z) = W (exp(z)).

By definition of the Lambert W function, one can also see that ω(z) is the solution set of the equation

y + ln(y) = z,

3Corless & Jeffrey (2002) present the definition for arbitrary complex numbers, but in this paper we specialize their definition
to real numbers only
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for y. Based on this observation, Lawrence et al. (2012) have devised a fast and direct numerical method
for computing ω(z) without relying on the Lambert W function, and it has been implemented in SciPy as
in scipy.special.wrightomega. Therefore, we can reformulate equation 7 for computing the solution of
q′(s) = 0 as

s∗ = 1
γ
ω(δ + ln(γ)),

where: γ = η∥θ∥2
2

1 + ηα
,

δ = ⟨θ,w − ηϕ⟩
1 + ηα

+ b.

(8)

4.3 Open source implementation

We have created an open-source implementation of our proximal operator algorithm, both for NumPy arrays
and PyTorch tensors. Both implementations support additional mini-batch dimensions prepended to the argu-
ment w, and the parameters of the function f . Since PyTorch does not include an implementation of the Wright-
Omega function, we have also ported the SciPy implementation to PyTorch in our code repository as well. The
code can be found at https://anonymous.4open.science/r/exponential-proximal-point-B8DD, and in-
cludes tests to verify the correctness by comparing the resulting computation to the solutions obtained by
CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018), and verifying that the gradient norms are close to
zero. For completeness, we also provide our PyTorch Wright Omega implementation, and proximal operator
implementation in Appendix ??. Below is a description of our tests, and a summary of the results. Note,
that the intention of our experiments is verifying that our proximal operator is correct and precise.

The input of the proximal operator are the parameters θ, b,ϕ, α of the function f in equation 1, the parameter
η of the operator, and the point w at which we evaluate proxηf (w). Thus, we generate a set of m test inputs
{θi, biϕi, αi, ηi,wi}mi=1 in the following manner:

θi,ϕi,wi ∼ Cauchy(0, 1)n,
bi ∼ Cauchy(0, 1),

αi, ηi ∼ LogNormal(−3, 2),

where n is the feature dimension. Our intention was to simulate features comprising of both small and large
components, to challenge our implementation, and therefore we use the standard Cauchy distribution. Since
αi, ηi simulate step-size and regularization parameters, we simulated them from a log-normal distirbution
that hopefully resembles realistic scenarios. Table 1 summarizes the statistics obtained from m = 5, 000
samples of dimension n = 50:

Table 1: Percentiles of scalar and vector components in the simulated data

Percentile P-0.1% P-1% P-25% P-50% P-75% P-99% P-99.9%
Vector
w -294 -31.5 -0.992 0.00366 1 32.2 347
η 0.000116 0.000468 0.0127 0.047 0.181 4.4 17.9
θ -330 -32.5 -1.01 -0.00377 0.999 32.3 334
ϕ -341 -32 -1 -0.00267 0.994 32.4 329
b -138 -26.1 -0.986 -0.0112 1.04 30.5 372
α 0.000126 0.000449 0.0124 0.0487 0.191 4.01 13.9

Since computing our proxηf (w) to minimizing a continuously differentiable convex function, an accurate
solution must have a zero gradient of that function. Table 2 summarizes the statistics of gradient norms for
various feature dimensions n using m = 10, 000 samples. We can see that even though the gradient norm
grows with the dimension, which is expected, it is still almost zero for all practical purposes in almost all cases.
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We note, however, that for very high-dimensional vectors, the worst-case norm is close to one, but looking
the other statistics, it’s not a common, and it may happen - our generated data is skewed and challenging on
purpose.

Table 2: Gradient norm statistics of the proximal minimization objective for various feature dimensions n
using m = 10, 000 samples.

Dimension Avg. P-95% Max.
10 1.23e-10 1.87e-11 2.18e-07
20 7.11e-09 4.00e-11 1.78e-05
50 1.67e-08 1.63e-10 5.40e-05

100 1.08e-08 5.04e-10 3.65e-05
500 1.37e-07 4.13e-09 3.42e-04

1000 3.69e-07 7.88e-09 8.65e-04
10000 1.85e-06 1.55e-07 2.44e-03

100000 2.93e-04 2.67e-06 9.14e-01

To appreciate how we compare to the default interior point solver of CVXPY, we plotted the gradiet norms of
m = 5, 000 samples of dimension n = 50 in Figure 1. We see that over-all, our solution is orders of magnitude
more precise in a large portion of the cases. For some inputs, the CVXPY gradient norms show that the
solution is pretty far from having a zero gradient.

Figure 1: Comparison of the gradient norm of the proximal minimization objective of CVXPY and our
method. Each point is one generated data-point. The X-Axis is the gradient norm obtined from our solution,
whereas the Y-Axis is the gradient norm obtained from the CVXPY solution.

5 Summary

In this work we have devised a closed-form expression in terms of the Wright-Omega special function for the
proximal operator for a family of functions that appears as regularized losses mainly in Poisson regression, but
also in other possible applications. Our work allows researchers working incremental proximal point algorithms
to perform numerical experiments with yet another machine-learning application of Poisson regression, and
practitioners to use our work whenever their training procedure can potentially cause numerical overflows.
We hope that in addition to other well-known “special” functions, such as the Gamma function, the Lambert
W and the Wright-Omega function make it into additional machine-learning frameworks as first-class objects.
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A Codes

A.1 Wright Omega PyTorch implementation

import torch

def wrightomega(x):
""" Computes the Wright Omega function, based on the algorithm from SciPy:
https://github.com/scipy/scipy/blob/maintenance/1.14.x/scipy/special/wright.cc#L369

Example with special values:
>>>specials = torch.tensor([float('nan'), float('inf'), float('-inf')])
>>>wrightomega(specials)
tensor([nan, inf, 0.])

Example showing accuracy vs SciPy implementation
>>>import numpy as np
>>>import scipy
>>>xs = np.r_[-np.flip(np.geomspace(1e-50, 1e30, 10000)), np.geomspace(1e-50, 1e30, 10000)]
>>>scipy_results = scipy.special.wrightomega(xs)
>>>torch_results = wrightomega(torch.tensor(xs))
>>>torch.linalg.vector_norm(torch_results - scipy_results)
tensor(1.7589e-13, dtype=torch.float64)

"""
w = torch.zeros_like(x)
w[x.isnan()] = float('nan')
w[x.isinf() & (x > 0)] = float('inf')
w[x.isinf() & (x < 0)] = 0
finite_mask = torch.isfinite(x)

tiny_mask = finite_mask & (x < -50)
small_mask = finite_mask & (x >= -50) & (x < -2)
w[small_mask | tiny_mask] = torch.exp(x[small_mask | tiny_mask])

med_mask = finite_mask & (x >= -2) & (x < 1)
w[med_mask] = torch.exp(2.0 * (x[med_mask] - 1.0) / 3.0);

large_mask = finite_mask & (x >= 1) & (x < 1e20)
lg = x[large_mask].log()
w[large_mask] = x[large_mask] - lg + lg/x[large_mask];

huge_mask = finite_mask & (x >= 1e20)
w[huge_mask] = x[huge_mask]

iterative_mask = small_mask | med_mask | large_mask

# Iteration one of Fritsch, Shafer, and Crowley (FSC) iteration
r = x[iterative_mask] - w[iterative_mask] - torch.log(w[iterative_mask]);
wp1 = w[iterative_mask] + 1.0;
e = (r / wp1) * (2.0 * wp1 * (wp1 + 2.0 / 3.0 * r) - r) / (2.0 * wp1 * (wp1 + 2.0/3.0*r) - 2.0 * r);
w[iterative_mask] = w[iterative_mask] * (1.0 + e);

finfo = torch.finfo(w.dtype)
wp1 = torch.zeros_like(x).masked_scatter(iterative_mask, wp1)
r = torch.zeros_like(x).masked_scatter_(iterative_mask, r)
next_iter_mask = torch.abs((2.0**w**w-8.0**w-1.0)*torch.pow(torch.abs(r),4.0)) >= finfo.tiny*72.0*torch.pow(torch.abs(wp1), 6.0)
iterative_mask = iterative_mask & next_iter_mask

# FSC iteration two
r = x[iterative_mask] - w[iterative_mask] - torch.log(w[iterative_mask]);
wp1 = w[iterative_mask] + 1.0;
e = (r / wp1) * (2.0 * wp1 * (wp1 + 2.0 / 3.0 * r) - r) / (2.0 * wp1 * (wp1 + 2.0/3.0*r) - 2.0 * r);
w[iterative_mask] = w[iterative_mask] * (1.0 + e);

return w

A.2 PyTorch proximal operator implementation

import torch
from numpy.typing import ArrayLike
from typing import Union
import numbers
from .wrightomega import wrightomega
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def is_scalar(x):
if isinstance(x, numbers.Number):

return True
elif torch.asarray(x).ndim == 0:

return True

return False

def prox_op(w: ArrayLike,
eta: Union[ArrayLike, float],
theta: ArrayLike,
phi: ArrayLike,
b: Union[ArrayLike, float],
alpha: Union[ArrayLike, float]):

w = torch.as_tensor(w)
eta = torch.as_tensor(eta)
theta = torch.as_tensor(theta)
phi = torch.as_tensor(phi)
b = torch.as_tensor(b)
alpha = torch.as_tensor(alpha)

# broadcast input arguments expected to have one-less dimension than w, theta, and phi if they are not scalars
if eta.ndim > 0:

eta = torch.asarray(eta)[..., torch.newaxis]
if b.ndim > 0:

b = torch.asarray(b)[..., torch.newaxis]
if alpha.ndim > 0:

alpha = torch.asarray(alpha)[..., torch.newaxis]

# compute formula parts
common_denom = (1 + eta * alpha)
gamma = eta * torch.sum(torch.square(theta), dim=-1, keepdim=True) / common_denom
delta = torch.sum(theta * (w - eta * phi), dim=-1, keepdim=True) / common_denom + b

# solve q'(s) = 0
s = wrightomega(delta + torch.log(gamma)) / gamma

# compute the result
return (w - eta * s * theta - eta * phi) / common_denom

A.3 NumPy / SciPy proximal operator implementation

import numpy as np
from numpy.typing import ArrayLike
from typing import Union
from scipy.special import wrightomega

def prox_op(w: ArrayLike,
eta: Union[ArrayLike, float],
theta: ArrayLike,
phi: ArrayLike,
b: Union[ArrayLike, float],
alpha: Union[ArrayLike, float]):

w = np.asarray(w)
theta = np.asarray(theta)
phi = np.asarray(phi)

# broadcast input arguments expected to have one-less dimension than w, theta, and phi if they are not scalars
if not np.isscalar(eta):

eta = np.asarray(eta)[..., np.newaxis]
if not np.isscalar(b):

b = np.asarray(b)[..., np.newaxis]
if not np.isscalar(alpha):

alpha = np.asarray(alpha)[..., np.newaxis]

# compute formula parts
common_denom = (1 + eta * alpha)
gamma = eta * np.sum(np.square(theta), axis=-1, keepdims=True) / common_denom
delta = np.sum(theta * (w - eta * phi), axis=-1, keepdims=True) / common_denom + b

# solve q'(s) = 0
s = wrightomega(delta + np.log(gamma)) / gamma

# compute the result
return (w - eta * s * theta - eta * phi) / common_denom
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