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Does equivariance matter at scale?
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Abstract

Given large data sets and sufficient compute, is it beneficial to design neural architectures
for the structure and symmetries of a problem, or is it more efficient to learn them from
data? We study empirically how equivariant and non-equivariant networks scale with
compute and training samples. Focusing on a benchmark problem of rigid-body interactions
and general-purpose transformer architectures, we perform a series of experiments, varying
the model size, training steps, and dataset size. We find evidence for three conclusions.
First, equivariance improves data efficiency, but training non-equivariant models with data
augmentation closes this gap. Second, scaling with compute follows a power law, with
equivariant models outperforming non-equivariant ones at each tested compute budget.
Finally, the optimal allocation of a compute budget onto model size and training duration
differs between equivariant and non-equivariant models.
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Figure 1: Scaling with compute. The dots
show the training compute budget and test loss
in our experiments. The lines indicate the best
possible performance for each training compute
budget according to the scaling laws we find.
The performance of both non-equivariant ( )
and equivariant ( ) transformers scales as a
power law with compute, and the equivariant
model outperforms the non-equivariant model by
a similar factor at all tested compute budgets.
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Figure 2: Scaling with training data. We
show the performance of the non-equivariant
transformer ( ), non-equivariant transformer
trained with data augmentation ( ), and equiv-
ariant transformer ( ) as a function of the
number of unique tokens in the training dataset.
Equivariance improves data efficiency compared
to the baseline, but data augmentation closes
this gap when the number of epochs is large.
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1. Questions

In a time of big data and abundant compute, are there any benefits to strong inductive biases—
in particular, network architectures tailored to the properties of a problem? Concretely,
consider problems with known symmetries: should one take them into account through
equivariances (Bronstein et al., 2021), or is it better to let the network learn them from data?

A common intuition is that strong inductive biases bring the biggest benefits when
little training data is available, and that symmetry properties can just as well be learned
from data given sufficient samples and compute. Recently, high-profile models of protein
folding (Abramson et al., 2024) and conformer generation (Wang et al., 2023) have received
considerable attention for their choice of non-equivariant architectures for geometric problems.

At the same time, there is reason to expect that equivariance is still beneficial in the
large-data limit. Learning means successively narrowing down a hypothesis class based
on evidence, and scaling laws can be explained from this perspective (Bahri et al., 2021).
Whereas non-equivariant methods start from the space of virtually all functions, equivariant
models start from the subspace of all functions that abide by the symmetries of the problem.
The learning process may benefit from that by focusing solely on further refining this smaller
hypothesis class, narrowing down the solution space further than without equivariances.

Until the theory of scaling laws is fully understood, the effects of equivariance on scaling
is an empirical question, and in this work we study it empirically. We focus on a benchmark
problem of rigid-body physics and compare a standard transformer architecture (Vaswani
et al., 2017) to an E(3)-equivariant transformer (Brehmer et al., 2023). In this setup, which
we describe in Sec. 2, we ask three questions:

1. How do equivariant and non-equivariant models scale as a function of the available
data? Does data augmentation affect this?

2. How do equivariant and non-equivariant models scale as a function of training compute?
Does this scaling follow power laws? Are their coefficients affected by equivariance?

3. Given a compute budget, how should one allocate it to the model size and the number
of training iterations? Is this trade-off different for equivariant and non-equivariant
models?

We discuss our empirical results and sketch our answers to these questions in Sec. 3.

2. Methods

Benchmark problem We choose a rigid-body modelling problem as our benchmark.
Extended, rigid objects are initialized at some position, orientation, and velocity; they then
interact with each other under gravity and collisions. We task networks with predicting the
position of all mesh vertices as a function of the positions at two previous time steps. This
task is known to be challenging because collisions are difficult to detect, since they do not
usually occur at or near vertices, and because the forces acting during collisions are nearly
discontinuous (Bauza and Rodriguez, 2017; Pfrommer et al., 2021; Allen et al., 2022). We
describe the dataset generation and problem specification in more detail in Appendix B.1.

Models In selecting architectures, our main objective is not to achieve state-of-the-art
results on the particular rigid-body benchmark. That would lead us to highly problem-
specific architectures (Allen et al., 2022; Rubanova et al., 2024). Instead, we study two
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general-purpose architectures.
The first is a (non-equivariant) transformer (Vaswani et al., 2017), which has become

the de-facto standard across a wide range of machine learning tasks and is known for its
good scaling behaviour. As E(3)-equivariant architecture, we use the Geometric Algebra
Transformer (Brehmer et al., 2023), since it follows the transformer paradigm to a large extent
and is broadly applicable to geometric problems. To the best of our knowledge, it is the only
E(3)-equivariant architecture that—like the standard transformer—computes interactions
between items through dot-product attention and can be used with efficient implementations
like FlashAttention (Dao et al., 2022). We describe both models in Appendix B.2.

Scaling analysis We perform two series of experiments. First, we study the scaling with
compute, in the (practically) infinite-data setting. We vary a training compute budget over
three orders of magnitude. For each budget we consider, for both the baseline and the
equivariant transformer, we perform multiple experiments, each with a different trade-off
between model size N and training length D. Second, we study the scaling with training
data, fixing the training compute budget, the model size, and the number of training tokens.

We then analyze the scaling with compute quantitatively by fitting scaling laws to the
experiment results. Following Kaplan et al. (2020) and Hoffmann et al. (2022), we use a
power-law ansatz for the loss L,

L̂(N,D) =
A

Nα
+

B

Dβ
+ E , (1)

where A,B,E, α, β are fit parameters. From this we can derive the optimal loss a model can
achieve as a function of the training compute budget C as well as the optimal model size
and training length as a function of C. We describe this analysis in Appendix B.3, including
our procedures for choosing hyperparameters and estimating uncertainties.

3. Answers

Our empirical results, which can be found in Appendix C, provide evidence for the following
three conclusions.

Equivariant transformers are more data-efficient, but data augmentation closes
this gap. The first (and expected) benefit for the equivariant architecture is that it
performs better than a non-equivariant architecture when only little training data is available,
as we show in Fig. 2. However, we find that a non-equivariant model trained with data
augmentation performs just as well as the equivariant architecture, at least when the number
of epochs is sufficiently large.

This finding does not support the hypothesis that equivariance at each layer of the
network yields better data efficiency than augmentation, which only makes the networks as
a whole equivariant, and only on the training set.

The scaling with compute follows power laws, and equivariant models outperform
non-equivariant ones at each tested compute budget. Both for non-equivariant and
equivariant models, the test loss is well described by the power-law ansatz of Eq. (3), with
parameters given in Tbl. 2 in Appendix C.

The best achievable test loss L∗ for a given training compute budget of C FLOPs
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therefore also follows a power law. We find

L∗
baseline(C) =

1.03

C0.268
and L∗

equivariant(C) =
0.132

C0.235
, (2)

with exponents compatible with each other within the confidence intervals.
This shows a second (and perhaps less expected) benefit for the equivariant architecture:

for any fixed compute budget, even in the infinite-data limit, it clearly outperforms the
baseline method. As we show in Fig. 1, this benefit is approximately constant over the range
of compute budgets we study. It is consistent with the conjecture that equivariant methods
are more compute-efficient because their training can focus on a smaller hypothesis class:
not having to learn the symmetries from data saves FLOPs.

Under the assumption that the implementations of equivariant and baseline architectures
are similarly efficient and one can achieve the same FLOP throughput, this hints that
researchers should choose equivariant architectures even in the large-data, large-compute
regime. In practice, non-equivariant architectures may be easier to optimize for high FLOP
throughput, in which case it remains to be seen which architecture is more efficient.

Equivariant and non-equivariant models require different trade-offs between
model size and training duration. From the power-law scaling in model size and
training length we also derive the optimal allocation of a given compute budget. In Fig. 5
in Appendix C we show that for a small FLOP budget, a compute-optimal equivariant
transformer is substantially smaller than a compute-optimal baseline transformer. This gap
decreases for larger compute budgets.

Limitations and open questions As much as we would like to, we do not conclusively
settle the question we raised in the title of the paper. Our work is limited in several ways.
First, we only analyze a single benchmark problem and two model families. We chose a
task with a common symmetry group and general-purpose architectures that are frequently
applied to a wide range of problems. We believe it is important to study to what extent our
findings generalize to other problems or to other architectures, for instance those based on
message-passing over graphs. Moreover, on the problem we do study, we do not set a new
state of the art: we deliberately focus on general-purpose models, which do achieve the same
level of performance on this particular task as highly problem-specific architectures (Allen
et al., 2022).

Another limitation of our work is that our analysis measures compute with an idealized
FLOP counting procedure, as is common practice (Hoffmann et al., 2022). As we discuss
in Appendix B.3, this does not map one-to-one to real-world run time, at least not before
further optimization.

Finally, we are only able to study training compute budgets of up to 1019 FLOPs per
model—this does not come close to the approximately 1025 FLOPs that the currently largest
language models are trained for (Dubey et al., 2024). We did not see power-law scaling break
down in the range we studied, but we cannot make claims about the extrapolation beyond it.

We believe that the effects of strong inductive biases at scale is important for future
progress in several fields of science and engineering, and we hope that our findings can
encourage further investigations into this question.
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Sasha Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative
model for inorganic materials design. arXiv preprint arXiv:2312.03687, 2023. (Cited on

page 11)

Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter,
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Appendix A. Related work

Neural scaling laws The scaling of neural network performance as a function of model
size or training steps has been studied extensively (Ahmad and Tesauro, 1988; Hestness
et al., 2017; Rosenfeld et al., 2019; Henighan et al., 2020). Kaplan et al. (2020) first observed
that the test loss of autoregressive language models follows a power law over many orders of
magnitude. Hoffmann et al. (2022) improved the methodology further and found impactful
scaling laws, to the extent that many language models compare their hyperparameter choices
to the “Chinchilla-optimal” configuration. In our quantitative analysis of compute scaling,
we largely follow their approach.

Several works have extended scaling laws from model size and training steps to other
dimensions: Muennighoff et al. (2023) studied the effect of the training dataset size, which
we also discuss, Alabdulmohsin et al. (2023) analyzed scaling of different architecture hyper-
parameters separately, and Jones (2021) investigated the scaling with problem complexity.

Scaling laws and inductive biases There has been comparatively little research into the
relation between inductive biases and scaling behaviour, perhaps because the transformer
architecture (Vaswani et al., 2017) is so established in language modelling. Tay et al.
(2022) compared the scaling behaviour of different architectures. Recently, Qiu et al. (2024)
investigated how structured linear transformations in transformers affect scaling laws. The
authors conclude that imposing structure in them can improve the scaling behaviour. Our
work differs from both of these studies through its focus on symmetric problems and
equivariant architectures.

Geometric deep learning Geometric deep learning (Bronstein et al., 2021) is a paradigm
for machine learning in which network architectures are designed to reflect geometric
properties of the problem. One of its core ideas is that of equivariance to symmetry
groups (Amari, 1978; Wood and Shawe-Taylor, 1996; Makadia et al., 2007; Cohen and Welling,
2016): roughly, a network f is said to be equivariant to a symmetry group G if f(g·x) = g·f(x)
for all elements g ∈ G and all inputs x, where · is the group action. This means that when
you transform the inputs into an equivariant network, its outputs transform consistently.

An equivariant network thus does not have to learn the symmetry structure from data, like
a non-equivariant network does. This has been found to improve performance, data efficiency,
and robustness to out-of-domain generalization in fields as diverse as quantum mechanics
and quantum field theory (Pfau et al., 2020; Hermann et al., 2020; Boyda et al., 2021; Gerdes
et al., 2023), molecular force fields (Batatia et al., 2022; Batzner et al., 2022; Liao and Smidt,
2022; Musaelian et al., 2023; Batatia et al., 2023), generative models of molecules (Zeni et al.,
2023; Igashov et al., 2024), particle physics (Bogatskiy et al., 2022; Gong et al., 2022; Spinner
et al., 2024), biological and medical imaging (Veeling et al., 2018; Bekkers et al., 2018;
Winkels and Cohen, 2018; Winkens et al., 2018; Mohamed et al., 2020; de Ruijter and Cesa,
2024; Suk et al., 2024), wireless communication (Hehn et al., 2024), and robotics (Wang et al.,
2022a,b,c; Brehmer et al., 2024). The potential of equivariance to improve generalization
has also been shown theoretically (Sokolic et al., 2017; Lyle et al., 2020; Elesedy and Zaidi,
2021; Sannai et al., 2021; Behboodi et al., 2022; Petrache and Trivedi, 2024).

At the same time, equivariant architectures are often more complex than non-equivariant
architectures, which can make training more challenging. Some researchers believe that
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equivariant architectures are more difficult to scale up, but to the best of our knowledge
there has been little systematic study into this. However, recent impactful works on protein
folding (Abramson et al., 2024) and conformer generation (Wang et al., 2023) found that
equivariant architectures did not offer any benefits and opted for non-equivariant models
and data augmentation instead.

One symmetry that is important in many scientific and industrial applications is the
group E(3) of isometries of Euclidean space. It consists of translations, rotations, and
reflections. This group is the focus of our investigation.

As an E(3)-equivariant architecture, we use the Geometric Algebra Transformer (GATr)
(Brehmer et al., 2023). It stands out with two features. First, GATr uses multivectors from
projective geometric algebra as representations, in addition to the usual real scalars used in
most of machine learning. These multivectors are 16-dimensional objects that can represent
various geometric primitives, including absolute positions in space, lines and planes, as well
as translations and rotations. Geometric algebra representations power a number of network
architectures that were recently proposed (Brandstetter et al., 2022; Ruhe et al., 2023b,a;
Brehmer et al., 2023; de Haan et al., 2024; Spinner et al., 2024; Zhdanov et al., 2024; Liu
et al., 2024a,b). Second, GATr is a transformer. It processes inputs in the form of a set of
tokens. Pairwise interactions are not computed through local message passing, as in many
other E(3)-equivariant architectures, but through an equivariant dot-product mechanism
that is compatible with efficient implementations like FlashAttention (Dao et al., 2022). We
choose GATr as the equivariant model for our scaling investigation because of this similarity
to the baseline transformer.

On a side note, the second symmetry group that is relevant to the problem we study is
that of permutations of the inputs. Both standard transformers (Vaswani et al., 2017) and
GATr (Brehmer et al., 2023) are equivariant to it.

Appendix B. Problem setup

B.1. Benchmark problem

Desiderata For our empirical scaling study, we would like a benchmark task with a low
floor and high ceiling: a small model trained on few samples should perform poorly, while a
large model trained on many samples should score orders of magnitude better. To study
data scaling, we need a large number of training samples. To study equivariance, we look
for a geometric problem in which the symmetries and representations are known and exact.

Rigid-body modelling problem We choose a rigid-body modelling problem as our
benchmark. Extended, rigid objects are initialized at some position, orientation, and velocity;
they then interact with each other under gravity and collisions. Concretely, the inputs of
the network consist of a set of triangular meshes for two time points t = t0, t0 + ∆t, and the
task is to predict all mesh vertices at time t = t0 + 2∆t. As a loss function and evaluation
metric, we use the mean squared error of the predicted mesh vertex positions.

This problem satisfies all desiderata for our study. Rigid-body interactions are known to
be challenging to model: collisions are difficult to detect, since they do not usually occur at
or near vertices; the forces acting during a collision are nearly discontinuous (Bauza and
Rodriguez, 2017; Pfrommer et al., 2021; Allen et al., 2022). Synthetic data can be generated
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cheaply with physics simulators. Finally, the physics of the process is clearly equivariant
under E(3), provided that the direction of gravity is treated as a feature and rotated along
with the scene.

Dataset We construct a dataset of rigid-body interactions following a proposal by Allen
et al. (2022) (who, unfortunately, did not release their dataset or code). We use the Kubric
simulator (Greff et al., 2022), which is based on the PyBullet physics engine (Coumans and
Bai, 2016–2024). We recreate the MOVi-B dataset used by Allen et al. (2022) as best as we
can, using parameters from their paper and private communication.

Our dataset consists of 4 · 105 trajectories, each consisting of 96 time steps. Each
trajectory includes between 3 and 10 objects, each consisting of between 98 and 2160 mesh
faces. The average number of total mesh faces in a scene is 5470.

B.2. Models

In selecting architectures, our main objective is not to achieve state-of-the-art results on the
particular rigid-body benchmark problem we chose. That would lead us to highly problem-
specific architectures (Allen et al., 2022; Rubanova et al., 2024). Instead, we aim for general-
purpose architectures that are applicable to broad classes of problems.

Baseline architecture The transformer architecture (Vaswani et al., 2017) has become
the de-facto standard across a wide range of machine learning tasks. It is versatile with
respect to the input data, propagates gradients effectively, and scales well to large model
sizes and input tokens. Most scaling studies have focused on transformers as well. We
therefore use a standard pre-LayerNorm (Baevski and Auli, 2018) transformer with multi-
query attention (Shazeer, 2019) as our non-equivariant baseline architecture.

We represent each mesh face as a token and the positions and velocities of vertices with
random Fourier features (Tancik et al., 2020), which improved performance in initial tests.

Note that even this general-purpose architecture is not at all “free from inductive biases”,
in fact it is even equivariant with respect to one of the symmetries of our problem: that of
permutations of the input tokens. In this respect, there is no difference between the two
architectures, and we do not compare to any models that are not permutation-equivariant.

Equivariant architecture For the E(3)-equivariant architecture, we again look for broad
applicability (at least within the class of E(3)-symmetric problems). In addition, we would
like the architecture to be as structurally similar to the transformer, to isolate the effects
of equivariance on scaling as well as possible. We therefore opt for the (to the best of our
knowledge) only E(3)-equivariant architecture that is based on dot-product attention with
unlimited receptive fields, and which also otherwise follows the transformer blueprint closely:
the Geometric Algebra Transformer (GATr) (Brehmer et al., 2023).

Again, we represent each mesh face as a token. GATr uses geometric algebra representa-
tions in addition to the usual scalar channels, and we can represent the geometric properties
of a mesh face in these geometric representations.

Hierarchical attention While we focus on general-purpose architectures, we find that
both models benefit from two minor modifications to the transformer blueprint. First, we
use a novel hierarchical attention mechanism, in which multiple attention heads use different
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attention masks: half of the heads are restricted to attend only to mesh faces in the same
object, while the other half attends to all tokens (mesh faces). This allows us to embed
awareness of the mesh structure into the transformer architecture, while preserving the
efficiency of dot-product attention.

Enforcing object rigidity Second, we enforce object coherence and rigidity when com-
puting the outputs. The transformer first outputs a translation vector and a rotation quater-
nion for each mesh face. These are averaged over each object, resulting in a translation vec-
tor and a rotation for each rigid object. These E(3) operations are then applied to the input
meshes, translating and rotating them as determined by the network. In preliminary experi-
ments, enforcing object rigidity in this way improved performance substantially compared to
directly predicting the positions or velocities of mesh vertices. We also experimented with
outputting and exponentiating elements of the Lie algebra for each object, but found that
that worked marginally worse.

Hyperparameter Baseline Equiv.

Attention blocks 2n 2n
Scalar channels 64n 4n
MV channels – n
Attention heads 2n 2n
Scalars per key, query, value 64 8
MV per key, query, value – 2
Hidden scalar channels in MLP 128n 8n
Hidden MV channels in MLP – 2n

Table 1: Architecture hyperparameters as a function of a
model size parameter n. The equivariant architecture is
less wide, but part of their channels are 16-dimensional
multivector (MV) channels, which can express a variety
of geometric primitives (Brandstetter et al., 2022; Ruhe
et al., 2023b; Brehmer et al., 2023; Ruhe et al., 2023a).

Hyperparameters We tune the hy-
perparameters of both models manually.
For both the baseline and equivariant
transformer, we define a one-parameter
family of hyperparameters, fixing the
relation between the number of layers,
attention heads, and channels to be lin-
ear. Our architectures are shown in
Tbl. 1. Notably, we find that the equiv-
ariant transformer benefits from a more
narrow architecture, which may be ev-
idence of the expressivity of its multi-
vector channels.

Optimization We train all models
with the Adam optimizer, annealing the
learning rate over the course of training from an initial value of 5 · 10−4 on a cosine schedule.
For experiments with small FLOP budgets of less than 1018 nominal FLOPs, we find that
this learning rate can be too small. This is in line with other works that find larger learning
rates beneficial for smaller compute budgets, for instance Dubey et al. (2024). We therefore
repeat these experiments with a higher learning rate of 10−3 or even 2 · 10−3, depending on
the compute budget, and in the end report the better result. For simplicity, we use the same
batch size of 64 samples (or on average 3.5 · 105 tokens) for all experiments, even though
this does not maximize GPU utilization and thus FLOP throughput. Early stopping is used
in all experiments.

B.3. Scaling-law analysis

Experiments We perform two series of experiments. First, we study the scaling with
compute, in the (practically) infinite-data setting. We vary a training compute budget
over three orders of magnitude, between 1016 and 1019 FLOPs. For each FLOP budget
we consider, for both the baseline and the equivariant transformer, we perform multiple
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experiments, each with a different trade-off between model size N and training length D.
This requires understanding the relation between N , D, and the total training FLOPs; we
discuss this in the following section.

Second, we study the scaling with training data, fixing the training compute budget, the
model size, and the number of training tokens. For both models we choose settings that
performed compute-optimally in the first series of experiments for a compute budget of 1018

nominal FLOPs. The number of unique samples in the dataset is varied over five orders of
magnitude, from 2 · 106 tokens to 2 · 1011. The lower end of this scan corresponds to training
for 6 · 105 epochs, while every sample is seen only once on the upper end of this scan. For
each of these settings, we train a baseline transformer, an equivariant transformer, and a
baseline transformer trained with data augmentation, in which symmetry transformations
are applied to the samples, independently for each epoch.

Counting FLOPs Setting up our experiments (see above) and analyzing the scaling with
compute both require knowing the relation of the total number of training FLOPs C(N,D)
and the model size N as well as training tokens D. This relation will be different for the
baseline and equivariant transformer.

Following Kaplan et al. (2020) and Hoffmann et al. (2022), we perform this FLOP
counting in the limit of where the model parameters are much larger than the sequence
length, which in turn is much larger than 1. In this case, the training compute is dominated
by the linear maps. For both out models, we find

C(N,D) ≈ ξND , (3)

where ξ is an architecture-dependent constant.
For the baseline transformer, famously ξ = 6 (Kaplan et al., 2020). For the equivariant

transformer, the value of ξ depends on the ratio of scalar and multivector channels: a model
with only scalar channels would also have ξ = 6, while a pure-multivector model would has
more weight sharing and thus a higher FLOPs-per-parameter ratio ξ = 6 · 162/9 ≈ 171. For
the hyperparameters we use during our scaling study, we find ξ ≈ 61.2.

Note that these nominal FLOPs do not necessarily correspond to the actual compute
required to train the model. For one, the assumed hierarchy between the model parameters
and the sequence length is not always satisfied. Second, our implementations of the models
may not be able to fully utilize the GPUs. We observe this in particular for small models and
for the implementation of the equivariant transformer, which features many small operations
and faces CPU bottlenecks. The practical training loop adds overhead due to inter-GPU
communication, data loading, logging, checkpoint saving, validating, and so on. In our
experiments, two models with the same nominal FLOP count would differ by as much as an
order of magnitude in real training duration.

So why do we still analyze models in terms of the nominal FLOPs? While they are an
imperfect measure, they do not depend on the implementation and hardware environment,
and we believe they are still the best predictor of the theoretically achievable compute cost
after sufficient optimization and at scale.

Scaling-law ansatz We model the scaling with compute quantitatively by fitting a scaling
law to all of our experiments. Following Kaplan et al. (2020), we model the test loss L as a
power law in the model parameters N and the training duration D, measured in tokens, as
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given in Eq. (3).

The parameter E represents the irreducible loss that even a perfect model achieves.
Unlike in language or image modelling tasks, there is no clear reason to expect such an
irreducible error of practically relevant size for the deterministic physics task we are using
as a benchmark. We treat the choice of whether to include E as a fit parameter or fix it to
zero as a hyperparameter and choose it through cross validation, as we will describe below.

For the scaling with the size of the training data set, we do not find a scaling law that
convincingly describes our experiments. Our attempts at fitting (Muennighoff et al., 2023)’s
data-constrained scaling law to our data did not result in a good fit. We therefore refrain
from discussing the functional form for this direction of scaling, and will focus on scaling
with compute for the remainder of this section.

Scaling-law fit Following Hoffmann et al. (2022), we fit the scaling-law parameters
(A,B,E, α, β) separately for each architecture by minimizing the Huber loss (Huber, 1992)
between the predicted and observed log loss values,∑

experiments i

Huberδ

(
log L̂(Ni, Di) − logLi

)
. (4)

Here δ is a hyperparameter, we choose it based on cross-validation, as we describe in a bit.
We minimize this loss with the L-BFGS optimizer (Liu and Nocedal, 1989), starting from a
grid of initializations.

Scaling-law hyperparameters The scaling-law fit depends on two hyperparameters:
whether we include the offset E as a fit parameter and the value of δ. We determine both
through leave-one-out cross-validation, performing scaling-law fits on all but one experiment
and evaluating the error |log L̂(Ni, Di) − logLi| on the left-out experiment. In this way, we
choose fixing E = 0 and δ = 0.001, though the qualitative fit results are not sensitive to
these choices.

Compute-optimal performance From a scaling law as in Eq. (1) and a FLOP function
as in Eq. (3), we can derive the compute-optimal model size N∗(C) and the compute-optimal
training duration D∗(C) as a function of the FLOP budget C as

N∗(C) =
G

ξa
Ca and D∗(C) =

1

Gξb
Cb , (5)

where G = (αAβB )1/(α+β), a = β/(α + β), and b = α/(α + β) (Hoffmann et al., 2022).
The optimal loss achievable for a given FLOP budget is then

L∗(C) = L̂(N∗(C), D∗(C)) = E +
F

Cγ
(6)

with F = AG−αξγ + BGβξγ and γ = αβ
α+β .

Uncertainties No realistic scaling study directly measures the optimal model performance
as a function of some parameters. Reasons for sub-optimality include the choice of hyperpa-
rameters, stochasticity in initialization and training, choosing a scaling-law ansatz that does
not include the true functional form, and finite sampling of the space of model capacities
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and training tokens. We estimate the effect of the latter with a nonparametric bootstrap,
similar to Hoffmann et al. (2022). From 104 bootstraps, we construct 95 % confidence inter-
vals on the scaling law coefficients as well as on any derived predictions, using the empirical
(or basic) bootstrap method.

Appendix C. Results

C.1. Scaling with compute

We first focus on the limit of (essentially) infinite training data and study the model
performance as a function of model size N and training tokens D.

Scaling law Param.
Baseline Equivariant

Central Lower Upper Central Lower Upper

L̂(N,D) = A/Nα +B/Dβ (1) A 1.27 0.443 4.69 0.000272 0.000155 0.000655
B 0.202 0.0118 0.362 516 53.2 639
α 0.909 0.825 1.02 0.344 0.287 0.424
β 0.379 0.259 0.404 0.739 0.641 0.752

N∗(C) ∝ Ca (5) a 0.294 0.219 0.308 0.682 0.608 0.716

D∗(C) ∝ Cb (5) b 0.706 0.692 0.781 0.318 0.284 0.392

L∗(C) = F/Cγ (6) F 1.03 0.125 1.86 0.132 0.0476 0.64
γ 0.268 0.213 0.283 0.235 0.209 0.272

Table 2: Scaling-law coefficients. In addition to the central values, we show the 95% confidence
intervals from a nonparametric bootstrap.
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Figure 3: Test loss (dotted circles) and scaling-law predictions (background colour) as a function
of model size and training tokens. Left: equivariant transformer. Right: non-equivariant
transformer. In both cases, we observe good agreement of model performance and scaling-law fit.

17



Extended Abstract Track

104 105 106
Model parameters

10 5

10 4

Lo
ss

1016 nominal FLOPs

Baseline
Equivariant

104 105 106 107
Model parameters

1017 nominal FLOPs

104 105 106 107
Model parameters

1018 nominal FLOPs

105 106 107 108
Model parameters

1019 nominal FLOPs

Figure 4: Model performance at different training compute budgets (panels) as a function
of the model size. We show our experiments (dots) and the predictions of our scaling-law fit (lines).
The scaling-law fit describes the measurements well.

Scaling laws We fit the scaling law of Eq. (1) with E = 0 to these experiments. For the
baseline transformer, we find coefficients

L̂(N,D) =
1.27

N0.909
+

0.202

D0.379
, (7)

The equivariant model yields

L̂(N,D) =
2.7 · 10−4

N0.344
+

516

D0.739
. (8)

Confidence intervals are provided in Tbl. 2.

These two models look quite differently, which will implications for the optimal allocation.
We will get to that later.

Fit quality First, we show how well these fitted scaling laws describe the data. In Fig. 3,
we show all experiments in the near-infinite-training-data setting. In Fig. 4, we focus on four
budgets and show all experiments performed for either. In both sets of figures we compare
the observed loss values to the predictions from the scaling laws.

The scaling laws capture the relation between model parameters, training compute, and
loss well. There are no glaring deviations, although the power law underestimates the loss
for the largest equivariant models and for one baseline outlier.

Scaling with compute Next, we analyze the model performance and its scaling with
compute. Rather than focusing on the scaling with model size and training tokens separately,
we first study the optimal model performance as a function of the training compute budget,
as given by Eq. (6). We show the empirical compute-loss measurements and the derived
optimal compute-loss relationship in Fig. 1.

For any given compute budget, the equivariant transformer outperforms the baseline.
Its loss is better by an approximate factor of 2, independently of the compute budget. This
translates to a scaling law with the same exponent (within the uncertainties we measure),
but a smaller prefactor.
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Figure 5: Optimal parameter allocation. We
show the compute-optimal model size as a function
of the training compute budget for the equivari-
ant transformer (red line) and the non-equivariant
transformer (blue line). The dots indicate for
which compute budgets and model sizes we ran ex-
periments. The equivariant architecture requires
smaller models to achieve a compute-optimal per-
formance, but this gap closes for bigger compute
budgets.

Optimal allocation of compute From
the scaling laws we can also derive the op-
timal allocation of a given computational
budget to the parameter count and training
duration, see Eq. (5). We show our results
for both models in Fig. 5.

We find that a compute-optimal equivari-
ant transformer has less parameters than a
compute-optimal baseline transformer. This
is expected because the equivariant trans-
former performs more compute per param-
eter.

Perhaps more surprising is that the op-
timal trade-off depends on the compute in
a different way for the two models. We
find that for a regular transformer, one
should scale training tokens more steeply
than model size. For the equivariant model,
we find the opposite trend: one should put
additional compute more in the model size
than the training tokens. The compute-
optimal model sizes thus become more sim-
ilar for larger compute budgets.

The reason for these different trade-offs
is not obvious. One possible reason is that
the baseline transformer, the more mature
architecture, may have a better initialization scheme and thus require less training steps to
reach a good performance.

Another possible explanation is linked to the internals of the equivariant transformer
architecture. The GATr model we use can express certain primitives very efficiently: the
free movement or the gravitational acceleration of rigid bodies can be represented with few
multivector channels, largely thanks to the geometric product operation that is integrated
into the architecture. This explains why the architecture can achieve a good performance
with very few parameters. However, lowering the loss further requires precise collision
detection and modelling. These need substantially more computational operations and a
substantial amount of scalar channels, similar to the non-equivariant transformer. This
could explain why at a larger compute budget, a model size closer to that of the baseline
transformer is compute-optimal.

C.2. Scaling with data

Next, we turn to the scaling with training data for a fixed training compute budget. In
Fig. 2 we show the test loss as a function of the number of unnique training tokens. We
compare baseline and equivariant transformers, each using a compute-optimal model size
and training tokens for a training compute budget of 1018 nominal FLOPs.
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The right end of these curves corresponds to the infinite-data limit considered in the

previous section. Here we again see that the equivariant transformer has a performance
benefit over the baseline when using the same compute budget. Moving to smaller training
sets, this gap widens substantially, confirming the expectation that equivariance improves
data efficiency.

In Fig. 2 we also show results for a baseline transformer model trained with data
augmentation. As expected, data augmentation does not make a difference when training for
a single epoch. However, it drastically improves the performance in the small-data regime:
when training for thousands of epochs, data augmentation makes a baseline transformer as
data-efficient as an equivariant model.
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