
Analytically Tractable Bayesian Deep Q-Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reinforcement learning (RL) has gained increasing interest since the demonstration1

it was able to reach human performance on video game benchmarks using deep2

Q-learning (DQN). The current consensus for training neural networks on such3

complex environments is to rely on gradient-based optimization. Although alterna-4

tive Bayesian deep learning methods exist, most of them still rely on gradient-based5

optimization, and they typically do not scale on benchmarks such as the Atari game6

environment. Moreover none of these approaches allow performing the analytical7

inference for the weights and biases defining the neural network. In this paper, we8

present how we can adapt the temporal difference Q-learning framework to make9

it compatible with the tractable approximate Gaussian inference (TAGI), which10

allows learning the parameters of a neural network using a closed-form analytical11

method. Throughout the experiments with on- and off-policy reinforcement learn-12

ing approaches, we demonstrate that TAGI can reach a performance comparable to13

backpropagation-trained networks while using fewer hyperparameters, and without14

relying on gradient-based optimization.15

1 Introduction16

Reinforcement learning (RL) has gained increasing interest since the demonstration it was able to17

reach human performance on video game benchmarks using deep Q-learning (DQN) [17, 26]. Deep18

RL methods typically require an explicit definition of an exploration-exploitation function in order to19

compromise between using the current policy and exploring the potential of new actions. Such an20

issue can be mitigated by opting for a Bayesian approach where the selection of the optimal action to21

follow is based on Thompson sampling [23]. Bayesian deep learning methods based on variational22

inference [12, 10, 5, 14, 20, 29], Monte-Carlo dropout [8], or Hamiltonian Monte-Carlo sampling23

[18] have shown to perform well on regression and classification benchmarks, despite being generally24

computationally more demanding than their deterministic counterparts. Note that none of these25

approaches allow performing the analytical inference for the weights and biases defining the neural26

network. Goulet et al. [9] recently proposed the tractable approximate Gaussian inference (TAGI)27

method which allows learning the parameters of a neural network using a closed-form analytical28

method. For convolutional architectures applied on classification benchmarks, this approach was29

shown to exceed the performance of other Bayesian and deterministic approaches based on gradient30

backpropagation, and to do so while requiring a smaller number of training epochs [19].31

In this paper, we present how can we adapt the temporal difference Q-learning framework [24, 28] to32

make it compatible with TAGI. Section 2 first reviews the theory behind TAGI and the expected value33

formulation through the Bellman’s Equation. Then, we present how the action-value function can34

be learned using TAGI. Section 3 presents the related work associated with Bayesian reinforcement35

learning, and Section 4 compares the performance of a simple TAGI-DQN architecture with the one36

obtained for its backpropagation-trained counterpart.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

2 TAGI-DQN Formulation38

This section presents how to adapt the DQN frameworks in order to make them compatible with39

analytical inference. First, Section 2.1 reviews the fundamental theory behind TAGI, and Section 2.140

reviews the concept of long-term expected value through the Bellman’s equation [25]. Then, Section41

2.3 presents how to make the Q-learning formulation [28] compatible with TAGI.42

2.1 Tractable Approximate Gaussian Inference43

TAGI [9] relies on two main steps; forward uncertainty propagation and backward update. The44

first forward uncertainty propagation step is intended to build the joint prior between the neural45

network parameters and the hidden states. This operation is made by propagating the uncertainty46

from the model parameters and the input layer through the neural network. TAGI relies on the47

Gaussian assumption for the prior of parameters as well as for the variables in the input layer. In order48

to maintain the analytical tractability of the forward step, we rely on the Gaussian multiplicative49

approximation (GMA) which consists in approximating the product of two Gaussians by a Gaussian50

random variable whose moments match those calculated exactly using moment generating functions.51

In order to propagate uncertainty through non-linear activation functions, a second approximation52

made by locally linearizing these function at the expected value of the hidden unit being activated.53

Although this linearization procedure may seems to be a crude approximation, it has been shown to54

match or exceeds the state-of-the-art performance on fully-connected neural networks (FNN) [9],55

as well as convolutional neural networks (CNN) and generative adversarial networks [19]. TAGI56

succeeds in maintaining a linear computational complexity for the forward steps, (1) by assuming57

a diagonal covariance for all parameters in the network and for all the hidden units within a same58

layer, and (2) by adopting a layer-wise approach where the joint prior is only computed and stored for59

the hidden units on pairs of successive hidden layers, as well as the hidden units within a layer and60

the parameters connecting into it. This layer-wise approach is allowed by the inherent conditional61

independence that is built-in feed-forward neural network architectures.62

The second backward update-step consists in performing layer-wise recursive Bayesian inference63

which goes from hidden-layer to hidden-layer and from hidden-layer to the parameters connecting64

into it. Given the Gaussian approximation for the joint prior throughout the network, the inference65

can be done analytically while still maintaining a linear computational complexity with respect to the66

number of weight parameters in the network. TAGI allows inferring the diagonal posterior knowledge67

for weights and bias parameters, either using one observation at a time, or using mini-batches of68

data. As we will show in the next sections, this online learning capacity is best suited for RL69

problems where we experience episodes sequentially and where we need to define a tradeoff between70

exploration and exploitation, as a function of our knowledge of the expected value associated with71

being in a state and taking an action.72

2.2 Expected Value and Bellman’s Equation73

We define r(s, a, s′) as the reward for being in a state s ∈ RS, taking an action a ∈ A =74

{a1, a2, · · · aA}, and ending in a state s′ ∈ RS. For simplicity, we use the short-form notation75

for the reward r(s, a, s′) ≡ r(s) in order to define the value as the infinite sum of discounted rewards76

77

v(s) =

∞∑
k=0

γkr(st+k). (1)

As we do not know what will be the future states st+k for k > 0, we need to consider them as random78

variables (St+k), so that the value V (st) becomes a random variable as well,79

V (st) = r(st) +

∞∑
k=1

γkr(St+k). (2)

Rational decisions regarding which action to take among the set A is based the maximization of the80

expected value as defined by the action-value function81

q(st, at) = µV ≡ E[V (st, at, π)] = r(st) + E

[∞∑
k=1

γkr(St+k)

]
, (3)

2

where it is assumed that at each time t, the agent takes the action defined in the policy π. In the case82

of episode-based learning where the agent interacts with the environment, we assume we know the83

tuple of states st and st+1, so that we can redefine the value as84

V (st, at) = r(st) + γ

(
r(st+1) +

∞∑
k=1

γkr(St+1+k)

)
= r(st) + γV (st+1, at+1).

(4)

Assuming that the value V ∼ N (v;µV , σ
2
V) in Equations 2 and 4 is described by Gaussian random85

variables, we can reparameterize these equations as the sum of the expected value q(s, a) and a86

zero-mean Gaussian random variable E ∼ N (ε; 0, 1), so that87

V (s, a) = q(s, a) + σV E , (5)

where the variance σ2
V and E are assumed here to be independent of s and a. Although in a more88

general framework this assumption could be relaxed, such an heteroscedastic variance term is outside89

from the scope of this paper. Using this reparameterization, we can write Equation 4 as the discounted90

difference between the expected values of two subsequent states91

q(st, at) = r(st) + γq(st+1, at+1)− σVtEt + γσVt+1Et+1

= r(st) + γq(st+1, at+1) + σV E .
(6)

Note that in Equation 6, σVt
and γσVt+1

can be combined in a single standard deviation parameters92

σV with the assumption that Ei ⊥⊥ Ej ,∀i 6= j.93

In the case where at a time t, we want to update the Q-values encoded in the neural net only after94

observing n-step returns [15], we can reformulate the observation equation so that95

q(st, at) =

n−t−1∑
i=0

γir(st+i) + γn−tq(sn, an) + σV Et,∀t = {1, 2, · · · , n− 1}. (7)

Note that in the application of Equation 7, we employ the simplifying assumption that Et ⊥⊥ Et+i,∀i 6=96

0, as Equation 6 already makes simplifying assumptions for the independence of σ2
V and E . Note97

that in a more general framework, this assumption could be relaxed. An example of n-step returns is98

presented in the the algorithm displayed in §1 from the supplementary material.99

The following subsections will present, for the case of categorical actions, how to model the deter-100

ministic action-value function q(s, a) using a neural network.101

2.3 TAGI Deep Q-learning for Categorical Actions102

Suppose we represent the environment’s state at a time t and t+ 1 by {s, s′}, and the expected value103

for each of the A possible actions a ∈ A by the vector q ∈ RA. In that context, the role of the neural104

network is to model the relationships between {s, a} and q. Figure 1a presents a directed acyclic105

graph (DAG) describing the interconnectivity in such a neural network, where red nodes denote state106

variables, green nodes are vectors of hidden units z, the blue box is a compact representation for107

the structure of a convolutional neural network, and where gray arrows represent the weights and108

bias θ connecting the different hidden layers. Note that unlike other gray arrows, the red ones in109

(b) are not directed arcs representing dependencies, but they simply outline the flow of information110

that takes place during the inference step. For simplification purposes, the convolutional operations111

are omitted and all regrouped under the CNN box [19]. In order to learn the parameters θ of such a112

network, we need to expand the graph from Figure 1a to include the reward r, the error term σV ε,113

and q′, the q-values of the time step t+ 1. This configuration is presented in Figure 1b where the114

nodes that have been doubled represent the states s and s′ which are both evaluated in a network115

sharing the same parameters. When applying Equation 6, q-values corresponding to a specific action116

can be selected using a vector hi ∈ {0, 1}A having a single non-zero value for the i-th component117

identifying which action was taken at a time t so that118

qi = [q]i = h
ᵀ
i q. (8)

During the network’s training, analogously to Thompson sampling [23], the vector h′i ∈ {0, 1}A is119

defined such that the i-th non-zero value corresponds to the index of the largest value among q′, a120

3

s CNN z(1) z(2) qθ(c0) θ(0) θ(1) θ(q)

(a) Neural network DAG for modelling the action-value function q

s CNN z(1) z(2)

s′ z(1) z(2)

q

q′

σV ε

r

θ(c0) θ(0) θ(1)
θ(q)

θ(q)

h′

(b) DAG for the temporal-difference Q-learning configuration

Figure 1: Graphical representation of a neural network structure for temporal-difference Q-learning
with categorical actions. The red nodes denote state variables, green nodes are vectors of hidden units
z, and the blue box is a compact representation for the structure of a convolutional neural network.
The gray arrows represent the weights and bias θ connecting the different hidden layers and the red
arrows outline the flow of information that takes place during the inference step.

vector of realizations from the neural network’s posterior predictive outputQ ∼ N (q′;µQ|D,ΣQ|D).121

Because of the Gaussian assumptions in TAGI, this posterior predictive is readily available from the122

forward uncertainty propagation step, as outlined in §2.1.123

The red arrows in Figure 1b outline the flow of information during the inference procedure. The first124

step consists in inferring q using the relationships defined in either Equation 6 or 7. As this is a linear125

equation involving Gaussian random variables, the inference is analytically tractable. From there, one126

can follow the same layer-wise recursive procedure proposed by Goulet et al. [9] in order to learn127

the weights and biases in θ. With the exclusion of the standard hyperparameters related to network128

architecture, batch size, buffer size or the discount factor, this TAGI-DQN framework only involves a129

single hyperparameter, σV , the standard deviation for the value function. Note that when using CNNs130

with TAGI, Nguyen and Goulet [19] recommended using a decay function for the standard deviation131

of the observation noise so that at after seing e batches of n-steps,132

σe
V = max(σmin

V , η · σV)e−1. (9)

The model in Equation 9 has three hyperparameters, the minimal noise parameter σmin
V , the decay133

factor η and the initial noise parameter σV . As it was shown by Nguyen and Goulet [19] for CNNs134

and how we show in §4 for RL problems, TAGI’s performance is robust towards the selection of these135

hyperparameters.136

A comparison of implementation between TAGI and backpropagation on deep Q-network with137

experience replay [17] is shown in Figure 2. A practical implementation of n-step TAGI deep138

Q-learning is presented in Algorithm 1 from the supplementary material.139

3 Related Works140

Over the last decades, several approximate methods have been proposed in order to allow for Bayesian141

neural networks [18, 12, 10, 5, 14, 20, 29, 8] with various degree of approximations. Although some142

these methods have shown to be capable of tackling classification tasks on datasets such ImageNet143

[20], few of them have been applied on large-scale RL benchmark problems. The key idea behind144

using Bayesian methods for reinforcement learning is to consider the uncertainty associated with145

Q-functions in order to identify a tradeoff between exploring the performance of possible actions and146

exploiting the current optimal policy [25]. This typically takes the form of performing Thompson147

sampling [23] rather than relying on heuristics such as ε-greedy.148

For instance, MC dropout [8] was introduced has a method intrinsically suited for reinforcement149

learning. Nevertheless, five years after its inception, the approach has not yet been reliably scaled150

to more advanced benchmarks such as the Atari game environment. The same applies to Bayes-151

by-backprop [5] which was recently applied to simple RL problems [13], and which has not yet152

been applied to more challenging environments requiring convolutional networks. On the other153

hand, Bayesian neural networks relying on sampling methods such as Hamiltonian Monte-Carlo154

4

Algorithm 1: TAGI-DQN with Experience Replay
1 Initialize replay memoryR to capacity N ; ΣV ;
2 Initialize parameters θ;
3 Discount factor γ;
4 for episode = 1 : E do
5 Reset environment s0;
6 for t = 1 : T do
7 q(st, a) : Q(st, a) ∼ N (µQ

θ (st, a),Σ
Q
θ (st, a));

8 at = argmax
a∈A

q(st, a);

9 st+1, rt = enviroment(at);
10 Store {st, at, rt, st+1} inR;
11 Sample random batch of {sj , aj , rj , sj+1};
12 q(sj+1, a

′) : Q(sj+1, a
′) ∼ N (µQ

θ (sj+1, a
′),ΣQ

θ (sj+1, a
′));

13 a′j+1 = argmax
a′∈A

q(sj+1, a
′);

14 µy
j = rj + γµQ

θ (sj+1, a
′
j+1);

15 Σy
j = γ2ΣQ

θ (sj+1, a
′
j+1) + ΣV ;

16 Update θ using TAGI on PDF(θ|y)

Algorithm 2: DQN with Experience Replay
1 Initialize replay memoryR to capacity N ;
2 Initialize parameters θ;
3 Discount factor γ;
4 Define ε (epsilon-greedy function);
5 for episode = 1 : E do
6 Reset environment s0;
7 for t = 1 : T do
8 u : U ∼ U(0, 1);

9 at =

{
randi(A) u < ε;

argmax
a∈A

Qθ(st, a) u ≥ ε;

10 st+1, rt = enviroment(at);
11 Store {st, at, rt, st+1} inR;
12 Sample random batch of {sj , aj , rj , sj+1};
13 yj = rj + γmax

a′∈A
Qθ(sj+1, a

′);

14 Update θ using gradient descent on

15 L = 0.5 [yj −Qθ(sj , aj)]2;

Figure 2: Comparison of TAGI with backpropagation on deep Q-network with experience replay.
PDF: probability density function; L: loss function; U : uniform distribution; randi: uniformly
distributed pseudorandom integers.

[18] are typically computationally demanding to be scaled to RL problems involving such a complex155

environment.156

Although mainstream methods related to Bayesian neural networks have seldom been applied to157

complex RL problems, several research teams have worked on alternative approaches in order to158

allow performing Thompson sampling. For instance, Azizzadenesheli et al. [4] have employed a deep159

Q-network where the output layer relies on Bayesian linear regression. This approach was shown160

to be outperforming its deterministic counterparts on Atari games. Another approach by Osband et161

al. [21] employs bootstrapped deep Q-networks with multiple network heads in order to represent162

the uncertainty in the Q-functions. This approach was also shown to scale to Atari games while163

presenting an improved performance in comparison with deterministic deep Q-networks. Finally,164

Wang and Zhou [27] have tackled the same problem, but this time by modelling the variability in the165

Q-functions through a latent space learned using variational inference. Despite its good performance166

on the benchmarks tested, it did not allowed to be scaled to the Atari game environment.167

The TAGI deep Q-network presented in th is paper is the first demonstration that an analytically168

tractable inference approach for Bayesian neural networks can be scaled to a problem as challenging169

as the Atari game environment.170

4 Benchmarks171

This section compares the performance of TAGI with backpropagation-based standard implementa-172

tions on off- and on-policy deep RL. For the off-policy RL, both TAGI-based and backpropagation-173

based RL approaches are applied to deep Q-learning with experience replay (see Algorithm 1&2)174

for the lunar lander and cart pole environments. For the on-policy RL, TAGI is applied to the n-step175

Q-learning algorithm and is compared with its backpropagation-based counterpart [15]. We perform176

the comparison for five Atari games including Beamrider, Breakout, Pong, Qbert, and Space Invaders.177

Note that these five games are commonly selected for tuning hyperparameters for the entire Atari178

games [15, 16]. All benchmark environments are taken from the OpenAI Gym [6].179

5

4.1 Experimental Setup180

In the first experiments with off-policy RL, we use a fully-connected multilayer perceptron (MLP)181

with two hidden layers of 256 units for the lunar lander environment, and with one hidden layer of182

64 units for the cart pole environment. In these experiments, there is no need for input processing183

nor for reward normalization. Note that unlike for the deterministic Q-network, TAGI does not use a184

target Q-network for ensuring the stability during training and allows eliminating the hyperparameter185

related to the target update frequency. For the deep Q-network trained with backpropagation, we186

employ the pre-tuned implementation of OpenAI baselines [7] with all hyperparameters set to the187

default values.188

For the Atari experiments with on-policy RL, we use the same input processing and model architecture189

as Mnih et al. [15]. The Q-network uses two convolutional layers (16-32) and a full-connected MLP190

of 256 units. TAGI n-step Q-learning only uses a single network to represent the value function for191

each action, and relies on a single learning agent. The reason behind this choice is that TAGI current192

main library is only available on Matlab which does not support running a Python multiprocessing193

module such as the OpenAI gym. In the context of TAGI, we use an horizon of 128 steps and as194

recommended by Andrychowicz et al. [3] and following practical implementation details [1, 2],195

each return in n-step Q-learning algorithm is normalized by subtracting the average return from196

the current n-steps and then dividing by the empirical standard deviation from the set of n returns.197

The standard deviation for the value function, (σV), is initialized at 2. σV is decayed each 128198

steps with a factor η = 0.9999. The minimal standard deviation for the value function σmin
V = 0.3.199

These hyperparameters values were not grid-searched but simply adapted to the scale of the problems200

and are kept constant for all experiments. The complete details of the network architecture and201

hyperparameters are provided in the supplementary material.202

4.2 Results203

For the first set of experiments using off-policy RL, Figure 3 presents the average reward over204

100 episodes for three runs for the lunar lander and cart pole environment. The TAGI-based deep205

Q-learning with experience replay shows a faster and more stable learning than the one relying on206

backpropagation, while not requiring a target network.

0 0.5 1
−300

−150

0

150

300

Number of steps (M)

Av
er

ag
e

re
wa

rd

TAGI
Backpropagation

(a) LunarLander-v2

0 0.5 10

50

100

150

200

Number of steps (M)

Av
er

ag
e

re
wa

rd

(b) CartPole-v0

Figure 3: Illustration of average rewards over 100 episodes of three runs for one million time steps
for the TAGI-based and backpropagation-based deep Q-learning.

207

Table 1 shows that the average reward over the last 100 episodes obtained using TAGI are greater208

than the one obtained using backpropagation.

Table 1: Average reward over the last 100 episodes for the lunar lander and cart pole experiments.
TAGI: Tractable Approximate Gaussian Inference.

Method Lunar lander Cart pole

TAGI 277.6 ± 6.3 199.2 ± 1.3
Backpropagation 166.7 ± 103.6 130.3 ± 16.9

6

209

Figure 4 compares the average reward over 100 episodes for three runs obtained for TAGI, with210

the results from Mnih et al. [15] for the second set of experiments on Atari games. Note that all211

results presented were obtained for a single agent, and that the results for the backpropagation-trained212

networks are only reported at the end of each epoch.

0 5 100

850

1,700

2,550

3,400

Number of epochs

Av
er

ag
e

re
wa

rd

TAGI
Backpropagation

(a) Beam Rider

0 5 100

10

20

30

40

Number of epochs
Av

er
ag

e
re

wa
rd

(b) Breakout

0 5 10
−21

−10

0

10

21

Number of epochs

Av
er

ag
e

re
wa

rd

(c) Pong

0 5 100

1,050

2,100

3,150

4,200

Number of epochs

Av
er

ag
e

re
wa

rd

(d) Qbert

0 5 10110

220

330

440

550

Number of epochs

Av
er

ag
e

re
wa

rd

(e) Space Invaders

Figure 4: Illustration of average reward over 100 episodes of three runs for five Atari games. The
number of epochs is used here for the comparison of TAGI and backpropagation-trained counterpart
obtained by Mnih et al. [15]. Each epoch corresponds to four million frames. The environment
identity are {Atari Game}NoFrameSkip-v4.

213

Results show that TAGI outperforms the results from the original n-step Q-learning algorithm trained214

with backpropagation [15] on Breakout, Pong, and Qbert, while underperforming on Beam Rider215

and Space Invaders. The average training time of TAGI for an Atari game is approximately 13 hours216

on GPU calculations benchmarked on a 4-core-intel desktop of 32GB of RAM with a NVIDIA217

GTX 1080 Ti GPU. The training speed of TAGI for the experiment of the off-policy deep RL is218

approximately three times slower on CPU calculations than the backpropagation-trained counterpart.219

The reason behind this slower training time is because of its intrinsically different inference engine, so220

that TAGI’s implementation is not compatible with existing libraries such as TensorFlow or Pytorch.221

TAGI’s library development is still ongoing and it is not yet fully optimized for computational222

efficiency. Overall, these results for on- and off policy RL approaches confirm that TAGI can be223

applied to large scale problems such as deep Q-learning.224

5 Discussion225

Although the performance of TAGI does not systematically outperform its backpropagation-based226

counterpart, it requires fewer hyperparameters (see §3 in supplementary material). This advantage227

is one of the key aspects for improving the generalization and reducing the computational cost of228

the hyperparameter tuning process which are the key challenges in current state of deep RL [11].229

For instance, in this paper, the TAGI’s hyperparameters relating to the standard deviation of value230

function (σV) are kept constant across all experiments. Moreover, since these hyperparameters231

were not subject to grid-search in order to optimize the performance, the results obtained here232

are representative of what a user should obtain by simply adapting the hyperparameters to fit the233

specificities and scale of the environment at hand.234

7

More advanced RL approaches such as advanced actor critic (A2C) [15] and proximal policy opti-235

mization (PPO) [22] employ two-networks architectures in which one network is used to approximate236

a value function and other is employed to encode the policy. The current TAGI-RL framework is237

not yet able to handle such architectures because training a policy network involves an optimization238

problem for the selection of the optimal action. Backpropagation-based approach currently rely on239

gradient optimization to perform this task, while TAGI will require developing alternative approaches240

in order to maintain the analytical tractability without relying on gradient-based optimization.241

6 Conclusion242

This paper presents how to adapt TAGI to deep Q-learning; Throughout the experiments, we demon-243

strated that TAGI could reach a performance comparable to backpropagation-trained networks while244

using fewer hyperparameters. These results challenge the common belief that for large scale problems245

such as the Atari environment, neural networks can only be trained by relying on gradient backpropa-246

gation. We have shown here that this current paradigm is no longer the only alternative as TAGI has a247

linear computational complexity and can be used to learn the parameters complex networks in an248

analytically tractable manner, without relying on gradient-based optimization.249

References250

[1] Pytorch examples for reinforce algorithm. https://github.com/pytorch/examples/blob/master/251

reinforcement_learning/reinforce.py, 2019.252

[2] Pytorch examples for actor crtic algorithm. https://github.com/pytorch/examples/blob/master/253

reinforcement_learning/actor_critic.py, 2020.254

[3] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,255

O. Pietquin, M. Michalski, S. Gelly, and O. Bachem. What matters for on-policy deep actor-critic methods?256

a large-scale study. In International Conference on Learning Representations, 2021.257

[4] K. Azizzadenesheli, E. Brunskill, and A. Anandkumar. Efficient exploration through Bayesian deep258

q-networks. In IEEE Information Theory and Applications Workshop, pages 1–9, 2018.259

[5] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. arXiv260

preprint arXiv:1505.05424, 2015.261

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.262

arXiv preprint arXiv:1606.01540, 2016.263

[7] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, Y. Wu, and264

P. Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.265

[8] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep266

learning. In ICML proceedings, pages 1050–1059, 2016.267

[9] J-A. Goulet, L.H. Nguyen, and S. Amiri. Tractable approximate Gaussian inference for Bayesian neural268

networks. arXiv preprint, 2020.269

[10] J. M. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of bayesian270

neural networks. In International Conference on Machine Learning, pages 1861–1869, 2015.271

[11] A. Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/2018/02/14/272

rl-hard.html, 2018.273

[12] D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. In274

C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information275

Processing Systems, volume 28, 2015.276

[13] Z. Lipton, X. Li, J. Gao, L. Li, F. Ahmed, and L. Deng. Bbq-networks: Efficient exploration in deep277

reinforcement learning for task-oriented dialogue systems. In Proceedings of the AAAI Conference on278

Artificial Intelligence, volume 32, 2018.279

[14] C. Louizos and M. Welling. Structured and efficient variational deep learning with matrix Gaussian280

posteriors. In ICML proceedings, pages 1708–1716, 2016.281

8

https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py
https://github.com/openai/baselines
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[15] V. Mnih, Adria P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.282

Asynchronous methods for deep reinforcement learning. In ICML proceedings, pages 1928–1937. PMLR,283

2016.284

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing285

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, December 2013.286

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller,287

A.K. Fidjeland, and G Ostrovski. Human-level control through deep reinforcement learning. nature,288

518(7540):529–533, 2015.289

[18] R. M. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.290

[19] L. H. Nguyen and J-A. Goulet. Analytically tractable inference in deep neural networks. arXiv preprint,291

2021.292

[20] K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, and M. E. Khan. Practical deep293

learning with Bayesian principles. In Advances in Neural Information Processing Systems proceedings,294

2019.295

[21] I. Osband, C. Blundell, A. Pritzel, and Benjamin V. Roy. Deep exploration via bootstrapped dqn. In296

NEURIPS proceedings, pages 4033–4041, 2016.297

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.298

arXiv preprint arXiv:1707.06347, 2017.299

[23] M. Strens. A Bayesian framework for reinforcement learning. In ICML proceedings, pages 943–950, 2000.300

[24] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44,301

1988.302

[25] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 2nd edition, 2018.303

[26] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In Proceedings304

of the AAAI Conference on Artificial Intelligence, volume 30, 2016.305

[27] Z. Wang and M. Zhou. Thompson sampling via local uncertainty. In ICML proceedings, volume 119,306

pages 10115–10125, 13–18 Jul 2020.307

[28] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.308

[29] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt. Deterministic309

variational inference for robust Bayesian neural networks. In ICLR proceedings, 2019.310

Checklist311

1. For all authors...312

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-313

tions and scope? [Yes]314

(b) Did you describe the limitations of your work? [Yes]315

(c) Did you discuss any potential negative societal impacts of your work? [N/A]316

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]317

2. If you are including theoretical results...318

(a) Did you state the full set of assumptions of all theoretical results? [N/A]319

(b) Did you include complete proofs of all theoretical results? [N/A]320

3. If you ran experiments...321

(a) Did you include the code, data, and instructions needed to reproduce the main experimental322

results (either in the supplemental material or as a URL)? [No] The code will be made available323

upon the publication of the paper324

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?325

[Yes]326

(c) Did you report error bars (e.g., with respect to the random seed after running experiments327

multiple times)? [Yes]328

9

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,329

internal cluster, or cloud provider)? [Yes]330

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...331

(a) If your work uses existing assets, did you cite the creators? [Yes]332

(b) Did you mention the license of the assets? [N/A]333

(c) Did you include any new assets either in the supplemental material or as a URL? [No]334

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-335

ing/curating? [N/A]336

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-337

tion or offensive content? [N/A]338

5. If you used crowdsourcing or conducted research with human subjects...339

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?340

[N/A]341

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)342

approvals, if applicable? [N/A]343

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on344

participant compensation? [N/A]345

10

	Introduction
	TAGI-DQN Formulation
	Tractable Approximate Gaussian Inference
	Expected Value and Bellman's Equation
	TAGI Deep Q-learning for Categorical Actions

	Related Works
	Benchmarks
	Experimental Setup
	Results

	Discussion
	Conclusion

