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Abstract

We investigate the capability of mBART, a001
sequence-to-sequence multilingual pre-trained002
model in translating low-resource languages003
under five factors: the amount of data used004
in pre-training the original model, the amount005
of data used in fine-tuning, the noisiness of006
the data used for fine-tuning, the domain-007
relatedness between the pre-training, fine-008
tuning, and testing datasets, and the language009
relatedness. When limited parallel corpora010
are available, fine-tuning mBART can mea-011
surably improve translation performance over012
training Transformers from scratch. mBART013
effectively uses even domain-mismatched text,014
suggesting that mBART can learn meaningful015
representations when data is scarce. Still, it016
founders when too-small data in unseen lan-017
guages is provided.018

1 Introduction019

Emergency situations motivate machine transla-020

tion (MT) models learned from mere thousands021

of parallel sentences (Strassel and Tracey, 2016;022

Bérard et al., 2020). Despite this need, neural MT023

(NMT) for low-resource languages (LRLs) is still a024

challenge (Koehn and Knowles, 2017; Ranathunga025

et al., 2021).026

Multilingual pre-trained Transformer models are027

a promising solution for LRLs, due to their zero-028

shot and few-shot learning capabilities. In partic-029

ular, multilingual sequence-to-sequence (seq2seq)030

models (e.g., mBART1 (Tang et al., 2020a) and031

mT5 (Xue et al., 2021)) perform well in the context032

of LRLs (Adelani et al., 2021; Liu et al., 2021),033

even for non-English-centric translation (Cahyawi-034

jaya et al., 2021; Madaan et al., 2020; Thillainathan035

et al., 2021). Still, while encoder-based multilin-036

gual pre-trained models (Devlin et al., 2019; Con-037

neau et al., 2020) have been extensively analysed038

1There are two mBART versions: mBART25 and
mBART50. This paper refers to the latter.

with respect to LRLs (Hu et al., 2020; Wu and 039

Dredze, 2020), no extensive evaluation character- 040

izes their seq2seq counterparts. 041

In this paper, we investigate the robustness of 042

pre-trained seq2seq models (namely, mBART due 043

to preliminary experiments) for translating LRLs, 044

when fine-tuned with either small amounts of high- 045

quality domain-specific data or comparatively large 046

amounts of noisy parallel data. We test both 047

types of fine-tuning with domain-specific and open- 048

domain test sets. 049

We assess the impact of five factors on mBART’s 050

performance: (1) the size of the fine-tuning dataset, 051

(2) noisiness of fine-tuning data, (3) the amount 052

of data used in pre-training mBART, (4) the do- 053

main relatedness between training and test sets or 054

pre-training and fine-tuning data, and (5) language 055

relatedness (The closest work to ours, Liu et al. 056

(2021), considers only the first two). Our evalu- 057

ation scripts will be publicly released to promote 058

reproduction of results. 059

We use 10 typologically and geographically dif- 060

ferent languages, from extremely low- to high- 061

resource, including four languages absent from 062

mBART pre-training. In general, for the languages 063

included in mBART, we reach acceptable perfor- 064

mance with either 10k high-quality in-domain sen- 065

tence pairs, or 100k noisy ones. However, for out- 066

of-model languages, mBART’s BLEU scores are 067

often below 3.0—far below usability. This moti- 068

vates exploring new training strategies to fine-tune 069

to new languages (Ebrahimi and Kann, 2021). 070

2 Language and Dataset Selection 071

Languages Table 1 shows the languages, cho- 072

sen for typological and geographical diversity. Of 073

the ten languages, five do not use the Latin script, 074

to evaluate the generalization of large pre-trained 075

models to non-Latin scripts (see Pires et al., 2019). 076

Eight can be considered LRLs based on Joshi et al. 077

(2020), and the last two (FR, HI) are high-resource 078
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Language Family Script Joshi mBART
class Tokens (M)

Afrikaans (AF) Germanic Latin 3 242M
Assamese (AS) Indo-Aryan Bengali–Assamese 1 –
French (FR) Romance Latin 5 9780M
Hindi (HI) Indo-Aryan Devanagari 4 1715M
Irish (GA) Irish Latin 2 –
Kannada (KN) Tamil Kannada 1 –
Sinhala (SI) Indo-Aryan Sinhala 1 243M
Tamil (TA) Dravidian Tamil 3 595M
Xhosa (XH) Niger–Congo Latin 2 13M
Yorùbá (YO) Niger–Congo Latin 2 –

Table 1: Language details

Dataset Domain Languages

FLORES Open all2

CCAligned Open all except GA
CCMatrix Open GA

JHU Bibles Religious all
JW300 Religious+magazines AF, YO, XH

Government Administrative SI, TA
PMIndia News AS, KN, HI

DGT-TM Legal FR, GA

Table 2: Datasets.

languages to give a skyline of performance.079

Datasets Table 2 shows the datasets we used080

for training and evaluation. We use two open-081

domain datasets, plus five curated, domain-specific082

datasets from religious, administrative, news, and083

legal domains. We additionally use FLORES084

datasets: FLORES-101 (Goyal et al., 2021) and085

FLORESv1 (Guzmán et al., 2019) (only for Sin-086

hala), from the open-domain for evaluation. The087

open domain training datasets were automatically088

aligned parallel texts from Common Crawl (CC),089

and are typically noisy for LRLs (Caswell et al.,090

2021): CCMatrix (Schwenk et al., 2021) and the091

more recent CCAligned (El-Kishky et al., 2020).092

Although JW300 was also automatically aligned,093

its quality for AF, YO, XH is reported to be very094

high (Abbott and Martinus, 2019). Further details095

of the selected corpora are in the Appendix.096

3 Experimental Setup097

We aim to evaluate the robustness of mBART when098

it is fine-tuned with high quality domain-specific099

data or automatically aligned noisy parallel data100

from bitext mining. For each case, mBART was101

evaluated on languages included and not included102

in mBART. To assess the value of pre-training,103

we compare to a standard Transformer (Vaswani104

et al., 2017). For the 4 out-of-model languages, we105

applied the related language fine-tuning strategy106

2dev/test set from FLORES-101 except for SI which used
FLORESv1.

EN→xx xx→EN

Language Dataset Size mBART mT5 mBART mT5

AF JW300 472k 30.9 32.9 43.9 46.9
XH JW300 866k 9.1 8.4 22.8 23.2
YO JW300 1,104k 3.9 2.6 7.9 8.1

SI Gov’t 56k 5.4 2.3 9.6 8.4
TA Gov’t 56k 3.5 2.4 10.7 10.1
GA EUBookShop 133k 15.1 7.6 15.7 16.7

Table 3: mBART vs mT5 results in BLEU. Testing set
was FLORES for all translation tasks.

(Madaan et al., 2020; Cahyawijaya et al., 2021). 107

Considering syntactic closeness and language fam- 108

ily, we picked BN for AS, TE for KN, FR for GA, and 109

SW for YO. Fine-tuning details of all the models 110

are included in Appendix. 111

Fine-tuning with noisy open-domain data For 112

most of the languages, CC datasets contain more 113

than 100k sentences, making them much larger 114

than the domain-specific datasets. Considering the 115

common largest dataset sizes for the selected lan- 116

guages, we selected two dataset sizes: 100k and 117

25k parallel sentences3. We used FLORES as the 118

dev set and tested on FLORES’s test set, plus two 119

other domain-specific datasets. 120

Fine-tuning with small domain-specific data 121

mBART is fine-tuned with two domain-specific 122

datasets for each language pair. Given that the 123

hand-curated datasets are much smaller, we vary 124

the set size between 1k, 10k, 50k and 100k sen- 125

tences. However, not all datasets come in the same 126

size. For example, the Bible datasets for some lan- 127

guages (GA, KN) contain only around 4k sentences. 128

For fine-tuning, we select one domain for the train 129

and development set. During inference, the fine- 130

tuned model is evaluated against the same-domain 131

data, another domain, and FLORES. 132

4 Results and Analysis 133

4.1 mBART or mT5: Preliminary results 134

Table 3 shows that mBART performs better than 135

mT5 on more translation directions, in particular 136

for EN→xx directions. This observation is consis- 137

tent with Liu et al. (2021). Given the improved 138

performance and the reduced computation needs, 139

we focus hereafter on mBART. 140

4.2 mBART in different scenarios 141

We divide the experiments into two cases, accord- 142

ing to the type and amount of parallel data available 143

3Assamese only has around 25k sentences.
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for fine-tuning, mirroring realistic low-resource144

scenarios: a large automatically created noisy open-145

domain parallel corpus, and a smaller but high qual-146

ity domain-specific parallel corpus. Table 4 shows147

the experiment results.148

Case 1. Fine-tuning with open-domain data149

Amount of fine-tuning data For languages in-150

cluded in mBART, fine-tuning with the smaller 25k151

parallel data outperforms the Transformer model152

trained with the larger 100k parallel data for all the153

translation tasks7, which indicates that pretrained154

mBART is at least four times as data-efficient.155

mBART shows better performance than the Trans-156

former even for unseen languages, although the157

results are not significant.158

Noisiness of fine-tuning Data Noise crucially159

contributes to the poor results in the Transformer160

model in the low-resource setting. Although CC161

data includes all the selected languages in equal162

amounts, the quality of these sources is not guar-163

anteed. Caswell et al. (2021) showed that automat-164

ically extracted data is noisier for LRLs, which165

explains the low results on LRLs. This highlights a166

vicious cycle: LRLs have insufficient parallel data167

or high-quality monolingual data to build automatic168

bitext mining techniques, which in turn results in169

these models extracting noisier parallel data from170

the web. NMT models trained with these noisy171

data have low performance.172

Amount of pre-training data. Figure 1 shows173

that the performance gain of mBART over the174

Transformer depends on the amount of pre-training175

data (R2 = 0.31).176

Domain relatedness of the data. Performance177

when training on Bible data is consistently lower178

across all translation tasks. We attribute this to the179

domain difference between CC and Bible data.180

Case 2. Fine-tuning with domain-specific data181

Amount of fine-tuning data. When training182

with domain-specific datasets (Gov’t, JW300, and183

DGT), we observe a similar trend for data effi-184

ciency for mBART over the Transformer model.185

With just 10k sentences of government-domain par-186

allel data, mBART model outperforms the Trans-187

4We use 25k CC for training AS.
5We use 1k for AS, 10k for KN, and 50k for HI for PMI
6FR results in Appendix
7Except for EN→XH where the two results are on par.

Figure 1: Effect of the pre-training dataset size

Figure 2: Impact of fine-tuning dataset size on mBART
performance for JW300 in one translation directions

former trained with 50k, suggesting a 5-fold data 188

efficiency8. For JW300, mBART trained with 10k 189

parallel sentences outperforms the Transformer 190

trained with 100k for some translation tasks (10- 191

fold), while mBART trained with 50k outperforms 192

the same Transformer for all the tasks (5-fold)9. 193

Thus, for these domain-specific datasets, mBART 194

might outperform standard Transformers by an effi- 195

ciency of five to ten times; future work can pinpoint 196

the saturation size. This is even more prominent 197

for out-of-domain test sets. Fine-tuned mBART is 198

robust to domain differences, while the transformer 199

flounders for out-domain datasets. 200

Figure 2 shows the impact of fine-tuning dataset 201

size. Although training on more data improves 202

model performance, the gain gradually saturates 203

as the dataset size reaches around 50k. Liu et al. 204

(2020) attributed this observation to the pre-trained 205

weights getting washed-out when more parallel 206

data is provided in fine-tuning. 207

Amount of pre-training data. The impact of 208

pre-training set size shows a trend similar to Case 1: 209

languages with a higher representation in mBART 210

8Except with EN-TA, where the result is on par.
9Except with EN-XH in-domain testing, which is on par.

3



EN→xx xx→EN

Model Train set Size
AF XH YO AF XH YO

FLORES Bible JW300 FLORES Bible JW300 FLORES Bible JW300 FLORES Bible JW300 FLORES Bible JW300 FLORES Bible JW300

Transformer
CC 100k 23.6 7.0 17.4 2.5 0.6 2.3 1.2 1.6 1.4 28.3 10.3 22.3 7.7 2.9 10.2 2.1 3.3 4.1

Bible 1k 0.1 1.3 0.7 0.0 0.0 0.0 0.0 1.4 0.0 0.1 1.7 0.8 0.0 0.9 0.2 0.0 2.4 0.0
JW300 100k 19.2 13.8 44.2 1.8 0.7 31.8 1.2 0.6 18.7 22.5 15.1 42.4 6.6 4.9 37.5 2.4 1.0 17.7

mBART50

CC 25k 28.0 13.4 31.4 4.8 0.5 10.1 2.6 1.7 3.8 36.0 15.0 35.0 11.3 3.0 18.6 3.5 3.2 5.2
CC 100k 33.9 15.5 34.4 7.9 2.1 16.8 2.8 4.5 5.9 44.8 16.9 40.2 19.7 9.0 27.8 5.0 7.5 6.7

Bible 1k 0.1 0.1 0.1 0.6 0.2 3.5 0.6 3.6 3.6 20.5 13.4 23.5 2.8 3.3 3.1 0.2 0.4 0.2
JW300 1k 18.9 11.1 32.4 1.6 0.1 11.0 1.0 0.0 6.7 28.8 12.6 32.5 0.1 0.1 0.1 0.0 0.0 0.0
JW300 10k 26.5 14.1 42.7 4.1 1.8 22.1 2.0 0.2 7.8 32.4 16.0 39.0 11.4 4.8 29.1 6.2 1.0 15.4
JW300 50k 30.1 15.8 48.0 6.0 4.0 30.8 3.8 0.7 20.1 40.9 17.5 41.7 16.2 9.2 41.3 7.8 1.3 19.8
JW300 100k 30.1 16.2 49.7 7.4 4.3 34.9 3.9 0.9 23.6 42.0 17.9 43.7 19.9 11.5 45.7 7.9 1.5 22.0

EN→xx xx→EN

Model Train set Size
HI KN AS HI KN AS

FLORES Bible PMI FLORES Bible PMI FLORES Bible PMI FLORES Bible PMI FLORES Bible PMI FLORES Bible PMI

Transformer
CC 100k4 8.7 2.3 7.3 0.2 0.0 0.0 0.0 0.0 0.0 6.6 3.0 4.7 0.1 0.0 0.1 0.0 0.1 0.1

Bible 1k 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.3 0.0
PMI 50k5 7.7 1.3 22.9 0.0 0.0 4.9 0.0 0.0 1.3 7.7 2.4 26.2 6.6 0.6 9.7 0.0 0.0 3.4

mBART50

CC 25k 14.2 5.5 12.0 0.4 0.0 0.1 1.4 0.3 1.4 17.6 10.2 14.0 0.2 0.0 0.1 1.6 0.8 1.6
CC 100k 20.9 6.2 17.0 1.2 0.0 0.7 - - - 22.4 11.2 17.1 0.4 0.0 0.5 - - -

Bible 1k 3.7 7.0 4.3 0.0 0.1 0.0 0.1 0.9 - 7.1 9.3 7.2 0.1 0.3 0.0 1.4 4.6 -
PMI 1k 7.0 2.3 14.5 0.0 0.0 0.1 0.0 0.0 2.1 7.4 4.1 11.8 0.3 0.1 1.7 0.0 0.0 0.2
PMI 10k 11.5 2.5 24.2 1.8 0.1 10.7 - - - 16.8 7.1 30.6 0.9 0.2 5.2 - - -
PMI 50k 14.1 3.4 28.8 - - - - - - 19.5 8.2 37.6 - - - - - -

EN→xx xx→EN

Model Train set Size
SI TA GA SI TA GA

FLORES Bible Gov’t FLORES Bible Gov’t FLORES Bible DGT FLORES Bible Gov’t FLORES Bible Gov’t FLORES Bible DGT

Transformer
CC 100k 2.1 0.0 5.6 1.8 0.0 1.8 0.0 0.0 0.0 4.7 1.9 7.9 5.2 3.4 4.9 0.1 0.0 0.0

Bible 1k 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 1.1 0.1 0.0 0.7 0.0 0.0 1.0 0.0
Gov’t/DGT 50k/100k 1.3 0.0 20.6 0.5 0.0 13.7 3.3 0.0 3.2 2.7 0.4 23.9 2.7 0.7 23.9 3.2 0.0 3.0

mBART50

CC 25k 4.4 0.5 9.6 4.7 0.9 4.6 0.0 0.0 0.0 9.6 5.2 13.5 7.2 6.5 5.6 0.1 0.1 0.0
CC 100k 6.6 0.5 16.9 7.6 0.8 8.6 0.0 0.0 0.0 13.8 8.5 20.5 17.3 9.6 16.8 0.0 0.0 0.0

Bible 1k 0.2 3.6 1.2 0.7 1.1 1.1 0.9 1.3 0.1 4.8 9.0 4.5 5.3 7.8 4.4 0.0 0.0 0.0
Gov’t/DGT 1k 1.4 0.1 11.2 1.1 0.1 6.6 0.8 0.0 1.5 6.5 2.5 14.8 6.1 2.1 12.6 0.3 0.1 0.8
Gov’t/DGT 10k 4.2 0.2 26.4 2.3 0.2 17.4 4.7 0.1 4.1 8.4 3.3 30.7 7.7 2.6 23.8 5.8 0.2 4.7
Gov’t/DGT 50k 5.1 0.2 35.4 3.7 0.2 23.4 12.2 0.3 4.2 9.2 3.5 38.8 10.4 3.3 37.3 12.3 0.4 5.1

DGT 100k - - - - - - 8.9 0.2 4.3 - - - - - - 9.5 0.2 4.9

Table 4: Experimental results6, reported in SacreBLEU (Post, 2018). Values <1.0 grey; values >10.0 bold.

have clear gains over the LRLs.211

Domain relatedness. For the government212

dataset, when fine-tuned with just 1k parallel213

sentences, EN→SI and EN→TA get 11.21 and 6.57214

BLEU (respectively) for same domain translation.215

Results for translating into English are even higher216

for both languages. This may indicate the utility of217

mBART for domain-specific translation with low218

amounts of high-quality data. However, we believe219

this result depends on either the high-quality220

English language model manifest in the decoder,221

or the domain relatedness between the language222

data in mBART and fine-tuning data: for Bible,223

EN→SI and SI→EN reach only 3.6 and 9 BLEU,224

respectively. Results for FR on the DGT and Bible225

data, and results for HI on PMI data suggest that226

mBART provides better results when fine-tuned227

with even 1k parallel sentences, if the language has228

sufficient coverage in mBART.229

Performance of mBART on out-domain is much230

less when fine-tuned with just 1k parallel data, even231

for languages in the model. The actual performance232

depends on the relatedness between the two do-233

mains. For example, training on the government234

dataset, in-domain translation obtains 14.78 BLEU,235

whereas FLORES and Bible only obtain 6.52 and236

2.48 BLEU (respectively); domain of the latter is237

more different from the government domain. On238

the other hand, if data from a different domain 239

is available in sufficient quantities, an acceptable 240

translation performance can be expected, as evident 241

by the mBART models fine-tuned with government 242

50k data or JW300 100k data. Noticeably, issues 243

related to domain difference and fine-tuning dataset 244

size are less pronounced for FR (see results for 1k 245

Bible data and 1k DGT). This highlights the impact 246

of language coverage in the mBART model. 247

Language relatedness. Surprisingly, the BLEU 248

score for AF is high across most of the experiments. 249

Similar to Zhou and Waibel (2021), we attribute 250

this to the relation between AF and EN: both are 251

Germanic and share the Latin script. Results of YO 252

is better than the other unseen languages, which 253

may be due to YO using the Latin script. 254

5 Conclusion 255

When limited parallel corpora are available, fine- 256

tuning mBART can improve translation perfor- 257

mance over training transformers from scratch. Our 258

proposed five factors uncover the relationship be- 259

tween mBART’s performance and what is available 260

for the low-resource data. In the future, we hope 261

to investigate curricula and data augmentation so 262

mBART does not struggle on unseen languages, 263

which will help in low-resource scenarios. 264
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A Appendix527

A.1 Corpora used in evaluation528

The JHU Bible Corpus (McCarthy et al., 2020) is529

a recently released corpus of Bible translations in530

over 1600 languages. In several low-resource lan-531

guages, the Bible is the only available text parallel532

with another language; moreover, its verse struc-533

ture makes it multi-parallel across thousands of534

languages.535

The government document corpus (Fernando536

et al., 2020) is a multilingual corpus for Sinhala–537

Tamil–English languages on Sri Lankan official538

government documents, which consists of annual539

reports, crawled content from government institu-540

tional websites, committee reports, procurement541

documents and acts.542

PMIndia (Haddow and Kirefu, 2020) is a parallel543

corpus of news updates for English and 13 other544

Indian languages extracted from the Prime Minister545

of India’s website.546

JW300 (Agić and Vulić, 2019) is a parallel547

corpus that spans 343 languages obtained from548

jw.org including Jehovah Witnesses magazines549

like Awake and Watchtower. The domain is highly550

religious but it includes other societal topics, e.g.,551

reports about the persecution of their disciples552

around the world.10553

DGT-TM (Tiedemann, 2012) consists of multi-554

lingual translation memory corresponding to the555

‘Summaries of EU legislation’. They are short ex-556

planations of the main legal acts passed by the557

European Union (EU). The type of legislation in-558

cluded in the dataset refers to directives, regulations559

and decisions, as well as international agreements.560

The dataset is available in 25 languages.561

CCAligned (El-Kishky et al., 2020) and CC-562

Matrix (Schwenk et al., 2021) are parallel texts563

that were automatically aligned using LASER sen-564

tence embeddings (Schwenk, 2018). CCAligned is565

newer, and has more texts for LRLs. The dataset,566

although noisy (Caswell et al., 2021), has been567

used to develop highly multilingual machine trans-568

lation models like M2M100 (Fan et al., 2020) and569

mBART multilingual MT (Tang et al., 2020b).570

10While JW300 (Agić and Vulić, 2019) has been automati-
cally aligned from JW.org, Abbott and Martinus (2019) and
Alabi et al. (2020) have verified the quality for African lan-
guages. For languages with non-Latin scripts in our study, the
alignment has been judged to be poor by native speakers.

A.2 Model Training Details 571

For the mBART50 and mT5-base models, (Tang 572

et al., 2020a), we train up to 3 epochs with 5e- 573

05 learning rate, 0.1 dropout, 200 as maximum 574

source, target length, and with the batch size of 10. 575

We used beam search with beam size 5 for decod- 576

ing. The final results are reported in sacreBLEU 577

(Post, 2018). All the fine-tuning experiments con- 578

ducted using HuggingFace Transformers11 library 579

and trained on Tesla V100 machines. 580

We followed the bilingual fine-tuning on the se- 581

lected 10 languages pairs. For each pair of lan- 582

guage direction we initialize our NMT encoder- 583

decoder with pre-trained mBART model’s corre- 584

sponding language encoder and decoder. Once we 585

initialized the weights, we continued our training. 586

Instead of random initialization, here our training 587

is started with pre-trained model’s weights- this is 588

referred as fine-tuning. By doing this, we try to 589

fine-tune the pre-trained model parameters for our 590

particular selected translation task. 591

Considering the computational memory bottle- 592

necks, we used the mT5-base model, which sup- 593

ports over 100 languages including five out of the 594

six languages we evaluated on. Irish was not sup- 595

ported, therefore, we make use of the French lan- 596

guage code for fine-tuning the model. 597

Transformer model (Vaswani et al., 2017) was 598

trained using the same datasets used for fine-tuning 599

mBART. We use two transformer architectures. 600

When the data set size is less than 10k the model 601

consists of 3 encoder and decoder layers with em- 602

bedding dimension of 512 and 2 attention heads. 603

When the data set size is greater than or equal 604

to 10k the model trained consisted of 6 encoder 605

and decoder layers with a embedding dimension 606

of 256 and 2 attention heads. We train the models 607

with SentencePiece sub-wording techniques from 608

scratch. Both the models had an initial learning 609

rate of 1e-03 with a weight decay of 1e-04, dropout 610

of 0.4 and batch size 32. We trained the model 611

until the validation loss saturated. The model with 612

the lowest validation loss was identified as the best 613

model and used for testing. We used beam search 614

of 5 for decoding. For the trainig, we use FairSeq12 615

tool. 616

11https://github.com/huggingface/
transformers

12https://github.com/pytorch/fairseq
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EN→xx xx→EN
Model Train set Size Flores Bible DGT FLORES Bible DGT

Transformer
CC 100k 9.0 6.5 5.6 10.7 6.8 7.3

Bible 1k 0.0 2.4 0.0 0.0 1.6 0.0
DGT 100k 5.7 1.4 22.8 6.1 2.4 26.6

mBART

CC 25k 24.0 14.9 15.6 26.0 18.0 19.4
CC 100k 29.4 16.3 19.6 29.1 18.9 22.6

Bible 1k 13.2 15.5 10.9 0.0 0.0 0.0
DGT 1k 15.1 5.7 20.2 19.9 11.9 27.8
DGT 10k 15.5 4.4 25.4 17.7 7.8 29.7
DGT 50k 17.8 5.1 31.2 18.3 8.5 35.3
DGT 100k 18.8 5.0 34.6 19.3 7.6 36.6

Table 5: Results for French
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