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Abstract

We investigate the capability of mBART, a
sequence-to-sequence multilingual pre-trained
model in translating low-resource languages
under five factors: the amount of data used
in pre-training the original model, the amount
of data used in fine-tuning, the noisiness of
the data used for fine-tuning, the domain-
relatedness between the pre-training, fine-
tuning, and testing datasets, and the language
relatedness. When limited parallel corpora
are available, fine-tuning mBART can mea-
surably improve translation performance over
training Transformers from scratch. mBART
effectively uses even domain-mismatched text,
suggesting that mBART can learn meaningful
representations when data is scarce. Still, it
founders when too-small data in unseen lan-
guages is provided.

1 Introduction

Emergency situations motivate machine transla-
tion (MT) models learned from mere thousands
of parallel sentences (Strassel and Tracey, 2016;
Bérard et al., 2020). Despite this need, neural MT
(NMT) for low-resource languages (LRLs) is still a
challenge (Koehn and Knowles, 2017; Ranathunga
etal., 2021).

Multilingual pre-trained Transformer models are
a promising solution for LRLs, due to their zero-
shot and few-shot learning capabilities. In partic-
ular, multilingual sequence-to-sequence (seq2seq)
models (e.g., mBART! (Tang et al., 2020a) and
mT5 (Xue et al., 2021)) perform well in the context
of LRLs (Adelani et al., 2021; Liu et al., 2021),
even for non-English-centric translation (Cahyawi-
jayaetal., 2021; Madaan et al., 2020; Thillainathan
et al., 2021). Still, while encoder-based multilin-
gual pre-trained models (Devlin et al., 2019; Con-
neau et al., 2020) have been extensively analysed

'"There are two mBART versions: mBART25 and

mBARTS50. This paper refers to the latter.

with respect to LRLs (Hu et al., 2020; Wu and
Dredze, 2020), no extensive evaluation character-
izes their seq2seq counterparts.

In this paper, we investigate the robustness of
pre-trained seq2seq models (namely, mBART due
to preliminary experiments) for translating LRLs,
when fine-tuned with either small amounts of high-
quality domain-specific data or comparatively large
amounts of noisy parallel data. We test both
types of fine-tuning with domain-specific and open-
domain test sets.

We assess the impact of five factors on mBART’s
performance: (1) the size of the fine-tuning dataset,
(2) noisiness of fine-tuning data, (3) the amount
of data used in pre-training mBART, (4) the do-
main relatedness between training and test sets or
pre-training and fine-tuning data, and (5) language
relatedness (The closest work to ours, Liu et al.
(2021), considers only the first two). Our evalu-
ation scripts will be publicly released to promote
reproduction of results.

We use 10 typologically and geographically dif-
ferent languages, from extremely low- to high-
resource, including four languages absent from
mBART pre-training. In general, for the languages
included in mBART, we reach acceptable perfor-
mance with either 10k high-quality in-domain sen-
tence pairs, or 100k noisy ones. However, for out-
of-model languages, mBART’s BLEU scores are
often below 3.0—far below usability. This moti-
vates exploring new training strategies to fine-tune
to new languages (Ebrahimi and Kann, 2021).

2 Language and Dataset Selection

Languages Table 1 shows the languages, cho-
sen for typological and geographical diversity. Of
the ten languages, five do not use the Latin script,
to evaluate the generalization of large pre-trained
models to non-Latin scripts (see Pires et al., 2019).
Eight can be considered LRLs based on Joshi et al.
(2020), and the last two (FR, HI) are high-resource



Language Family Script Joshi mBART
class  Tokens (M)
Afrikaans (AF)  Germanic Latin 3 242M
Assamese (AS)  Indo-Aryan Bengali—Assamese 1 -
French (FR) Romance Latin 5 9780M
Hindi (HI) Indo-Aryan Devanagari 4 1715M
Irish (GA) Irish Latin 2 -
Kannada (KN) ~ Tamil Kannada 1 -
Sinhala (s1) Indo-Aryan Sinhala 1 243M
Tamil (TA) Dravidian Tamil 3 595M
Xhosa (XH) Niger—Congo  Latin 2 13M
Yoruba (YO) Niger—Congo  Latin 2 -
Table 1: Language details
Dataset Domain  Languages
FLORES Open all?
CCAligned Open all except GA
CCMatrix Open GA
JHU Bibles Religious all
JW300 Religious+magazines AF, YO, XH
Government Administrative  SI, TA
PMlIndia News  AS, KN, HI
DGT-TM Legal FR, GA

Table 2: Datasets.

languages to give a skyline of performance.

Datasets Table 2 shows the datasets we used
for training and evaluation. We use two open-
domain datasets, plus five curated, domain-specific
datasets from religious, administrative, news, and
legal domains. We additionally use FLORES
datasets: FLORES-101 (Goyal et al., 2021) and
FLORESvV] (Guzman et al., 2019) (only for Sin-
hala), from the open-domain for evaluation. The
open domain training datasets were automatically
aligned parallel texts from Common Crawl (CC),
and are typically noisy for LRLs (Caswell et al.,
2021): CCMatrix (Schwenk et al., 2021) and the
more recent CCAligned (EI-Kishky et al., 2020).
Although JW300 was also automatically aligned,
its quality for AF, YO, XH is reported to be very
high (Abbott and Martinus, 2019). Further details
of the selected corpora are in the Appendix.

3 Experimental Setup

We aim to evaluate the robustness of mBART when
it is fine-tuned with high quality domain-specific
data or automatically aligned noisy parallel data
from bitext mining. For each case, mBART was
evaluated on languages included and not included
in mBART. To assess the value of pre-training,
we compare to a standard Transformer (Vaswani
et al., 2017). For the 4 out-of-model languages, we
applied the related language fine-tuning strategy

2dev/test set from FLORES-101 except for SI which used
FLORESVI.

EN—XX XX—EN

Language Dataset Size mBART mT5 mBART mT5
AF JW300 472k 30.9 329 439 46.9

XH JW300 860k 9.1 8.4 22.8 23.2

YO JW300 1,104k 39 2.6 79 8.1

SI Gov’t 56k 5.4 2.3 9.6 8.4

TA Gov’t 56k 3.5 2.4 10.7 10.1

GA EUBookShop 133k 15.1 7.6 15.7 16.7

Table 3: mBART vs mTS5 results in BLEU. Testing set
was FLORES for all translation tasks.

(Madaan et al., 2020; Cahyawijaya et al., 2021).
Considering syntactic closeness and language fam-
ily, we picked BN for AS, TE for KN, FR for GA, and
SW for YO. Fine-tuning details of all the models
are included in Appendix.

Fine-tuning with noisy open-domain data For
most of the languages, CC datasets contain more
than 100k sentences, making them much larger
than the domain-specific datasets. Considering the
common largest dataset sizes for the selected lan-
guages, we selected two dataset sizes: 100k and
25k parallel sentences®. We used FLORES as the
dev set and tested on FLORES’s test set, plus two
other domain-specific datasets.

Fine-tuning with small domain-specific data
mBART is fine-tuned with two domain-specific
datasets for each language pair. Given that the
hand-curated datasets are much smaller, we vary
the set size between 1k, 10k, 50k and 100k sen-
tences. However, not all datasets come in the same
size. For example, the Bible datasets for some lan-
guages (GA, KN) contain only around 4k sentences.
For fine-tuning, we select one domain for the train
and development set. During inference, the fine-
tuned model is evaluated against the same-domain
data, another domain, and FLORES.

4 Results and Analysis

4.1 mBART or mT5: Preliminary results

Table 3 shows that mBART performs better than
mT5 on more translation directions, in particular
for EN—xx directions. This observation is consis-
tent with Liu et al. (2021). Given the improved
performance and the reduced computation needs,
we focus hereafter on mBART.

4.2 mBART in different scenarios

We divide the experiments into two cases, accord-
ing to the type and amount of parallel data available

3 Assamese only has around 25k sentences.



for fine-tuning, mirroring realistic low-resource
scenarios: a large automatically created noisy open-
domain parallel corpus, and a smaller but high qual-
ity domain-specific parallel corpus. Table 4 shows
the experiment results.

Case 1. Fine-tuning with open-domain data

Amount of fine-tuning data For languages in-
cluded in mBART, fine-tuning with the smaller 25k
parallel data outperforms the Transformer model
trained with the larger 100k parallel data for all the
translation tasks’, which indicates that pretrained
mBART is at least four times as data-efficient.
mBART shows better performance than the Trans-
former even for unseen languages, although the
results are not significant.

Noisiness of fine-tuning Data Noise crucially
contributes to the poor results in the Transformer
model in the low-resource setting. Although CC
data includes all the selected languages in equal
amounts, the quality of these sources is not guar-
anteed. Caswell et al. (2021) showed that automat-
ically extracted data is noisier for LRLs, which
explains the low results on LRLs. This highlights a
vicious cycle: LRLs have insufficient parallel data
or high-quality monolingual data to build automatic
bitext mining techniques, which in turn results in
these models extracting noisier parallel data from
the web. NMT models trained with these noisy
data have low performance.

Amount of pre-training data. Figure 1 shows
that the performance gain of mBART over the
Transformer depends on the amount of pre-training
data (R? = 0.31).

Domain relatedness of the data. Performance
when training on Bible data is consistently lower
across all translation tasks. We attribute this to the
domain difference between CC and Bible data.

Case 2. Fine-tuning with domain-specific data

Amount of fine-tuning data. When training
with domain-specific datasets (Gov’t, JW300, and
DGT), we observe a similar trend for data effi-
ciency for mBART over the Transformer model.
With just 10k sentences of government-domain par-
allel data, mBART model outperforms the Trans-

*We use 25k CC for training AS.

>We use 1k for AS, 10k for KN, and 50k for HI for PMI
SER results in Appendix

"Except for EN—XH where the two results are on par.
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Figure 1: Effect of the pre-training dataset size
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Figure 2: Impact of fine-tuning dataset size on mBART
performance for JW300 in one translation directions

former trained with 50k, suggesting a 5-fold data
efficiency®. For JW300, mBART trained with 10k
parallel sentences outperforms the Transformer
trained with 100k for some translation tasks (10-
fold), while mBART trained with 50k outperforms
the same Transformer for all the tasks (5-fold)°.
Thus, for these domain-specific datasets, mBART
might outperform standard Transformers by an effi-
ciency of five to ten times; future work can pinpoint
the saturation size. This is even more prominent
for out-of-domain test sets. Fine-tuned mBART is
robust to domain differences, while the transformer
flounders for out-domain datasets.

Figure 2 shows the impact of fine-tuning dataset
size. Although training on more data improves
model performance, the gain gradually saturates
as the dataset size reaches around 50k. Liu et al.
(2020) attributed this observation to the pre-trained
weights getting washed-out when more parallel
data is provided in fine-tuning.

Amount of pre-training data. The impact of
pre-training set size shows a trend similar to Case 1:
languages with a higher representation in mBART

8Except with EN-TA, where the result is on par.
“Except with EN-XH in-domain testing, which is on par.



EN—XX XX—EN
Model Train set Size AF XH Yo AF xH Yo
FLORES Bible JW300 | FLORES Bible JW300 | FLORES Bible JW300 | FLORES Bible JW300 | FLORES Bible JW300 | FLORES Bible JW300
cc 100k 23.6 7.0 174 2.5 0.6 23 1.2 1.6 1.4 283 103 223 77 29 10.2 2.1 33 4.1
Transformer Bible 1k 0.1 13 0.7 0.0 0.0 0.0 0.0 1.4 0.0 0.1 1.7 0.8 0.0 0.9 0.2 0.0 2.4 0.0
JW300 100k 192 138 44.2 1.8 0.7 31.8 1.2 0.6 18.7 225 151 42.4 6.6 49 375 2.4 1.0 17.7
cc 25k 280 134 314 4.8 0.5 10.1 2.6 1.7 38 36.0 15.0 35.0 11.3 3.0 18.6 3.5 32 52
cc 100k 339 155 344 79 2.1 16.8 2.8 4.5 59 448 169 40.2 19.7 9.0 27.8 5.0 715 6.7
Bible 1k 0.1 0.1 0.1 0.6 0.2 35 0.6 3.6 3.6 205 134 23.5 2.8 33 3.1 0.2 0.4 0.2
mBART50 JW300 1k 189 111 324 1.6 0.1 11.0 1.0 0.0 6.7 28.8 12.6 325 0.1 0.1 0.1 0.0 0.0 0.0
JW300 10k 265 141 4?27 4.1 1.8 22.1 2.0 0.2 7.8 324 160 39.0 114 4.8 29.1 6.2 1.0 154
JW300 50k 30.1 158 48.0 6.0 4.0 30.8 3.8 0.7 20.1 409 175 41.7 16.2 9.2 41.3 78 1.3 19.8
JW300 100k 301 162 49.7 74 4.3 349 39 0.9 23.6 4.0 179 43.7 199 115 45.7 79 1.5 22.0
EN—XX XX—EN
Model Train set Size ]?I K.N A.S Ip K.N AAS
FLORES Bible PMI | FLORES Bible PMI | FLORES Bible PMI | FLORES Bible PMI | FLORES Bible PMI | FLORES Bible PMI
cc 100k* 8.7 23 7.3 0.2 0.0 0.0 0.0 0.0 0.0 6.6 3.0 4.7 0.1 0.0 0.1 0.0 0.1 0.1
Transformer Bible 1k 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.3 0.0
PMI 50k’ 77 13 229 0.0 0.0 4.9 0.0 0.0 1.3 77 2.4 26.2 6.6 0.6 9.7 0.0 0.0 34
cc 25k 14.2 5.5 12.0 0.4 0.0 0.1 1.4 0.3 1.4 17.6  10.2 14.0 0.2 0.0 0.1 1.6 0.8 1.6
cc 100k 20.9 6.2 17.0 1.2 0.0 0.7 - - 224 112 17.1 0.4 0.0 0.5 - - -
Bible 1k 3.7 7.0 4.3 0.0 0.1 0.0 0.1 0.9 7.1 9.3 72 0.1 0.3 0.0 1.4 4.6
mBARTS0 PMI Ik 70 23 145 00 00 01 00 0.0 2.1 74 41 118 03 0. 17 00 00 0.2
PMI 10k 11.5 2.5 24.2 1.8 0.1 10.7 - - 16.8 7.1 30.6 0.9 0.2 52 -
PMI 50k 14.1 3.4 28.8 - - 19.5 82 37.6 -
EN—XX XX—EN
Model Train set Size St N T 5 Gr . St . ™ N GA
FLORES Bible  Gov’t | FLORES Bible  Gov’t | FLORES Bible DGT | FLORES Bible  Gov’t | FLORES Bible  Gov’t | FLORES Bible DGT
cc 100k 2.1 0.0 5.6 1.8 0.0 1.8 0.0 0.0 0.0 4.7 1.9 79 52 34 4.9 0.1 0.0 0.0
Transformer Bible 1k 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 1.1 0.1 0.0 0.7 0.0 0.0 1.0 0.0
Gov't/DGT  50k/100k 13 0.0 20.6 0.5 0.0 13.7 33 0.0 32 2.7 0.4 239 27 0.7 239 32 0.0 3.0
cc 25k 4.4 0.5 9.6 4.7 0.9 4.6 0.0 0.0 0.0 9.6 52 13.5 72 6.5 5.6 0.1 0.1 0.0
cC 100k 6.6 0.5 16.9 7.6 0.8 8.6 0.0 0.0 0.0 138 8.5 20.5 17.3 9.6 16.8 0.0 0.0 0.0
Bible 1k 0.2 3.6 1.2 0. 1.1 1.1 0.9 1.3 0.1 4.8 9.0 4.5 53 7.8 4.4 0.0 0.0 0.0
mBARTS0 Gov't/DGT 1k 1.4 0.1 11.2 1.1 0.1 6.6 0.8 0.0 1.5 6.5 2.5 14.8 6.1 2.1 12.6 0.3 0.1 0.8
Gov't/DGT 10k 4.2 0.2 26.4 23 0.2 174 4.7 0.1 4.1 8.4 33 30.7 77 2.6 238 58 0.2 4.7
Gov’'t/DGT 50k 5.1 0.2 354 37 0.2 234 12.2 0.3 4.2 9.2 35 38.8 104 33 37.3 123 0.4 5.1
DGT 100k - - - 8.9 0.2 4.3 - - - - - 9.5 0.2 4.9

Table 4: Experimental results®, reported in SacreBLEU (Post, 2018). Values <1.0 grey; values >10.0 bold.

have clear gains over the LRLs.

Domain relatedness. For the government
dataset, when fine-tuned with just 1k parallel
sentences, EN—SI and EN—TA get 11.21 and 6.57
BLEU (respectively) for same domain translation.
Results for translating into English are even higher
for both languages. This may indicate the utility of
mBART for domain-specific translation with low
amounts of high-quality data. However, we believe
this result depends on either the high-quality
English language model manifest in the decoder,
or the domain relatedness between the language
data in mBART and fine-tuning data: for Bible,
EN—SI and SI—EN reach only 3.6 and 9 BLEU,
respectively. Results for FR on the DGT and Bible
data, and results for HI on PMI data suggest that
mBART provides better results when fine-tuned
with even 1k parallel sentences, if the language has
sufficient coverage in mBART.

Performance of mBART on out-domain is much
less when fine-tuned with just 1k parallel data, even
for languages in the model. The actual performance
depends on the relatedness between the two do-
mains. For example, training on the government
dataset, in-domain translation obtains 14.78 BLEU,
whereas FLORES and Bible only obtain 6.52 and
2.48 BLEU (respectively); domain of the latter is
more different from the government domain. On

the other hand, if data from a different domain
is available in sufficient quantities, an acceptable
translation performance can be expected, as evident
by the mBART models fine-tuned with government
50k data or JW300 100k data. Noticeably, issues
related to domain difference and fine-tuning dataset
size are less pronounced for FR (see results for 1k
Bible data and 1k DGT). This highlights the impact
of language coverage in the mBART model.

Language relatedness. Surprisingly, the BLEU
score for AF is high across most of the experiments.
Similar to Zhou and Waibel (2021), we attribute
this to the relation between AF and EN: both are
Germanic and share the Latin script. Results of YO
is better than the other unseen languages, which
may be due to YO using the Latin script.

5 Conclusion

When limited parallel corpora are available, fine-
tuning mBART can improve translation perfor-
mance over training transformers from scratch. Our
proposed five factors uncover the relationship be-
tween mBART’s performance and what is available
for the low-resource data. In the future, we hope
to investigate curricula and data augmentation so
mBART does not struggle on unseen languages,
which will help in low-resource scenarios.
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A Appendix

A.1 Corpora used in evaluation

The JHU Bible Corpus (McCarthy et al., 2020) is
a recently released corpus of Bible translations in
over 1600 languages. In several low-resource lan-
guages, the Bible is the only available text parallel
with another language; moreover, its verse struc-
ture makes it multi-parallel across thousands of
languages.

The government document corpus (Fernando
et al., 2020) is a multilingual corpus for Sinhala—
Tamil-English languages on Sri Lankan official
government documents, which consists of annual
reports, crawled content from government institu-
tional websites, committee reports, procurement
documents and acts.

PMlIndia (Haddow and Kirefu, 2020) is a parallel
corpus of news updates for English and 13 other
Indian languages extracted from the Prime Minister
of India’s website.

JW300 (Agi¢ and Vuli¢, 2019) is a parallel
corpus that spans 343 languages obtained from
jw.org including Jehovah Witnesses magazines
like Awake and Watchtower. The domain is highly
religious but it includes other societal topics, e.g.,
reports about the persecution of their disciples
around the world.'”

DGT-TM (Tiedemann, 2012) consists of multi-
lingual translation memory corresponding to the
‘Summaries of EU legislation’. They are short ex-
planations of the main legal acts passed by the
European Union (EU). The type of legislation in-
cluded in the dataset refers to directives, regulations
and decisions, as well as international agreements.
The dataset is available in 25 languages.

CCAligned (El-Kishky et al., 2020) and CC-
Matrix (Schwenk et al., 2021) are parallel texts
that were automatically aligned using LASER sen-
tence embeddings (Schwenk, 2018). CCAligned is
newer, and has more texts for LRLs. The dataset,
although noisy (Caswell et al., 2021), has been
used to develop highly multilingual machine trans-
lation models like M2M100 (Fan et al., 2020) and
mBART multilingual MT (Tang et al., 2020b).

""While TW300 (Agi¢ and Vuli¢, 2019) has been automati-
cally aligned from JW. org, Abbott and Martinus (2019) and
Alabi et al. (2020) have verified the quality for African lan-
guages. For languages with non-Latin scripts in our study, the
alignment has been judged to be poor by native speakers.

A.2 Model Training Details

For the mBART50 and mT5-base models, (Tang
et al., 2020a), we train up to 3 epochs with Se-
05 learning rate, 0.1 dropout, 200 as maximum
source, target length, and with the batch size of 10.
We used beam search with beam size 5 for decod-
ing. The final results are reported in sacreBLEU
(Post, 2018). All the fine-tuning experiments con-
ducted using HuggingFace Transformers'! library
and trained on Tesla V100 machines.

We followed the bilingual fine-tuning on the se-
lected 10 languages pairs. For each pair of lan-
guage direction we initialize our NMT encoder-
decoder with pre-trained mBART model’s corre-
sponding language encoder and decoder. Once we
initialized the weights, we continued our training.
Instead of random initialization, here our training
is started with pre-trained model’s weights- this is
referred as fine-tuning. By doing this, we try to
fine-tune the pre-trained model parameters for our
particular selected translation task.

Considering the computational memory bottle-
necks, we used the mT5-base model, which sup-
ports over 100 languages including five out of the
six languages we evaluated on. Irish was not sup-
ported, therefore, we make use of the French lan-
guage code for fine-tuning the model.

Transformer model (Vaswani et al., 2017) was
trained using the same datasets used for fine-tuning
mBART. We use two transformer architectures.
When the data set size is less than 10k the model
consists of 3 encoder and decoder layers with em-
bedding dimension of 512 and 2 attention heads.
When the data set size is greater than or equal
to 10k the model trained consisted of 6 encoder
and decoder layers with a embedding dimension
of 256 and 2 attention heads. We train the models
with SentencePiece sub-wording techniques from
scratch. Both the models had an initial learning
rate of 1e-03 with a weight decay of 1e-04, dropout
of 0.4 and batch size 32. We trained the model
until the validation loss saturated. The model with
the lowest validation loss was identified as the best
model and used for testing. We used beam search
of 5 for decoding. For the trainig, we use FairSeq'?
tool.

Unttps://github.com/huggingface/
transformers
Phttps://github.com/pytorch/fairseq


jw.org
JW.org
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq

EN— XX XX—EN
Model Trainset Size Flores Bible DGT FLORES Bible DGT

CC 100k 9.0 6.5 5.6 10.7 6.8 7.3

Transformer Bible 1k 0.0 2.4 0.0 0.0 1.6 0.0
DGT 100k 5.7 1.4 228 6.1 24 266

CC 25k 24.0 149 15.6 26.0 18.0 194

CC 100k 29.4 16.3 19.6 29.1 189 226

Bible 1k 13.2 15.5 10.9 0.0 0.0 0.0

mBART DGT 1k 15.1 57 202 19.9 119 278
DGT 10k 15.5 44 254 17.7 7.8  29.7

DGT 50k 17.8 5.1 31.2 18.3 8.5 353

DGT 100k 18.8 50 346 19.3 7.6  36.6

Table 5: Results for French



