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Abstract
Model complexity is defined as the ability of a model to fit various data patterns. The influence of model
complexity on item response theory (IRT) models has historically been explored through simulation studies.
However, simulation studies that generate items from different IRT models may confound the inherent
differences in the models with artificial differences induced by the choice of data-generating model
parameters. In this paper, we introduce the concept of item response function (IRF) variability which
can be leveraged to make items from different IRT models as similar as possible in simulation research.
Specifically, we illustrate how the distribution of IRF maximum slopes and locations can be harmonized
across models. We illustrate this concept with three unidimensional models: the two-parameter model
(2PL) model, the negative log-log (NLL) model, and the logistic positive exponent (LPE) model. Illustrative
results are presented, followed by an overall discussion.
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Simulation studies are widely used in item response theory (IRT) research to explore the behavior
of models and estimation techniques under known data-generating conditions. When comparing
different IRT models in simulation research, it is important to consider the complexity of each model.
Model complexity, according to Myung (2000), represents a model’s ability to fit different data
patterns and is related to two components, the number of parameters and the functional form. In IRT,
these two components distinguish different item response functions (IRFs), and therefore different
IRT models differ in their ability to provide good model-data fit (Bonifay & Cai, 2017). Previous
research considers model complexity in terms of model fit (Bonifay & Cai, 2017; Preacher, 2006).
In simulation studies, however, model complexity may also have an impact on the data-generating
process because models with different complexity will generate different data patterns. In this paper,
we explore the influence of model complexity on IRT simulation results when data are generated from
different models. Specifically, we propose the concept of item response function (IRF) variability as a
way to quantify and control the differences between sets of IRFs. We illustrate how IRF variability
may be controlled across data-generating models in simulation research and explore the impact of
controlling IRF variability on simulation results.

1. Item Response Model Complexity
Model complexity, as defined by Myung et al. (2005) and Myung (2000), is the inherent flexibility of
a model, or in other words, the ability of a model to describe a variety of data patterns in the complete
data space. Model complexity is also called fitting propensity (Preacher, 2006), and is affected by
both parameter counts and the functional form (Myung, 2000). Previous research investigated the
influence of model complexity on model goodness of fit (GoF; Myung et al., 2005; Myung, 2000;
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Pitt and Myung, 2002) and found that complex models often had problems with overfitting and lack
of generalizability, even when they performed well in terms of GoF. In other words, overfitting
implies that the model learned too much from the noise in the observed data, thereby making
it difficult to predict unobserved cases or to generalize to other conditions. As such, researchers
typically compare models using information criteria that aim to penalize GoF by model complexity.
That is, they attempt to balance model fit and parsimony, in the hope of achieving results that are
more generalizable to future data. However, commonly used information criteria such as Akaike
information criterion (AIC; Akaike, 1998) and Bayesian information criterion (BIC; Schwarz, 1978)
penalize GoF by a function of the number of parameters but do not penalize based on the inherent
flexibility of the functional form. Other methods, like minimum description length (MDL; Rissanen,
1987) and information-theoretic measure of complexity (ICOMP; Bozdogan, 1990), consider both
parameter counts and functional form. However, to the best of our knowledge, the MDL and
ICOMP methods have not been tested for IRT models and are not available in popular IRT software
packages such as mirt (Chalmers, 2012). As such, the analyses in this paper use two widely-used
model comparison indices, AIC and BIC. Previous research (Myung, 2000; Pitt & Myung, 2002)
has shown it is essential to consider model complexity when selecting the appropriate model for a
particular data set. It is also worth considering model complexity, including parameter counts and
function form, when generating data patterns in simulation analysis.

2. IRF Variability
To more fully understand functional form-related model complexity in IRT, we can think of
the variety of IRFs that are generated from different models and different distributions of model
parameters. For item i, define a linear function of the latent trait θ, Zi(θ) = αi(θ – βi) where αi > 0.
For many dichotomous IRFs, the endorsement probability for item i can be expressed as follows:

P(Yi = 1|θ) = f (Zi(θ)), (1)

where Y is the observed item response and f is a monotonically increasing link function. Different
IRT models can be defined by different choices of the link function f . For example, the two-parameter
logistic (2PL; Birnbaum, 1968) model sets f equal to the logistic function, and the three-parameter
logistic (3PL; Birnbaum, 1968) model and the logistic positive exponent (LPE; Samejima, 2000)
models modify the 2PL by introducing a third parameter: the third parameter of the 3PL model
controls the lower asymptote of the IRF and the third parameter of the LPE model controls the
asymmetry of the IRF. In this framework, different choices of f will lead to IRFs with different
curves for the same value of Zi. For example, several authors have noted that items with the same αi
parameters but applied to different models will differ in their slopes (De Ayala, 2013; Molenaar, 2015).
In this paper, we quantify IRF similarity by comparing features of the IRF curve P rather than the
similarity of item parameters αi and βi. In particular, we propose the concept of IRF variability,
which considers the distributions of IRF features that can be compared across models. In this paper,
we will consider the distributions of the maximum IRF slope and the θ value (location) at which the
maximum IRF slope is observed.

If f is continuous and three-times differentiable, the point of maximum slope can be found by

setting ∂2Pi(θ)
∂θ2 = 0, solving that equation for θ, and ensuring that ∂3Pi(θ)

∂θ3 < 0 for that θ value. For
models that follow Equation 1, the IRF slope at θ equals

∂Pi(θ)
∂θ

= αif (Zi)(1 – f (Zi)). (2)

Next, note that the point of maximum slope must occur at a stationary point of the first derivative.
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Stationary points of ∂Pi(θ)
∂θ may be found by setting

∂2Pi(θ)
∂θ2 = α2

i f (Zi)(1 – f (Zi))(1 – 2f (Zi)) = 0 (3)

and solving for θ. Table 1 displays the functional form f , along with the θ of maximum slope and the
value of the maximum slope for the three IRT models considered in this study: the 2PL, LPE, and
negative log-log (NLL; Shim et al., 2024). Derivations of these values are provided in Appendix 1.
Note that for the 2PL model, the point of maximum slope occurs where f (Zi) = 1/2, but this is not
the case for all models. For the NLL model, the slope is maximum when P = exp(– exp(0)) = .368,
and for the LPE, this point depends on all three of its item parameters.

Table 1. Maximum Slopes and Corresponding Locations for Three IRT Models

Model f (Zi) θ of maximum slope maximum slope

2PL logit–1(Zi) θ = βi .25αi

LPE logit–1(Zi)ξi θ = βi + ln(ξi)/αi αi( ξi
1+ξi

)1+ξi

NLLa exp(– exp(–Zi)) θ = βi exp(–1)αi

a The NLL has previously (Shim et al., 2024) been described as a one-
parameter model where all αi = 1. Instead, we use the “two-parameter”
version throughout.

To illustrate the differences in distributions of maximum slopes and corresponding locations for
different models, we simulated 1,000 items from each of the three models that are listed in Table 1.
Population parameters for these models were all simulated from α ∼ LN(0, 0.5) and β ∼ N(0, 1),
and for the LPE model, ξ ∼ LN(0, 0.5). Density plots of these results are illustrated in Figure 1.

Figure 1. Distributions of highest slopes and corresponding locations

The right panel of Figure 1 illustrates the analytic results from Table 1. The maximum slopes of
the 2PL model and the NLL model are determined entirely by αi but to different extents. For the
same αi value, the slope of the 2PL model is always lower than that of the NLL model. This inference
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is consistent with the illustration that the distribution of the NLL maximum slopes is right-shifted
compared with the distribution of the 2PL maximum slopes. For the LPE model, the maximum
slopes are determined by both αi and ξi. Recalling that the 2PL is a special case of the LPE when
ξi = 1, we find that when ξi < 1, the maximum slope is lower than that of the 2PL and when ξi > 1,
it is larger.

The left panel of Figure 1 shows the distribution of θ of maximum slopes and shows results
consistent with Table 1. Specifically, the corresponding θs of maximum slopes are the same across the
2PL model and the NLL model since these quantities are determined identically in the two models.
For the LPE model, the θ of the maximum slope is determined by all three item parameters, leading
to a somewhat different distribution of locations.

In this paper, we explore how item parameter data-generating distributions may affect IRT
simulation results, especially when data are generated from multiple population models. The 2PL
model and the LPE model have similar link functions but different parameter counts, and the 2PL
model and the NLL model have the same parameter counts but different link functions. Therefore,
to investigate the influence of different function forms, we will compare the 2PL model and the NLL
model in Study 1; to investigate the influence of different parameter counts, we will compare the
2PL model and the LPE model in Study 2. More specifically, we will investigate whether controlling
the IRF maximum slope and location will better control for differences among the compared models.

3. Simulation Studies
Simulation studies have been widely used to compare IRT models in various ways. Some simulation
research has used one model to simulate data and fit the simulated data to one or more candidate
models (Lee & Bolt, 2018a, 2018b; Molenaar, 2015). These designs are appropriate to test the
accuracy of software or estimation methods (one fitted model) or to investigate the extent to which
multiple fitted models can recover features of the data-generating model. Another simulation design
generates data according to two or more models and fits those data to one or more models (e.g.,
Fujimoto and Falk, 2024; Kang and Cohen, 2007; Zhang et al., 2022). This design is typically
used to compare the relative accuracy or efficiency of different models, and is often used in model
selection research. The methods proposed in this study are relevant to simulation studies that follow
this second design.

To our knowledge, prior simulation research in IRT has not considered controlling IRF variation
when comparing different models fitted to the same data. In the remainder of this paper, we present
two simulation studies that explore the effects of harmonizing the distributions of slopes and locations
of IRFs across different data-generating models. The first study compares the 2PL to the NLL.
Because these two models include the same number of item parameters, this comparison will allow
us to evaluate the effect of controlling parameter distributions with the number of parameters held
constant. In this study, we generated parameters based on four model conditions: (a) 2PL,(b) NLL,
(c) adjusted NLL that matches the slope and location properties of (a), and (d) adjusted 2PL that
matches the slope and location properties of (b). In this way, the IRFs generated by the adjusted
2PL model should be more similar to the IRFs generated by the NLL model than those from the
unadjusted 2PL model. The second study compares the 2PL, which has two parameters per item, to
the LPE, which has three parameters per item. Here, because the 2PL is a special case of the LPE,
we consider only three model conditions: (a) 2PL, (b) LPE, and (c) adjusted 2PL that matches the
slope and location properties of the LPE. Details of the data-generating process and adjustments are
described in their respective subsections.

For each data-generating model and its corresponding item parameter distributions, we generated
1000 sets of 10 items. For Study 1, item response data were simulated for all four conditions with
both N = 500 and N = 1000 examinees and θ ∼ N(0, 1). Then, each set of item response data was fit
to both the 2PL and NLL models using marginal maximum likelihood estimation as implemented in
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the mirt package. Note that the NLL is not currently available in the mirt packages, and so we used
its createItem functionality to implement this model. Code to implement the NLL model in mirt
is provided in Appendix 2. In Study 2, because the LPE is known to be difficult to fit (Lee & Bolt,
2018a), item response data were simulated for all three conditions with N = 10, 000 and N = 50, 000
examinees and θ ∼ N(0, 1). Then, each set of item response data was fit to both the 2PL and LPE
models using the mirt package. Marginal maximum likelihood estimation was used to fit the 2PL
models, but a N(0, .5) prior was applied to the ln(ξ) parameter for the LPE model to improve model
convergence.

We compared the fitted models in terms of item response function accuracy and GoF. To evaluate
recovery, we compared the true and estimated IRFs by the root integrated mean square error (RIMSE;
Ramsay, 1991), which is defined as:

RIMSE =

√∫
(P1(Yi = 1|θ) – P2(Yi = 1|θ))2g(θ)dθ.

where P1 and P2 are the population and estimated IRFs to compare in the analysis, and g(θ) represents
the θ distribution to integrate over. We calculated the RIMSE separately for each fitted model
and compared the distribution of RIMSE values across different data-generating and fitted model
conditions. For the analyses presented in this paper, we used a standard normal g(θ). Smaller RIMSE
value indicates the two IRFs are closer to each other (Feuerstahler, 2021). To evaluate penalized
goodness-of-fit, we used the AIC and BIC because they penalize goodness-of-fit by parameter
counts.

It is important to note that this method of comparing different IRT models assumes that all fitted
models are on the same latent trait scale. However, it is often unlikely that this will strictly be true.
For example, Shim et al., 2024 noted that the one-parameter NLL is a nonlinear transformation
of the one-parameter logistic model. In other words, these two models are theoretically capable
of making the exact same predictions as each other, corresponding to different underlying latent
trait distributions. However, in practice, these models are often identified by specifying a standard
normal prior for θ during model fitting, hindering the ability of the different models to be exact
transformations of each other. Moreover, much IRT model comparison research, including that
presented in Shim et al., 2024, does not explicitly take this potential confounding factor into account,
and it is unclear how large the effects of scale differences may be. As such, we acknowledge that
differences in scale are a potential confounding factor that is not accounted for in the following
studies, but we still find value in controlling for the IRF features that we do control for.

3.1 Study 1
In this study, we compared parameter recovery and GoF for the 2PL and NLL. To do so, we generated
data under four conditions. First, in condition (a) we generated 2PL data with α ∼ LN(0, 0.5) and
β ∼ N(0, 1). In condition (b), we generated NLL data with the same data-generating parameters and
condition (a): α ∼ LN(0, 0.5) and β ∼ N(0, 1). For the third condition, we aimed to find distributions
of NLL parameters that matched the slope and location distributions of the 2PL in condition (a).
From Table 1, we know that the θ values at which slopes are maximum equal βi for both models
and so the same distribution can be used to generate β parameters. To align the distributions of
maximum slopes, note that the maximum slopes of the 2PL and NLL models are 0.25αi and αi exp(–1)
respectively. It can be shown (Limpert et al., 2001) that if a variable α is log-normally distributed,
α ∼ LN(µ,σ), then a constant k times α is also log-normally distributed, kα ∼ LN(µ + ln(k),σ) .
Therefore, in condition (a), the distribution of maximum slopes is LN(ln(0.25),σ). For the NLL
to have the same distribution of maximum slopes, then the NLL α ∼ LN(1 + ln(0.25), 0.5). For
the fourth condition, we use the same logic to find a distribution for 2PL α that has the same slope
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distribution as condition (b). In condition (b), the distribution of maximum slopes is LN(–1, 0.5), so
the 2PL α ∼ LN(–1 – ln(0.25), 0.5). In summary, in condition (c) we generated adjusted NLL (aNLL)
parameters from α ∼ (LN(1 + ln(0.25), 0.5) and β ∼ N(0, 1), and in condition (d) we generated
adjusted 2PL (a2PL) parameters from α ∼ LN(–1 – ln(0.25), 0.5) and β ∼ N(0, 1). In this way,
conditions (a) and (c) will have systematically lower maximum slopes than conditions (b) and (d).

Figure 2. Violin plots of RIMSEs for the 2PL, NLL, aNLL, and a2PL. The central lines of each violin plot indicate medians.
Different colors are used for different data-generating models.

The distributions of RIMSEs are shown in Figure 2. The left plot shows results from data fit to
the 2PL and the right plot shows results from data fit to the NLL. As may be expected, the lowest
RIMSEs are found when the data are fit to the same model that generated the data. However, these
plots illustrate that different sets of data-generating parameters can yield different sets of results
for the same data-generating model. To be more specific, consider the left plot with N = 1000
where data is fit to the 2PL. The mean RIMSE equals .030 for the 2PL, .045 for the NLL, but only
.041 for the aNLL. Although the difference between RIMSEs for the NLL and aNLL is small, it
is statistically significant, t(19987) = 18.08, p < .001. When data are generated according to the
aNLL, the difference in IRF recovery is not as large as with the NLL, suggesting that the difference
between the two models might be exaggerated if the adjustment is not used. Similarly, consider the
right plot with N = 1000 where data is fit to the NLL. The mean RIMSE equals .029 for the NLL,
.040 for the 2PL, and .044 for the a2PL. Again, the difference between RIMSEs for the 2PL and
a2PL is statistically significant, t(19982) = 18.54, p < .001. The same small but statistically significant
differences are also observed for the N = 500 sample size.

It is notable that when data were fit to the 2PL, the adjusted model led to RIMSE results that are
more similar to those of the data-generating model. However, when data were fit to the NLL, the
adjusted model led to RIMSE results that are less similar to those of the data-generating model. Not
only this but the magnitude of the difference in average RIMSE for the 2PL and NLL differs across
the two sets of adjustments. Although not the main focus of this paper, we suspect that this difference
occurs because of the difference in average slopes for the 2PL and aNLL versus the NLL and a2PL.

We next consider the ability of information criteria to select the correct model when comparing
the 2PL and NLL models. Note that, as implemented in this paper, the 2PL and NLL have the same
number of parameters such that the same penalty term will be imposed for both models. For this
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reason, both the AIC and BIC will always select the model with the highest log-likelihood and will
always give the same model selection results as each other. Therefore, the model selected by AIC or
BIC must be that with the highest log-likelihood. Due to its prevalence in model selection, we chose
to present these results in terms of the AIC. The percentages of replications for which AIC selected
the data-generating model are shown in Table 2.

Table 2. Percentage of Replications for which AIC Selected the Data-Generating Model

2PL a2PL χ2a NLL aNLL χ2a

N = 500 81.2 90.5 34.84⋆ 92.9 88.8 9.62⋆

N = 1000 91.5 97.1 28.14⋆ 98.1 94.5 17.19⋆

a χ2 tests of equal proportions with continuity correction with 1 degree
of freedom. ⋆ indicates p < .05.

b "2PL", "a2PL", "NLL", and "aNLL" indicate the data-generating model.

In all cases, the data-generating model was selected significantly more often when the data was
generated according to models with higher slopes. This finding coincides with previous research
(Lopez Rivas et al., 2009) demonstrating that high-discrimination items tend to make better anchor
items for differential item functioning analysis, possibly because these items provide more information
and lead to better model identification. These results suggest that if the slopes are not adjusted for in
the data-generating process, the differences between models may look larger than they actually are.
For example, if N = 1000 and data are generated according to conditions (a) and (b) (i.e., the 2PL
and NLL with the same distributions of α and β), it appears the NLL is more capable of selecting
the correct model (98.1%) than the 2PL (91.5%). However, if the NLL is compared to the a2PL
instead (condition d), then the 2PL is correctly selected in 97.1% of replications, a difference that
is not statistically significant from that for the NLL, χ2(1) = 1.73, p = .19. Alternatively, if the
2PL is compared to the aNLL, then the aNLL is correctly selected in 94.5% of cases, which when
compared to the 2PL, reflects a statistically significant difference, χ2(1) = 6.46, p = .01, though a
smaller difference than that found between the 2PL and (unadjusted) NLL.

3.2 Study 2
In the second study, we compared parameter recovery and penalized GoF for the 2PL and LPE
models. To do so, we generated data under three conditions. As in Study 1, in condition (a) we
generated 2PL data with α ∼ LN(0, 0.5) and β ∼ N(0, 1), and in condition (b), we generated LPE
data from the same distributions of α and β and from ξ ∼ LN(0, 0.5). In our condition (c), we
found adjusted 2PL (a2PL) parameters that match the distributions of maximum slopes and locations
from condition (b). Note that we did not attempt to find an adjusted LPE model that matched the
maximum slopes from condition (a) because the 2PL is a special case of the LPE, and such matching
would degenerate to the 2PL. To find the parameters for the a2PL, there is now no convenient
distribution to sample from, but we can derive appropriate parameters based on the parameters drawn
in condition (b). To do so, we first equate the maximum slopes to find αi for the a2PL. Here,

αi,a2PL = 4αi,LPE(
ξi

1 + ξi
)1+ξi . (4)

We can next find the βi parameters for the a2PL can be found by equating the locations of the
maximum slope:

βi,a2PL = βi,LPE + ln(ξi)/αi,LPE. (5)

As such, a2PL parameters were found by first generating LPE parameters as in condition (b), and
then using Equations 4 and 5 to find 2PL parameters. From Figure 1, we know that the distributions
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of maximum slopes are already quite similar for the 2PL and LPE without any adjustment, but that
the θ of maximum slope is more variable for the LPE (and thereby for the a2PL).

Figure 3 displays violin plots for datasets fit to the LPE (left) and to the 2PL (right). The most
striking result of this comparison is that the RIMSE distributions for data fit to the LPE are highly
skewed, a consequence of the known difficulties associated with fitting this model resulting from
the high within-item correlation among its parameters (Liao & Bolt, 2021). As a result, we focus
this discussion on medians rather than means. When data are fit to the LPE, we find that the
lowest median RIMSE is observed for data generated from the LPE model. This is despite the fact
that, because the 2PL is a special case of the LPE, the LPE should be able to describe the response
patterns from the 2PL and a2PL data just as accurately as the LPE data. In addition, according to
Mann-Whitney tests, we do not find significant differences in median RIMSEs for data generated
from the 2PL versus a2PL in any sample size or fitted model condition.

Figure 3. Violin plots of RIMSEs for the LPE, 2PL, and a2PL. The central lines of each violin plot indicate medians. Different
colors are used for different data-generating models.

For nearly all fitted models in Study 2, both AIC and BIC selected the 2PL. The only exception to
this pattern occurred when data were generated from and fit to the LPE with N = 50, 000, for which
the LPE was correctly selected by AIC in 4.3% of replications. Because these information criteria
nearly always select the 2PL in these comparisons, we instead considered how harmonizing the
distribution of slopes and locations affected overall GoF through the log-likelihood itself. Cumulative
distributions of log-likelihoods across 1,000 replications are shown in Figure 4. As must be the case
since the 2PL is a special case of the LPE, the log-likelihood is greater for the LPE than for the 2PL
in all conditions. However, in all cases, the a2PL led to a cumulative distribution of log-likelihoods
that was closer to the LPE than was the 2PL. This result suggests that there exist some nonessential
differences in fitting propensity between the LPE and 2PL generated from the same distribution
of αi and βi parameters. By generating data from the a2PL instead of the 2PL, the 2PL and LPE
models might be more fairly compared.
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Figure 4. Cumulative distributions of fitted log-likelihoods for the LPE, 2PL, and a2PL.

4. Discussion
In this paper, we did not intend to draw generalizable conclusions about particular models. Instead,
we aimed to investigate the implications of controlling the features of IRFs in simulation studies
as an alternative to using the same distributions of item parameters for each model. Because item
parameters serve different roles in different item response models, we believe that matching the
common features of IRFs (here, the maximum IRF slope and its location) generated from different
models is a more justifiable way to compare models. In Study 1, we showed that after controlling
the maximum IRF slopes and locations, the 2PL model recovered item response functions just as
accurately for data generated from the NLL as it did for 2PL-generated data. In addition, penalized
goodness-of-fit indices had comparable percentages of selecting the correct data-generating model
when controlling for these features, but different rates before controlling for these features. These
results suggest that the assumed latent trait distribution does not have a significant influence on
the model fit and that misleading conclusions might be reached if these features are not controlled
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in simulation studies. The justification for this procedure is closely related to the idea of model
complexity. Previous research has shown that model complexity is affected by both the number
of parameters and the functional form of a model. The procedure we outline in this paper allows
users to more precisely compare the features of model fitting that are associated with differences in
functional form.

In this paper, we chose to study the location of maximum slope and the maximum slope itself as
two IRF features that are common to most unidimensional models for dichotomous data. However,
these features do not apply to all such models and may not be the best choices of common features for
polytomous or multidimensional IRT models. For example, IRFs based on the generalized log-log
link function (Zhang et al., 2022) might have multiple points of (locally) maximum slope. In addition,
the location of an IRF might be better characterized by the point at which P = .5 or other criteria.

To extend the idea of IRF variability to polytomous models, consider two commonly used models
for ordered polytomous data, the generalized partial credit model (GPCM; Muraki, 1992) and the
graded response model (GRM; Samejima, 1969). Because these models represent multiple category
response functions per item, there are many potential criteria that could be used to harmonize the
features of models. These features include the locations and values of maximum slope for functions
that define the boundaries between adjacent categories, points at which the probability of a category
response equals the probability of the next highest category, or the features of the functions that
define a response probability in an individual category. More research is needed to derive these
features for polytomous model and determine the most affective adjustment criteria.

Multidimensional IRT models pose another challenge. Unlike univariate IRT models for which
IRFs can be illustrated with two-dimensional plots, as the number of dimensions increases, it is more
and more difficult to illustrate the IRFs. Like polytomous models, multidimensional models will
pose a challenge in that there are multiple features per item that a researcher might want to align. A
possible starting point is to use multidimensional difficulty and discrimination (Reckase & McKinley,
1991) as a feature common across multidimensional models, but more research is needed to further
explore this idea.

5. Conclusion
In conclusion, this paper explores how the choice of item parameters from which to generate IRT
simulation data may affect simulation results. We illustrated this idea in terms of the distributions of
maximum slopes and corresponding θ values for three unidimensional IRT models for dichotomous
data. We demonstrated that adjusting the data-generating parameters for a model to have similar
feature distributions as another model can affect the results of simulation research comparing different
data-generating models.

Competing Interests None

References
Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu

akaike (pp. 199–213). Springer.
Birnbaum, A. L. (1968). Some latent trait models and their use in inferring an examinee’s ability. Statistical theories of mental

test scores.
Bonifay, W., & Cai, L. (2017). On the complexity of item response theory models. Multivariate behavioral research, 52(4),

465–484.
Bozdogan, H. (1990). On the information-based measure of covariance complexity and its application to the evaluation of

multivariate linear models. Communications in Statistics-Theory and Methods, 19(1), 221–278.
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical

Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06
De Ayala, R. J. (2013). The theory and practice of item response theory. Guilford Publications.
Feuerstahler, L. (2021). Flexible item response modeling in r with the flexmet package. Psych, 3(3), 447–478.



Proceedings of the 89th Annual InternationalMeeting of the Psychometric Society, Prague, Czech Republic 11

Fujimoto, K. A., & Falk, C. F. (2024). The accuracy of bayesian model fit indices in selecting among multidimensional item
response theory models. Educational and Psychological Measurement, 84(2), 217–244.

Kang, T., & Cohen, A. S. (2007). Irt model selection methods for dichotomous items. Applied Psychological Measurement, 31(4),
331–358.

Lee, S., & Bolt, D. M. (2018a). An alternative to the 3pl: Using asymmetric item characteristic curves to address guessing
effects. Journal of Educational Measurement, 55(1), 90–111.

Lee, S., & Bolt, D. M. (2018b). Asymmetric item characteristic curves and item complexity: Insights from simulation and real
data analyses. Psychometrika, 83(2), 453–475.

Liao, X., & Bolt, D. M. (2021). Item characteristic curve asymmetry: A better way to accommodate slips and guesses than a
four-parameter model? Journal of Educational and Behavioral Statistics, 46(6), 753–775.

Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues: On the charms of
statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize
log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal:
That is the question. BioScience, 51(5), 341–352.

Lopez Rivas, G. E., Stark, S., & Chernyshenko, O. S. (2009). The effects of referent item parameters on differential item
functioning detection using the free baseline likelihood ratio test. Applied Psychological Measurement, 33(4), 251–265.

Molenaar, D. (2015). Heteroscedastic latent trait models for dichotomous data. Psychometrika, 80(3), 625–644.
Muraki, E. (1992). A generalized partial credit model: Application of an em algorithm. Applied psychological measurement, 16(2),

159–176.
Myung, I. J., Pitt, M. A., & Kim, W. (2005). Model evaluation, testing and selection. Handbook of cognition, 422–436.
Myung, I. J. (2000). The importance of complexity in model selection. Journal of mathematical psychology, 44(1), 190–204.
Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends in cognitive sciences, 6(10), 421–425.
Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. Multivariate Behavioral Research, 41(3), 227–259.
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika,

56(4), 611–630.
Reckase, M. D., & McKinley, R. L. (1991). The discriminating power of items that measure more than one dimension. Applied

psychological measurement, 15(4), 361–373.
Rissanen, J. (1987). Stochastic complexity and the mdl principle. Econometric Reviews, 6(1), 85–102.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34(S1), 1–97.
Samejima, F. (2000). Logistic positive exponent family of models: Virtue of asymmetric item characteristic curves. Psychometrika,

65, 319–335.
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461–464.
Shim, H., Bonifay, W., & Wiedermann, W. (2024). Parsimonious item response theory modeling with the negative log-log

link: The role of inflection point shift. Behavior Research Methods, 56(5), 4385–4402.
Zhang, J., Zhang, Y.-Y., Tao, J., & Chen, M.-H. (2022). Bayesian item response theory models with flexible generalized

logit links. Applied Psychological Measurement, 46(5), 382–405.

Appendix 1. Derivations
In this paper, we consider IRT models that take the form,

P(Yi = 1|θ) = f (Zi(θ)),

where Z(θ) = α(θ – β), α > 0, and f is a differentiable monotonically increasing function. The slope
of the IRF is given by

∂P
∂θ

=
∂f (Z(θ))

∂θ
= α

∂

.
The point of maximum slope occurs at the θ value for which ∂2f (Z(θ))

∂θ = 0 and ∂3P
∂θ3 < 0. Below,

we derive the θ value at which the IRF slope is maximum and the maximum slope for the three
models discussed in this paper: the 2PL, the LPE, and the NLL.

Appendix 1.1 2PL
For the 2PL, the IRF and its first, second, and third derivatives are given as follows:

Pi(θ) =
1

1 + exp(–Zi(θ))
,
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∂Pi(θ)
∂θ

= αiPi(θ)(1 – Pi(θ)), (6)

∂2Pi(θ)
∂θ2 = α2

i Pi(θ)(1 – Pi(θ))(1 – 2Pi(θ)), (7)

and
∂3Pi(θ)
∂θ3 = α3

i Pi(θ)(1 – Pi(θ))(1 – 6Pi(θ) + 6Pi(θ)2). (8)

Assuming αi > 0, Equation 7 = 0 whenever Pi(θ) = 0, Pi(θ) = 1, or Pi(θ) = 1
2 . The first two

solutions cannot be the point of maximum slope since they are at the asymptotes of the IRF and lead

to ∂3Pi(θ)
∂θ3 = 0. Therefore, the point of maximum slope for the 2PL is at Pi(θ) = 1

2 , which will occur

when θ = βi. Evaluating Equation 8 at this point yields a third derivative equal to –α3
i

8 , which is
negative whenever αi > 0. Finally, the maximum slope is found by evaluating Equation 6 at θ = βi,
which yields a maximum slope of .25αi.

Appendix 1.2 NLL
For the NLL, expressions are simplified by setting Zi = Zi(θ) and Z⋆

i = exp(–Zi). The IRF for the
NLL and its first, second, and third derivatives are given as follows:

Pi(θ) = exp(–Z⋆
i ),

∂Pi(θ)
∂θ

= αi exp(–Zi – Z⋆
i ), (9)

∂2Pi(θ)
∂θ2 = α2

i (Z⋆
i – 1) exp(–Zi – Z⋆

i ), (10)

and

∂3Pi(θ)
∂θ3 = α3

i [(Z⋆
i – 2) exp(–2Zi – Z⋆

i ) + (1 – Z⋆
i ) exp(–Zi – Z⋆

i )]. (11)

Equation 10 = 0 whenever Z⋆
i = 1 or when Z⋆

i = –∞. The latter condition will occur when
Pi(θ) = 0, which cannot be a point of maximum slope. Therefore, the point of maximum slope will
occur at Z⋆

i = 1, which is the point at which Zi = 0 and P = exp(–1) ≈ .37. Evaluating Equation 11

at this point gives ∂Pi(θ)3
∂3θ

= – exp(–1)αi, which is negative whenever αi > 0. Therefore, the point
of maximum slope occurs Zi = 0, that is, when θ = βi. Finally, the maximum slope is found by
evaluating Equation 9 at this point, which yields a maximum slope of exp(–1)αi.

Appendix 1.3 LPE
For the LPE, the IRF equals

Pi = Pi(θ) = (P⋆i )ξ

where P⋆i is IRF for the 2PL. The first, second, and third derivatives of the LPE model equal

∂Pi
∂θ

= αiξiPi(1 – P⋆i ), (12)
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∂2Pi(θ)
∂θ2 = α2

i ξiPi(1 – P⋆i )[ξi(1 – P⋆i ) – P⋆i ], (13)

and
∂3Pi(θ)
∂θ3 = α3

i ξiPi(1 – P⋆i )[(ξi(1 – P⋆i ) – P⋆i )2 – (1 + ξi)P⋆i (1 – P⋆i )]. (14)

For αi > 0 and ξi > 0, setting Equation 13 = 0 at Pi = 0, Pi = 1 or P⋆i = ξi
1+ξi

. Because the first two
solutions cannot be the point of maximum slope. Rearranging the third solution, we find that the
point of maximum slope occurs when ξi = exp(αi(θ – βi)), that is, where θ = β + ln(ξ)/α. Plugging
this value into Equation 14 yields α3

i Pi(1 – P⋆i )[–ξi(1+ξi)
(1+ξi)2

], which will always be negative for ξi > 0,
Pi > 0, and P⋆i > 0. Finally, evaluating Equation 12 at the point of maximum slopes yields a maximum
slope of αi( ξi

1+ξi
)1+ξi .

Appendix 2. mirt Code for the Two-Parameter NLL
NLL <- createItem(name = "NLL", par = c(alpha = 1, beta = 0),

est = c(TRUE, TRUE),
P = function(par, Theta, ncat){

alpha <- par[1]
beta <- par[2]
P1 <- exp(-exp(-(alpha * (Theta - beta))))
cbind(1 - P1, P1)

})


