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ABSTRACT

We introduce LLaVA-Critic, the first open-source large multimodal model (LMM)
designed as a generalist evaluator to assess performance across a wide range of
multimodal tasks. LLaVA-Critic is trained using a high-quality critic instruction-
following dataset that incorporates diverse evaluation criteria and scenarios. Our
experiments demonstrate the model’s effectiveness in two key areas: (i) LMM-
as-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing
on par with or surpassing GPT models on multiple evaluation benchmarks; and
(ii) Preference Learning, where it generates reward signals for preference learning,
enhancing model alignment capabilities. This work underscores the potential of
open-source LMMs in self-critique and evaluation, setting the stage for future
research into scalable, superhuman alignment feedback mechanisms for LMMs.

1 INTRODUCTION

The ability of learning to evaluate is increasingly taking on a pivotal role in the development of
modern large multimodal models (LMMs), as pre-training on existing web data reaches maturity and
the focus is shifting towards post-training with AI-enhanced synthetic data, which shows growing
potential. Reliable AI evaluation is essential, not only for offering scalable solutions to reduce human
labor in complex task assessments, but also for generating effective reward signals in reinforcement
learning and guiding inference-time search (Ouyang et al., 2022; OpenAI, 2024a; Snell et al., 2024).

Existing LMMs have made tremendous progress in recent research community (Li et al., 2023a),
primarily on improving the performance of various real-world vision tasks in single-image (Liu
et al., 2023b; Bai et al., 2023; Chen et al., 2023b), multi-image (Li et al., 2024c; Jiang et al., 2024)
and video scenarios (Li et al., 2024b; Lin et al., 2024; Wang et al., 2024b). It remains unexplored
to develop open LMMs to play the role of a judge and evaluate the performance of multimodal
models. For instance, a model can follow a well-designed, itemized evaluation criterion to provide a
score between 1 and 10 for rating different model responses in a visual chat task (Liu et al., 2023b).
Along with the score, it would also offer the associated reasoning behind the evaluation, ensuring
transparency and consistency in assessing model performance. In this paper, we present the first
attempt to curate the instruction-following data particularly for evaluation, based on which we develop
a LMM, LLaVA-Critic. Two primary scenarios/goals of building LLaVA-Critic are highlighted:

• Scenario 1: LMM-as-a-Judge. Open-source LMMs that can deliver reliable evaluation scores,
comparable to or surpassing proprietary models like GPT-4V (OpenAI, 2023)/GPT-4o (OpenAI,
2024b). These models can serve as a free alternative to replace commercial GPT models in
various evaluation benchmarks.

• Scenario 2: Preference Learning. A scalable solution for generating effective reward signals,
reducing the need for costly human feedback collection. This approach enhances preference
alignment with AI-generated feedback.

Our experimental results demonstrate that: (i) As a judge model, the evaluation scores and rankings
provided by LLaVA-Critic show a high correlation with commercial GPT models, making it a
cost-effective alternative for model developers in resource-constrained settings; (ii) In preference
learning, LLaVA-Critic offers AI-generated feedback in iterative Direct Preference Optimization
(DPO) (Rafailov et al., 2024), outperforming the preference signals provided by the reward model in
LLaVA-RLHF (Sun et al., 2023), which relies on human feedback for training the reward model.
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In summary, our contributions are as follows:

• Critic Instruction-Following Data: We present a high-quality dataset tailored to follow instruc-
tions in complex evaluation setting to provide quantitative judgment and the corresponding
reasoning process. It consists of 46k images with 113k evaluation instruction samples, including
both pointwise and pairwise evaluation settings.

• Large Multimodal Models: We develop LLaVA-Critic, LMMs that expand the capabilities of
open models to play of the critic, providing effective evaluation and feedback.

• Open-Source: In an effort to support the development of general-purpose visual assistants, we
release our critic instruction data, codebase, model checkpoints, and the trained visual chat
demo to the public.

2 RELATED WORK

LMM-as-a-judge. Strong proprietary LMMs such as GPT-4V / GPT-4o have been demonstrated
to serve as generalist evaluators for vision-language tasks (Zhang et al., 2023a; Ge et al., 2023).
Specifically, for complex scenarios related to human judgment, such as visual chat and detailed
captioning, LMMs have been utilized in evaluation benchmarks to judge the model responses,
including both pointwise settings (Liu et al., 2023b; Yu et al., 2023a; Sun et al., 2023; Zhang et al.,
2024a; Li et al., 2024a; Zhang et al., 2024b) and pairwise settings (Lu et al., 2024; Yu et al., 2024b).
Our LLaVA-Critic are evaluated in the these evaluation scenarios as open-source alternative, with
advantages in cheap and customized evaluation. For open-source models, Prometheus-Vision (Lee
et al., 2024) is the first VLM trained as an evaluator for specific user-designed scoring criteria.
While sharing the same open-source spirit, our proposed LLaVA-Critic is favored as the first open
generalist evaluator. Note that GPT is also utilized to extract answers from LMM responses for
subsequent evaluation in some benchmarks (Lu et al., 2023; Guan et al., 2024; Wang et al., 2024d).
This extractive functionality for evaluation is out of the scope of this paper.

Preference learning for LMMs. Reinforcement learning from human feedback (RLHF) is a proven
method to align large language models (LLMs) with human intentions. DPO (Rafailov et al., 2024)
introduces a new parameterization of the reward model in RLHF, enabling direct optimization using
pairwise preference datasets. CriticGPT (McAleese et al., 2024) trains “critic” models that help
evaluate model-generated code, which is further utilized as feedback signals to improve code LLM.
The concept of preference learning has recently expanded from language models to the multimodal
space. LLaVA-RLHF (Sun et al., 2023), the first open-source work in this area, improves visual
chat abilities for LMMs using human-scored rankings. Research on preference learning for LMMs
has since then advanced in several studies. BPO (Pi et al., 2024) conducts preference learning by
introducing negative responses generated by the model itself, using distorted images or text-based
LLMs to inject errors. Wang et al. (2024a) proposes mDPO, which introduces conditional preference
optimization to emphasize image information. Other works apply preference alignment to reduce
hallucinations and enhance the overall capabilities of vision-language models (VLMs), either through
human feedback (e.g., RLHF-V (Yu et al., 2024a)) or AI feedback (e.g., Silkie: VLFeedback (Li et al.,
2023c)). Several approaches use self-rewarding mechanisms to minimize dependence on external
preference pairs, such as divide-and-conquer strategies (Yu et al., 2024b) (RLAIF-V), sentence-level
beam search (Zhou et al., 2024b), deliberate hallucination injection (Zhou et al., 2024a), or metric-
based self-critic prompts (Wang et al., 2024c). As a generalist evaluator, LLaVA-Critic can provide
valuable feedback for LMM alignment, paving the way for self-improving AI models.

3 DATA COLLECTION

We now introduce the data collection process for the LLaVA-Critic training dataset. The use of
GPT-4/4V as a generalist evaluator for LMMs can be broadly categorized into two settings: (i)
Pointwise scoring: GPT assigns a score to an individual candidate response, either by directly
evaluating it based on predefined criteria or by scoring it relative to a fixed reference answer. This
setting can be regarded as a combination of the single-answer grading and reference grading methods
discussed in Zheng et al. (2024). (ii) Pairwise ranking: GPT compares two candidate responses
to determine their relative quality (or declares a tie). To equip LLaVA-Critic with a generalized
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Multimodal Input for LMM:
Question: What are the specifics visible in the image?

Setting 1: Pointwise Scoring
Response: The image shows a small train with four red cars, traveling on
a track. The train is located in a park setting, and there are potted plants nearby.
Evaluation Prompt: From 0 to 100, how much do you rate for this Text Caption in terms of the
correct and comprehensive description of the image? Do not dominant the rating by a single attribute
such as recognition correctness, but a overall rating on the object/scene appearance, position, pose,
action, shape, etc., and contents in the background. Do not consider the appropriateness or sensitive
descriptors, such as “middle-aged western man”, judge based on if it has correct specifications of
the object and scenes in image. Provide a few lines for explanation and the rate number at last after
“Final Score:”.
LLaVA-Critic: The text caption provides a generally accurate description of the image. It correctly
identifies the small train with four red cars and mentions the park setting and the presence of potted
plants. However, there are a few details that could be improved for a more comprehensive description.
For instance, the caption could mention that the train is stationary rather than traveling, and it could
describe the surrounding structures, such as the building and the wooden fence, to give a fuller
picture of the scene. Final Score: 85.

Setting 2: Pairwise Ranking
Response A: The image shows a small train on a track, with a total of six cars attached to it. The
train is traveling on a small track, and there are potted plants nearby. The scene appears to be set in a
park or a similar outdoor area.
Response B: The image shows a small train with four red cars, traveling on a track. The train is
located in a park setting, and there are potted plants nearby.
Evaluation Prompt: “Given an image and a corresponding question, please serve as an unbiased and
fair judge to evaluate the quality of the answers provided by a Large Multimodal Model (LMM).
Determine which answer is better and explain your reasoning with specific details. Your task is
provided as follows:
Question: []\n Response A: []\n Response B: []\n ASSISTANT:\n”
LLaVA-Critic: Response B is better than response A because it provides a more accurate description
of the objects and their attributes in the image. Response B correctly identifies the train as having
four red cars, whereas Response A inaccurately states that there are six cars. Both responses mention
the potted plants and the park setting, but Response B’s accuracy in the number of train cars makes
it more precise. Additionally, Response B avoids unnecessary repetition and provides a clearer
depiction of the scene, making it more helpful and accurate overall.

Table 1: An example of LLaVA-Critic training data. The top block shows pointwise scoring, where
LLaVA-Critic predicts a score to evaluate a single response’s quality; the bottom block illustrates
pairwise ranking, where it rank response pairs. In both settings, LLaVA-Critic learns to provide
reasons for its judgments.

evaluation capacity as with GPT-4V, we design a GPT-assisted pipeline to curate our training dataset
for both settings. An example of LLaVA-Critic training data is shown in Table 1.

3.1 POINTWISE DATA

To train a generalist critic model for the evaluation of individual LMM responses, each pointwise
training data instance consists of the following components: a multimodal instruction (i.e., a question-
image pair), a model response, an optional reference answer (depending on the evaluation prompt), an
evaluation prompt, a judgment score, and the corresponding justification for the score. By organizing
them in a sequence, the training sample is:

(Image, Question, Response, Reference, Evaluation Criteria, Score, Reason),

where green parts are treated as model output to compute the auto-regressive loss, the order of
Score and Reason is specified by the evaluation prompt. We select multimodal instructions from
8 multimodal instruction tuning datasets, spanning across a wide range of tasks including: (1) general
visual conversation, detailed captioning and reasoning (LLaVA-Instruction-150k (Liu et al., 2023b),
SVIT (Zhao et al., 2023)); (2) more challenging tasks such as complex reasoning (ComVint (Du et al.,

3
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2023)), text-rich understanding (LLaVAR (Zhang et al., 2023b)) and robustness-oriented instructions
(LRV-Instruction (Liu et al., 2023a)); and (3) various specific domains such as academic question
answering (M3IT (Li et al., 2023d)), medical image understanding (LLaVA-Med (Li et al., 2023b))
and embodied decision-making (PCA-EVAL (Chen et al., 2023a)). For each multimodal instruction,
we select one or more model responses from VLFeedback (Li et al., 2023c), which collects multiple
responses from 12 off-the-shelf LMMs. Additionally, we generate responses using GPT-4o, a leading
commercial LMM, to serve as high-quality reference answers.

To equip LLaVA-Critic with general evaluation capacities across various tasks, we construct an
evaluation prompt pool from 7 widely used multimodal benchmarks that utilize GPT-as-a-judge,
including LLaVA-in-the-Wild (Liu et al., 2023b), LLaVA-Wilder (Li et al., 2024a), Image Detailed
Captioning (Li et al., 2024a), MMHal-Bench (Sun et al., 2023), MMVet (Yu et al., 2023b), WildVision-
Bench (Lu et al., 2024) and RefoMB (Yu et al., 2024b). 1 Prompts that require additional textual
context—since they use text-only GPT-4 as the evaluator—are adjusted to focus on the input image,
better aligning with the LMM evaluator setting. To construct training data based on each evaluation
prompt, we select multimodal instructions and model responses according to the specified evaluation
scenario, and include reference answers from GPT-4o when necessary. These components are
then assembled into the evaluation prompt and used as input for GPT-4o (as-a-judge) to provide
high-quality judgment scores and detailed justifications for model responses. Finally, our pointwise
training dataset comprises a total of 18,915 question-image pairs and 72,782 critic data samples.

3.2 PAIRWISE DATA

The pairwise data consists of responses with known preference relationships. In our training dataset,
we collect the pairwise data from three open-source datasets: VLFeedback (Li et al., 2023c),
RLHF (Sun et al., 2023), and RLHF-V (Yu et al., 2024a). In the VLFeedback dataset, each (question,
response) pair is rated across three different dimensions by GPT-4V. For the same question, responses
generated by different LMMs can form multiple response pairs for that question. We randomly select
20k pairs where the average score gap between responses is greater than 0.6. Besides, to ensure
diversity in the preferences, we randomly sample 5k pairs where the two responses had identical
scores across all three dimensions to serve as “Tie” training data. In the RLHF dataset, each question
is annotated with preference relationships between different responses by human evaluators. In
contrast, the RLHF-V dataset consists of responses generated by LMM, which have been manually
refined to produce improved responses. From these two datasets, we collect 9.4k (RLHF) and 5.7k
(RLHF-V) response pairs, each annotated with human preferences. This results in a total of 40.1k
pairwise data samples.

To enable LLaVA-Critic to provide useful detailed feedback in addition to the preference relation, we
utilize GPT-4o to generate reasons behind the given preference judgment. The training sample for
pairwise data is structured in the following sequence:

(Image, Question, Response 1&2, Evaluation Criteria, Preference, Reason),

where the evaluation criteria is from carefully designed prompt templates. To allow LLaVA-Critic to
handle diverse pairwise data ranking, we develop a set of 30 prompt templates (see Appendix A.1).
Each preference pair is randomly assigned a template from this set, forming the final training data.

Data statistics. Our training dataset comprises a total of 46k images and 113k data samples. As
illustrated in Figure 1, we curate our training set with diverse instruction-response pairs, spanning
multiple evaluation tasks and domains.

4 LLAVA-CRITIC

4.1 MODEL

To train the LLaVA-Critic model, we fine-tune a pre-trained LMM that already possesses strong
capabilities in following diverse instructions. This is crucial, as it ensures that the model has already

1Although RefoMB and WildVision-Bench use pairwise evaluation prompts, only one response is evaluated,
with the other from a fixed reference model (GPT-4V and Claude-3-Sonnet, respectively), making them pointwise
evaluations. In our dataset, GPT-4V responses in VLFeedback serve as reference answers for both prompts.

4
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LLaVA-Critic
Training Data

113k

Pairwise

Pointwise

Setting Prompt source Data source Data size

LLaVA-in-the-Wild LLaVA, SVIT, LLaVAR, LLaVAMed, ComVint 17.5k
LLaVA-Wilder SVIT, LLaVAR, LLaVAMed, ComVint, M3IT, PCAEval 16.6k
WildVision-Bench VLFeedback 14.0k

Pointwise MMVet LLaVAR, LLaVAMed, M3IT, PCAEval 9.3k
MMHAL-Bench LRV-Instruction 7.6k
ImageDC SVIT-detail 5.3k
RefoMB VLFeedback 2.5k

Pairwise 30 manually crafted
prompt templates

VLFeedback 20.0k
LLaVA-RLHF 9.4k

VLFeedback (Tie) 5.0k
RLHF-V 5.7k

Figure 1: Data statistic of LLaVA-Critic-113k training dataset. In the pointwise setting, we categorize
datasets by instruction sources and select data based on the task type corresponding to each evaluation
prompt. Note that all our training data is sourced from public instruction-following training sets and
does not overlap with with any evaluation benchmarks.

been equipped to handle a wide range of vision tasks in the wild with high quality. The evaluation
ability is treated as an additional discriminative ability closely tied to these scenarios. During
training, LLaVA-Critic takes an evaluation prompt—assembling the multimodal instruction input,
model response(s), and an optional reference response—as input. It is trained to predict quantitative
pointwise scores or pairwise rankings based on the criteria in the evaluation prompt, and provide
detailed justifications for the assigned judgments. Standard cross-entropy loss is applied to both
judgments and justifications.

In our experiments, we start with the LLaVA-OneVision(OV) 7B/72B pretrained checkpoint and
fine-tune it on the proposed LLaVA-Critic-113k dataset for 1 epoch to develop LLaVA-Critic. We
apply a learning rate of 2e-6 and a batch size of 32 for training, with other hyperparameters set to
the defaults from Li et al. (2024b). We also curate a subset with 53k samples (42k pointwise, 11k
pairwise) that cover fewer instruction sources and domains. The model trained on this reduced subset
is referred to as LLaVA-Critic (v0.5).

4.2 SCENARIO 1: LMM-AS-A-JUDGE

Evaluating complex tasks often requires human judges to provide feedback, which can be labor-
intensive. LLaVA-Critic can serve as a general evaluator for LMM responses, reducing labor costs
by automating the evaluation process. LLaVA-Critic consistently provides reliable judgments and
justifications aligned with GPT-4o or human evaluations across a range of widely used multimodal
benchmarks. This consistency holds true for both instance-level scoring and model-level ranking, as
demonstrated in Sec. 5.1.

Specifically, we consider the following evaluation scenarios: (i) Visual Chat. This task involves
handling daily-life visual tasks through multimodal dialogue, requiring evaluation of task completion
quality in a conversation setting. Examples include LLaVA-Bench (Liu et al., 2023b) and LLaVA-
in-the-Wild (Liu et al., 2023b), which focus on simpler scenarios, while LLaVA-Wilder (Li et al.,
2024a) addresses more challenging cases. (ii) Integrated capabilities. Real-world tasks require
integration of multiple basic abilities of LMMs. MM-Vet (Yu et al., 2023b) offers a comprehensive
benchmark, evaluating core vision-language capabilities including recognition, OCR, knowledge
integration, language generation, spatial awareness, and math. The Multimodal Live-Bench tests the
model’s ability to generalize to new, unobserved knowledge by leveraging continuously updated news
and online forums. (iii) Preferences. This task simulates real-world multimodal interactions where
models are expected to align their behavior with human preferences. The WildVision-Bench (Lu
et al., 2024) is a prime example, replicating scenarios from the online platform WildVision-Arena
(WV-Arena) to evaluate preference-based interactions. (iv) Detailed Description. This task assesses
models on their ability to provide comprehensive and detailed descriptions of images and videos.
Image Detailed Captioning (Li et al., 2024a) evaluates detailed descriptions in images, while video
Detailed Captioning (Zhang et al., 2024c) extends these capabilities from images to video contexts.
(v) Hallucination: This task focuses on the model’s ability to provide grounded responses based on
the given context, ensuring that it avoids generating inaccurate or fabricated information, exemplified
by MMHal-Bench (Sun et al., 2023).

5
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4.3 SCENARIO 2: PREFERENCE LEARNING

Leveraging a generalist evaluator as a critic to generate reward signals for reinforcement learning
is a promising research direction. In this work, we employ LLaVA-Critic to produce AI-generated
feedback datasets for diverse tasks, thereby improving the performance of supervised fine-tuned
LMMs through preference alignment. Notably, the reward signals generated by our critic can be
utilized in any preference learning algorithms, including RLHF and DPO. To quickly assess the
effectiveness of the reward data, we focus on how LLaVA-Critic is incorporated into the iterative
DPO training process.

• Step 1: Response generation. The iterative DPO process begins with a pretrained LMM π0 as the
initial checkpoint and a set of multimodal instructions {(xk,vk)}Nk=1, where each xk is a question
and vk is the corresponding image. For each question-image pair (x,v), the pretrained LMM π0

randomly generates K responses {y1, y2, . . . , yK}, sampled independently from its distribution.
• Step 2: Scoring. To mitigate order-related variance in LLaVA-Critic’s preferences, we form all

possible ordered pairs from these responses, resulting in K × (K − 1) pairs. For each response pair
(yi, yj), we apply LLaVA-Critic with an evaluation prompt to generate a relative score aij , which
normalizes the score of yj based on yi.

• Step 3: Reward Preference. The overall reward score ri for each response yi is calculated
by aggregating these preference scores: ri =

∑
k ̸=i aki −

∑
l ̸=i ail This calculation effectively

measures how much better or worse yi is compared to all other responses. We then select the
responses with the highest and lowest reward scores as the best and worst responses, denoted as
y+ and y−, respectively. These form the pairwise feedback data (y+, y−), which is used for DPO
training to enhance the LMM’s alignment with LLaVA-Critic’s preferences.

Iterative Improvement. After each round of DPO training, the updated LMM becomes the new
starting checkpoint. The process is then repeated iteratively for another M − 1 rounds, using LLaVA-
Critic to progressively improve the model’s performance based on its self-generated responses.

5 EXPERIMENTAL RESULTS

5.1 LMM-AS-A-JUDGE

To comprehensively assess the LLaVA-Critic’s capacity in evaluating LMM responses across different
scenarios, we consider two primary experimental settings: (1) In-domain Judgments: where we
measure LLaVA-Critic’s consistency with GPT-4o or human evaluators on evaluation tasks/prompts
included in the LLaVA-Critic-113k training dataset; and (2) Out-of-domain Judgments: where we
apply LLaVA-Critic on evaluation tasks and prompts that are unseen during training. For the second
setting, we use the MLLM-as-a-Judge (Chen et al., 2024) benchmark to assess the alignment between
LLaVA-Critic and human evaluators in generalized scenarios.

In-domain Pointwise Scoring To evaluate the consistency between LLaVA-Critic and GPT-
4o (OpenAI, 2024b) in pointwise scoring across different evaluation scenarios, as described in
Sec. 4.2, we select 7 popular multimodal benchmarks and collect candidate responses from 13
commonly used LMMs alongside their GPT-4o evaluations, resulting in a total of 14174 examples
(see details in Appendix A.2). LLaVA-Critic is then tasked with providing judgments on theses
samples. We report Pearson correlation and Kendall’s Tau to measure the degree of alignment with
GPT-4o in terms of instance-wise scoring and model-wise ranking respectively.

We conduct experiments based on three different baseline models: LLaVA-NeXT (LLaMA-8B) (Liu
et al., 2024b; Li et al., 2024a), LLaVA-OneVision-7B, and LLaVA-OneVision-72B. The experimental
results are shown in Table 2. Across all models and benchmarks, LLaVA-Critic variants significantly
improve their corresponding baseline models in both Pearson-r and Kendall’s Tau. (i) Data scaling.
By comparing the performance between v0.5 and full data trained LLaVA-Critic-7B, it concludes
the necessity of larger size and diversity of instruction in training data. (ii) Model scaling. The best
performance in terms of Pearson-r is achieved by LLaVA-Critic-72B with an average score of 0.754,
which significantly outperforms the LLaVA-OV-72B baseline (0.634). Similarly, in Kendall’s Tau,
LLaVA-Critic-72B achieves the highest average score of 0.933, again outperforming the LLaVA-OV-
72B baseline (0.802). This indicates that LLaVA-Critic-72B already possesses pointwise scoring

6
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LMM Evaluator Pearson-r (↑)

ImageDC MMVet WildVision LLaVA-B LLaVA-W L-Wilder MMHal Avg.

LLaVA-NeXT (LLaMA-8B) 0.262 0.317 0.147 0.211 0.345 0.156 0.472 0.273
LLaVA-Critic (LLaVA-NeXT) 0.673 0.706 0.580 0.529 0.820 0.936 0.748 0.713
LLaVA-OV-7B 0.056 0.349 0.251 0.335 0.533 0.592 0.433 0.364
LLaVA-Critic-7B (v0.5) 0.737 0.718 0.571 0.494 0.789 0.932 0.746 0.712
LLaVA-Critic-7B 0.735 0.733 0.616 0.510 0.843 0.940 0.748 0.732
LLaVA-OV-72B 0.718 0.680 0.446 0.436 0.716 0.824 0.620 0.634
LLaVA-Critic-72B 0.802 0.723 0.705 0.524 0.782 0.951 0.790 0.754

LMM Evaluator Kendall’s Tau (↑)

ImageDC MMVet WildVision LLaVA-B LLaVA-W L-Wilder MMHal Avg.

LLaVA-NeXT (LLaMA-8B) 0.452 0.436 0.615 0.487 0.503 0.231 0.590 0.473
LLaVA-Critic (LLaVA-NEXT) 0.787 0.974 0.846 0.839 0.923 0.974 0.923 0.895
LLaVA-OV-7B 0.539 0.154 0.795 0.667 0.641 0.839 0.590 0.603
LLaVA-Critic-7B (v0.5) 0.813 0.897 0.872 0.846 0.949 0.974 0.923 0.896
LLaVA-Critic-7B 0.897 0.949 0.897 0.839 0.923 0.974 0.897 0.911
LLaVA-OV-72B 0.872 0.795 0.821 0.667 0.769 0.949 0.744 0.802
LLaVA-Critic-72B 0.949 0.949 0.949 0.821 0.923 0.994 0.949 0.933

Table 2: Comparisons on in-domain pointwise scoring. LLaVA-Critic consistently outperforms other
baseline methods across 7 multimodal evaluation benchmarks.
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Figure 2: (Top): Overall distribution of evaluation scores across 4 benchmarks. (Bottom): Calculated
average evaluation score for each response model on each benchmark. Each color represents a
different LMM evaluator. Leveraging high-quality critic training data, LLaVA-Critic closely aligns
with GPT-4o in delivering balanced evaluation scores and accurately ranking response LMMs.

capabilities that are quite aligned with GPT-4o. Moreover, it is worth noting that even with a
significant reduction in model parameters, LLaVA-Critic-7B still exhibits very strong point-wise
scoring capabilities. With a Pearson-r of 0.732 and a Kendall’s Tau of 0.911, its performance has not
decreased significantly compared to LLaVA-Critic-72B. This presents an advantage for deploying
and utilizing LLaVA-Critic in resource-constrained environments.

Figure 2 provides a qualitative comparison between LLaVA-Critic and other LMM evaluators. While
LLaVA-OneVision often assigns fixed scores (e.g., “Tie” on WildVision-Bench or “6” on MMHal-
Bench), LLaVA-Critic produces more diverse and balanced scores that closely align with GPT-4o,
leading to consistent rankings of response models. Notably, even without training on critic data,
LLaVA-OneVision-72B demonstrates model-wise rankings that partially align with GPT-4o across
four multimodal benchmarks.
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Model Accuracy w. Tie↑ Accuracy w.o. Tie↑ Kendall’s Tau↑
GPT-4o 0.617 0.734 0.819
GPT-4V 0.620 0.733 0.787
LLaVA-NeXT (LLaMA-8B) 0.473 0.569 0.605
LLaVA-OV-7B 0.531 0.640 0.715
LLaVA-OV-72B 0.594 0.708 0.763
LLaVA-Critic-7B (v0.5) 0.580 0.692 0.755
LLaVA-Critic(LLaVA-NeXT) 0.582 0.686 0.755
LLaVA-Critic-7B 0.596 0.722 0.763
LLaVA-Critic-72B 0.605 0.736 0.779

Table 3: Comparisons on in-domain pairwise ranking. LLaVA-Critic is comparable with GPT-4V in
terms of alignment with human evaluators.

In-domain Pairwise Ranking To assess the consistency between LLaVA-Critic and human eval-
uators in pairwise ranking, we use the battle data from WildVision Arena (Lu et al., 2024), which
comprises 11k human-annotated preference relations among LMM response pairs. Each relation
includes a question-image pair and two responses generated by different models, accompanied by a
human-annotated preference (including ties). From this dataset, we randomly sample 2k response
pairs and assign them to evaluation prompts from the pairwise ranking prompt template set men-
tioned in Section 3.2, creating the in-domain evaluation dataset. We report average accuracy, with
and without ties, to assess alignment with human evaluators at the instance level. For model-level
consistency, we calculate the Elo rating for each response LMM and report Kendall’s Tau to measure
the overall ranking correlation with human preferences.

Experimental results are reported in Table 3. While the LLaVA models exhibit initial pairwise
ranking ability, there is a notable performance gap compared to GPT-4V/4o. After training with critic
data, LLaVA-Critic achieves significant improvements. Specifically, LLaVA-Critic-72B achieves an
average accuracy of 73.6% in pairwise comparisons without tie, outperforming both GPT-4o and
GPT-4V. For pairwise comparison with tie (Accuracy w. Tie) and model-wise ranking (Kendall’s
Tau), LLaVA-Critic-72B shows only a marginal gap compared to GPT-4V/4o, with an accuracy of
60.5% and a score of 0.779, respectively. Notably, despite a substantial reduction in the number of
parameters, LLaVA-Critic-7B still achieves an average accuracy of 59.6% in pairwise ranking with
ties and 72.2% without ties, alongside a Kendall’s tau of 0.763. These results underscore the strong
alignment between LLaVA-Critic and human evaluators in pairwise ranking LMM responses.

MLLM-as-a-Judge MLLM-as-a-Judge (Chen et al., 2024) is a comprehensive benchmark to
evaluate the degree of alignment between model-based evaluation and human evaluation. It collects
approximately 17k image-instruction-response triplets across 14 multimodal benchmarks and 6
LMM response models. Human annotators are then employed to assess model responses under
scoring, pairwise comparison and batch ranking settings, resulting in 7756, 5719, 1469 examples
respectively. In our experiments, we evaluate LLaVA-Critic in both (pointwise) scoring and pair
comparison settings to assess its general alignment with human evaluators. We report the average
Pearson correlation for scoring and average accuracy for pairwise comparison, following the metrics
used in the original benchmark.

We compare LLaVA-Critic with commercial models (GPT-4V/4o, Gemini-Pro (Team et al., 2023)),
open-sourced LMMs, as well as Prometheus-Vision (Lee et al., 2024), which trains a LLaVA model
on a curated LMM-as-a-judge dataset comprising 15k GPT-generated rubrics and 150k GPT-4V
feedback data. As shown in Table 4, LLaVA-Critic-7B surpasses all baselines except GPT-4V/4o
across all settings by a considerable margin. Built on a stronger base model, LLaVA-Critic-72B
further achieves the Pearson similarity with human annotators from 0.314 to 0.393 in pointwise
scoring. For pairwise comparisons, it achieves accuracy rates of 57.8% and 71.5% with and without
ties, respectively, reaching a level of alignment with human evaluators comparable to GPT-4V/4o. We
also compare different variants of LLaVA-Critic and observe performance gains with both stronger
base models and larger training data, consistent with previous findings. This again highlights the
critical role of model and data scaling in building an effective and generalist open-source LMM
evaluator. More comprehensive results are provided in Appendix B.1.

Qualitative Comparison. We present example comparisons of the evaluation scores and reasons
generated by LLaVA-Critic and other LMMs, with detailed examples provided in Appendix C. The
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Model Score↑ Pair w. Tie↑ Pair w.o. Tie↑
GPT-4V* 0.490 0.636 0.773
GPT-4o† 0.439 0.577 0.736
GPT-4V† 0.424 0.538 0.717
Gemini-pro* 0.304 0.509 0.615
LLaVA-v1.5-7B 0.158 0.439 0.576
LLaVA-NeXT (LLaMA-8B) 0.198 0.461 0.586
LlaVA-OV-7B 0.151 0.426 0.550
LlaVA-OV-72B 0.287 0.513 0.701
Prometheus-Vision (LLaVA-v1.5-7B) 0.213 – –
LLaVA-Critic (LLaVA-v1.5-7B) 0.228 0.528 0.656
LLaVA-Critic (LLaVA-NeXT) 0.272 0.547 0.677
LLaVA-Critic-7B (v0.5) 0.312 0.546 0.675
LLaVA-Critic-7B 0.314 0.556 0.689
LLaVA-Critic-72B 0.393 0.578 0.715

Table 4: Results on MLLM-as-a-Judge (Chen et al., 2024). *: the results as reported in the original
paper (Chen et al., 2024); †: results from our evaluation of GPT-4V/4o based on their codebase. Note
that Prometheus-Vision cannot follow the pairwise evaluation prompt. LLaVA-Critic significantly
narrows the gap between open-source LMMs and GPT-4V/4o in their ability to evaluate LMM
responses across a range of evaluation scenarios.

key findings are as follows: Compared to LLaVA-OneVision, LLaVA-Critic delivers more accurate
judgments (Table 10), and provides more concrete, image-grounded justifications (Table 11). The
latter is crucial for reliable AI (Bai et al., 2022), as offering well-supported reasons for evaluations
establishes LLaVA-Critic as a transparent evaluator of LMM responses.

5.2 PREFERENCE LEARNING

We further evaluate LLaVA-Critic’s performance in providing reward signals for iterative DPO.
LLaVA-OneVision’s supervised fine-tuned checkpoint is used as the base policy model, and question-
image pairs from LLaVA-RLHF (Sun et al., 2023) serve as the multimodal instructions. For each
pair, K = 5 candidate responses are generated through random decoding (with a temperature of 0.7
and top-p of 0.9) to ensure response diversity. LLaVA-Critic is employed as described in Sec. 4.3 to
construct the pairwise feedback data, which is then used for one epoch of DPO training. We perform
iterative DPO for M = 3 rounds in total.

To assess the effectiveness of the LLaVA-Critic’s reward signals, we evaluate the final LMM check-
point across 6 open-ended multimodal benchmarks: four image-based tasks (LLaVA-in-the-Wild (Liu
et al., 2023b), LLaVA-Wilder (Li et al., 2024a), LiveBench (Zhang et al., 2024a), and WildVision-
Bench (Lu et al., 2024)), one video-based task (Video Detailed Captioning (Li et al., 2024a)), and
one hallucination benchmark (MMHal-Bench (Sun et al., 2023)). We compare LLaVA-Critic with
two baselines: (1) the reward model from LLaVA-RLHF (Sun et al., 2023), which is trained on
human preferences, and (2) a naive baseline that replaces LLaVA-Critic with LLaVA-OneVision’s
SFT checkpoint as a zero-shot reward model.

As shown in Table 5, preferences provided by LLaVA-Critic significantly improve LLaVA-
OneVision’s visual chat capacities and reduce hallucination across challenging tasks. LLaVA-Critic
consistently surpasses other baseline reward models on 5 out of 6 benchmarks for the 7B base model
and all 6 benchmarks for the 72B base model. Despite the preference alignment conducted solely with
images, LLaVA-Critic also enhances LLaVA-OneVision’s performance in Video Detailed Captioning
(+0.12 on OV-7B and +0.26 on OV-7B), demonstrating its ability to generalize to both image and
video contexts. Additionally, we observe that Critic-7B outperforms Critic-7B-v0.5 on 5 out of 6
benchmarks, highlighting the importance of stronger reward models—trained on more diverse critic
instructions—to deliver more accurate reward signals and further enhance preference learning. Please
refer to Appendix B.2 for additional results and Table 12 for a visual-chat example.

Comparison We take LLaVA-v.1.5-7B as the base policy model, and compare LLaVA-Critic with 4
previous methods that apply preference optimization with self-generated candidate responses: LLaVA-
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Base Reward Signal LLaVA-W↑ L-Wilder↑ WildVision↑ LiveBench↑ VideoDC↑ MMHal↑
GPT-4V – 98.0 81.0 79.8 73.7 4.00 3.83

OV-7B

– 90.7 67.8 54.0 77.1 3.75 3.19
OV-7B 98.6 70.9 66.6 84.0 3.77 3.79
LLaVA-RLHF 97.5 70.3 64.1 83.1 3.84 4.01
Critic-7B (v0.5) 98.1 70.5 67.2 85.1 3.83 3.85
Critic-7B 100.3 71.6 67.3 84.5 3.87 3.91

OV-72B
– 93.5 72.0 51.7 81.5 3.60 3.61
LLaVA-RLHF 103.2 75.2 65.2 86.2 3.85 3.67
Critic-72B 104.4 75.9 70.0 88.5 3.86 3.77

Table 5: Comparison between LLaVA-Critic and other baselines in preference alignment. “Base”
refers to the initial LMM checkpoint for DPO. For both LLaVA-OV-7B and LLaVA-OV-72B base
models, iterative DPO training with LLaVA-Critic’s reward signal leads to more significant perfor-
mance gains across various multimodal benchmarks.

Method #Prompts LLaVA-W L-Wilder WildVision LiveBench MMHal* MMEP MMEC MMB-en MM-Vet MMStar

LLaVA-v1.5-7B – 63.4 54.2 20.4 45.6 1.94 1510.7 348.2 64.3 30.5 33.3
+ RLHF 9.4k 63.7 54.5 19.8 46.2 1,90 1508.2 360.2 60.4 31.1 33.0
+ SIMA 17k 66.1 52.3 17.6 47.9 1.81 1507.7 379.3 64.9 31.6 34.7
+ CSR 15k 71.1 55.9 20.0 45.0 1.96 1524.2 367.9 65.4 33.9 33.6
+ RLAIF-V 33.8k 72.7 56.4 19.2 50.4 3.04 1362.7 302.9 62.6 26.7 35.4
+ LLaVA-Critic 9.4k 73.5 57.2 29.2 50.0 2.07 1500.4 350.7 64.1 32.2 34.2

Table 6: Comparison with other preference learning algorithms on LLaVA-v1.5-7B. Apart from
benchmarks in Table 5, we also report the results on 5 comprehensive multimodal benchmarks for
reference. The best and second best results are shown in bold and underlined respectively. *OpenAI’s
gpt-4-0613 is used for the MMhal-Bench evaluation due to the deprecation of the original API.

RLHF (Sun et al., 2023), SIMA (Wang et al., 2024c), CSR (Zhou et al., 2024b) and RLAIF-V (Yu
et al., 2024b). These methods primarily vary in the source of reward signals: LLaVA-RLHF leverages
a pretrained reward model based on human feedback; SIMA develops an in-context self-critic prompt
for providing pairwise judgments; CSR incorporates sentence-level beam search with CLIP-score
calibration; and RLAIF-V adopts a divide-and-conquer strategy to calculate the overall reward score
by combining sentence-level judgments. For our method, we utilize the prompts (question-image
pairs) from the LLaVA-RLHF dataset and perform DPO training for 3 epoches.

As illustrated in Table 6, with only 9.4k input prompts, the reward signal provided by LLaVA-
Critic substantially improve the base model’s performance across various open-ended visual chat
benchmarks. It achieves the best improvements of +10.1 on LLaVA-W, +3.0 on LLaVA-Wilder, +8.8
on WildVision, along with the second-highest gains of + 4.4 on LiveBench and +0.13 on MMHal-
Bench, respectively. At the same time, the overall capacities of LLaVA-v1.5-7B are largely preserved,
as demonstrated on other comprehensive benchmarks. This is superior to other competing methods,
which either result in smaller performance gains or achieve improvements by compromising the
overall capabilities on other benchmarks.

6 CONCLUSIONS

We have presented LLaVA-Critic, an open-source LMM that is trained to evaluate model performance
in a wide range of multimodal scenarios. To achieve this, we curated a high-quality critic instruction-
following dataset with diverse evaluation criteria. We demonstrated the effectiveness of LLaVA-Critic
in two key areas: (1) as a generalized evaluator, LLaVA-Critic provides pointwise scores and pairwise
rankings that closely align with human and GPT-4o preferences across multiple evaluation tasks,
presenting a viable open-source alternative to commercial GPT models for autonomous assessment of
open-ended LMM responses; (2) in preference learning, LLaVA-Critic functions as a reliable reward
model, supplying preference signals that enhance the visual chat capabilities of LMMs, surpassing
the LLaVA-RLHF reward model built with human feedback. This work represents an important step
toward harnessing the self-critique capabilities of open-source LMMs, and we hope it will encourage
further research into developing strong LMMs with scalable and superhuman alignment feedback.
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A IMPLEMENTATION DETAILS

A.1 EVALUATION PROMPTS FOR LLAVA-CRITIC TRAINING

Pointwise prompts To construct pointwise training data, we adapt the existing evaluation prompts
in 7 widely used multimodal evaluation benchmarks that employ GPT-as-a-judge. For further details,
please refer to their papers or codebases as listed below:

• LLaVA-in-the-Wild (Liu et al., 2023b): arxiv.org/abs/2304.08485

• LLaVA-Wilder (Li et al., 2024a): llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/

• ImageDC (Li et al., 2024a): llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/

• MMHal-Bench (Sun et al., 2023): arxiv.org/abs/2309.14525

• MM-Vet (Yu et al., 2023b): arxiv.org/abs/2308.02490

• WildVision-Arena (Lu et al., 2024): arxiv.org/abs/2406.11069

• RefoMB (Yu et al., 2024b): harxiv.org/abs/2405.17220

LLaVA-in-the-Wild, MM-Vet, MMHal-Bench and RefoMB use text-only GPT models for evaluation.
We slightly adjust their evaluation prompts to focus on visual information from the input image,
rather than text-based contexts.

Pairwise prompt pool To fully develop LLaVA-Critic’s capacity of ranking LMM responses pairs
across diverse scenarios, with varying format requirements and evaluation criteria, we design a set of
30 pairwise prompt templates for constructing our pairwise training data. Due to page limits, two
representative prompts are provided in Table 7.

A.2 BENCHMARK CONSTRUCTION FOR LMM-AS-A-JUDGE

In-domain pointwise scoring To evaluate the ability of LLaVA-Critic in judging LMM-generated
responses across varying performance levels, we select 13 off-the-shelf LMMs spanning across a
wide range of visual chat capabilities, then collect their responses on 7 multimodal benchmarks. The
selected response models are listed below:

• GPT-4o (OpenAI, 2024b), Claude3-Sonnet (Anthropic, 2024), LLaVA-NeXT (LLaMA-8B) (Liu
et al., 2024b), LLaVA-NeXT (Vicuna-7B) (Liu et al., 2024b), LLaVA-OneVision-7B (Li et al.,
2024b), LLaVA-RLHF-13B (Sun et al., 2023), LLaVA-v1.5-7B (Liu et al., 2024a), LLaVA-v1.5-
13B (Liu et al., 2024a), InstructBLIP-Vicuna-7B (Dai et al., 2024), InternVL2-8B (Chen et al.,
2023b), Phi-3-Vision-128k-Instruct (Abdin et al., 2024), fuyu-8B (Bavishi et al., 2023) and Qwen-
VL-Chat (Bai et al., 2023)

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS ON MLLM-AS-A-JUDGE

We include the comprehensive results on MLLM-as-a-Judge (Chen et al., 2024) in Table 8. Since the
complete evaluation pipeline has not been released, we re-implement the evaluation code based on
their official codebase.

B.2 RESULTS ON PREFERENCE LEARNING

We now present the comprehensive results of applying multi-round iterative DPO, with LLAVA-Critic
providing the reward signals. As shown in Table 9, this approach significantly enhances LLaVA-
OneVision’s performance across six open-ended visual chat tasks, with consistent gains observed after
each training round. For other comprehensive benchmarks, the iterations offer minimal benefit, while
LLaVA-OneVision’s overall capabilities remain largely preserved. A visualization of the performance
gains on the visual chat benchmarks is provided in Figure 3.
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Prompt Template 1:
You will be given an image and a corresponding question. Your task is to evaluate
the responses provided, select the better response, and give reasons for your choice.
Consider the following factors when making your decision.

1. Accuracy in Object Description: Evaluate the accuracy of the descriptions concerning
the objects mentioned in the ground truth answer. Responses should minimize the
mention of objects not present in the ground truth answer, and inaccuracies in the
description of existing objects.
2. Accuracy in Depicting Relationships: Consider how accurately the relationships
between objects are described compared to the ground truth answer. Rank higher the
responses that least misrepresent these relationships.
3. Accuracy in Describing Attributes: Assess the accuracy in the depiction of objects’
attributes compared to the ground truth answer. Responses should avoid inaccuracies in
describing the characteristics of the objects present.
4. Helpfulness: Consider whether the generated text provides valuable insights, additional
context, or relevant information that contributes positively to the user’s comprehension
of the image. Assess whether the language model accurately follows any specific
instructions or guidelines provided in the prompt. Evaluate the overall contribution of
the response to the user experience.
5. Ethical Considerations: Identify if the model gives appropriate warnings or avoids
providing advice on sensitive topics, such as medical images. Ensure the model refrains
from stating identification information in the image that could compromise personal
privacy. Evaluate the language model’s responses for fairness in treating individuals
and communities, avoiding biases. Assess for harmfulness, ensuring the avoidance of
content that may potentially incite violence, be classified as NSFW (Not Safe For Work),
or involve other unmentioned ethical considerations. Consider any content that could be
deemed offensive, inappropriate, or ethically problematic beyond the explicitly listed
criteria.

The question and responses are given as follows:
Question: [] \n Response A: [] \n Response B: [] \n ASSISTANT:

Prompt Template 2:
As an expert, you are asked to evaluate two responses to the given image-based question.
Provide a professional assessment of responses and decide which one is better. Support
your decision with detailed reasons. Here are the question and responses:
Question: [] \n The first response: [] \n The second response: [] \n ASSISTANT:

Table 7: Example prompt templates for constructing pairwise training data. The first template covers
scenarios with specific user-defined criteria, while the second is for general evaluations without
additional instructions.
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Settings MLLM COCO C.C. Diff. Graphics Math Text WIT Chart VisIT CC-3M M2W SciQA Aes MM-Vet Ave.

Score (↑)

GPT-4V* 0.454 0.507 0.458 0.645 0.606 0.624 0.579 0.645 0.620 0.431 0.185 0.383 0.401 0.326 0.490
Gemini-Pro* 0.262 0.408 - 0.400 0.228 0.222 0.418 0.343 0.336 0.374 0.324 0.073 0.360 0.207 0.304
LLaVA-1.5-13b* 0.247 0.227 0.060 0.242 0.093 0.245 0.109 0.237 0.177 0.071 0.424 0.279 0.414 0.322 0.225
GPT-4o† 0.396 0.452 0.341 0.464 0.460 0.564 0.408 0.573 0.589 0.305 0.262 0.569 0.421 0.342 0.439
GPT-4V† 0.410 0.444 0.361 0.449 0.486 0.506 0.457 0.585 0.554 0.266 0.267 0.315 0.472 0.367 0.424
LLaVA-v1.5-7B 0.205 0.084 0.094 -0.028 0.099 0.235 -0.076 0.212 0.300 0.167 0.392 0.033 0.354 0.147 0.158
LLaVA-NeXT (LLaMA-8B) 0.288 0.279 0.066 0.249 0.077 0.145 -0.051 0.197 0.304 0.198 0.364 0.128 0.362 0.165 0.198
LLaVA-OV-7B 0.224 0.024 0.063 0.189 0.097 0.265 -0.135 0.274 0.227 0.081 0.030 0.261 0.249 0.262 0.151
LLaVA-OV-72B 0.264 0.390 0.046 0.262 0.358 0.327 0.195 0.290 0.415 0.144 0.359 0.267 0.444 0.253 0.287
Prometheus-Vision (LLaVA-v1.5-7B) 0.289 0.342 0.106 0.172 0.182 0.214 0.209 0.224 0.226 0.228 0.089 0.174 0.368 0.157 0.213
LLaVA-Critic (LLaVA-v1.5-7B) 0.283 0.295 0.095 0.225 0.246 0.257 0.191 0.194 0.253 0.241 0.198 0.188 0.327 0.198 0.228
LLaVA-Critic (LLaVA-NeXT) 0.272 0.406 0.118 0.257 0.309 0.275 0.292 0.354 0.374 0.225 0.224 0.091 0.432 0.176 0.272
LLaVA-Critic-7B (v0.5) 0.369 0.456 0.108 0.291 0.325 0.340 0.228 0.388 0.303 0.205 0.232 0.270 0.511 0.338 0.312
LLaVA-Critic-7B 0.382 0.450 0.103 0.316 0.356 0.378 0.179 0.421 0.322 0.246 0.301 0.269 0.395 0.272 0.314
LLaVA-Critic-72B 0.333 0.463 0.146 0.452 0.474 0.559 0.396 0.545 0.488 0.273 0.259 0.334 0.403 0.374 0.393

Pair w. Tie (↑)

GPT-4V* 0.696 0.824 0.847 0.639 0.564 0.673 0.679 0.657 0.640 0.612 0.521 0.415 0.606 0.529 0.636
Gemini-Pro* 0.616 0.787 - 0.650 0.436 0.664 0.605 0.500 0.660 0.560 0.370 0.262 0.190 0.312 0.509
Qwen-vl-plus* 0.479 0.507 0.650 0.450 0.328 0.522 0.500 0.380 0.453 0.383 0.577 0.321 0.601 0.457 0.472
GPT-4o† 0.582 0.665 0.829 0.625 0.433 0.477 0.565 0.355 0.577 0.586 0.581 0.427 0.873 0.505 0.577
GPT-4V† 0.539 0.634 0.668 0.632 0.459 0.495 0.536 0.369 0.591 0.544 0.544 0.389 0.620 0.517 0.538
LLaVA-v1.5-7B 0.460 0.506 0.577 0.452 0.302 0.454 0.375 0.383 0.518 0.478 0.495 0.281 0.466 0.402 0.439
LLaVA-NeXT (LLaMA-8B) 0.422 0.595 0.435 0.404 0.343 0.431 0.428 0.384 0.508 0.496 0.571 0.336 0.588 0.512 0.461
LLaVA-OV-7B 0.334 0.471 0.539 0.397 0.318 0.398 0.324 0.374 0.444 0.438 0.556 0.334 0.577 0.456 0.426
LLaVA-OV-72B 0.464 0.593 0.667 0.531 0.434 0.485 0.447 0.394 0.549 0.497 0.557 0.428 0.596 0.541 0.513
LLaVA-Critic (LLaVA-v1.5-7B) 0.564 0.674 0.633 0.505 0.422 0.528 0.538 0.386 0.583 0.608 0.577 0.294 0.681 0.404 0.528
LLaVA-Critic (LLaVA-NeXT) 0.583 0.684 0.704 0.562 0.438 0.504 0.579 0.339 0.635 0.599 0.581 0.315 0.693 0.441 0.547
LLaVA-Critic-7B (v0.5) 0.575 0.677 0.73 0.556 0.427 0.521 0.537 0.366 0.568 0.62 0.571 0.353 0.703 0.435 0.546
LLaVA-Critic-7B 0.593 0.687 0.707 0.587 0.432 0.544 0.564 0.338 0.596 0.628 0.591 0.37 0.686 0.464 0.556
LLaVA-Critic-72B 0.587 0.672 0.86 0.588 0.475 0.536 0.618 0.366 0.628 0.608 0.568 0.39 0.721 0.473 0.578

Pair w.o. Tie (↑)

GPT-4V* 0.804 0.870 0.922 0.807 0.801 0.805 0.734 0.849 0.761 0.703 0.699 0.647 0.755 0.659 0.773
Gemini-Pro* 0.717 0.840 - 0.770 0.678 0.793 0.688 0.658 0.711 0.652 0.471 0.358 0.265 0.400 0.615
LLaVA-1.6-34b* 0.607 0.824 0.855 0.402 0.587 0.750 0.758 0.381 0.503 0.564 0.712 0.679 0.694 0.762 0.648
GPT-4o† 0.774 0.776 0.934 0.835 0.628 0.618 0.737 0.513 0.741 0.770 0.706 0.722 0.887 0.660 0.736
GPT-4V† 0.729 0.772 0.884 0.853 0.665 0.661 0.760 0.495 0.785 0.707 0.697 0.639 0.741 0.654 0.717
LLaVA-v1.5-7B 0.617 0.571 0.637 0.598 0.411 0.544 0.452 0.554 0.653 0.562 0.672 0.600 0.558 0.631 0.576
LLaVA-NeXT (LLaMA-8B) 0.565 0.684 0.473 0.526 0.460 0.526 0.516 0.549 0.634 0.592 0.641 0.648 0.673 0.716 0.586
LLaVA-OV-7B 0.462 0.562 0.588 0.530 0.434 0.473 0.400 0.543 0.563 0.527 0.639 0.670 0.633 0.679 0.550
LLaVA-OV-72B 0.691 0.780 0.811 0.714 0.623 0.634 0.625 0.57 0.737 0.685 0.755 0.702 0.746 0.736 0.701
LLaVA-Critic (LLaVA-v1.5-7B) 0.732 0.757 0.665 0.659 0.574 0.623 0.650 0.544 0.710 0.719 0.649 0.589 0.708 0.602 0.656
LLaVA-Critic (LLaVA-NeXT) 0.763 0.775 0.762 0.720 0.599 0.606 0.705 0.491 0.756 0.716 0.682 0.598 0.725 0.577 0.677
LLaVA-Critic-7B (v0.5) 0.747 0.758 0.771 0.716 0.580 0.625 0.661 0.525 0.692 0.729 0.697 0.632 0.728 0.585 0.675
LLaVA-Critic-7B 0.771 0.774 0.755 0.758 0.596 0.658 0.680 0.488 0.727 0.742 0.692 0.658 0.715 0.635 0.689
LLaVA-Critic-72B 0.762 0.762 0.904 0.755 0.637 0.648 0.763 0.528 0.769 0.718 0.693 0.708 0.742 0.624 0.715

Table 8: Comprehensive results on MLLM-as-a-Judge. *: the results of GPT-4V, Gemini-pro, and
the best open-source LMM as reported in the original paper (Chen et al., 2024); †: results from our
evaluation of GPT-4V/4o using its original codebase.

Method LLaVA-W L-Wilder WildVision LiveBench VideoDC MMHal MMEP MMEC MMB-en MM-Vet MMStar

GPT-4V 98.0 81.0 79.8 73.7 4.00 3.83 1409.4 517.1 75.0 49.9 57.1

LLaVA-OV-7B 90.7 67.8 54.0 77.1 3.75 3.19 1580.4 418.2 80.8 57.5 61.7
+ LLaVA-Critic-7B iter-1 96.7 70.6 60.5 81.2 3.77 3.62 1561.8 420.7 80.8 54.5 62.1
+ LLaVA-Critic-7B iter-2 97.0 72.2 65.2 83.9 3.82 3.67 1565.5 415.4 80.7 54.6 62.1
+ LLaVA-Critic-7B iter-3 100.3 71.6 67.3 84.5 3.87 3.91 1555.3 414.6 80.3 54.4 62.3

LLaVA-OV-72B 93.5 72.0 51.7 81.5 3.60 3.61 1683.2 578.9 85.9 63.7 66.1
+ LLaVA-Critic-72B iter-1 99.3 75.3 65.7 86.4 3.83 3.75 1683.2 584.3 85.6 67.0 66.4
+ LLaVA-Critic-72B iter-2 104.1 75.6 68.4 86.6 3.86 3.75 1681.1 586.4 85.7 66.7 66.5
+ LLaVA-Critic-72B iter-3 104.4 75.9 70.0 88.5 3.86 3.77 1686.1 586.4 85.4 67.1 66.4

Table 9: Performance of difference rounds of iterative DPO on LLaVA-OneVision. With the
high-quality feedback from LLaVA-Critic, both LLaVA-OneVision 7B and 72B learn to refine its
self-generated responses in a progressive manner, leading to overall better performance across various
open-ended multimodal benchmarks.
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Figure 3: Visualization on the performance gain of LLaVA-OneVision obtained through LLaVA-
Critic across 6 open-ended multimodal benchmarks.

C MORE QUALITATIVE COMPARISONS

We provide detailed examples of LLaVA-Critic in serving as a generalist evaluator for LMM responses,
and improving visual chat through preference alignment.

• Table 10 shows an example of LLaVA-Critic ranking a pair of LMM responses. By accurately
recognizing the visual content of the input image and grounding the differences between the
responses, LLaVA-Critic offers judgments consistent with human evaluators, along with clear
justifications.

• Table 11 presents an example of LLaVA-Critic scoring an LMM response using a reference
answer from GPT-4. LLaVA-Critic closely follows the evaluation prompt and, by referring to the
image content, accurately identifies the strengths and weaknesses of the response at both overall
and fine-grained levels. Consequently, it delivers a fair evaluation score and detailed justification
aligned with GPT-4o.

• Table 12 illustrates LLaVA-Critic’s effectiveness in enhancing LLaVA-OneVision’s visual chat
performance through iterative DPO training. By progressively aligning with LLaVA-Critic’s
preferences, LLaVA-OneVision learns to generate responses that are more structured, detailed
and better tailored to user needs.
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Example 1: LLaVA-Critic in Judging LMM Responses (Pairwise)

Critic Input Question: What this image presents?
Response 1 (model a): The image is a black and white sketch of a line that
appears to be in the shape of a cross. The line is a simple and straightforward
representation of the cross shape, with two straight lines intersecting at a point.
Response 2 (model b): This is a handwritten number seven.
System: Given an image and a corresponding question, please serve as an
unbiased and fair judge to evaluate the quality of the answers provided by a
Large Multimodal Model (LMM). Determine which answer is better and explain
your reasoning with specific details. Your task is provided as follows:
Question: []\n Response 1: []\n Response 2: []\n ASSISTANT:

Human The winner is Response 2.

LLaVA-Critic-7B Response 2 is better than Response 1 because it accurately identifies the image
as a handwritten number seven. Response 1 incorrectly describes the image
as a black and white sketch of a line in the shape of a cross, which does not
match the visual content of the image. Response 2 correctly interprets the
image, providing a precise and accurate description that aligns with the actual
content of the image. This makes Response 2 more helpful and accurate for
understanding what the image presents.

LLaVA-OV-7B Response 1 is better because it accurately describes the image as a simple and
straightforward representation of a cross shape, which is what the image actually
depicts. Response 2, while also describing the image, does not accurately convey
the intended meaning of the image, as it suggests that the image is a handwritten
number seven, which is not the case.

Table 10: Example of LLaVA-Critic in ranking LMM response pairs. While LLaVA-OV misinterprets
the handwritten number and gives inaccurate judgment, LLaVA-Critic aligns with human assessments
and offers clear, visually grounded justifications.
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Example 2: LLaVA-Critic in Judging LMM Responses (Pointwise)

Critic Input Question: Can you describe the weather conditions and overall atmosphere of the scene depicted
in the image?
Assistant 1 (GPT-4): The image depicts a calm and serene beach scene. The sky appears to
be clear with no signs of clouds, indicating good weather conditions. The calmness of the
ocean, suggested by the gentle waves crashing on the shore, further enhances the tranquility.
The presence of a colorful beach umbrella provides a vibrant contrast to the more subdued hues
of the sea and sand, implying a relaxed and leisurely atmosphere commonly associated with a
sunny day at the beach.
Assistant 2 (Evaluated LMM response): The image depicts a sunny and pleasant day at the
beach, with a colorful umbrella providing shade on the sandy shore. The presence of the umbrella
suggests that it is likely a hot day, and people might be seeking relief from the sun by sitting under
the umbrella or going for a swim in the ocean. The atmosphere is likely relaxed and enjoyable,
with people spending time at the beach to unwind and take in the beautiful surroundings. The
sunny weather and the calming sound of the waves further contribute to the overall pleasant and
leisurely vibe of the scene.
System: We would like to request your feedback on the performance of two AI assistants in
response to the user question displayed above. The user asks the question on observing an image
shown to you. Please rate the helpfulness, relevance, accuracy, level of details of their responses.
Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates
better overall performance. Assume assistant 1 always receive a score of 10 and is the correct
answer. Please first output a single line containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent line,
please provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment.

GPT-4o 10 9
Assistant 1 provided a detailed and accurate description of the weather conditions and overall
atmosphere of the scene depicted in the image. The response highlighted the clear sky, calm
ocean, and the presence of a colorful beach umbrella, which all contribute to a serene and tranquil
atmosphere. The description was comprehensive and captured the essence of the scene effectively.
Assistant 2 also provided a good description, noting the sunny and pleasant weather, the colorful
umbrella, and the relaxed atmosphere. However, the response included some assumptions, such
as people seeking relief from the sun and going for a swim, which were not directly observable
in the image. This slightly reduced the accuracy and relevance of the response.

LLaVA-Critic-7B 10 9
Assistant 1 provided a detailed and accurate description of the weather conditions and overall
atmosphere depicted in the image. The response highlighted the clear sky, calm ocean, and
the presence of a colorful beach umbrella, which all contribute to a serene and tranquil beach
scene. The description was relevant, accurate, and included a good level of detail. Assistant 2
also gave a good description, mentioning the sunny day, the colorful umbrella, and the relaxed
atmosphere. However, it made an assumption about people seeking relief from the sun and going
for a swim, which is not directly supported by the image. This slightly detracts from the accuracy
and relevance of the response. Therefore, Assistant 2 receives a slightly lower score.

LLaVA-OV-7B 10 9
Assistant 1 provided a clear and detailed description of the image, including the weather condi-
tions and overall atmosphere. The response was relevant to the question asked and accurately
described the scene depicted in the image. The level of detail was appropriate for the task,
providing enough information for the user to understand the context of the image. Assistant 2
also provided a clear and detailed description of the image, but it was slightly less concise than
Assistant 1’s response. While the response was still relevant to the question asked and accurately
described the scene depicted in the image, it did not provide as much detail as Assistant 1’s
response. However, the level of detail provided by Assistant 2 was still sufficient for the task,
and the response was still helpful and accurate. Overall, both assistants performed well in their
responses, but Assistant 1 provided a slightly more detailed and comprehensive response, which
is why it receives a score of 10, while Assistant 2 receives a score of 9.

Table 11: Example of LLaVA-Critic conducting pointwise scoring on an LMM response for LLaVA-
Wilder. Unlike LLaVA-OV, which offers vague and uninformative explanations, LLaVA-Critic
delivers a thorough and fair assessment with clear justifications on both the strengths and weaknesses
of the evaluated response, closely resembling the depth and fairness of GPT-4o’s assessments.
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Example 3: LLaVA-Critic Enhances LLaVA-OneVision in Visual Chat

Question Discuss how this creative twist on a classic work of art might be interpreted
differently by various audiences.

LLaVA-OV-72B Different audiences might interpret this creative twist on the Mona Lisa
in various ways. Art enthusiasts might appreciate the skillful execution
and the playful reinterpretation of a classic, seeing it as a commentary
on the universality of beauty and expression across species. Dog lovers
could find joy in seeing their favorite breed portrayed with such dignity
and elegance. Some might view it as a humorous take on high art, making
it more accessible and relatable. Others might see it as a statement on
the anthropomorphism of pets, reflecting how we often attribute human-
like qualities to animals. Overall, the varied interpretations highlight the
versatility of art in engaging diverse perspectives and emotions.

LLaVA-OV-72B
+ Critic-72b iter-3

This creative twist on the Mona Lisa, featuring a dog’s face, can be inter-
preted in various ways by different audiences.
For art enthusiasts, it might be seen as a playful commentary on the nature
of portraiture and the human tendency to anthropomorphize animals. It
challenges traditional notions of beauty and subjectivity in art, inviting
viewers to reconsider what makes a portrait compelling.
For dog lovers and pet owners, the image could evoke a sense of joy and
familiarity, as they see their beloved pets reflected in one of the most iconic
artworks in history. It might also highlight the deep bond between humans
and their pets, suggesting that animals share in our cultural heritage.
In a broader social context, this image could be interpreted as a reflection
of contemporary society’s obsession with internet culture and memes. The
substitution of the Mona Lisa’s face with a dog’s could be seen as a satirical
take on how viral content often overshadows classical art in modern media.
Academically, this piece could spark discussions about copyright, artistic
originality, and the public domain. It raises questions about the boundaries
between homage and appropriation in art, encouraging critical thinking
about intellectual property rights and creative freedom.
Overall, the diverse interpretations of this image underscore the power of art
to engage, provoke, and connect people across different backgrounds and
perspectives.

Table 12: Example of LLaVA-Critic in preference learning. Leveraging reward signals from LLaVA-
Critic, LLaVA-OneVision improves its visual chat ability through iterative DPO, delivering more
detailed, valuable, and structured point-by-point responses.
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