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ABSTRACT

The scarcity of class-labeled data is a ubiquitous bottleneck in a wide range of
machine learning problems. While abundant unlabeled data normally exist and
provide a potential solution, it is extremely challenging to exploit them. In this
paper, we address this problem by leveraging Positive-Unlabeled (PU) classifica-
tion and conditional generation with extra unlabeled data simultaneously, both of
which aim to make full use of agnostic unlabeled data to improve classification and
generation performance. In particular, we present a novel training framework to
jointly target both PU classification and conditional generation when exposing to
extra data, especially out-of-distribution unlabeled data, by exploring the interplay
between them: 1) enhancing the performance of PU classifiers with the assistance
of a novel Conditional Generative Adversarial Network (CGAN) that is robust to
noisy labels, 2) leveraging extra data with predicted labels from a PU classifier
to help the generation. Our key contribution is a Classifier-Noise-Invariant Con-
ditional GAN (CNI-CGAN) that can learn the clean data distribution from noisy
labels predicted by a PU classifier. Theoretically, we proved the optimal condi-
tion of CNI-CGAN and experimentally, we conducted extensive evaluations on
diverse datasets, verifying the simultaneous improvements on both classification
and generation.

1 INTRODUCTION

Existing machine learning methods, particularly deep learning models, typically require big data
to pursue remarkable performance. For instance, conditional deep generative models are able to
generate high-fidelity and diverse images, but they have to rely on vast amounts of labeled data (Lu-
cic et al., 2019). Nevertheless, it is often laborious or impractical to collect large-scale accurate
class-labeled data in real-world scenarios, and thus the label scarcity is ubiquitous. Under such cir-
cumstances, the performance of classification and conditional generation (Mirza & Osindero, 2014)
drops significantly (Lucic et al., 2019). At the same time, diverse unlabeled data are available in
enormous quantities, and therefore a key issue is how to take advantage of the extra data to enhance
the conditional generation or classification.

Within the unlabeled data, both in-distribution and out-of-distribution data exist, where in-
distribution data conform to the distribution of the labeled data while out-of-distribution data do
not. Our key insight is to harness the out-of-distribution data. In generation with extra data, most
related works focus on the in-distribution data (Lucic et al., 2019; Gui et al., 2020; Donahue &
Simonyan, 2019). When it comes to the out-of-distribution data, the majority of existing meth-
ods (Noguchi & Harada, 2019; Yamaguchi et al., 2019; Zhao et al., 2020) attempt to forcibly train
generative models on a large number of unlabeled data, and then transfer the learned knowledge of
the pre-trained generator to the in-distribution data. In classification, a common setting to utilize
unlabeled data is semi-supervised learning (Miyato et al., 2018; Sun et al., 2019; Berthelot et al.,
2019), which usually assumes that the unlabeled and labeled data come from the same distribution,
ignoring their distributional mismatch. In contrast, Positive and Unlabeled (PU) Learning (Bekker
& Davis, 2018; Kiryo et al., 2017) is an elegant way of handling this under-studied problem, where
a model only has access to positive examples and unlabeled data. Therefore, it is possible to utilize
pseudo labels predicted by a PU classifier on unlabeled data to guide the conditional generation.
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However, the predicted signals from the classifier tend to be noisy. Although there are a flurry of pa-
pers about learning from noisy labels for classification (Tsung Wei Tsai, 2019; Ge et al., 2020; Guo
et al., 2019), to our best knowledge, no work has considered to leverage the noisy labels seamlessly
in joint classification and generation. Additionally, Hou et al. (2017) leveraged GANs to recover
both positive and negative data distribution to step away from overfitting, but they never considered
the noise-invariant generation or their mutual improvement. Xu et al. (2019) focused on generative-
discriminative complementary learning in weakly supervised learning, but we are the first attempt
to tackle the (Multi-) Positive and Unlabeled learning setting while developing the method of noise-
invariant generation from noisy labels. The discussion about more related works can be found in
Appendix B.

In this paper, we focus on the mutual benefits of conditional generation and PU classification, in
settings where extra unlabeled data, including out-of-distribution data, are provided although little
class-labeled data is available. Firstly, a parallel non-negative multi-class PU estimator is derived to
classify both the positive data of all classes and the negative data. Then we design a Classifier-Noise-
Invariant Conditional Generative Adversarial Network (CNI-CGAN) that is able to learn the clean
data distribution on all unlabeled data with noisy labels provided by the PU classifier. Conversely,
we also leverage our CNI-CGAN to enhance the performance of the PU classification through data
augmentation, demonstrating a reciprocal benefit for both generation and classification. We provide
the theoretical analysis on the optimal condition of our CNI-CGAN and conduct extensive experi-
ments to verify the superiority of our approach.

2 OUR METHOD

2.1 POSITIVE-UNLABELED LEARNING

Traditional Binary Positive-Unlabeled Problem Setting Let X ∈ Rd and Y ∈ {±1} be the input
and output variables and p(x, y) is the joint distribution with marginal distribution pp(x) = p(x|Y =
+1) and pn(x) = p(x|Y = −1). In particular, we denote p(x) as the distribution of unlabeled data.
np, nn and nu are the amount of positive, negative and unlabeled data, respectively.

Parallel Non-Negative PU Estimator Vanilla PU learning (Bekker & Davis, 2018; Kiryo et al.,
2017; Du Plessis et al., 2014; 2015) employs unbiased and consistent estimator. Denote gθ : Rd →
R as the score function parameterized by θ, and ` : R×{±1} → R as the loss function. The risk of
gθ can be approximated by its empirical version denoted as R̂pn(gθ):

R̂pn(gθ) = πpR̂
+
p (gθ) + πnR̂

−
n (gθ), (1)

where πp represents the class prior probability, i.e. P (Y = +1), with πp + πn = 1, and R̂+
p (gθ) =

1
np

∑np

i=1 ` (gθ (xpi ) ,+1) and R̂−n (gθ) = 1
nn

∑nn

i=1 ` (gθ (xni ) ,−1). As negative data xn are un-
available, a common strategy is to offset R−n (gθ). We also know that πnpn(x) = p(x) − πppp(x),
and hence πnR̂−n (gθ) = R̂−u (gθ) − πpR̂−p (gθ). Then the resulting unbiased risk estimator R̂pu(gθ)
can be formulated as:

R̂pu(gθ) = πpR̂
+
p (gθ)− πpR̂−p (gθ) + R̂−u (gθ), (2)

where R̂−p (gθ) = 1
np

∑np

i=1 ` (gθ (xpi ) ,−1) and R̂−u (gθ) = 1
nu

∑nu

i=1 ` (gθ (xui ) ,−1). The advan-
tage of this unbiased risk minimizer is that the optimal solution can be easily obtained if g is linear
in θ. However, in real scenarios we tend to leverage more flexible models gθ, e.g., deep neural
networks. This strategy will push the estimator to a point where it starts to suffer from overfit-
ting. Hence, we decide to utilize non-negative risk (Kiryo et al., 2017) for our PU learning, which
has been verified in (Kiryo et al., 2017) to allow deep neural network to mitigate overfitting. The
non-negative PU estimator is formulated as:

R̂pu(gθ) = πpR̂
+
p (gθ) + max

{
0, R̂−u (gθ)− πpR̂−p (gθ)

}
. (3)

In pursue of the parallel implementation of R̂pu(gθ), we replace max
{

0, R̂−u (gθ)− πpR̂−p (gθ)
}

with its lower bound 1
N

∑N
i=1 max

{
0, R̂−u (gθ;X iu)− πpR̂−p (gθ;X ip)

}
where X iu and X ip denote as

the unlabeled and positive data in the i-th mini-batch, and N is the number of batches.
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From Binary PU to Multi-PU Learning Previous PU learning focuses on learning a classifier from
positive and unlabeled data, and cannot easily be adapted toK+1 multi-classification tasks whereK
represents the number of classes in the positive data. Xu et al. (2017) ever developed Multi-Positive
and Unlabeled learning, but the proposed algorithm may not allow deep neural networks. Instead,
we extend binary PU learning to multi-class version in a straightforward way by additionally incor-
porating cross entropy loss on all the positive data with labels for different classes. More precisely,
we consider the K + 1-class classifier fθ as a score function fθ =

(
f1θ (x), . . . , fK+1

θ (x)
)
. Af-

ter the softmax function, we select the first K positive data to construct cross-entropy loss `CE,
i.e., `CE(fθ(x), y) = log

∑K+1
j=1 exp

(
f jθ (x)

)
− fyθ (x) where y ∈ [K]. For the PU loss, we

consider the composite function h(fθ(x)) : Rd → R where h(·) conducts a logit transforma-
tion on the accumulative probability for the first K classes, i.e., h(fθ(x)) = ln( p

1−p ) in which

p =
∑K
j=1 exp

(
f jθ (x)

)
/
∑K+1
j=1 exp

(
f jθ (x)

)
. The final mini-batch risk of our PU learning can be

presented as:

R̃pu(fθ;X i) = πpR̂
+
p (h(fθ);X ip) + max

{
0, R̂−u (h(fθ);X iu)− πpR̂−p (h(fθ);X ip)

}
+ R̂CE

p (fθ;X ip),
(4)

where R̂CE
p (fθ;X ip) = 1

np

∑np

i=1 `
CE (fθ (xpi ) , y).

2.2 CLASSIFIER-NOISE-INVARIANT CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
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Figure 1: Model architecture of our Classifier-
Noise-Invariant Conditional GAN (CNI-CGAN).
The output xg of the conditional generator G is
paired with a noisy label ỹ corrupted by the PU-
dependent confusion matrix C̃. The discriminator
D distinguishes between whether a given labeled
sample comes from the real data (xr, PUθ(xr))
or generated data (xg, ỹ).

To leverage extra data, i.e., all unlabeled data,
to benefit the generation, we deploy our condi-
tional generative model on all data with pseudo
labels predicted by our PU classifier. However,
these predicted labels tend to be noisy, reduc-
ing the reliability of the supervision signals and
thus worsening the performance for the condi-
tional generative model. Besides, the noise de-
pends on the accuracy of the given PU classi-
fier. To address this issue, we focus on devel-
oping a novel noise-invariant conditional GAN
that is robust to noisy labels provided by a spec-
ified classifier, e.g. a PU classifier. We call our
method Classifier-Noise-Invariant Conditional
Generative Adversarial Network (CNI-CGAN)
and the architecture is depicted in Figure 1. In
the following, we elaborate on each part of it.

Principle of the Design of CNI-CGAN

Albeit being noisy, the pseudo labels given
by the PU classifier still provide rich informa-
tion that we can exploit. The key is to take
the noise generation mechanism into consid-
eration during generation. We denote the real
data as xr and the predicted hard label through
PU classifier as PUθ(xr), i.e., PUθ(xr) =
arg maxi f

i
θ(xr), as displayed in Figure 1. We

let the generator “imitate” the noise generation
mechanism to generate pseudo labels for the labeled data. With both pseudo and real labels, we
can leverage the PU classifier fθ to estimate a confusion matrix C̃ to model the label noise from
the classifier. During generation, a real label y, while being fed into the generator G, will also be
polluted by C̃ to compute a noisy label ỹ, which then will be combined with the generated fake
sample xg for the following discrimination. Finally, the discriminator D will distinguish the real
samples [xr, PUθ(xr)] out of fake samples [xg, ỹ]. Overall, the noise “generation” mechanism from
both sides can be balanced.
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Estimation of C̃ The key in the design of C̃ is to estimate the label noise of the pre-trained PU
classifier by considering all the samples of each class. More specifically, the confusion matrix C̃ is
k+ 1 by k+ 1 and each entry C̃ij represents the probability of a generated sample xg , given a label
i, being classified as class j by the PU classifier. Mathematically, we denote C̃ij as:

C̃ij = P (PUθ(xg) = j|y = i) = Ez[I{PUθ(xg)=j|y=i}], (5)

where xg = G(z, y = i) and I is the indicator function. Owing to the stochastic optimization
nature when training deep neural networks, we incorporate the estimation of C̃ in the processing of
training by Exponential Moving Average (EMA) method. We formulate the update of C̃(l+1) in the
l-th mini-batch as follows:

C̃(l+1) = λC̃(l) + (1− λ)∆C̃
Xl , (6)

where ∆C̃
Xl denotes the incremental change of C̃ on the current l-th mini-batch data Xl via Eq. 5. λ

is the averaging coefficient in EMA.

Theoretical Guarantee of Clean Data Distribution Firstly, we denote O(x) as the oracle class
of sample x from an oracle classifier O(·). Let πi, i = 1, ...,K+1, be the class-prior probability
of the class i in the multi-postive unlabeled setting. Theorem 1 proves the optimal condition of
CNI-CGAN to guarantee the convergence to the clean data distribution. The proof is provided in
Appendix A.
Theorem 1. (Optimal Condition of CNI-CGAN) Let P g be a probabilistic transition matrix where
P gij = P (O(xg) = j|y = i) indicates the probability of sample xg with the oracle label j generated
by G with the initial label i. We assume that the conditional sample space of each class is disjoint
with each other, then

(1) P g is a permutation matrix if the generator G in CNI-CGAN is optimal, with the permutation,
compared with an identity matrix, only happens on rows r where corresponding πr, r ∈ r are equal.

(2) If P g is an identity matrix and the generator G in CNI-CGAN is optimal, then pr(x, y) =
pg(x, y) where pr(x, y) and pg(x, y) are the real and the generating joint distribution, respectively.

The Auxiliary Loss The optimal G in CNI-CGAN can only guarantee that pg(x, y) is close to
pr(x, y) as the optimal permutation matrix P g , i.e., a permutation matrix, is close to the identity
matrix. Hence in practice, to ensure that we can learn an identity matrix for P g and thus achieve
the clean data distribution, we introduce an auxiliary loss to encourage a larger trace of P g , i.e.,∑K+1
i=1 P (O(xg) = i)|y = i). As O(·) is intractable, we approximate it by the current PU classifier

PUθ(xg). Then we obtain the auxiliary loss:

`aux(z, y) = max{κ− 1

K + 1

K+1∑
i=1

Ez(I{PUθ(xg)=i|y=i}), 0}, (7)

where κ ∈ (0, 1) is a hyper-parameter. With the support of auxiliary loss, P g has the tendency to
converge to the identity matrix where CNI-CGAN can learn the clean data distribution even in the
presence of noisy labels.

Comparison with RCGAN (Thekumparampil et al., 2018; Kaneko et al., 2019) The the-
oretical property of CNI-CGAN has a major advantage over existing Robust CGAN (RC-
GAN) (Thekumparampil et al., 2018; Kaneko et al., 2019), for which the optimal condition can
only be achieved when the label confusion matrix is known a priori. Although heuristics can be
employed, such as RCGAN-U (Thekumparampil et al., 2018), to handle the unknown label noise
setting, these approaches still lack the theoretical guarantee to converge to the clean data distribu-
tion. Additionally, to guarantee the efficacy of our approach, one implicit and mild assumption is
that our PU classifier will not overfit on the training data, while our non-negative estimator helps
to ensure that it as explained in Section 2.1. It should be worthwhile to note that our CNI-CGAN
conducts K + 1 classes generation. To further clarify the optimization process of CNI-CGAN, we
elaborate the training steps of D and G, respectively.

D-Step: We train D on an adversarial loss from both the real data and the generated (xg, ỹ), where
ỹ is corrupted by C̃. C̃y denotes the y-th row of C̃. We formulate the loss of D as:

max
D∈F

E
x∼p(x)

[φ(D(x, PUθ(x)))] + E
z∼PZ,y∼PY
ỹ|y∼C̃y

[φ(1−D(G(z, y), ỹ))],
(8)
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where F is a family of discriminators and PZ is the distribution of latent space vector z, e.g.,
a Normal distribution. PY is a discrete uniform distribution on [K + 1] and φ is the measuring
function.

G-Step: We train G additionally on the auxiliary loss `aux(z, y) as follows:

min
G∈G

E
z∼PZ,y∼PY
ỹ|y∼C̃y

[φ(1−D(G(z, y), ỹ)) + β`aux(z, y)] ,
(9)

where β controls the strength of auxiliary loss and G is a family of generators.

2.3 TRAINING ALGORITHM

Firstly, we obtain a PU classifier fθ trained on multi-positive and unlabeled dataset with the par-
allel non-negative estimator derived in Section 2.1. Then we train our CNI-CGAN, described in
Section 2.2, on all data with pseudo labels predicted by the pre-trained PU classifier. As our CNI-
CGAN is robust to noisy labels, we leverage the data generated by CNI-CGAN to conduct data
augmentation to improve the PU classifier. Finally, we implement the joint optimization for the
training of CNI-CGAN and the data augmentation of the PU classifier. We summarize the details in
Algorithm 1 and Appendix C.

Simultaneous Improvement on PU Learning and Generation with Extra Data From the per-
spective of PU classification, due to the theoretical guarantee from Theorem 1, CNI-CGAN is capa-
ble of learning a clean data distribution out of noisy pseudo labels predicted by the pre-trained PU

Algorithm 1 Alternating Minimization for PU Learning and Classifier-Noise-Invariant Generation.
Input: Training data (Xp, Xu). Batch size M and hyper-parameter β > 0, λ, κ ∈ (0, 1). L0 and
L ∈ N+. Initializing C̃(1) as identity matrix. Number of batches N during the training.
Output: Model parameter for generator G, and θ for the PU classifier fθ.

1: / * Pre-train PU classifier fθ * /
2: for i = 1 to N do
3: Update fθ by descending its stochastic gradient of R̃pu

(
fθ;X i

)
via Eq. 4.

4: end for
5: repeat
6: / * Update CNI-CGAN * /
7: for l = 1 to L do
8: Sample {z1, ..., zM}, {y1, ...,yM} and {x1, ...,xM} from PZ , PY and all training data,

respectively, and then sample {ỹ1, ..., ỹM} through the current C̃(l). Update the discrimi-
nator D by ascending its stochastic gradient of

1

M

M∑
i=1

[φ(D(xi, PUθ(xi)))] + φ(1−D(G(zi,yi), ỹi))].

9: Sample {z1, ..., zM} and {y1, ...,yM} from PZ and PY , and then sample {ỹ1, ..., ỹM}
through the current C̃(l). Update the generator G by descending its stochastic gradient of

1

M

M∑
i=1

[φ(1−D(G(zi,yi), ỹi)) + β`aux(yi, zi)].

10: if l ≥ L0 then
11: Compute ∆C̃

Xl = 1
M

∑M
i=1 I{PUθ(G(zi,yi))|yi} via Eq. 5, and then estimate C̃ by

C̃(l+1) = λC̃(l) + (1− λ)∆C̃
Xl .

12: end if
13: end for
14: / * Update PU classifier via Data Augmentation * /
15: Sample {z1, ..., zM} and {y1, ...,yM} from PZ and PY , respectively, and then update the

PU classifier fθ by descending its stochastic gradient of

1

M

M∑
i=1

`CE (fθ (G(zi,yi)) ,yi) .

16: until convergence

5



Under review as a conference paper at ICLR 2021

classifier. Hence, the following data augmentation has the potential to improve the generalization of
PU classification regardless of the specific form of the PU estimator. From the perspective of gener-
ation with extra data, the predicted labels on unlabeled data from the PU classifier can provide the
CNI-CGAN with more supervision signals, thus further improving the quality of generation. Due to
the joint optimization, both the PU classification and the conditional generative models are able to
improve each other reciprocally, as demonstrated in the following experiments.

3 EXPERIMENT

Experimental Setup We perform our approaches and several baselines on MNIST, Fashion-MNIST
and CIFAR-10. We select the first 5 classes on MNIST and 5 non-clothes classes on Fashion-
MNIST, respectively, for K + 1 classification (K = 5). To verify the consistent effectiveness of our
method in the standard binary PU setting, we pick the 4 categories of transportation tools in CIFAR-
10 as the one-class positive dataset. As for the baselines, the first is CGAN-P, where a Vanilla
CGAN (Mirza & Osindero, 2014) is trained only on limited positive data. Another natural baseline
is CGAN-A where a Vanilla CGAN is trained on all data with labels given by the PU classifier.
The last baseline is RCGAN-U (Thekumparampil et al., 2018) where the confusion matrix is totally
learnable while training. For fair comparisons, we choose the same GAN architecture, and more
details about hyper-parameters can be found in Appendix D.

Evaluation For MNIST and Fashion-MNIST, we mainly use Generator Label Accu-
racy (Thekumparampil et al., 2018) and PU Accuracy to evaluate the quality of generated images.
Generator Label Accuracy compares specified y from CGANs to the true class of the generated ex-
amples through a pre-trained (almost) oracle classifier f . In experiments, we pre-trained two K+1
classifiers with 99.28% and 98.23% accuracy on the two datasets, respectively. Additionally, the
increased PU Accuracy measures the closeness between generated data distribution and test (almost
real) data distribution for the PU classification, serving as a key indicator to reflect the quality of
generated images. For CIFAR 10, we take the Inception Score into consideration.

3.1 GENERATION AND CLASSIFICATION PERFORMANCE

We set the whole training dataset as the unlabeled data and select certain amount of positive data
with the ratio of Positive Rate. Figure 2 presents the trend of Generator Label Accuracy, Inception
Score and PU Accuracy as the Positive Rate increases. It turns out that CNI-CGAN outperforms
CGAN-P and CGAN-A consistently especially when the Positive Rate is small, i.e. little positive
data. Remarkably, our approach enhances the PU accuracy greatly when exposed to low positive
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Figure 2: Generation and classification performance of CGAN-P, CGAN-A and Ours on three
datasets. Results of CGAN-P on PU accuracy do not exist since CGAN-P generates only K classes
data rather than K + 1 categories that the PU classifier needs.
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MNIST: Positive Rate 0.2%, Initial PU: 69.14%

Generator Label Accuracy
39.67%                           81.58%                             96.33% 

CGAN-A                    RCGAN-U                   CNI-CGAN                        
CNI-CGAN

Fashion-MNIST                       CIFAR-10                       

Figure 3: Visualization of generated samples on three datasets. Rows below the red line represent
the negative class. We highlight the erroneously generated images with red boxes on MNIST.

rates, while CGAN-A even worsens the original PU classifier sometimes in this scenario due to the
existence of too much label noise given by a less accurate PU classifier. Meanwhile, when more su-
pervised positive data are given, the PU classifier generalizes better and then provides more accurate
labels, conversely leading to more consistent and better performance for all methods. Besides, note
that even though the CGAN-P achieves comparable generator label accuracy on MNIST, it results
in a lower Inception Score. We demonstrate this in Appendix D.

Table 1: PU classification accuracy of RCGAN-U and Ours across three datasets. Final PU accuracy
represents the accuracy of PU classifier after the data augmentation.

Final PU Accuracy \ Positive Rates (%) 0.2% 0.5% 1.0% 10.0%

MNIST
Original PU 68.86 76.75 86.94 95.88
RCGAN-U 87.95 95.24 95.86 97.80

Ours 96.33 96.43 96.71 97.82

Fashion-MNIST
Original PU 80.68 88.25 93.05 95.99
RCGAN-U 89.21 92.05 94.59 97.24

Ours 89.23 93.82 95.16 97.33

CIFAR-10
Original PU 76.79 80.63 85.53 88.43
RCGAN-U 83.13 86.22 88.22 90.45

Ours 87.64 87.92 88.60 90.69

To verify the advantage of theoretical property for our CNI-CGAN, we further compare it with
RCGCN-U (Thekumparampil et al., 2018; Kaneko et al., 2019), the heuristic version of robust gen-
eration against unknown noisy labels setting without the theoretical guarantee of optimal condition.
As observed in Table 1, our method outperforms RCGAN-U especially when the positive rate is
low, and when the number of positive labeled data is relatively large, e.g., 10.0%, both Ours and
RCGAN-U obtain comparable performance.

Visualization To further demonstrate the superiority of CNI-CGAN compared with the other base-
lines, we present some generated images withinK+1 classes from CGAN-A, RCGAN-U and CNI-
CGAN on MNIST, and high-quality images from CNI-CGAN on Fashion-MNIST and CIFAR-10,
in Figure 3. In particular, we choose the positive rate as 0.2% on MNIST, yielding the initial PU
classifier with 69.14% accuracy. Given the noisy labels on all data, our CNI-CGAN can generate
more accurate images of each class visually compared with CGAN-A and RCGAN-U. Results of
Fashion-MNIST and comparison with CGAN-P on CIFAR-10 can refer to Appendix E.

3.2 ROBUSTNESS OF OUR APPROACH

Robustness against the Initial PU accuracy The auxiliary loss can help the CNI-CGAN to learn
the clean data distribution regardless of the initial accuracy of PU classifiers. To verify that, we select
distinct positive rates, yielding the pre-trained PU classifiers with different initial accuracies. Then
we perform our method based on these PU classifiers. Figure 4 suggests that although better initial
PU accuracy can be beneficial to the initial generation performance, our approach under different
PU accuracies can still attain the similar generation quality after sufficient training.

Robustness against the Unlabeled data In real scenarios, we are more likely to have little knowl-
edge about the extra data we have. To further verify the robustness of CNI-CGAN against the
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Figure 4: Tendency of generation performance as the training iterations increaseon three datasets.

unknown distribution of extra data, we test different approaches across different amounts and dis-
tributions of the unlabeled data. Particularly, we consider two different types of distributions for
unlabeled data. Type 1 is [ 1

K+1 , ...,
1

K+1 ,
1

K+1 ] where the number of data in each class, including
the negative data, is even, while type 2 is [ 1

2K , ...
1

2K ,
1
2 ] where the negative data makes up half of

all unlabeled data. In experiments, we focus on the PU Accuracy to evaluate both the generation
quality and the improvement of PU learning. For MNIST, we choose 1% and 0.5% for two settings
while we opt for 0.5% and 0.2% on both Fashion-MNIST and CIFAR-10.
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Figure 5: PU Classification accuracy of CGAN-A, RCGAN-U and Ours after joint optimization
across different amounts and distribution types of unlabeled data.

Figure 5 manifests that the accuracy of PU classifier exhibits a slight ascending tendency with the
increasing of the number of unlabeled data. More importantly, our CNI-CGAN almost consistently
outperforms other baselines across different amount of unlabeled data as well as distinct distributions
of unlabeled data. This verifies the robustness of our proposal to the situation of extra data.

4 DISCUSSION AND CONCLUSION

In this paper, we proposed a new method, CNI-CGAN, to jointly exploit PU classification and
conditional generation. It is, to our best knowledge, the first method of such kind to break the ceiling
of class-label scarcity, by combining two promising yet separate methodologies to gain massive
mutual improvements. CNI-CGAN can learn the clean data distribution from noisy labels given by
a PU classifier, and then enhance the performance of PU classification through data augmentation
in various settings. We have demonstrated, both theoretically and experimentally, the superiority
of our proposal on diverse benchmark datasets in an exhaustive and comprehensive manner. In the
future, it will be promising to investigate learning strategies on imbalanced data, e.g., cost-sensitive
learning (Elkan, 2001), to extend our approach to broader settings, which will further cater to real-
world scenarios where only highly unbalanced data are available.
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