
Under review as submission to TMLR

Positive Unlabeled Learning Selected Not At Random
(PULSNAR): class proportion estimation when the SCAR
assumption does not hold

Anonymous authors
Paper under double-blind review

Abstract

Positive and Unlabeled (PU) learning is a type of semi-supervised binary classification where
the machine learning algorithm differentiates between a set of positive instances (labeled) and
a set of both positive and negative instances (unlabeled). PU learning has broad applications
in settings where confirmed negatives are unavailable or difficult to obtain, and there is value
in discovering positives among the unlabeled (e.g., viable drugs among untested compounds).
Most PU learning algorithms make the selected completely at random (SCAR) assumption,
namely that positives are selected independently of their features. However, in many real-
world applications, such as healthcare, positives are not SCAR (e.g., severe cases are more
likely to be diagnosed), leading to a poor estimate of the proportion, α, of positives among
unlabeled examples and poor model calibration, resulting in an uncertain decision threshold
for selecting positives. PU learning algorithms can estimate α or the probability of an
individual unlabeled instance being positive or both. We propose two PU learning algorithms
to estimate α, calculate calibrated probabilities for PU instances, and improve classification
metrics: i) PULSCAR (positive unlabeled learning selected completely at random), and
ii) PULSNAR (positive unlabeled learning selected not at random). PULSNAR uses a
divide-and-conquer approach that creates and solves several SCAR-like sub-problems using
PULSCAR. In our experiments, PULSNAR outperformed state-of-the-art approaches on
both synthetic and real-world benchmark datasets.

1 Introduction

In a standard binary supervised classification problem, the classifier (e.g., decision trees, support vector
machines, etc.) is given training instances X with features x and their labels y = 0 (negative) or y = 1
(positive). The classifier learns a model f : X → 0, 1, which classifies an unlabeled instance as positive or
negative based on x. It is often challenging, expensive, and even impossible to annotate large datasets in
real-world applications Jaskie et al. (2019), and frequently only positive instances are labeled. Unlabeled
instances with their features can be classified via positive and unlabeled (PU) learning Jaskie et al. (2019);
Elkan & Noto (2008). Some of the PU learning literature focuses on improving classification metrics, and
others focus on the problem of estimating the fraction, α, of positives among the unlabeled instances. Although
this work focuses on the latter, calibration and enhancing classification performance are also addressed.

PU learning problems abound in many domains Jaskie & Spanias (2019). For instance, in electronic healthcare
records, the lack of a diagnosis code doesn’t confirm a patient’s negative disease status, as negatives are not
routinely recorded, making traditional supervised learning impractical. Much medical literature is dedicated
to estimating disease incidence and prevalence but contends with incomplete medical assessment and recording.
The potential to assess disease incidence without costly in-person assessment or chart reviews could have
substantial public health benefits. In market research, one typically has a modest set of positives, say of
customers or buyers of a product, has a set of attributes over both the positives and a large population of
unlabeled people of size N , and wishes to establish the size of the addressable market, αN .

1

Under review as submission to TMLR

The majority of PU learning algorithms use the selected completely at random (SCAR) assumption, which
states that the labeled positive examples are randomly selected from the universe of positives. That is, the
labeling probability of any positive instance is constant Elkan & Noto (2008). This assumption may fail in
real-world applications. For example, in email spam detection, positive instances labeled from an earlier time
period could differ from later spam due to adaptive adversaries.

Although some PU learning algorithms have shown promising performance on different machine learning (ML)
benchmark SCAR datasets, the development of PU learning algorithms to estimate the extent of undercoding
in large and highly imbalanced selected not at random (SNAR) real-world data remains an active research
area. Class imbalance in a PU setting generally means the number of unlabeled instances is large compared
to the labeled positive examples. Also, current PU learning approaches have rarely explored how to calculate
well-calibrated probabilities for PU examples in SCAR and SNAR settings. In addition, few PU algorithms
have been assessed when α is small (≤ 5%), where performance is expected to suffer.

In this paper, we propose a PU learning approach to estimate α when positives are SCAR or SNAR, and
evaluating its performance in simulated and real data. We assess the performance with class imbalance in
both modest and large datasets and over a rigorous α range. Our contributions are summarized as follows:

1. We propose PULSCAR, a PU learning algorithm for estimating α when the SCAR assumption holds.
It uses kernel density estimates of the positive and unlabeled distributions of ML probabilities to
estimate α. The algorithm employs the beta distribution to estimate density and introduces an
objective function whose derivative maximum provides a rapid, robust estimate of α.

2. We propose PULSNAR, a PU learning algorithm for estimating α when the positives are SNAR, that
uses a novel clustering approach to divide the positives into several subsets that can have separate
α estimates versus the unlabeled. These sub-problems are more SCAR-like and are solved with
PULSCAR.

3. We propose methods to calibrate the probabilities of PU examples to their true (unknown) labels
and improve the classification performance in SCAR and SNAR settings.

2 Related work

Early PU learning methods Yu et al. (2004); Yu (2005); Wang et al. (2006) generally followed a two-step
heuristic: i) identify strong negative examples from the unlabeled set, and then ii) apply an ML algorithm
to given positive and identified negative examples. In contrast, Fung et al. (2005) extracted high-quality
positive and negative examples from the unlabeled set and then applied classifiers to those data. Some recent
work iteratively identifies better negatives Luo et al. (2021), or combines negative-unlabeled learning with
unlabeled-unlabeled learning Hammoudeh & Lowd (2020).

The following studies in PU learning focused on estimating the proportion of positives among the unlabeled
examples with/without the PU classifier. These studies predominantly centered around the SCAR assumption.
Elkan & Noto (2008) introduced the SCAR assumption and proposed a PU method to estimate the mixture
proportion under the SCAR assumption. By partially matching the class-conditional density of the positive
class to the input density under Pearson divergence minimization, Du Plessis & Sugiyama (2014) estimated the
mixture coefficient. Jain et al. (2016) proposed a nonparametric class prior estimation technique, AlphaMax,
using two-component mixture models. The kernel embedding approaches KM1 and KM2 Ramaswamy et al.
(2016) showed that the algorithm for mixture proportion estimation converges to the true prior under certain
assumptions. Estimating the class prior through decision tree induction (TICE) Bekker & Davis (2018)
provides a lower bound for label frequency under the SCAR assumption. Using the SCAR assumption,
DEDPUL Ivanov (2020) estimates α by applying a compute-intensive EM-algorithm to probability densities;
the method also returns uncalibrated probabilities.

The following studies employed different approaches to learn a classifier from PU data. Lee & Liu (2003)
converts PU data learning into a noisy learning problem by designating all unlabeled instances as negatives.
They employ a linear function to learn from these noisy examples using weighted logistic regression. Confident
learning (CL) Northcutt et al. (2021) combines the principle of pruning noisy data, probabilistic thresholds

2

Under review as submission to TMLR

to estimate noise, and sample ranking. Multi-Positive and Unlabeled Learning Xu et al. (2017) extends PU
learning to multi-class labels. Oversampling the minority class Chawla et al. (2002); Yan et al. (2019) or
undersampling the majority class are not well-suited approaches for PU data due to contamination in the
unlabeled set; Su et al. (2021) uses a re-weighting strategy for imbalanced PU learning.

Recent studies have focused on labeling/selection bias to address the SCAR assumption not holding. Bekker
et al. (2019); Gerych et al. (2022) used propensity scores to address labeling bias and improve classification.
Using the propensity score, based on a subset of features, as the labeling probability for positive examples,
Bekker et al. (2019) reduced the Selected At Random (SAR) problem into the SCAR problem to learn a
classification model in the PU setting. The “Labeling Bias Estimation” approach was proposed by Gong
et al. (2021) to label the data by establishing the relationship among the feature variables, ground-truth
labels, and labeling conditions.

3 Problem Formulation and Algorithms

In this section, we explain: i) the SCAR and SNAR assumptions, ii) our PULSCAR algorithm for SCAR
data and PULSNAR algorithm for SNAR data, iii) bandwidth estimation techniques, and iv) method to
find the number of clusters in the labeled positive set. Our method to calibrate probabilities and enhance
classification performance using PULSCAR/PULSNAR is in Appendix C and D, respectively.

3.1 SCAR assumption and SNAR assumption

In PU learning, a positive or unlabeled example can be represented as a triplet (x, y, s) where “x” is a vector
of attributes, “y” the actual class, and “s” a binary variable representing whether or not the example is
labeled. If an example is labeled (s = 1), it belongs to the positive class (y = 1) i.e., p(y = 1|s = 1) = 1. If
unlabeled (s = 0), it can belong to either class. Since only positive examples are labeled, p(s = 1|x, y = 0) = 0
Elkan & Noto (2008). Under the SCAR assumption, a labeled positive is an independent and identically
distributed (i.i.d) example from the positive distribution, i.e., positives are selected independently of their
attributes. Therefore, p(s = 1|x, y = 1) = p(s = 1|y = 1) Elkan & Noto (2008).

For a given dataset, p(s = 1|y = 1) is a constant and is the fraction of labeled positives. If |P | is the number
of labeled positives, |U | is the number of unlabeled examples, and α is the unknown fraction of positives in
the unlabeled set, then

p(s = 1) = |P |
|P |+ |U | and p(y = 1) = |P |+ α|U |

|P |+ |U |

p(s = 1|y = 1) = p(y = 1|s = 1)p(s = 1)
p(y = 1) = p(s = 1)

p(y = 1) , since p(y = 1|s = 1) = 1

= |P |
|P |+ α|U |

, which is a constant. (1)

On the contrary, under the SNAR assumption, the probability that a positive example is labeled is not
independent of its attributes. Stated formally, the assumption is that p(s = 1|x, y = 1) ̸= p(s = 1|y = 1) i.e.
p(s = 1|x, y = 1) is not a constant, which can be proved by Bayes’ rule (Appendix A).

The SCAR assumption can hold when both labeled and unlabeled positives: a) are not subclass mixtures,
sharing similar attributes; b) belong to k subclasses (1 . . . k), with equal subclass proportions in both positive
and unlabeled sets. Intra-subclass examples will have similar attributes, whereas the inter-subclass examples
may not have similar attributes. E.g., in patients positive for diabetes, type 1 patients will be in one subclass,
and type 2 patients will be in another. The SCAR assumption can fail when labeled and unlabeled positives
are from k subclasses, and the proportion of those subclasses is different in positive and unlabeled sets.
Suppose both positive and unlabeled sets have subclass 1 and subclass 2 positives, and in the positive set,
their ratio is 30:70. If the ratio is also 30:70 in the unlabeled set, the SCAR assumption will hold. If it was
different, say 80:20, the SCAR assumption would not hold.

3

Under review as submission to TMLR

3.1.1 PU data assumptions

Positive and unlabeled examples in PU data can be either from a single source or two independent sources.
In the single-training-set scenario (one-sample), the positive and unlabeled examples are selected from one
dataset, and that dataset is an independent and identically distributed (i.i.d.) sample from the actual
distribution. In the case-control scenario (two-sample), positive and unlabeled examples are assumed to have
originated from two independent datasets, and the unlabeled dataset is an i.i.d. sample from the actual
distribution Elkan & Noto (2008); Bekker & Davis (2020).

Our PU algorithms involve running a machine learning model (PU classifier) on a set of combined positive
and unlabeled instances, regardless of whether it is a one-sample or two-sample scenario. The goal is to
obtain machine learning-predicted probabilities for all instances. Subsequently, we determine α, the fraction
of positives among the unlabeled examples. However, our algorithms make certain assumptions regarding the
PU data, which include the following: 1) Positive examples have correct labels, i.e., no negative example is
marked as positive. Only the unlabeled set has a mix of positives and negatives; 2) The unlabeled positive
instances have counterparts (examples with similar features) in the labeled positive set.

As mentioned in the study by Kato et al. (2018), the one-sample scenario is a special case of learning from
noisy labels where only negative data are contaminated. Thus, in the one-sample scenario, unlabeled data
can be regarded as negative-labeled data contaminated by positive data. Our first assumption satisfies the
criteria for the one-sample scenario. Additionally, according to Kato et al. (2018) the unlabeled data of
the case-control scenario can be made from positive and unlabeled data of the one-sample scenario. Our
second assumption allows us to extend the applicability of our approaches to the two-sample scenario. Our
approaches will underestimate α in both one-sample and two-sample scenarios if the second assumption does
not hold.

3.2 Positive and Unlabeled Learning Selected Completely At Random (PULSCAR) Algorithm

Given any ML algorithm, A(x), that generates [0. . . 1] probabilities for the data based on covariates x, let
fp(x), fn(x), and fu(x) be probability density functions (PDFs) corresponding to the probability distribution
of positives, negatives, and unlabeled respectively. Let α be the unknown proportion of positives in the
unlabeled, then

fu(x) = αfp(x) + (1− α)fn(x), using the law of total probability

⇒ 1 = αfp(x)
fu(x) + (1− α)fn(x)

fu(x)

⇒ αfp(x)
fu(x) = 1− (1− α)fn(x)

fu(x)

⇒ 0 ≤ αfp(x)
fu(x) ≤ 1, since 0 ≤ α ≤ 1 and fn(x) ≤ fu(x)

⇒ 0 ≤ αfp(x) ≤ fu(x) (2)

From property 2, a key observation is that αfp(x) should not exceed fu(x) anywhere, allowing one to place
an upper bound on α.

PULSCAR estimates α by finding the value α where the following objective function maximally changes:

f(α) = log(|min(fu(x)− αfp(x))|+ ϵ), where ϵ = |min(fp(x))| if min(fp(x)) ̸= 0, else ϵ = 10−10 (3)

Property 2, αfp(x) ≤ fu(x), guided the reasoning behind the design choice of the objective function. The
intuition behind the objective function is that |min(fu(x) − αfp(x))| approaches zero at the point where
αfp(x) equals fu(x), see Figure 1D. When we take the logarithm of |min(fu(x)−αfp(x))|, the resulting value
tends toward −∞ as |min(fu(x)− αfp(x))| approaches zero. Consequently, when |min(fu(x)− αfp(x))| is

4

Under review as submission to TMLR

Figure 1: PULSCAR algorithm visual intuition. PULSCAR finds the smallest α such that fu(x)−αfp(x)
is everywhere positive in [0 . . . 1]. A) Kernel density estimates for simulated data with α = 10% positives in
the unlabeled set – estimated negative density (blue) nearly equals the ground truth (green). B) Overweighting
the positive density by α = 15% results in the estimated negative density (blue), fu(x)− αfp(x) dropping
below zero. C) Underweighting the positive density by α = 5% results in the estimated negative density
(blue) being higher than the ground truth (green). D) Objective function with estimated α = 10.68% selected
where the finite-differences estimate of the slope is largest – very close to ground truth α = 10%.

not zero, there is a maximum change in the value of log(|min(fu(x)− αfp(x))|) (from −∞ to some value).
That is why we locate the point where αfp(x) equals fu(x) to place an upper bound on α. The reason we use
the logarithm is it steeply approaches −∞ as |min(fu(x)− αfp(x))| approaches zero. Adding ϵ to prevent
log(0) and using finite differences to find the max change in slope gives a robust estimator that is resilient to
noise. The objective function may not be convex; if multiple points with the same maximal change occur,
we take the one closest to zero as the α estimate. This approach eliminates the need for implementing an
iterative solver technique, accounting in part for the speed of our algorithm.

We use beta kernel density estimates on ML-predicted class 1 probabilities of positives and unlabeled to
estimate fp(x) and fu(x). We use a finite difference approximation of the slope of f(α) to find its maximum.
The value of α can also be determined visually by plotting the objective function (Figure 1D); the sharp
inflection point in the plot represents the value of α. Algorithm 1 shows the pseudocode of the PULSCAR
algorithm to estimate α using the objective function based on probability densities. Algorithm 2 is a subroutine
to compute the beta kernel bandwidth. Full source code for our algorithms is provided as a supplemental
document.

5

Under review as submission to TMLR

Algorithm 1 PULSCAR Algorithm
Input: X (Xp ∪Xu), y (yp ∪ yu), n_bins
Output: estimated α

1: predicted_probabilities (p) ← A(X, y)
2: p0 ← p[y == 0]
3: p1 ← p[y == 1]
4: estimation_range ← [0, 0.0001, 0.0002, ..., 1.0]
5: bw ← estimate_bandwidth_pu(p, n_bins)
6: Du ← beta_kernel(p0, bw, n_bins)
7: Dp ← beta_kernel(p1, bw, n_bins)
8: ϵ← |min(Dp)|
9: if ϵ = 0 then

10: ϵ← 10−10

11: end if
12: len ← length(estimation_range)
13: selected_range ← estimation_range[2:len]
14: α← estimation_range
15: f(α) ← log(|min(Du − αDp)|+ ϵ)
16: d ← f’(α)
17: i ← where the value of d changes maximally
18: return selected_range[i]

Algorithm 2 estimate_bandwidth_pu
Input: predicted_probabilities, n_bins
Output: bandwidth

1: preds ← predicted_probabilities
2: bw ∈ [0.001, 0.5]
3: Dhist ← histogram(preds, n_bins,

density=True)
4: Dbeta ← beta_kernel(preds, bw, nbins)
5: return optimize(MeanSquaredError(Dhist,

Dbeta))

3.3 Kernel Bandwidth estimation

A beta kernel estimator is used to create a smooth density estimate of both the positive and unlabeled ML
probabilities, generating distributions over [0 . . . 1], free of the problematic boundary biases of kernels (e.g.
Gaussian) whose range extends outside that interval, adopting the approach of Chen (1999). Another problem
with (faster) Gaussian kernel density implementations is that they often use polynomial approximations that
can generate negative values in regions of low support, dramatically distorting α estimates which require
non-negative probability distribution estimates. The beta PDF is as follows Virtanen et al. (2020):

h(x, a, b) = Γ(a + b)xa−1(1− x)b−1

Γ(a)Γ(b) , (4)

for x ∈ [0,1], where Γ is the gamma function, a = 1 + z
bw and b = 1 + 1−z

bw , with z the bin location, and bw
the bandwidth.

Kernel bandwidth selection can also significantly influence α estimates: too narrow of a bandwidth can result
in outliers driving poor estimates, and too wide of a bandwidth prevents distinguishing between distributions.
We use a histogram bin count heuristic to generate a histogram density, then optimize the beta distribution
bandwidth to best fit that histogram density.

3.3.1 Bin count

Our implementation supports 4 well-known methods to determine the number of histogram bins: square root,
Sturges’ rule, Rice’s rule, Scott’s rule, and Freedman–Diaconis (FD) rule Alxneit (2020).

3.3.2 Bandwidth estimation

We compute a histogram density using a bin count heuristic and a beta kernel density estimate at those
bin centers using the ML probabilities of both the positive and unlabeled examples. We find the global
minimum of the mean squared error (MSE) between the histogram and beta kernel densities using the
scipy differential_evolution() optimizer Virtanen et al. (2020), solving for the best bandwidth in the range

6

Under review as submission to TMLR

[0.001...0.5]. That bandwidth is chosen for kernel density estimation in the PULSCAR algorithm. All
experiments herein use MSE as the error metric, butthe Jensen-Shannon distance may also be employed.

3.4 Positive and Unlabeled Learning Selected Not At Random (PULSNAR) Algorithm

We propose a new PU learning algorithm (PULSNAR) to estimate the α in SNAR data, i.e., labeled positives
are not selected completely at random. PULSNAR uses a divide-and-conquer strategy for the SNAR data. It
converts a SNAR problem into several sub-problems using an unsupervised learning method (clustering), each
of which better approximates the SCAR assumption holding; then applies the PULSCAR algorithm to those
sub-problems. The final alpha is computed by summing the alpha returned by the PULSCAR algorithm for
each cluster.

α = α1 + α2 + ... + αc, c = number of clusters (5)

Figure 2 visualizes the PULSNAR algorithm, and Algorithm 3 provides its pseudocode.

3.4.1 Clustering rationale

Suppose both positive and unlabeled sets contain positives from k subclasses (1 . . . k). With selection bias
(SNAR), the subclass proportions will differ between the sets, and thus the PDF of the labeled positives
cannot be scaled by a uniform α to estimate positives among the unlabeled. The smallest subclass would
drive an α underestimate with PULSCAR. To address this, we apply clustering to the labeled positives to
split them into c clusters. Clustering separates subclasses of positives, and if the assumption that subclass
membership drives selection bias holds, PU data comprising examples from one cluster and the unlabeled
set will approximate the SCAR assumption. Applying PULSCAR to each cluster of positives versus the
unlabeled results in better estimates of the proportions of similar unlabeled positives (Figure 2).

3.4.2 Determining the number of clusters in the positive set

We build an XGBoost Chen & Guestrin (2016) model on all positive and unlabeled examples to determine the
important features and their gain scores. A gain score measures the magnitude of the feature’s contribution to
the model. We select all labeled positives and then cluster them on those features scaled by their corresponding
gain score, using scikit_learn’s Gaussian mixture model (GMM) method. To establish the number of clusters
(n_components), we iterate n_components over 1 . . . m (e.g., m=25) and compute the Bayesian information
criterion (BIC)Vrieze (2012) for each clustering model. We use max_iter=250, and covariance_type=“full”.
The other parameters are used with their default values. We implemented the “Knee Point Detection in BIC”
algorithm, explained in Zhao et al. (2008), to find the number of clusters in the labeled positives.

3.5 Calculating calibrated probabilities

An approach to calibrate the ML-predicted probabilities of positive and unlabeled examples in the SCAR
and SNAR data is explained in Appendix C.

3.6 Improving classification performance

An approach to improving PULSCAR and PULSNAR classification, based on flipping the highest probability
α|U | unlabeled examples to 1, is explained in Appendix D.

4 Experiments

We evaluated our proposed PU learning algorithms in terms of α estimates, six classification performance
metrics, and probability calibration. We used real-world ML benchmark datasets and synthetic data for our
experiments. For real-world data, we used Bank Moro et al. (2014) and KDD Cup 2004 particle physics
Caruana et al. (2004) datasets as SCAR data and Statlog (Shuttle) UCI ML Repository (2022b) and Firewall

7

Under review as submission to TMLR

datasets UCI ML Repository (2022a) as SNAR data. The synthetic (SCAR and SNAR) datasets were
generated using the scikit-learn function make_classification() Pedregosa et al. (2011). We used XGBoost
as a binary classifier in our proposed algorithms. To train the classifier on the imbalanced data, we used
scale_pos_weight parameter of XGBoost to scale the weight of the labeled positive examples by the factor
s = |U |

|P | . We observed that if the ratio, s, of the majority class to the minority class is less than 50, handling
class imbalance can be achieved by setting the scale_pos_weight parameter of XGBoost to s. We also
compared our methods with five recently published methods for PU learning: KM1 and KM2 Ramaswamy
et al. (2016), TICE Bekker & Davis (2018), DEDPUL Ivanov (2020) and CleanLab Northcutt et al. (2021).
KM1, KM2, and TICE algorithms were not scalable and failed to execute on large datasets, so we used
smaller synthetic datasets to compare our method with these methods. We compared PULSNAR with
only DEDPUL on large synthetic datasets (Appendix E). Also, Ivanov (2020) previously demonstrated that
DEDPUL outperformed KM and TICE algorithms on several UCI (University of California Irvine) ML
benchmark and synthetic datasets.

Algorithm 3 PULSNAR Algorithm
Input: X (Xp ∪Xu), y (yp ∪ yu), n_bins
Output: estimated α

1: feature_importance (v1...vk),
imp_features (x1...xk) ← A(X, y)

2: x′
1...x′

k ← x1v1...xkvk

3: X ′
p ← Xp[x′

1...x′
k]

4: clusters s1...sc ← GMM(X ′
p)

5: α ← 0
6: for c in s1...sc do
7: X’ ← Xp[c] ∪Xu

8: y’ ← yp[c] ∪ yu

9: α ← α + PULSCAR(X’, y’, n_bins)
10: end for
11: return α

Figure 2: Schematic of PULSNAR algorithm. An ML model is trained and tested with 5-fold CV on all
positive and unlabeled examples. The model covariates are scaled by their importance value. Positives are
divided into c clusters using the scaled important covariates. c ML models are trained and tested with 5-fold
CV on the records from a cluster and all unlabeled records. We estimate the proportions (α1...αc) of each
subtype of positives in the unlabeled examples using PULSCAR. The sum of those estimates gives the overall
fraction of positives in the unlabeled set. P = positive set, U = Unlabeled set.

4.1 Synthetic data

We generated SCAR and SNAR PU datasets with different fractions of positives (1%, 5%, 10%, 20%, 30%,
40%, and 50%) among the unlabeled examples to test the effectiveness of our proposed algorithms. For each
fraction, we generated 40 datasets using sklearn’s make_classification() function with random seeds 0-39.
The class_sep parameter of the function was used to specify the separability of data classes. Values nearer to
1.0 make the classification task easier; we used class_sep=0.3 to create difficult classification problems.

4.1.1 SCAR data

The datasets contained 2,000 positives (class 1) and 6,000 unlabeled (class 0) examples with 50 continuous
features. The unlabeled set comprised k% positive examples with labels flipped to 0 and (100− k)% negative
examples.

8

Under review as submission to TMLR

4.1.2 SNAR data

We generated datasets with 6 labels (0-5), defining ‘0’ as negative and 1-5 as positive subclasses. These
datasets contained 2,000 positives (400 from each positive subclass) and 6,000 unlabeled examples with 50
continuous features. The unlabeled set comprised k% positive examples with labels (1-5) flipped to 0 and
(100-k)% negative examples. The unlabeled positives were markedly SNAR, with the 5 subclasses comprising
1/31, 2/31, 4/31, 8/31, and 16/31 of the unlabeled positives. (e.g., in the unlabeled set with 20% positives,
negative: 4,800, label 1 positive: 39, label 2 positive: 77, label 3 positive: 155, label 4 positive: 310, label 5
positive: 619).

4.2 SCAR ML Benchmark Datasets

4.2.1 UCI Bank dataset

The dataset has 45,211 records (class 1: 5,289, class 0: 39,922) with 16 features. This dataset is a good
example of data with class imbalance and mixed features. Since the features contain both numerical and
categorical values, they were one-hot encoded Hollaar (1982) using the scikit-learn function OneHotEncoder()
Pedregosa et al. (2011). The encoder derives the categories based on the unique values in each feature,
resulting in 9,541 features. The ML classifier was applied to the encoded features.

4.2.2 KDD Cup 2004 Particle Physics dataset

The dataset contains two types of particles generated in high-energy collider experiments; 50,000 examples
(class 1: 24,861, class 0: 25,139) with 78 numerical attributes. This dataset is a good example of balanced
data.

In both datasets, class 1 records were used as positive, and class 0 records were used as unlabeled for the ML
model. To add k% positive examples to the unlabeled set, the labels of m randomly selected positive records
were flipped from 1 to 0, where m = k|U |

100−k .

4.3 SNAR ML Benchmark Datasets

4.3.1 UCI Statlog (Shuttle) Dataset

The dataset contains 43,500 records (class 1: 34,108, class 2: 37, class 3: 132, class 4: 6,748, class 5: 2,458,
class 6: 6, class 7: 11) with 9 numerical attributes. This dataset is an example of data with multiclass and
class imbalance. We used class 1 as unlabeled examples and the rest of the records as subclasses of positive
examples for the ML model (positive: 9,392, unlabeled: 34,108).

4.3.2 UCI Firewall dataset

It is a multiclass dataset containing 65,532 records (‘allow’: 37,640, ‘deny’: 14,987, ‘drop’: 12,851, ‘reset-both’:
54) with 12 numerical attributes. Class ‘allow’ was used as unlabeled examples, and the others (‘deny’, ‘drop’,
‘reset-both’) were used as subclasses of positive examples for the ML model (positive: 27,892, unlabeled:
37,640).

In both datasets, the majority of positives are from two classes (shuttle: class 4, 5; firewall: ‘deny’, ‘drop’).
So, to add k% positive examples to the unlabeled set, we randomly selected some examples from the minor
positive classes and the remaining examples from two major positive classes in equal proportion. Thus, the
proportion of positives in the positive set differed from the unlabeled set.

4.4 Estimation of fraction of positives among unlabeled examples

We applied the PULSCAR algorithm to both SCAR and SNAR data, and the PULSNAR algorithm only to
SNAR data, to estimate α.

9

Under review as submission to TMLR

4.4.1 Using the PULSCAR algorithm

To find the 95% confidence interval (CI) on estimation, we ran XGBoost with 5-fold cross-validation (CV) for
40 random instances of each dataset generated (or selected from benchmark data) using 40 random seeds.
Each iteration’s class 1 predicted probabilities of positives and unlabeled were used to calculate the value of
α.

4.4.2 Using the PULSNAR algorithm

The labeled positives were divided into c clusters to get homogeneous subclasses of labeled positives. The
XGBoost ML models were trained and tested with 5-fold CV on data from each cluster and all unlabeled
records. For each cluster, α was estimated by applying the PULSCAR method to class 1 predicted probabilities
of positives from the cluster and all unlabeled examples. The overall proportion was calculated by summing
the estimated α for each cluster. To compute the 95% CI on the estimation, PULSNAR was repeated 40
times on data generated/selected using 40 random seeds.

5 Results

5.1 Synthetic datasets

Figure 3 shows the α estimated by PU learning algorithms for synthetic datasets. Appendix Figure 6
shows the difference between the mean α estimated by PU learning algorithms and the true fractions for
synthetic datasets. TICE overestimated α for all fractions in both SCAR and SNAR datasets. For SCAR
datasets, only PULSCAR returned close estimates for all fractions; DEDPUL overestimated for 1%; KM1
and KM2 underestimated for 50%; CleanLab underestimated for larger α (10-50%). For SNAR datasets, only
PULSNAR’s estimates were close to the true α; other algorithms overestimated/underestimated for larger α
(30-50%). Figure 15 in Appendix E shows the α estimated by DEDPUL and PULSNAR on large SNAR
datasets with different class imbalances. As the class imbalance increased, the performance of DEDPUL
dropped, especially for larger fractions. The estimated α by the PULSNAR method was close to the true α
for all fractions and sample sizes.

Figure 3: KM1, KM2, TICE, CleanLab, DEDPUL, PULSCAR, and PULSNAR evaluated on
SCAR and SNAR synthetic datasets. The bar represents the mean value of the estimated α, with 95%
confidence intervals for estimated α.

10

Under review as submission to TMLR

5.2 ML Benchmark datasets

5.2.1 SCAR data

Figure 4 shows the α estimated by PU learning algorithms for the KDD Cup 2004 particle physics and
UCI bank datasets. For KDD Cup, estimates by PULSCAR and DEDPUL were close to the true answers
for all fractions; TICE overestimated for all fractions; CleanLab overestimated for 1-30%. For Bank, only
PULSCAR returned correct estimates for all fractions; other algorithms overestimated for all fractions.

5.2.2 SNAR data

Figure 5 shows the α estimated by PU learning algorithms for UCI Shuttle and UCI Firewall datasets.
For the Shuttle dataset, only PULSNAR’s estimates were close to the true fractions; other algorithms
either overestimated or underestimated. For the Firewall dataset, TICE overestimated, and CleanLab
underestimated for all fractions; PULSNAR’s estimates were within ±20% of the true α; DEDPUL and
PULSCAR underestimated for 40%.

Figure 4: TICE, CleanLab, DEDPUL, and
PULSCAR evaluated on SCAR KDD cup
2004 particle physics and UCI Bank datasets.
The bar represents the mean value of the estimated
α, with 95% confidence intervals for estimated α.
KM1 and KM2 failed to execute on both datasets.
As TICE was taking several hours to finish one itera-
tion on the bank dataset, the mean α was computed
using 5 iterations, and the standard error was set to
0.

Figure 5: KM1, KM2, TICE, CleanLab, DED-
PUL, PULSCAR, and PULSNAR evaluated
on SNAR UCI Shuttle and Firewall datasets.
The bar represents the mean value of the estimated α,
with 95% confidence intervals for estimated α. KM1
and KM2 failed to execute on the Firewall dataset.
As KM1 and KM2 were taking several hours to finish
one iteration on the Shuttle dataset, the mean α was
computed using 5 iterations, and the standard error
was set to 0.

11

Under review as submission to TMLR

5.3 Probability calibration

Appendix C.2 shows the calibration curves generated using the unblinded labels and isotonically calibrated
probabilities of positive and unlabeled examples or only unlabeled examples in the SCAR and SNAR data.

5.4 Classification performance metrics

Appendix D.2 shows substantial improvement in 6 classification performance metrics when applying PULSCAR
and PULSNAR versus XGBoost alone.

6 Discussion and Conclusion

This paper presented novel PU learning algorithms to estimate the proportion of positives among unlabeled
examples in both SCAR and SNAR data with/without class imbalance. Preliminary work (not shown)
suggests PULSNAR α estimation is robust to overestimating the number of clusters in SNAR data. Our
synthetic experiments were run on difficult classification tasks with low separability. For SNAR data, with
true α = 1%, when we increased class_sep from 0.3 to 0.5 the PULSNAR α estimate improved from 1.6%
(Figure 3) to 0.98% (data not shown). Experimentally, we showed that our proposed methods outperformed
state-of-art methods on synthetic and real-world SCAR and SNAR datasets. PU learning methods based
on the SCAR assumption generally give poor α estimates on SNAR data. We demonstrated that after
applying PULSCAR/PULSNAR, classifier performance, including calibration, improved significantly. Since
the SCAR assumption often does not hold in real-world data, better α estimates in a SNAR setting open up
new horizons in PU Learning.

Our experimentation showed that the KM1, KM2, and TICE algorithms exhibited scalability issues and could
not process large datasets with high dimensions. This observation aligns with the findings of Garg et al. (2021),
who noted the underperformance of these techniques in high-dimensional scenarios and scalability issues
with large datasets. While we evaluated PULSCAR/PULSCAR against these methods using moderately
sized datasets, it is plausible that their inherent limitations with data size and high dimension contributed to
inaccurate α estimates for some of our test datasets. The CleanLab method is not explicitly designed for PU
problems but is primarily developed for noisy label problems. This could be a potential explanation for its
poor effectiveness when applied to PU scenarios.

We posit two reasons why PULSCAR outperformed DEDPUL in some experiments: a) The version of
PULSCAR presented here uses the Beta distribution, outperforming earlier prototypes that used the Gaussian
distribution. This may account for PULSCAR’s superiority over DEDPUL, which uses the Gaussian kernel for
density estimation. The problems with boundary biases of the Gaussian (as well as the dangers of polynomial
approximations to the Gaussian) are described in section 3.3, which are addressed using the Beta. b) In
addition, we believe our robust approach to density-based α estimation using Equation 3 may have more
robust convergence properties than the EM algorithm used by DEDPUL.

7 Limitations

Our approach counts on knowing whether the data are SCAR or SNAR because the knee-point cluster
determination approach may produce > 1 clusters on SCAR data containing just one type of positive in both
positive and unlabeled sets. This will result in PULSNAR overestimating α as two near-identical positive
types cannot be distinguished and get counted more than once.

References
Ivo Alxneit. Particle size distributions from electron microscopy images: avoiding pitfalls. The Journal of

Physical Chemistry A, 124(48):10075–10081, 2020.

Jessa Bekker and Jesse Davis. Estimating the class prior in positive and unlabeled data through decision tree
induction. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

12

Under review as submission to TMLR

Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. Machine Learning, 109
(4):719–760, 2020.

Jessa Bekker, Pieter Robberechts, and Jesse Davis. Beyond the selected completely at random assumption
for learning from positive and unlabeled data. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 71–85. Springer, 2019.

Rich Caruana, Thorsten Joachims, and Lars Backstrom. KDD-Cup 2004: results and analysis. SIGKDD
Explor. Newsl., 6(2):95–108, December 2004.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Song Xi Chen. Beta kernel estimators for density functions. Computational Statistics & Data Analysis, 31(2):
131–145, 1999.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, 2016.

Marthinus Christoffel Du Plessis and Masashi Sugiyama. Class prior estimation from positive and unlabeled
data. IEICE TRANSACTIONS on Information and Systems, 97(5):1358–1362, 2014.

Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 213–220,
2008.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Hongjun Lu, and Philip S Yu. Text classification without negative
examples revisit. IEEE transactions on Knowledge and Data Engineering, 18(1):6–20, 2005.

Saurabh Garg, Yifan Wu, Alexander J Smola, Sivaraman Balakrishnan, and Zachary Lipton. Mixture
proportion estimation and pu learning: a modern approach. Advances in Neural Information Processing
Systems, 34:8532–8544, 2021.

Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, and Elke Rundensteiner. Recovering
the propensity score from biased positive unlabeled data. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(6):6694–6702, Jun. 2022. doi: 10.1609/aaai.v36i6.20624. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20624.

Chen Gong, Qizhou Wang, Tongliang Liu, Bo Han, Jane You, Jian Yang, and Dacheng Tao. Instance-
dependent positive and unlabeled learning with labeling bias estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4163–4177, 2021.

Zayd Hammoudeh and Daniel Lowd. Learning from positive and unlabeled data with arbitrary positive shift.
Advances in Neural Information Processing Systems, 33:13088–13099, 2020.

Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE Transactions on Computers, 31
(12):1133–1141, 1982.

Dmitry Ivanov. Dedpul: Difference-of-estimated-densities-based positive-unlabeled learning. In 2020 19th
IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 782–790. IEEE, 2020.

Shantanu Jain, Martha White, Michael W Trosset, and Predrag Radivojac. Nonparametric semi-supervised
learning of class proportions. arXiv preprint arXiv:1601.01944, 2016.

Kristen Jaskie and Andreas Spanias. Positive and unlabeled learning algorithms and applications: A survey.
In 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), pp.
1–8. IEEE, 2019.

Kristen Jaskie, Charles Elkan, and Andreas Spanias. A modified logistic regression for positive and unlabeled
learning. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 2007–2011. IEEE,
2019.

13

https://ojs.aaai.org/index.php/AAAI/article/view/20624
https://ojs.aaai.org/index.php/AAAI/article/view/20624

Under review as submission to TMLR

Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data with a
selection bias. In International conference on learning representations, 2018.

Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic regression.
In ICML, volume 3, pp. 448–455, 2003.

Chuan Luo, Pu Zhao, Chen Chen, Bo Qiao, Chao Du, Hongyu Zhang, Wei Wu, Shaowei Cai, Bing He,
Saravanakumar Rajmohan, and Qingwei Lin. Pulns: Positive-unlabeled learning with effective negative
sample selector. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8784–8792, May
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17064.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, 2014.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset labels.
Journal of Artificial Intelligence Research, 70:1373–1411, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Harish Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation via kernel embeddings
of distributions. In International conference on machine learning, pp. 2052–2060. PMLR, 2016.

Guangxin Su, Weitong Chen, and Miao Xu. Positive-unlabeled learning from imbalanced data. In IJCAI, pp.
2995–3001, 2021.

UCI ML Repository. University of california irvine (uci) machine learning repository: Internet firewall data set.
https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data, 2022a. Accessed: 2022-06-30.

UCI ML Repository. University of california irvine (uci) machine learning repository: Statlog (shuttle) data
set. https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle), 2022b. Accessed: 2022-06-30.

Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Scott I Vrieze. Model selection and psychological theory: a discussion of the differences between the akaike
information criterion (aic) and the bayesian information criterion (bic). Psychological methods, 17(2):228,
2012.

Chunlin Wang, Chris Ding, Richard F Meraz, and Stephen R Holbrook. Psol: a positive sample only learning
algorithm for finding non-coding rna genes. Bioinformatics, 22(21):2590–2596, 2006.

Yixing Xu, Chang Xu, Chao Xu, and Dacheng Tao. Multi-positive and unlabeled learning. In IJCAI, pp.
3182–3188, 2017.

Yuguang Yan, Mingkui Tan, Yanwu Xu, Jiezhang Cao, Michael Ng, Huaqing Min, and Qingyao Wu.
Oversampling for imbalanced data via optimal transport. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):5605–5612, Jul. 2019. doi: 10.1609/aaai.v33i01.33015605. URL https://ojs.aaai.
org/index.php/AAAI/article/view/4503.

Hwanjo Yu. Single-class classification with mapping convergence. Machine Learning, 61(1):49–69, 2005.

Hwanjo Yu, Jiawei Han, and KC-C Chang. Pebl: Web page classification without negative examples. IEEE
Transactions on Knowledge and Data Engineering, 16(1):70–81, 2004.

Qinpei Zhao, Ville Hautamaki, and Pasi Fränti. Knee point detection in bic for detecting the number of
clusters. In International conference on advanced concepts for intelligent vision systems, pp. 664–673.
Springer, 2008.

14

https://ojs.aaai.org/index.php/AAAI/article/view/17064
https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
https://ojs.aaai.org/index.php/AAAI/article/view/4503
https://ojs.aaai.org/index.php/AAAI/article/view/4503

Under review as submission to TMLR

Appendix

A Proof: positives are not independent of their attributes under the SNAR
Assumption

Under the SNAR assumption, the probability that a positive example is labeled is not independent of its
attributes. Stated formally, the assumption is that p(s = 1|x, y = 1) ̸= p(s = 1|y = 1) i.e. p(s = 1|x, y = 1) is
not a constant.

Proof:

p(s = 1|x, y = 1) = p(y = 1|(s = 1|x))p(s = 1|x)

= p(y = 1|(s = 1|x))p(x|s = 1)p(s = 1)
p(x) , using Bayes’ rule

= p(x|s = 1)p(s = 1)
p(x) , since p(y = 1|(s = 1|x)) = 1

= a function of x.

15

Under review as submission to TMLR

B Errors in α estimation with synthetic SCAR and SNAR data

To further emphasize the magnitude and direction of the α estimate errors in Figure 3, we show the difference
between the estimated and true values.

Figure 6: KM1, KM2, TICE, CleanLab, DEDPUL, PULSCAR, and PULSNAR evaluated on
SCAR and SNAR synthetic datasets. The bar represents the difference between the mean value of the
estimated α and the true fraction. Bar above the line y=0 represents overestimation and bar below the line
y=0 represents underestimation.

16

Under review as submission to TMLR

C Probability calibration

C.1 Algorithm for calibrating probabilities

Algorithm 4 shows the complete pseudocode to calibrate the machine learning (ML) model predicted
probabilities. Once α is known, we seek to transform the original class 1 probabilities so that their sum
is equal to α|U | among the unlabeled or |P |+ α|U | among positive and unlabeled, and that they are well-
calibrated. Our approach is to probabilistically flip α|U | labels of unlabeled to positive (from 0 to 1) in such
a way as to match the PDF of labeled positives across 100 equispaced bins over [0 . . . 1], then fit a logistic or
isotonic regression model on those labels versus the probabilities to generate the transformed probabilities. To
determine the number of unlabeled examples that need to be flipped in each bin, we compute the normalized
histogram density, D_hist, for the labeled positives with 100 bins and then multiply α|U | with D_hist.

The unlabeled examples are also divided into 100 bins based on their predicted probabilities. Starting from
the bin with the highest probability(p=1), we randomly select k examples and flip their labels from 0 to 1,
where k is the number of unlabeled examples that need to be flipped in the bin. If the number of records (n1)
that need to be flipped in a bin is more than the number of records (n2) present in the bin, the difference
(n1 − n2) is added to the number of records to be flipped in the next bin, resulting in α|U | flips.

After flipping the labels of α|U | unlabeled examples from 0 to 1, we fit an isotonic or sigmoid regression
model on the ML-predicted class 1 probabilities with the updated labels to obtain calibrated probabilities.

The above calibration approach applies to both SCAR and SNAR data. For the SNAR data, the PULSNAR
algorithm divides labeled positive examples into k clusters and estimates the α for each cluster. For each
cluster, the ML-predicted class 1 probabilities of the examples (positives from the cluster and all unlabeled
examples or only unlabeled examples) are calibrated using the estimated α for the cluster. Since, for each
cluster, PULSNAR uses all unlabeled examples, each unlabeled example has k ML-predicted/calibrated
probabilities. The final ML-predicted/calibrated probability of an unlabeled example is calculated using the
following Equation 6:

p = 1− (1− p1)(1− p2) . . . (1− pk) (6)

where pk is the probability of an unlabeled example from cluster k.

C.2 Experiments and Results

We used synthetic SCAR and SNAR datasets and KDD Cup SCAR dataset to test our calibration algorithm.

SCAR datasets: After estimating the α using the PULSCAR algorithm, we applied Algorithm 4 to calibrate
the ML-predicted probabilities. To calculate the calibrated probabilities for both positive and unlabeled
(PU) examples, we applied isotonic regression to the ML-predicted class 1 probabilities of PU examples
with labels of positives and updated labels of unlabeled (of which α|U | were flipped per Algorithm 4). We
applied isotonic regression to the unlabeled’s predicted probabilities with their updated labels to calculate
the calibrated probabilities only for the unlabeled.

SNAR datasets: Using the PULSNAR algorithm, the labeled positive examples were divided into k
clusters. For each cluster, after estimating the α, Algorithm 4 was used to calibrate the ML-predicted
probabilities. To calculate the calibrated probabilities for positives from a cluster and all unlabeled examples,
we applied isotonic regression to their ML-predicted class 1 probabilities with labels of positives from the
cluster and updated labels of unlabeled (of which αj |U | were flipped for cluster j = 1 . . . k, see Algorithm
4). We applied isotonic regression to the unlabeled’s predicted probabilities with their updated labels to
calculate the calibrated probabilities only for the unlabeled. Thus, each unlabeled example had k calibrated
probabilities. We computed the final calibrated probability for each unlabeled example using Formula 6.

Figures 7, 8, 9, 10, 11 and 12 show the calibration curves generated using the unblinded labels and isotonically
calibrated (red)/ uncalibrated (blue) probabilities. When both positive and unlabeled examples were used to
calculate calibrated probabilities, the calibration curve followed the y=x line (well-calibrated probabilities).

17

Under review as submission to TMLR

When only unlabeled examples were used, the calibration curve for 1% did not follow the y=x line, presumably
due to the ML model being biased toward negatives, given the small α. Also, the calibration curves for the
SCAR data followed the y=x line more closely than the calibration curves for the SNAR data. It is due
to the fact that the final probability of an unlabeled example in the SNAR data is computed using its k
probabilities from k clusters. So, a poor probability estimate from even one cluster can influence the final
probability of an unlabeled example.

Algorithm 4 calibrate_probabilities
Input: predicted_probs, labels, n_bins, calibration_method, calibration_data, α
Output: calibrated_probs

1: p0 ← predicted_probs[labels == 0]
2: p1 ← predicted_probs[labels == 1]
3: y0 ← labels[labels == 0]
4: y1 ← labels[labels == 1]
5: Dhist ← histogram(p1, n_bins, density=True)
6: unlab_pos_count_in_bin ← α |p0| Dhist

7: p0_bins ← split unlabeled examples into n_bins using p0
8: for k ← [n_bins . . . 1] do
9: n1 ← unlab_pos_count_in_bin[k]

10: n2 ← p0_bins[k]
11: if n1 > n2 then
12: ŷ0 ← flip labels (y0) of n2 examples from 0 to 1 in bin k
13: unlab_pos_count_in_bin[k-1] ← unlab_pos_count_in_bin[k-1] + (n1 − n2)
14: else
15: ŷ0 ← flip labels (y0) of random n1 examples from 0 to 1 in bin k
16: end if
17: end for
18: if calibration_data == ‘PU’ then
19: p, y ← p1 ∪ p0, y1 ∪ ŷ0
20: else if calibration_data == ‘U’ then
21: p, y ← p0, ŷ0
22: end if
23: if calibration_method is ‘sigmoid’ then
24: p̂ ← LogisticRegression(p, y)
25: else if calibration_method is ‘isotonic’ then
26: p̂ ← IsotonicRegression(p, y)
27: end if
28: return p̂

18

Under review as submission to TMLR

Figure 7: Calibration curves for Synthetic SCAR datasets (both positive and unlabeled examples).
Synthetic datasets were generated with different fractions of positives (1%, 5%, 10%, 20%, 30%, and 50%)
among the unlabeled examples. class_sep=0.3, number of attributes=100, |P | = 5, 000 and |U | = 50, 000.
Calibration curves were generated using both positive and unlabeled examples (Uncalibrated probabilities -
blue, calibrated probabilities - red).

19

Under review as submission to TMLR

Figure 8: Calibration curves for Synthetic SCAR datasets (only unlabeled examples). Synthetic
datasets were generated with different fractions of positives (1%, 5%, 10%, 20%, 30%, and 50%) among the
unlabeled examples. class_sep=0.3, number of attributes=100, |P | = 5, 000 and |U | = 50, 000. Calibration
curves were generated using only unlabeled examples (Uncalibrated probabilities - blue, calibrated probabilities
- red).

20

Under review as submission to TMLR

Figure 9: Calibration curves for Synthetic SNAR datasets (both positive and unlabeled examples).
Synthetic datasets were generated with different fractions of positives (1%, 5%, 10%, 20%, 30%, and 50%)
among the unlabeled examples. class_sep=0.3, number of attributes=100, number of positive subclasses=5,
|P | = 20,000 (4,000 from each subclass) and |U | = 50,000. Calibration curves were generated using both
positive and unlabeled examples (Uncalibrated probabilities - blue, calibrated probabilities - red).

21

Under review as submission to TMLR

Figure 10: Calibration curves for Synthetic SNAR datasets (only unlabeled examples). Synthetic
datasets were generated with different fractions of positives (1%, 5%, 10%, 20%, 30%, and 50%) among
the unlabeled examples. class_sep=0.3, number of attributes=100, number of positive subclasses=5, |P | =
20,000 (4,000 from each subclass) and |U | = 50,000. Calibration curves were generated using only unlabeled
examples (Uncalibrated probabilities - blue, calibrated probabilities - red).

22

Under review as submission to TMLR

Figure 11: Calibration curves for SCAR KDD Cup 2004 particle physics dataset (both positive
and unlabeled examples). Unlabeled sets contained 1%, 5%, 10%, 20%, 30%, and 40% positive examples.
Calibration curves were generated using both positive and unlabeled examples (Uncalibrated probabilities -
blue, calibrated probabilities - red).

23

Under review as submission to TMLR

Figure 12: Calibration curves for SCAR KDD Cup 2004 particle physics dataset (only unlabeled
examples). Unlabeled sets contained 1%, 5%, 10%, 20%, 30%, and 40% positive examples. Calibration curves
were generated using only unlabeled examples (Uncalibrated probabilities - blue, calibrated probabilities -
red).

24

Under review as submission to TMLR

D Improving classification performance with PULSCAR and PULSNAR

D.1 Algorithm for improving classification

Algorithm 5 shows the complete pseudocode to improve classification performance with PULSCAR and
PULSNAR. The algorithm returns the following six classification metrics: Accuracy, AUC-ROC, Brier score
(BS), F1, Matthew’s correlation coefficient (MCC), and Average precision score (APS). The approach to
enhancing the classification performance is as follows:

Using PULSCAR: After estimating the α, the class 1 predicted probabilities of only unlabeled examples
are calibrated using Algorithm 4. The calibrated probabilities of the unlabeled examples are sorted in
descending order, and the labels of top α|U | unlabeled examples with the highest calibrated probabilities are
flipped from 0 to 1 (probable positives). We then train and test an ML classifier (XGBoost) with 5-fold CV
using the labeled positives, probable positives, and the remaining unlabeled examples. The classification
performance metrics are calculated using the ML predictions and the true labels of the data.

Using PULSNAR: The PULSNAR algorithm divides the labeled positive examples into k clusters. For
each cluster, after estimating αj for j in 1 . . . k, the class 1 predicted probabilities of only unlabeled examples
are calibrated using Algorithm 4. Since each unlabeled example has k calibrated probabilities, we compute
the final calibrated probability for each unlabeled example using the Formula 6. The final α is calculated
by summing the αj values over the k clusters. The final calibrated probabilities of the unlabeled examples
are sorted in descending order, and the labels of top α|U | unlabeled examples with the highest calibrated
probabilities are flipped from 0 to 1 (probable positives). We then train and test an ML classifier (XGBoost)
with 5-fold CV using the labeled positives, probable positives, and the remaining unlabeled examples. The
classification performance metrics are calculated using the ML predictions and the true labels of the data.

Algorithm 5 calculate_classification_metrics
Input: X (Xp ∪Xu), y (yp ∪ yu), y_true, bin_method, n_bins, predicted_probabilities, α
Output: classification_metrics (accuracy, roc auc, brier score, f1, Matthew’s correlation coefficient, average
precision)

1: p ← predicted_probabilities
2: p̂ ← calibrate_probabilities(p, y, n_bins, calibration_method, ‘U’, α)
3: sort p̂ in descending order
4: ŷu ← flip labels of top α|U | unlabeled examples with highest p̂
5: y ← yp ∪ ŷu

6: predicted_probabilities (p) ← A(X, y)
7: return accuracy(p, y_true), auc(p, y_true), bs(p, y_true), f1(p, y_true), mcc(p, y_true), aps(p, y_true)

D.2 Experiments and Results

We applied Algorithm 5 to synthetic SCAR and SNAR datasets to get the performance metrics for the
XGBoost model with PULSCAR and PULSNAR, respectively. The classification performance metrics
were also calculated without applying the PULSCAR or PULSNAR algorithm, in order to determine the
improvement in the classification performance of the model. The experiment was repeated 40 times by
selecting different train and test sets using 40 random seeds to compute the 95% confidence interval (CI) for
the metrics.

Figures 13 and 14 show the classification performance of the XGBoost model with/without the PULSCAR or
PULSNAR algorithm on synthetic SCAR and SNAR data, respectively. The classification performance using
PULSCAR or PULSNAR increased significantly over XGBoost alone. As the proportion of positives among
the unlabeled examples increased, the performance of the model without PULSCAR or PULSNAR (blue)
worsened significantly more than when using PULSCAR or PULSNAR.

25

Under review as submission to TMLR

Figure 13: Classification performance of XGBoost model on synthetic SCAR datasets with
and without the PULSCAR algorithm. Synthetic datasets were generated with different fractions of
positives (1%, 5%, 10%, 20%, 30%, 40%, and 50%) among the unlabeled examples. class_sep=0.3, number
of attributes=100, |P | = 5, 000 and |U | = 50, 000. “no PULSCAR” (blue): XGBoost model was trained and
tested with 5-fold CV on the given data; the classification metrics were calculated using the model predictions
and true labels. “PULSCAR” (red): PULSCAR algorithm was used to find the proportion of positives among
unlabeled examples (α); using α, probable positives were identified; XGBoost model was trained and tested
with 5-fold CV on labeled positives, probable positives, and the remaining unlabeled examples; classification
metrics were calculated using the model predictions and true labels. The error bars represent 95% CIs for the
performance metrics.

26

Under review as submission to TMLR

Figure 14: Classification performance of XGBoost model on synthetic SNAR datasets with
and without the PULSNAR algorithm. Synthetic datasets were generated with different fractions of
positives (1%, 5%, 10%, 20%, 30%, 40%, and 50%) among the unlabeled examples. class_sep=0.3, number
of attributes=100, number of positive subclasses=5, |P | = 20,000 (4,000 from each subclass) and |U | =
50,000. “no PULSNAR” (blue): XGBoost model was trained and tested with 5-fold CV on the given data;
the classification metrics were calculated using the model predictions and true labels. “PULSNAR” (red):
PULSNAR algorithm was used to find the proportion of positives among unlabeled examples (α); using α,
probable positives were identified; XGBoost model was trained and tested with 5-fold CV on labeled positives,
probable positives, and the remaining unlabeled examples; classification metrics were calculated using the
model predictions and true labels. The error bars represent 95% CIs for the performance metrics.

27

Under review as submission to TMLR

E DEDPUL vs. PULSNAR: α estimation

Public implementations of the PU learning methods KM1, KM2, and TICE were not scalable; they either
failed to execute or would have taken weeks to run the multiple iterations required to obtain confidence
estimates for large datasets. We thus could not compare our method with KM1, KM2, and TICE on large
datasets and used only DEDPUL for comparison. Importantly, it was previously demonstrated that the
DEDPUL method outperformed these three methods on several UCI ML benchmark and synthetic datasets
Ivanov (2020).

We compared our algorithm with DEDPUL on synthetic SNAR datasets with different fractions (1%, 5%,
10%, 20%, 30%, 40%, and 50%) of positives among unlabeled examples. In our experiments, we observed that
class imbalance (ratio of majority class to minority class) could affect the α estimates. So, we used 4 different
sample sizes: 1) positive: 5,000 and unlabeled: 5,000; 2) positive: 5,000 and unlabeled: 25,000; 3) positive:
5,000 and unlabeled: 50,000; 4) positive: 5,000 and unlabeled: 100,000. For each sample size and fraction,
we generated 20 datasets using sklearn’s make_classification() method with random seeds 0-19 to compute
95% CI. We used class_sep=0.3 for each dataset to create difficult classification problems. All datasets were
generated with 100 attributes and 6 labels (0-5), defining ‘0’ as negative and 1-5 as positive subclasses. The
positive set contained 1000 examples from each positive subclass in all datasets. The unlabeled set comprised
k% positive examples with labels (1-5) flipped to 0 and (100-k)% negative examples. The unlabeled positives
were markedly SNAR, with the 5 subclasses comprising 1/31, 2/31, 4/31, 8/31, and 16/31 of the unlabeled
positives.

Figure 15 shows the α estimates by DEDPUL and PULSNAR on synthetic SNAR data. For smaller true
fractions (1%, 5%, 10%), DEDPUL returned close α estimates, but for larger fractions (20%, 30%, 40%, and
50%), it underestimated α. Also, as the class imbalance increased, the performance of DEDPUL dropped,
especially for larger true fractions. The estimated α by the PULSNAR method was close to the true α for all
fractions and sample sizes.

28

Under review as submission to TMLR

Figure 15: PULSNAR and DEDPUL evaluated on synthetic SNAR datasets. The bar represents
the mean value of the estimated α, with 95% CI for estimated α.

29

	Introduction
	Related work
	Problem Formulation and Algorithms
	SCAR assumption and SNAR assumption
	PU data assumptions

	Positive and Unlabeled Learning Selected Completely At Random (PULSCAR) Algorithm
	Kernel Bandwidth estimation
	Bin count
	Bandwidth estimation

	Positive and Unlabeled Learning Selected Not At Random (PULSNAR) Algorithm
	Clustering rationale
	Determining the number of clusters in the positive set

	Calculating calibrated probabilities
	Improving classification performance

	Experiments
	Synthetic data
	SCAR data
	SNAR data

	SCAR ML Benchmark Datasets
	UCI Bank dataset
	KDD Cup 2004 Particle Physics dataset

	SNAR ML Benchmark Datasets
	UCI Statlog (Shuttle) Dataset
	UCI Firewall dataset

	Estimation of fraction of positives among unlabeled examples
	Using the PULSCAR algorithm
	Using the PULSNAR algorithm

	Results
	Synthetic datasets
	ML Benchmark datasets
	SCAR data
	SNAR data

	Probability calibration
	Classification performance metrics

	Discussion and Conclusion
	Limitations
	Proof: positives are not independent of their attributes under the SNAR Assumption
	Errors in alpha estimation with synthetic SCAR and SNAR data
	Probability calibration
	Algorithm for calibrating probabilities
	Experiments and Results

	Improving classification performance with PULSCAR and PULSNAR
	Algorithm for improving classification
	Experiments and Results

	DEDPUL vs. PULSNAR: alpha estimation

