
Accelerating Optimization via Differentiable
Stopping Time

Zhonglin Xie
Beijing International Center for Mathematical Research

Peking University
zlxie@pku.edu.cn

Yiman Fong
Department of Industrial Engineering

Tsinghua University
fangym23@mails.tsinghua.edu.cn

Haoran Yuan
School of Mathematical Science

Peking University
yuanhr@stu.pku.edu.cn

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University
wenzw@pku.edu.cn

Abstract

A common approach for accelerating optimization algorithms is to minimize the
loss achieved in a fixed time, which enables a differentiable framework with
respect to the algorithm’s hyperparameters. In contrast, the complementary ob-
jective of minimizing the time to reach a target loss is traditionally considered
non-differentiable. To address this limitation, we propose a differentiable discrete
stopping time and theoretically justify it based on its connection to continuous
differential equations. We design an efficient algorithm to compute its sensitivi-
ties, thereby enabling a new differentiable formulation for directly accelerating
algorithms. We demonstrate its effectiveness in applications such as online hyper-
parameter tuning and learning to optimize. Our proposed methods show superior
performance in comprehensive experiments across various problems, which con-
firms their effectiveness.

1 Introduction

Optimization algorithms are fundamental to a wide range of applications, including operations
research [1], the training of large language models [2], and decision-making in financial markets
[3]. Consequently, significant research effort has been dedicated to accelerating these algorithms.
A common formulation for algorithm design and tuning, prevalent in areas like hyperparameter
optimization [4] and learning to optimize (L2O) [5], is to minimize the objective function value
achieved after a fixed number of iterations or a predetermined time budget. This approach often
leads to differentiable training objectives with respect to algorithmic hyperparameters, enabling
gradient-based optimization of the algorithm itself.

However, this formulation does not directly optimize the number of iterations required to reach
a desired performance level or target loss, which is often the practical goal in deployment. This
complementary objective, minimizing the time to reach a target loss, is traditionally perceived as
non-differentiable with respect to algorithm parameters, as stopping time is typically an integer-valued

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

or non-smooth function of parameters, addressed only conceptually or via zeroth-order optimization
methods [6].

To overcome this fundamental challenge and enable the direct, gradient-based optimization of
convergence speed towards a target accuracy for iterative algorithms, this paper introduces the
concept of differentiable stopping time. We propose a comprehensive framework that allows for the
computation of sensitivities of the number of iterations required to reach a stopping criterion with
respect to algorithm parameters. Our main contributions are summarized as follows:

• We formulate a new class of differentiable objectives for algorithm acceleration, aiming
to directly minimize the number of iterations or computational time required to achieve
a target performance. This is supported by a theoretical framework that establishes the
differentiability of discrete stopping time via a connection between discrete-time iterative
algorithms and continuous-time dynamics, leveraging tools from the theory of continuous
stopping times.

• We develop a memory-efficient and scalable algorithm for computing sensitivities of discrete
stopping time, enabling effective backpropagation through iterative procedures. Our exper-
imental results validate the accuracy and efficiency of the proposed method, particularly
in high-dimensional settings, and show clear advantages over approaches relying on exact
ordinary differential equation solvers.

• We demonstrate the applicability of differentiable stopping time in practical applications,
including L2O and the online adaptation of optimizer hyperparameters. These case studies
show that differentiable stopping time can be seamlessly integrated into existing frameworks,
and our empirical evaluations suggest that it provides a principled and effective lens for
understanding and improving algorithmic acceleration.

1.1 Related Work

ODE Perspective of Accelerated Methods. Offering a continuous-time view of optimization
algorithms, this perspective provides both theoretical insights and practical improvements. The
foundational work [7] established a connection between Nesterov’s accelerated gradient method
and a second-order ordinary differential equation, introducing a dynamical systems viewpoint for
understanding acceleration. Building on this, acceleration phenomena have been analyzed through
high-resolution differential equations [8], revealing deeper insights into optimization dynamics. The
symplectic discretization of these high-resolution ODEs [9] has also been explored, leading to practi-
cal acceleration techniques with theoretical guarantees. A Lyapunov analysis of accelerated gradient
methods was developed in [10], extending the framework to stochastic settings. For optimization on
parametric manifolds, accelerated natural gradient descent methods have been formulated in [11],
based on the ODE perspective.

Implicit Differentiation in Deep Learning. This technique enables efficient gradient computation
through complex optimization procedures. A modular framework for implicit differentiation was
presented in [12], unifying existing approaches and introducing new methods for optimization prob-
lems. In non-smooth settings, [13] developed a robust theory of nonsmooth implicit differentiation
with applications to machine learning and optimization. Implicit differentiation has also been applied
to train iterative refinement algorithms [14], treating object representations as fixed points. For
non-smooth convex learning problems, fast hyperparameter selection methods have been developed
using implicit differentiation [15]. Training techniques for implicit models that match or surpass
traditional approaches have been explored in [16], leveraging implicit differentiation. Implicit bias
in overparameterized bilevel optimization has been investigated in [17], providing insights into
the behavior of implicit differentiation in high-dimensional settings. In optimal control, implicit
differentiation for learning problems has been revisited in [18], where new methods for differentiating
optimization-based controllers are proposed.

Learning to Optimize. This emerging paradigm leverages machine learning techniques to design
optimization algorithms. A comprehensive overview of L2O methods [19] categorizes the landscape
and establishes benchmarks for future research. The scalability of L2O to large-scale optimization
problems has been explored in [20], showing that learned optimizers can effectively train large
neural networks. To enhance the robustness of learned optimizers, policy imitation techniques were
introduced in [21], significantly improving L2O model performance. Generalization capabilities

2

have been studied by developing provable bounds for unseen optimization tasks [22]. In [23], meta-
learning approaches are proposed for fast self-adaptation of learned optimizers. The theoretical
foundations of L2O have been strengthened through convergence guarantees for robust learned
optimization algorithms [24]. Furthermore, L2O has been extended to the design of acceleration
methods by leveraging an ODE perspective of optimization algorithms [25].

2 Differentiable Stopping Time: From Continuous to Discrete

We consider an iterative algorithm that arises from the discretization of an underlying continuous-
time dynamical system. Let A(θ, x, t) be a function that defines the instantaneous negative rate of
change for the state x ∈ Rd at time t, parameterized by θ. The input θ could represent, for example,
parameters of a step size schedule or weights of a learnable optimizer. Given t0 and x0 ∈ Rd, the
continuous-time dynamics are given by the ordinary differential equation (ODE)

ẋ(t) = −A(θ, x(t), t), with initial condition x(t0) = x0. (1)

The trajectory x(t) aims to minimize a function f(x), and A is typically related to f(x). Applying
the forward Euler discretization method to the ODE (1) with a time step h > 0 yields the iterative
algorithm

xk+1 = xk − hA(θ, xk, tk), (2)

where xk is the approximation of x(tk), and tk = t0 + kh. We emphasize that h serves as the
discretization step for the ODE. The “effective step size” of the optimization algorithm at iteration k
is h times any scaling factors embedded within A(θ, xk, tk). We provide two simple examples of (2)
as follows. This model also captures more sophisticated algorithms, such as the gradient method with
momentum and LSTM-based learnable optimizers, as illustrated in Appendix D.

Figure 1 provides a visual intuition for these concepts. Figure 1a illustrates how the hyperparameter
θ influences the optimization path. The solid lines are the idealized continuous trajectories from
the ODE, while the dotted lines with markers show the actual discrete steps of the algorithm. The
level sets of the stopping criterion are shown as concentric ellipses. Changing θ from 0.5 (red) to
2.5 (green) alters the trajectory, changing where and when the path intersects the stopping criterion.
Figure 1b demonstrates a central idea of our work: the stopping time (TJ for continuous, NJ for
discrete) is a smooth, differentiable function of the hyperparameter θ. The close alignment between
the discrete stopping times (NJ , transparent markers) and their continuous counterparts (TJ , solid
lines) visually validates our ODE-based approximation and shows the key property our method
exploits.

−1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2
x1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
2

x0

∂NJ

∂θ

‖∇f (x)‖ = ε (Stopping Criterion)

Continuous Flow θ = 0.5 (TJ ≈ 1.71)

x(TJ), θ = 0.5

Discrete Path θ = 0.5, h = 0.08 (NJ = 21)

xNJ
, θ = 0.5

Continuous Flow θ = 2.5 (TJ ≈ 1.61)

x(TJ), θ = 2.5

Discrete Path θ = 2.5, h = 0.08 (NJ = 20)

xNJ
, θ = 2.5

(a) Trajectory vs discrete path

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

θ (Preconditioner Parameter)

1

2

3

4

5

6

7

8

9

T
J

(C
on

ti
nu

ou
s

F
lo

w
T

im
e)

TJ (solid)

NJ (transparent)

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.5

20

40

60

80

100

N
J

(D
is

cr
et

e
S

te
p

s)

0.2 0.3 0.4 0.5

θ

1.0

1.5

2.0

2.5

3.0

T
J

θ ∈ [0.15, 0.5], TJ ∈ [1, 3]

15

20

25

30

35

N
J

(b) Stopping time vs parameters

Figure 1: Illustration of the differentiable stopping time on f(x1, x2) = 0.5x2
1+2x2

2 andA(x, θ, t) =
diag(1, θ)∇f(x). Effect of θ on continuous and discrete stopping time TJ , NJ for different ε values.

Rescaled Gradient Flow. A common instance is the rescaled gradient flow, where A incorporates
a time-dependent and parameter-dependent scaling factor α(θ, t) for the gradient of the objective

3

function f(x). In this case
A(θ, x(t), t) = α(θ, t)∇f(x(t)). (3)

The ODE becomes ẋ(t) = −α(θ, t)∇f(x(t)). The parameters θ might define the functional form
of α, e.g., if α(θ, t) = θ1e

−θ2(t−t0), then θ = (θ1, θ2). The effective step size for the discretized
iteration xk+1 = xk − hα(θ, tk)∇f(xk) is h · α(θ, tk).
Learned Optimizer. Another relevant scenario involves the optimizer using a parametric model,
such as a neural network. Let N (·; θ) : Rd × Rd × R → Rd denote a neural network parame-
terized by weights θ. This network could learn, for instance, a diagonal preconditioning matrix
diag(N (x,∇f(x), t; θ)). Then, the function A is defined as

A(θ, x(t), t) = diag(N (x(t),∇f(x(t)), t; θ))∇f(x(t)). (4)

The discretized update would then use this learned preconditioned gradient.

2.1 Differentiating the Continuous Stopping Time

We first give a formal definition of the continuous stopping time.
Definition 1 (Continuous Stopping Time). Given a continuously differentiable function J , for a
stopping criterion defined by the condition J(x) = ε, the continuous stopping time is the first time
that the trajectory reaches it:

TJ(θ, x0, ε) : = inf
t
{t | J(x(t)) ≤ ε, t ≥ t0, x(t) solves (1)}. (5)

When J(x(t)) never reaches the target ε, we set TJ(θ, x0, ε) = +∞.

Now, we present a theorem that establishes conditions for the differentiability of the stopping time
TJ with respect to parameters θ or the initial condition x0.
Theorem 1 (Differentiability of Continuous Stopping Time). Let T = TJ(θ, x0, ε) be the continuous
stopping time such that J(x(T)) = ε. We assume that the function A(θ, x, t) is continuously
differentiable with respect to θ, x, and t. Additionally, the stopping criterion function J(x) is
assumed to be continuously differentiable with respect to x. Finally, it is assumed that the time
derivative of the criterion function along the trajectory does not vanish at time T , that is,

d

dt
J(x(t))

∣∣∣
t=T

= ∇J(x(T))⊤ẋ(T) ̸= 0.

Then, the solution x(t; θ, x0) of the ODE system is continuously differentiable with respect to its
arguments θ and x0 for t in a neighborhood of T . The stopping time TJ(θ, x0, ε) is continuously
differentiable with respect to θ (and x0) in a neighborhood of the given (θ, x0) where TJ < ∞.
Specifically, its derivatives with respect to a component θ and x0 are given by

∂TJ

∂θ
= −∇J(x(T))

⊤∂x(T)/∂θ

∇J(x(T))⊤ẋ(T) ,
∂TJ

∂x0
= −∇J(x(T))

⊤∂x(T)/∂x0

∇J(x(T))⊤ẋ(T) . (6)

The differentiability of x(T) with respect θ and x0 is guaranteed by the smooth dependence of
solutions on initial conditions and parameters. The terms ∂x(T)/∂θ and ∂x(T)/∂x0 are sensitivities
of the state x at time T with respect to θ and x0 respectively, which can be obtained by solving the
corresponding sensitivity equations or via adjoint methods. The proof is an application of the implicit
function theorem, which is deferred to Appendix A. For the differentiability under weaker conditions,
one may refer to [25, Proposition 2], which confirms the path differentiability [26] when A involves
non-smooth components.

2.2 Differentiable Discrete Stopping Time: An Effective Approximation

The continuous stopping time TJ is an ideal measure of algorithm efficiency. However, backpropa-
gating through it requires solving forward and backward (adjoint) differential equations numerically.
This can incur significant computational overhead, and many of the detailed steps evaluated by an
ODE solver might be considered "wasted" compared to the coarser steps of the original iterative
algorithm (2). We now return to the discrete iteration (2) and propose an efficient approach to
approximate∇θTJ and ∇x0

TJ .

4

Definition 2 (Discrete Stopping Time). For a stopping criterion J(x) = ε and the iterative algorithm
(2), the discrete stopping time is the smallest integer such that J(xK) ≤ ε:

NJ(θ, x0, ε) : = min
n
{n | J(xn) ≤ ε, n ≥ 0, {xn}∞n=0 satisfies (2)}. (7)

If J(xn) > ε for all n ≥ 0, we set NJ = +∞.

While NJ is inherently an integer, to enable its use in gradient-based optimization of θ or x0, we seek
a meaningful way to define its sensitivity to these parameters. Our approach is inspired by Theorem
1. We conceptualize N as a continuous variable for which the condition J(xN (θ, x0)) ≈ ε holds
exactly at the stopping time. Formally differentiating this identity with respect to θ gives

0 ≈ ∇J(xN)⊤
(
∂xN

∂N

∂N

∂θ
+

∂xN

∂θ

)
≈ J(xN)− J(xN−1)

h

∂N

∂θ
+∇J(xN)⊤

∂xN

∂θ
.

Under suitable regularity assumptions, this approximation allows us to define the sensitivity of the
discrete stopping time.

Definition 3 (Sensitivity of the Discrete Stopping Time). Assume that the conditions of Theorem 1
hold. Let N = NJ(θ, x0, ε) denote the discrete stopping time. Then, the sensitivities of N with
respect to θ and x0 are defined as

∂N

∂θ
: = −h∇J(xN)⊤∂xN/∂θ

J(xN)− J(xN−1)
,

∂N

∂x0
: = −h∇J(xN)⊤∂xN/∂x0

J(xN)− J(xN−1)
. (8)

Since Definition 2 ensures J(xN)− J(xN−1) < 0, the above expressions are well-defined. Beyond
being a natural symbolic differentiation of the discrete stopping condition, this definition also serves
as an effective approximation of the gradient of the continuous stopping time. The next theorem
formalizes this connection by quantifying the approximation error between the sensitivities of the
discrete stopping time and the gradients of the continuous stopping time.

Theorem 2 (Approximation Error for Gradient of Stopping Time). Let J(x) = ε be a stopping
criterion, and let h > 0 be a time step size. Assume the discrete stopping index NJ satisfies
TJ ∈ (t0 + (NJ − 1)h, t0 +NJh], where TJ is the (continuous) stopping time and t0 is the initial
time. Suppose that the function A is twice continuously differentiable. We assume that A(θ, x(t), t),
regarded as a function of (θ, t), has uniformly bounded W 2,∞ (Sobolev) norms with respect to (θ, t)
in a neighborhood of θ × [t0, t0 +NJh], and that J , regarded as a function of x, has a uniformly
bounded W 2,∞ norm in a neighborhood of x(TJ). Furthermore, suppose the boundary condition
∇J(x(TJ))

⊤ẋ(TJ) ̸= 0 holds. Then, for sufficiently small h, the following holds

∥∇θTJ(θ, x0, ε)−∇θNJ(θ, x0, ε)∥ = O(h). (9)

This theorem demonstrates that Definition 3 provides an approximation to the gradient of the
continuous stopping time. That is, ∇θNJ converges to ∇θTJ as h → 0. An analogous result
holds for the gradient with respect to x0. This result serves as a theoretical justification for using
the symbolic discrete sensitivity (8) as a surrogate for the continuous counterpart. Our O(h) error
bound in (9) relies on the standard local error analysis of the Euler method. However, we note a
connection to a non-trivial result from [25], which proves for certain forms of A that the global
error ||xk − x(tk)|| can converge to zero as k → ∞ even with a fixed, non-vanishing step size h.
While proving this for our more general framework is beyond the current scope, it suggests that the
approximation in (9) may be more accurate than the local analysis implies, paving the way for future
work to establish stronger error bounds that do not require h→ 0.

2.3 Efficient Computation of the Sensitivity

The primary challenge in (8) is computing the numerator term ∇J(xN)⊤∂xN/∂θ. If the function
A and the iteration process are implemented within an automatic differentiation framework (e.g.,
PyTorch, TensorFlow) whereA might be a learnable nn.Module, then the numerator can be obtained
by unrolling the computation graph and applying backpropagation. However, this can be unstable
and memory-intensive for large N . Other methods include finite differences or stochastic gradient
estimators, which are inexact.

5

Alternatively, the discrete adjoint method provides a memory-efficient way to compute the re-
quired vector-Jacobian products ∇J(xN)⊤(∂xN/∂θ) and ∇J(xN)⊤(∂xN/∂x0) without form-
ing the Jacobians explicitly. This method involves a forward pass to compute the trajectory
x0, . . . , xN , followed by a backward pass that propagates adjoint (or co-state) vectors. Let
xk+1 = Gk(xk, θ) = xk − hA(θ, xk, tk) be the iterative update. Algorithm 1 outlines the pro-
cedure to compute the term Sθ = ∇J(xN)⊤(∂xN/∂θ) and Sx0

= ∇J(xN)⊤(∂xN/∂x0). The
correctness of Algorithm 1 is established by the following theorem. The proof is presented in
Appendix C.

Algorithm 1 Discrete Adjoint Method for Sensitivity Components

1: Input: Forward trajectory {xk}Nk=0, parameters θ, J(xN), time step h, initial time t0.
2: Output: Sθ = ∇J(xN)⊤(∂xN/∂θ) and Sx0

= ∇J(xN)⊤(∂xN/∂x0).
3: λ← ∇J(xN). ▷ Initialize adjoint vector
4: Sθ ← 0 (vector of same size as θ). ▷ Initialize sensitivity component for θ
5: for k = N − 1 downto 0 do
6: tk ← t0 + kh.

7: Sθ ← Sθ − h
(

∂A(θ,xk,tk)
∂θ

)⊤
λ. ▷ Accumulate contribution to Sθ

8: λ←
(
I − h∂A(θ,xk,tk)

∂xk

)⊤
λ. ▷ Propagate adjoint vector backward

9: end for
10: Sx0 ← λ. ▷ After the loop, λ represents ∇J(xN)⊤(∂xN/∂x0)
11: return Sθ, Sx0 .

Proposition 1 (Discrete Adjoint Method). Let the sequence x0, . . . , xN be generated by xk+1 = xk−
hA(θ, xk, tk). The quantities Sθ and Sx0

computed by Algorithm 1 are equal to∇J(xN)⊤(∂xN/∂θ)
and ∇J(xN)⊤(∂xN/∂x0), respectively.

Once Sθ and Sx0
are computed using Algorithm 1, they are plugged into expression (8). This approach

computes the required numerators efficiently by only requiring storage for the forward trajectory
{xk} and the current adjoint vector λ, making its memory footprint O(Nd+ d), which is typically
much smaller than O(N ×memory for A graph) needed for naive unrolling. The computational cost
is roughly proportional to N times the cost of evaluating A and its relevant partial derivatives (or
VJPs). The overall procedure to compute ∇θNJ would first run the forward pass to find N and store
{xk}, then call Algorithm 1 to get Sθ, and finally assemble the components using (8).

3 Applications of Differentiable Stopping Time

In this section, we explore two applications of the differentiable discrete stopping time: L2O and
online adaptation of learning rates (or other optimizer parameters). The ability to differentiate NJ

allows us to directly optimize for algorithmic efficiency towards target suboptimality.

3.1 L2O with Differentiable Stopping Time

In L2O, the objective is to learn an optimization algorithm, denoted by (2), parameterized by θ, that
performs efficiently across a distribution of optimization tasks. Traditional L2O approaches often
aim to minimize a sum of objective function values over a predetermined number of steps. While
this provides a dense reward signal, it may not directly optimize for the speed to reach a specific
target precision ε. To overcome this limitation, the L2O training objective can be augmented with the
stopping time

min
θ

L(θ) = Ef∼Df ,x0∼Dx0

[
Kmax∑
k=0

wkf(xk) + λNJ(θ, x0, ε)

]
, (10)

where Df ,Dx0 are distributions of f and x0, respectively, Kmax is a maximum horizon for the sum,
J is a stopping criterion depending on f , wk are weights, λ is a balancing hyperparameter, and
NJ(θ, x0, ε) is the discrete stopping time. The parameters θ are then updated using a stochastic

6

optimization method such as stochastic gradient descent or Adam. The update follows the rule

θnew = θold − ηL2O

(
∇θ

[
Kmax∑
k=0

wkf(xk)

]
+ λ∇θNJ(θ, x0, ε)

)
, (11)

where ηL2O is the meta-learning rate. Combining these two losses contributions provides a richer
training signal that values both the quality of the optimization path and the overall convergence speed.

Suppose f(xk) > f(xk+1) holds for all k, another interesting result comes from the identity

d

dθ

Kmax∑
k=0

f(xk) =

Kmax∑
k=0

(f(xk)− f(xk−1))
∇f(xk)∂xk/∂θ

f(xk)− f(xk−1)

=
∂

∂θ

Kmax∑
k=0

(f(xk−1)− f(xk))Nf (θ, xk−1, f(xk)).

(12)

We emphasize that the operator ∂/∂θ directly applies to the variable θ while d/dθ will unroll the
intermediate variable and apply chain rule. The identity (12) reveals that optimizing the weighted
loss sum with wk ≡ 1 equals to minimize the sum of stopping times greedily with stopping criterion
f and natural weights f(xk−1)− f(xk).

3.2 Online Adaptation of Optimizer Parameters via Stopping Time

Online adaptation of optimizer hyperparameters θk (for xk+1 = G(xk, θk)) can be triggered by an
adaptive criterion φ(N, ε). This criterion, potentially adaptive itself, signals when to update θk. N
is a stopping time from a reference xref (last adaptation point or x0) until φ is met at xcurrent. Upon
meeting φ at xk+1(= xcurrent), the sensitivity ∂N/∂θ of the stopping time N to hyperparameters θ
active within [xref, xk+1] is key. Theoretically, ∂N/∂θ is found by backpropagating through all steps
from xk+1 to xref, yielding a principled multi-step signal for adjusting θ.

Calculating the full multi-step ∂N/∂θ to xref is often costly. Practical methods may truncate this
dependency. The simplest truncation considers only the immediate impact of θk on xk+1. For this
single-step proxy Nk, its sensitivity, given xk+1 = xk − hstepA(θk, xk, tk) and decreasing J(x), is

∂Nk

∂θ
=

hstep∇J(xk+1)
⊤(∂A(θk, xk, tk)/∂θ)

J(xk+1)− J(xk)
. (13)

For Adam’s learning rate αk (where xk+1 = xk − αkdk, A = αkdk, hstep = 1, θk = αk, and
∂A/∂αk = dk), the one-step truncated sensitivity Sk from (13) (with J(x) = f(x)) becomes

Sk =
∇f(xk+1)

⊤dk
f(xk+1)− f(xk)

. (14)

Sk is the practical signal for adjusting αk. If f(xk+1) < f(xk) (negative denominator), αk is updated
by

αk+1 = αk − ηadaptSk, (15)

with ηadapt as the adaptation rate. Specifically, if ∇f(xk+1)
⊤dk > 0, then Sk < 0, increasing αk;

if ∇f(xk+1)
⊤dk < 0, then Sk > 0, decreasing αk. The full procedure for Adam with Online LR

Adaptation (Adam-OLA) is provided in Algorithm 2 in the Appendix D.

4 Experiments

Validation of Theorems 2 and Proposition 1. To validate the effectiveness and efficiency of
our differentiable discrete stopping time approach, we conduct experiments on a high-dimensional
quadratic optimization problem. We minimize f(x) = x⊤Qx/2, x ∈ Rd with d ∈ {102, 103, 104}
and condition number 100. The optimization algorithm uses forward Euler discretization (2) of (1),
where A incorporates a diagonal preconditioner (4) with 10d learnable parameters. The stopping
criterion is ∥∇f(x)∥22 ≤ ε with ε ∈ {10−3, 10−4, 10−5}. We compare the sensitivity of the discrete
stopping time∇θNJ , computed using Algorithm 1, against the gradient of the continuous stopping

7

time ∇θTJ (ground truth), computed via torchdiffeq [27] through an adaptive ODE solver. We
vary d, ε, and h.

We evaluate effectiveness and efficiency using two primary metrics, Relative Error quantifies the
accuracy of ∇θNJ as an approximation of ∇θTJ . A smaller error indicates better accuracy, with
O(h) magnitude expected (Theorem 2). Results are shown in Figure 2a. NFE Ratio measures the
computational cost efficiency, defined as the number of function evaluations (NFE) for Algorithm
1 to compute ∇θNJ versus the adaptive ODE solver to compute ∇θTJ . A ratio < 1 indicates the
discrete approach’s forward simulation is cheaper. Results are shown in Figure 2b. The numbers of
Euler NFE and ODE NFE are presented in Appendix D. The math formulae of these quantities are

Relative Error =
∥∇θNJ −∇θTJ∥2
∥∇θTJ∥2 + ∥∇θNJ∥2

, NFE Ratio =
Euler NFE
ODE NFE

.

By analyzing the relative error and NFE ratio across varying parameters, our experiments demon-
strate that the discrete sensitivity provides an accurate approximation while requiring substantially
fewer function evaluations for the forward pass, highlighting its efficiency and suitability for high-
dimensional problems compared to methods relying on precise ODE solves for the stopping time
gradient.

Notably, smaller stopping thresholds ϵ also lead to lower relative error. Intuitively, smaller values of
ϵ lead to longer optimization trajectories that settle closer to the optimum, where the dynamics are
smoother and the discrete approximation becomes more accurate. However, a deeper explanation
is supported by the theoretical analysis in [25], which shows that ∥xk − x(tk)∥ can decrease as k
increases, even under a fixed step size. This directly explains the trend: smaller ϵ leads to larger k,
which in turn reduces the discrepancy between the discrete and continuous trajectories, and thus the
relative error. This interpretation is also reinforced by Figure 1a. As the optimization progresses,
the distance between the discrete iterates and the continuous path visibly decreases. In particular,
the discrete and continuous trajectories gradually align as they approach the stopping region, further
supporting the claim that gradient approximation becomes more accurate near convergence.

0.004 0.006 0.008 0.010 0.012 0.014 0.016
Time Step Size (h)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
el

at
iv

e
E

rr
or

Problem Configuration

dim=102, ε=10−5

dim=102, ε=10−4

dim=102, ε=10−3

dim=103, ε=10−5

dim=103, ε=10−4

dim=103, ε=10−3

dim=104, ε=10−5

dim=104, ε=10−4

dim=104, ε=10−3

(a) Relative Error vs Time Step Size

0.004 0.006 0.008 0.010 0.012 0.014 0.016
Time Step Size (h)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
F

E
R

at
io

(E
ul

er
/

O
D

E
)

Problem Configuration

dim=102, ε=10−5

dim=102, ε=10−4

dim=102, ε=10−3

dim=103, ε=10−5

dim=103, ε=10−4

dim=103, ε=10−3

dim=104, ε=10−5

dim=104, ε=10−4

dim=104, ε=10−3

(b) NFE Ratio vs Time Step Size

Figure 2: Experimental results comparing the discrete and continuous stopping time gradients across
varying problem dimensions, stopping thresholds, and time step sizes. (a) shows the relative error of
the discrete gradient approximation. (b) shows the computational cost ratio.

Learning to Optimize. We consider a logistic regression problem with synthetic data

min
x∈Rd

f(x) : =
1

n

n∑
i=1

log
(
1 + exp(−yiw⊤

i x)
)
,

where wi ∈ Rd denotes the i-th data sample, and yi ∈ {0, 1} is the corresponding label. We
consider two L2O optimizers: L2O-DM [28] and L2O-RNNprop [29]. Both employ a two-layer
LSTM with a hidden state size of 30 to predict coordinate-wise updates. The data generation process
and the architecture of the L2O optimizers are detailed in Appendix D. The training setup follows

8

that of [29]. Specifically, the feature dimension is set to d = 512, and the number of samples is
n = 256. In each training step, we use a mini-batch consisting of 64 optimization problems. The
total number of training steps is 500. In each of these steps, a batch of 64 optimization problems is
sampled, and the learned optimizers are unrolled for a horizon of Kmax = 100 iterations to compute
the training loss. We divide the sequence into 5 segments of 20 steps each and apply truncated
backpropagation through time (BPTT) for training. The weights in (10) are set as wk ≡ 1/Kmax.
Two loss functions are considered. The first corresponds to setting λ = 0 in (10), resulting in an
average loss across all iterations. To demonstrate the benefit of incorporating the stopping time
penalty, we also set λ = 1 and use the stopping criterion f(xk−1) − f(xk) ≤ 10−5. This can be
reformulated into the standard form by augmenting the state variable as zk = (xk, xk−1) and defining
J(z) = f(z[d+ 1 : 2d])− f(z[1 : d]).

The test results are summarized in Figure 3. L2O-DM refers to the L2O-DM optimizer. L2O-RNNprop
and L2O-RNNprop-Time denote the L2O-RNNprop optimizer with and without the stopping time
penalty, respectively. Since L2O-DM does not reach the stopping criterion within the maximum
number of steps, we do not evaluate its performance under the stopping time penalty. For comparison
with manually designed optimizers, GD represents gradient descent, NAG denotes Nesterov’s accel-
erated gradient method, and Adam is a well-known adaptive optimizer. All classical methods use a
fixed step size of 1/L, where L is the Lipschitz constant of∇f(x) estimated at the initial point x0.
Our results show a clear acceleration toward reaching the target stopping criterion. In Figure 3a, we
evaluate on a problem of the same size, d = 512, n = 256. In Figure 3b, we test on a fourfold larger
instance with d = 2048, n = 1024. Both experiments indicate that the number of iterations required
to meet the stopping criterion is reduced by hundreds of steps, and the learned optimizers generalize
robustly to larger-scale problems.

100 101 102 103

Iterations

10 9

10 7

10 5

10 3

10 1

101

103

f k

L2O-RNNprop-Time
L2O-RNNprop
L2O-DM
NAG
GD
Adam

(a) Train and test on the same size problems.

100 101 102 103

Iterations

10 9

10 7

10 5

10 3

10 1

101

103

f k

L2O-RNNprop-Time
L2O-RNNprop
L2O-DM
NAG
GD
Adam

(b) Test on 4x larger problems than training.

Figure 3: Test results of different optimizers on logistic regression: Function value versus iteration.

Online Learning Rate Adaptation. We tested Algorithm 2 on smooth support vector machine (SVM)
problems [30], using datasets from LIBSVM [31]. HB denotes the heavy-ball method, and NAG-SC
refers to the Nesterov accelerated gradient method tailored for strongly convex objectives. Adagrad is
an adaptive gradient algorithm that scales the learning rate per coordinate based on historical gradient
information. Adam-HD is an influential extension of Adam [32] in the context of online learning rate
adaptation; it updates the base learning rate of Adam at each iteration using a hyper-gradient technique.
The remaining abbreviations retain their previously defined meanings. The results presented in
Figure 4 demonstrate that Algorithm 2 consistently outperforms the baseline methods, particularly
in the later stages of convergence. Further comparisons across multiple datasets, as well as detailed
descriptions of hyperparameter settings for the baselines, are provided in Appendix D.

5 Conclusion

In this work, we introduced the concept of a differentiable discrete stopping time for iterative
algorithms, establishing a link between continuous time dynamics and their discrete approximations.
We proposed an efficient method using the discrete adjoint principle to compute the sensitivity of
the discrete stopping time. Our experiments demonstrate that this approach provides an accurate

9

0 200 400 600 800 1000
Iterations

10
9

10
7

10
5

10
3

10
1

10
1

10
3

(f k
f m

in
)/f

m
in

Adam-OLA
AdaGrad
Adam
Adam-HD
GD
HB

(a) a1a

0 200 400 600 800 1000
Iterations

10
7

10
5

10
3

10
1

10
1

(f k
f m

in
)/f

m
in

Adam-OLA
AdaGrad
Adam
Adam-HD
GD
HB
NAG
NAG-SC

(b) a2a

Figure 4: Comparison of different optimizers on smooth SVM: Function value versus iteration. Here,
fmin denotes the minimum function value achieved across all iterations for each optimizer.

gradient approximation while requiring substantially fewer function evaluations for the forward
pass compared to methods relying on continuous ODE solves, proving efficient and scalable for
high-dimensional problems. This allows direct optimization of algorithms for convergence speed,
with potential applications in L2O and online adaptation.

However, we note that employing a forward Euler discretization with a fixed time step may be too
coarse for the algorithmic design. This limitation is also reflected in the error bound estimated in
Theorem 2. In future work, we plan to explore more tailored algorithmic designs forA alongside more
sophisticated discretization schemes—such as symplectic integrators or methods that incorporate
higher-order information. Such approaches may enable more accurate control of the global error and
allow for a wider range of stable time steps during discretization.

Acknowledgement

This research was supported in part by the National Natural Science Foundation of China under the
grant numbers 12331010 and 12288101, National Key Research and Development Program of China
under the grant number 2024YFA1012902, and the Natural Science Foundation of Beijing, China
under the grant number Z230002.

References
[1] Hamdy A Taha and Hamdy A Taha. Operations research: an introduction, volume 7. Prentice

hall Upper Saddle River, NJ, 1997.

[2] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2025. URL https://arxiv.org/abs/
2303.18223.

[3] Keith Pilbeam. Finance and financial markets. Bloomsbury Publishing, 2018.

[4] Matthias Feurer and Frank Hutter. Hyperparameter optimization. Springer International
Publishing, 2019.

[5] Xiaohan Chen, Jialin Liu, and Wotao Yin. Learning to optimize: A tutorial for continuous and
mixed-integer optimization. Science China Mathematics, 67(6):1191–1262, 2024.

[6] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983.

10

https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

[7] Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights. Journal of Machine Learning
Research, 17(1):5312–5354, 2016.

[8] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration
phenomenon via high-resolution differential equations. Mathematical Programming, 194:
313–351, 2022.

[9] Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretiza-
tion of high-resolution differential equations. In Advances in Neural Information Processing
Systems, pages 5745–5753, 2019.

[10] Mathieu Laborde and Adam Oberman. A lyapunov analysis for accelerated gradient methods:
From deterministic to stochastic case. In International Conference on Artificial Intelligence and
Statistics, pages 602–612. PMLR, 2020.

[11] Chenyi Li, Shuchen Zhu, Zhonglin Xie, and Zaiwen Wen. Accelerated natural gradient method
for parametric manifold optimization, 2025. URL https://arxiv.org/abs/2504.05753.

[12] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
In Advances in Neural Information Processing Systems, volume 35, pages 14502–14514, 2022.

[13] Jérôme Bolte, Tam Le, Edouard Pauwels, and Jean-Philippe Vert. Nonsmooth implicit differen-
tiation for machine-learning and optimization. In Advances in Neural Information Processing
Systems, volume 34, pages 11913–11924, 2021.

[14] Michael Chang, Thomas Griffiths, and Sergey Levine. Object representations as fixed points:
Training iterative refinement algorithms with implicit differentiation. In Advances in Neural
Information Processing Systems, volume 35, pages 22838–22849, 2022.

[15] Quentin Bertrand, Quentin Klopfenstein, Mathieu Massias, Mathieu Blondel, Gael Varoquaux,
Alexandre Gramfort, and Joseph Salmon. Implicit differentiation for fast hyperparameter
selection in non-smooth convex learning. Journal of Machine Learning Research, 23(1):
7710–7749, 2022.

[16] Zhengyang Geng, Xin-Yu Zhang, Shaoyuan Bai, Yiran Wang, and Zhouchen Lin. On training
implicit models. In Advances in Neural Information Processing Systems, volume 34, pages
3562–3575, 2021.

[17] Paul Vicol, Jonathan P Lorraine, Fabian Pedregosa, Juan-Manuel Pérez-Rua, and Pierre Ablin.
On implicit bias in overparameterized bilevel optimization. In International Conference on
Machine Learning, pages 22137–22161. PMLR, 2022.

[18] Ming Xu, Timothy L Molloy, and Stephen Gould. Revisiting implicit differentiation for learning
problems in optimal control. In Advances in Neural Information Processing Systems, volume 36,
pages 66428–66441, 2023.

[19] Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang,
and Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23:1–20, 2022.

[20] Xinyang Chen, Tianlong Chen, Yinghua Cheng, Wuyang Chen, Xiaoyang Xiao, Ziyi Lu, and
Zhangyang Wang. Scalable learning to optimize: A learned optimizer can train big models. In
European Conference on Computer Vision, pages 377–394. Springer, 2022.

[21] Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Wang, Wei Zhang, and Zhangyang Wang.
Training stronger baselines for learning to optimize. In Advances in Neural Information
Processing Systems, volume 33, pages 10658–10669, 2020.

[22] Jiayi Yang, Tianlong Chen, Muxin Zhu, Fengxiang He, Dacheng Tao, and Zhangyang Wang.
Learning to generalize provably in learning to optimize. In International Conference on Machine
Learning, pages 39496–39519. PMLR, 2023.

11

https://arxiv.org/abs/2504.05753

[23] Jiayi Yang, Xinyang Chen, Tianlong Chen, Zhangyang Wang, and Yingbin Liang. M-l2o:
Towards generalizable learning-to-optimize by test-time fast self-adaptation. arXiv preprint
arXiv:2303.00039, 2023.

[24] Qi Song, Weiyang Lin, Jingyi Wang, and Hao Xu. Towards robust learning to optimize with
theoretical guarantees. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2024.

[25] Zhonglin Xie, Wotao Yin, and Zaiwen Wen. ODE-based Learning to Optimize, 2024. URL
https://arxiv.org/abs/2406.02006.

[26] Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

[27] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

[28] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 3981–3989, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html.

[29] Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization
and longer horizons. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 2247–2255.
PMLR, 2017. URL http://proceedings.mlr.press/v70/lv17a.html.

[30] Yuh-Jye Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for classification.
Comput. Optim. Appl., 20(1):5–22, 2001. doi: 10.1023/A:1011215321374. URL https:
//doi.org/10.1023/A:1011215321374.

[31] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[32] Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=BkrsAzWAb.

[33] Ya-Chi Chu, Wenzhi Gao, Yinyu Ye, and Madeleine Udell. Provable and practical online
learning rate adaptation with hypergradient descent, 2025. URL https://arxiv.org/abs/
2502.11229.

[34] Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards constituting
mathematical structures for learning to optimize. In Proceedings of the 40th International
Conference on Machine Learning, pages 21426–21449, 2023.

12

https://arxiv.org/abs/2406.02006
https://proceedings.neurips.cc/paper/2016/hash/fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html
http://proceedings.mlr.press/v70/lv17a.html
https://doi.org/10.1023/A:1011215321374
https://doi.org/10.1023/A:1011215321374
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://openreview.net/forum?id=BkrsAzWAb
https://openreview.net/forum?id=BkrsAzWAb
https://arxiv.org/abs/2502.11229
https://arxiv.org/abs/2502.11229

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions are discussed in Section 1, as well as the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations and future work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: For each theorem and proposition, we clearly state the assumptions and present
the corresponding proof in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The hyperparameters for reproducing the experiments are listed in Section 4
and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide the code during submission stage.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are presented in Section 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We test different problems with different data and compare the proposed
algorithms with multiple baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we conform the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have explicitly cited the code we used in Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Proof of Theorem 1

Proof. Consider a function G(θ, x0, t) = J(x(t; θ, x0))− ϵ. By the definition of T = TJ(θ, x0, ϵ),
we have

G(θ, x0, T) = G(θ, x0, TJ(θ, x0, ϵ)) = 0.

Computing the partial derivatives yields

∂G

∂θ
= ∇J(x)⊤ ∂x

∂θ
,

and
∂G

∂t
= ∇J(x)⊤ẋ(t).

Using the implicit function theorem, we conclude that T can be expressed locally as a continuously
differentiable function of θ or x0. We now differentiate G with respect to θ and x0, which yields

0 =
d

dθ
(G(θ, x0, T)) =

d

dθ
J (x(T (θ, x0, ϵ); θ, x0)) = ∇J(x)⊤

(
∂x

∂θ
+ ẋ(T)

∂T

∂θ

)
,

and

0 =
d

dx0
(G(θ, x0, T)) =

d

dx0
J (x(T (θ, x0, ϵ); θ, x0)) = ∇J(x)⊤

(
∂x

∂x0
+ ẋ(T)

∂T

∂x0

)
.

Rearranging these equations leads to

∇J(x)⊤ẋ(T)∂T
∂θ

= −∇J(x)⊤ ∂x

∂θ
, and hence

∂T

∂θ
=
(
∇J(x)⊤ẋ(T)

)−1∇J(x)⊤ ∂x

∂θ
,

as well as

∇J(x)⊤ẋ(T) ∂T
∂x0

= −∇J(x)⊤ ∂x

∂x0
, and hence

∂T

∂x0
=
(
∇J(x)⊤ẋ(T)

)−1∇J(x)⊤ ∂x

∂x0
.

The above equations complete the proof.

B Proof of Theorem 2

We first present a basic analysis in numerical ODEs.
Proposition 2 (Error analysis of the forward Euler method). Let f : Rn × R → R be a function
defined by (x, t) 7→ f(x, t). Suppose the following assumptions hold

1. There exists a constant Lx > 0 such that ∥f(x1, t) − f(x2, t)∥ ≤ Lx∥x1 − x2∥ for all
x1, x2, and t.

2. There exists a constant Lt > 0 such that ∥f(x, t1)− f(x, t2)∥ ≤ Lt|t1 − t2| for all x, t1,
and t2.

3. There exists a constant M > 0 such that ∥f(x, t)∥ < M for all x and t.

Given an initial condition x(t0) = x0 and a fixed stepsize h, we consider the sequence generated by
the forward Euler method as

xk+1 = xk + hf(xk, tk), tk = t0 + kh.

Then, for any positive integer k, the error ek = xk − x(tk) satisfies

∥ek∥ ≤
h

2

(
M +

Lt

Lx

)(
eLxhk − 1

)
.

Proof. We begin by expressing the error at step k + 1 as

ek+1 = xk+1 − x(tk+1) = ek + h (f(xk, tk)− f(x(tk), tk)) + x(tk) + hf(x(tk), tk)− x(tk+1).

20

Applying Lipschitz continuity, we obtain the inequality

∥ek+1∥ ≤ (1 + Lxh)∥ek∥+ ∥x(tk) + hf(x(tk), tk)− x(tk+1)∥.

The second term on the right-hand side can be expressed in integral form as

∥x(tk) + hf(x(tk), tk)− x(tk+1)∥ =
∥∥∥∥∫ tk+1

tk

[f(x(t), t)− f(x(tk), tk)] dt

∥∥∥∥ ,
which is bounded above by∥∥∥∥∫ tk+1

tk

[f(x(t), tk)− f(x(tk), tk)] dt

∥∥∥∥+ ∥∥∥∥∫ tk+1

tk

[f(x(t), t)− f(x(t), tk)] dt

∥∥∥∥ .
Substituting the assumptions, we estimate the first integral as∥∥∥∥∫ tk+1

tk

[f(x(t), tk)− f(x(tk), tk)] dt

∥∥∥∥ ≤ Lx

∫ tk+1

tk

∥x(t)− x(tk)∥dt ≤
1

2
MLxh

2,

where the last inequality follows from the Lagrange mean value theorem, which implies that∫ tk+1

tk

∥x(t)− x(tk)∥dt =
∫ tk+1

tk

∥ẋ(ξ)∥|t− tk|dt

=

∫ tk+1

tk

∥f(x(ξ), ξ)∥|t− tk|dt

≤M

∫ tk+1

tk

|t− tk|dt =
1

2
Mh2.

Similarly, for the second integral, we derive the bound as∥∥∥∥∫ tk+1

tk

[f(x(t), t)− f(x(t), tk)] dt

∥∥∥∥ ≤ Lt

∫ tk+1

tk

|t− tk|dt =
1

2
Lth

2.

Combining these inequalities, we obtain

∥ek+1∥ ≤ (1 + Lxh)∥ek∥+
h2

2
(Lt +MLx).

Finally, using the initial error e0 = 0, we conclude that the global error satisfies

∥ek∥ ≤
h

2

(
M +

Lt

Lx

)(
eLxhk − 1

)
.

This completes the proof.

Proof of the Theorem. The following conditions are assumed throughout our analysis. First, the
function A is twice continuously differentiable, i.e., A ∈ C2. Second, A itself, together with all
partial derivatives of A (such as ∂

∂xA, ∂2A
∂θ∂t) and the gradient and Hessian of J (i.e.,∇J and∇2J),

are uniformly bounded by constants A,Ax, Aθ, At, Aθ,x, Ax,x, Ax,t, Aθ,t, J1, and J2, respectively.
Third, we assume the boundary condition |∇J(x(T))⊤ẋ(T)| = δ.

For clarity and brevity, our main theorem states the regularity and boundedness assumptions using
Sobolev norms; specifically, we require that A(θ, x(t), t), regarded as a function of (θ, t), has
uniformly bounded W 2,∞ norms with respect to (θ, t) in a neighborhood of θ × [t0, t0 +NJh], and
that J , regarded as a function of x, has a uniformly bounded W 2,∞ norm in a neighborhood of x(TJ).
In this proof, we equivalently expand these assumptions by explicitly introducing uniform bounds
for A, its partial derivatives (with respect to x, θ, t, etc.), and for the gradient∇J and Hessian∇2J ,
denoted by A,Ax, Aθ, At, Aθ,x, Ax,x, Ax,t, Aθ,t, J1, and J2, respectively. This explicit formulation
is purely for notational convenience in the analysis, as it allows us to refer directly to these quantities

21

in the derivations, especially during Taylor expansions and error estimates. We emphasize that these
detailed bounds can be derived from the W 2,∞ norm boundedness assumed in the theorem statement.

Without loss of generality, we only prove the case for the L2 norm. We first recall the form and the
definition of the derivative. They are given by

∇θT = ∇θTJ(θ, x0, ϵ) = −
∇J(x(T))⊤ ∂x(T)

∂θ

∇J(x(T))⊤ẋ(T) ,

∇θN = ∇θNJ(θ, x0, ϵ) = −
h∇J(xN)⊤ ∂xN

∂θ

J(xN)− J(xN−1)
.

We consider the iteration
xk+1 = xk − hA(θ, xk, tk).

Differentiating with respect to θ, we obtain

∂xk+1

∂θ
=

(
I − h

∂

∂x
A(θ, xk, tk)

)
∂xk

∂θ
− h

∂

∂θ
A(θ, xk, tk),

where the initial condition ∂x0

∂θ holds.

Also, we consider the flow
ẋ(t) = −A(θ, x(t), t).

Differentiating with respect to θ, we obtain

d

dt

∂x(t)

∂θ
= − ∂

∂θ
A(θ, x(t), t)− ∂

∂x
A(θ, x(t), t)∂x(t)

∂θ
, (16)

where the initial condition ∂x(t0)
∂θ = 0 holds. Let u(t) = ∂x(t)

∂θ . It is easy to observe that the iteration
above corresponds to the forward Euler method for solving the ODE

d

dt
u(t) = − ∂

∂θ
A(θ, x(t), t)− ∂

∂x
A(θ, x(t), t)u(t).

We now proceed to show that u(t), for t ∈ [t0, T], is bounded by some constant M > 0. Let
v = u⊤u, B(t) = − ∂

∂θA(θ, x(t), t), and C(t) = − ∂
∂xA(θ, x(t), t). Then we can derive that

d

dt
v = 2u⊤ d

dt
u = 2u⊤B + 2u⊤Cu.

Therefore, we have the bound∣∣∣∣ ddtv
∣∣∣∣ ≤ 2∥B∥√v + 2∥C∥v ≤ ∥B∥+ (∥B∥+ 2∥C∥)v ≤ Aθ + (Aθ + 2Ax)v.

Applying the Gronwall inequality, for every t ∈ [t0, T], we obtain the following estimate

∥u(t)∥ =
√
v(t) ≤

√
Aθ

Aθ + 2Ax

(
e(Aθ+2Ax)(T−t0) − 1

)
≜ M. (17)

Employing Proposition 2, we obtain that
∥∥∥∂xN

∂θ −
∂x(Nh)

∂θ

∥∥∥ is bounded by

h

2

(
MAx +Aθ +

M(Ax,t +AAx,x) +Aθ,t +AAθ,x

Ax

)(
eAx(T+1−t0) − 1

)
.

Let

c1 ≜
1

2

(
MAx +Aθ +

M(Ax,t +AAx,x) +Aθ,t +AAθ,x

Ax

)(
eAx(T+1−t0) − 1

)
. (18)

Noticing that d
dt

∂x(t)
∂θ is bounded by Aθ + AxM according to (16), and that |T − Nh| ≤ h, we

deduce that ∥∥∥∥∂x(Nh)

∂θ
− ∂x(T)

∂θ

∥∥∥∥ ≤ (Aθ +AxM)h.

22

Let e1 = ∂xN

∂θ −
∂x(T)
∂θ . Then we obtain the estimate

∥e1∥ ≤ (Aθ +AxM + c1)h. (19)

Similarly, by Proposition 2, we know that

∥xN − x(Nh)∥ ≤ h

2

(
A+

At

Ax

)(
eAx(T+1−t0) − 1

)
.

Let

c2 ≜
1

2

(
A+

At

Ax

)(
eAx(T+1−t0) − 1

)
. (20)

Since d
dtx(t) = −A(θ, x(t), t) is bounded by A and |T −Nh| ≤ h, it follows that

∥xN − x(T)∥ ≤ (A+ c2)h.

Let e2 = ∇J(xN)−∇J(x(T)). Since ∥∇2J∥ is bounded by J2, we obtain the estimate
|e2| ≤ J2(A+ c2)h. (21)

The Taylor expansion yields

J(xN) = J(xN−1)−∇J(xN−1)
⊤(xN − xN−1) +

1

2
(xN − xN−1)

⊤∇2J(ξ)(xN − xN−1).

Combining this with the fact that xN − xN−1 = −hA(θ, xN−1, tN−1) and that ∥∇2J∥ is bounded
by J2, we obtain∣∣∣∣J(xN)− J(xN−1)

h
+∇J(xN−1)

⊤A(θ, xN−1, tN−1)

∣∣∣∣ ≤ 1

2
hA2J2.

Let

e5 =
J(xN)− J(xN−1)

h
+∇J(xN−1)

⊤A(θ, xN−1, tN−1)

and e3 = ∇J(xN−1)−∇J(x(T)),e4 = A(θ, xN−1, tN−1) + ẋ(T). We have just derived

|e5| ≤
1

2
hA2J2 (22)

As in the previous estimate for e2, we obtain
∥e3∥ ≤ J2(A+ c2)h. (23)

Furthermore, we have
∥e4∥ ≤ ∥A(θ, xN−1, tN−1)−A(θ, x(T), tN−1)∥+ ∥A(θ, x(T), tN−1)−A(θ, x(T), T)∥

≤ Ax(A+ c2)h+Ath. (24)

Substituting the definitions of these error terms into the expression for∇θN , we obtain

∇θN = −
(∇J(x(T)) + e2)

⊤
(

∂x(T)
∂θ + e1

)
(∇J(x(T)) + e3)⊤(ẋ(T)− e4) + e5

.

Recall that

∇θT = −∇J(x(T))
⊤ ∂x(T)

∂θ

∇J(x(T))⊤ẋ(T) .

Comparing these two expressions and combining the estimates from (19), (21), (23), and (24),
together with the assumptions, we arrive at the final estimate that

∥∇θT −∇θN∥ ≤ Rh+O(h2),

where

R =
J1M

δ2

(
J1(At +Ax(A+ c2)) +

3

2
A2J2 +AJ2c2

)
+

1

δ
(J1(A0 +AxM + c1) +MJ2(A+ c2)) .

Here, the constants refer to those defined in (17), (18), (20), and the assumptions stated earlier. This
completes the proof.

23

C Proof of Proposition 1

Proof. We aim to compute Sθj = ∇J(xN)⊤ ∂xN

∂θj
for each component θj of θ, and Sx0

=

∇J(xN)⊤ ∂xN

∂x0
. Let L(θ, x0) = J(xN (θ, x0)). We are interested in ∇θL and ∇x0L. Define

the adjoint (co-state) vectors λk ∈ Rd for k = 0, . . . , N such that λ⊤
k = ∂J(xN)

∂xk
= ∇J(xN)⊤ ∂xN

∂xk
.

The base case is at k = N ,

λN =
∂J(xN)

∂xN
= ∇J(xN). (25)

For k < N , xN depends on xk through xk+1. Using the chain rule

∂J(xN)

∂xk
=

∂J(xN)

∂xk+1

∂xk+1

∂xk
.

In terms of our adjoints, we have

λ⊤
k = λ⊤

k+1

∂xk+1

∂xk
.

Given xk+1 = xk − hA(θ, xk, tk), the Jacobian is ∂xk+1

∂xk
= I − h∂A(θ,xk,tk)

∂xk
. Thus, the backward

recursion for the adjoints is

λ⊤
k = λ⊤

k+1

(
I − h

∂A(θ, xk, tk)

∂xk

)
, (26)

or λk =
(
I − h∂A(θ,xk,tk)

∂xk

)⊤
λk+1. The loop in Algorithm 1 implements this recursion. At the

beginning of iteration k (loop index in algorithm, representing the step from xk to xk+1), the variable
λ in the algorithm holds λk+1 from our derivation.

Now consider the derivative with respect to a parameter θj . J(xN) depends on θj through all xm for
m ≤ N where xm is influenced by θj . Hence,

∂J(xN)

∂θj
=

N−1∑
m=0

∂J(xN)

∂xm+1

(
∂xm+1

∂θj

)
explicit

,

where (∂xm+1/∂θj)explicit means differentiating xm+1 = xm − hA(θ, xm, tm) with respect to θj
while holding xm fixed (

∂xm+1

∂θj

)
explicit

= −h∂A(θ, xm, tm)

∂θj
.

Thus, it holds

∂J(xN)

∂θj
=

N−1∑
m=0

λ⊤
m+1

(
−h∂A(θ, xm, tm)

∂θj

)
. (27)

The loop runs from k = N − 1 down to 0. For each k in the loop, the term added is
−h(∂A(θ,xk,tk)

∂θ)⊤λk+1. Summing these terms gives
(
∇J(xN)⊤ ∂xN

∂θ

)
j
.

Finally, for the sensitivity with respect to x0,

∂J(xN)

∂x0
= λ⊤

0 .

After the loop in Algorithm 1 finishes (i.e., after the iteration for k = 0), the variable λ will have
been updated using λ1 and ∂A(θ,x0,t0)

∂x0
, thus holding λ0.

24

D Details of Experiments

Algorithm 2 Adam-OLA

1: Input: x0, α0, f ,∇f .
2: Params:β1, β2, εstab, ηadapt, ϵdesc.
3: m0, v0 ← 0, 0; k ← 0; αcurr ← α0.
4: xref ← x0; fref ← f(x0); Nupdates ← 0.
5: for k = 0, 1, . . . until convergence do
6: gk ← ∇f(xk)
7: mk+1 ← β1mk + (1− β1)gk
8: vk+1 ← β2vk + (1− β2)g

2
k

9: m̂k+1 ← mk+1/(1− βk+1
1)

10: v̂k+1 ← vk+1/(1− βk+1
2)

11: dk ← m̂k+1/(
√

v̂k+1 + εstab)
12: f prev

k ← f(xk)
13: xk+1 ← xk − αcurrdk
14: fk+1 ← f(xk+1)
15: if fref − fk+1 > ϵdesc ·Nupdates then
16: gnew

k+1 ← ∇f(xk+1)

17: ∆fstep ← fk+1 − f prev
k

18: if ∆fstep ̸= 0 then
19: Sk ← (gnew

k+1 · dk)/∆fstep
20: αcurr ← αcurr − ηadaptSk

21: end if
22: xref ← xk+1; fref ← fk+1

23: Nupdates ← Nupdates + 1
24: end if
25: end for
26: Return xk

Implementation Details. We adopt the official implementation of [33]1 for the online learning rate
adaptation experiments, and the codebase from [34]2 for L2O experiments. They all follow the
MIT License as specified in their respective GitHub repositories. All experiments are conducted
on a workstation running Ubuntu with a 12-core Intel Xeon Platinum 8458P CPU (2.7GHz, 44
threads), one NVIDIA RTX 4090 GPU with 24GB memory, and 60GB of RAM. We note that, for
both experimental setups, we have made moderate modifications to the original implementations to
better align with the goals of our study. However, as the focus of this work is to explore the potential
applications of stopping time in optimization rather than to achieve state-of-the-art performance
across all settings, we did not perform extensive hyperparameter tuning for the stopping time–based
algorithms under different configurations. This choice may explain why our method does not reach
SOTA performance in some scenarios.

NFEs of different solvers. Figure 5 shows that the NFE for an adaptive solver is mainly influenced
by the stopping criterion. Since it does not accept a prespecified time step size, all of the statistics
remain the same for different h.

Hyperparameters of Baselines. Adagrad is an adaptive gradient algorithm that adjusts learn-
ing rates per coordinate based on historical gradient information. The learning rate is set
β ∈ {10−3, 10−2, 10−1, 1.0, 10.0, 1/L} with ϵ = 10−8. For Heavy-Ball method (HB), the mo-
mentum parameter is selected from the set {0.1, 0.5, 0.9, 1.0}. Adam-HD is a notable variant of
Adam [32], which employs a hypergradient-based scheme to adaptively update the base learning
rate at each iteration in an online fashion. For Adam-HD, the hyperparameter β used to update the
learning rate is chosen from the set {10−3, 10−4, 10−5, 10−6}. All other abbreviations follow their
previously defined roles within the L2O framework. Adam-OLA and Adam-HD are all based on the

1https://github.com/udellgroup/hypergrad
2https://github.com/xhchrn/MS4L2O

25

https://github.com/udellgroup/hypergrad
https://github.com/xhchrn/MS4L2O

0.004 0.006 0.008 0.010 0.012 0.014 0.016
Time Step Size (h)

600

700

800

900

1000

1100

O
D

E
N

F
E

Problem Configuration

dim=102, ε=10−5

dim=102, ε=10−4

dim=102, ε=10−3

dim=103, ε=10−5

dim=103, ε=10−4

dim=103, ε=10−3

dim=104, ε=10−5

dim=104, ε=10−4

dim=104, ε=10−3

(a) NFE of the adaptive ODE solver.

0.004 0.006 0.008 0.010 0.012 0.014 0.016
Time Step Size (h)

200

400

600

800

1000

E
ul

er
N

F
E

Problem Configuration

dim=102, ε=10−5

dim=102, ε=10−4

dim=102, ε=10−3

dim=103, ε=10−5

dim=103, ε=10−4

dim=103, ε=10−3

dim=104, ε=10−5

dim=104, ε=10−4

dim=104, ε=10−3

(b) NFE of the Euler discretization.

Figure 5: NFEs of different solvers.

classical Adam, where (β1, β2) = (0.9, 0.999) and ϵ = 10−8. The initial learning rate for Adam is
selected from the set α ∈ {10−3, 10−2, 10−1, 1.0, 10.0, 1/L}. L is the Lipschitz constant of∇f(x),
estimated at the initial point x0. The maximum number of iterations is set to 1000, with a stopping
criterion tolerance of 10−4.

Table 1: Hyperparameter settings for Adam-OLA on different datasets. The parameter β controls the
learning rate adaptation magnitude, and ϵ specifies the sufficient decrease threshold for triggering a
learning rate update.

Dataset (Experiment) β (Learning Rate Update) ϵ (Descent Threshold)

a1a (exp_svm) 1× 10−2 1× 10−5

a2a (exp_svm) 1× 10−3 1× 10−3

a3a (exp_svm) 5× 10−5 5× 10−4

w3a (exp_svm) 0.005 5× 10−9

Formulation of the Smooth SVM. In this work, we consider the problem of binary classification
using a smooth variant of the SVM, where the non-smooth hinge loss is replaced by its squared
counterpart to enable efficient gradient-based optimization. Given a dataset {(xi, yi)}ni=1 with feature
vectors xi ∈ Rd and binary labels yi ∈ {−1,+1}, the objective function takes the form

f(w) =
1

2

n∑
i=1

[
max(0, 1− yiw

⊤xi)
]2

+
λ

2
∥w∥2,

where λ > 0 is a regularization parameter. This formulation preserves the margin-maximizing
behavior of the original SVM while allowing for stable and differentiable optimization. We further
incorporate an intercept term into the model by appending a constant feature to each input vector.
The resulting problem is solved using first-order methods with step size determined via an estimate
of the gradient’s Lipschitz constant.

More Examples of Online Learning Rate Adaptation. We report the performance of Algorithm
2 and other baseline methods. Our method shows consistent improvement in the later stage of the
convergence.

Data Synthetic Setting for L2O. The data is synthetically generated. We first sample a sparse ground
truth vector x⋆ ∈ Rd with a prescribed sparsity level s, and then sample W ∈ Rn×d with standard
normal entries. The binary labels are generated via

yi = 1{w⊤
i x⋆≥0}, i = 1, . . . , n.

26

0 200 400 600 800 1000
Iterations

10
7

10
5

10
3

10
1

10
1

(f k
f m

in
)/f

m
in

Adam-OLA
AdaGrad
Adam
Adam-HD
GD
HB
NAG
NAG-SC

(a) a3a

0 200 400 600 800 1000
Iterations

10
6

10
4

10
2

10
0

10
2

10
4

(f k
f m

in
)/f

m
in

Adam-OLA
AdaGrad
Adam
Adam-HD
GD
HB
NAG
NAG-SC

(b) w3a

Figure 6: Comparison of different optimizers on smooth SVM: Function value versus iteration. Here,
fmin denotes the minimum function value achieved across all iterations for each optimizer.

A small proportion of labels are flipped to simulate noise.

Architectures of L2O Optimizers. We now provide two examples of learned optimizers formulated
within this framework, drawing from seminal works in the field. These learned optimizers typically
output a direct parameter update Uk such that xk+1 = xk +Uk. To fit the continuous-time dynamical
system framework where xk+1 = xk − hA(wopt, xk, tk), we define A(wopt, xk, tk) = −Uk/h.
Here, wopt denotes the parameters of the learned optimizer itself, xk are the parameters being
optimized, and h is the discretization step size from the underlying ODE.

Detailed L2O Training Procedure. The training of the L2O optimizers follows the paradigm
described in [29]. The goal is to learn the parameters θ of the optimizer by minimizing the expected
loss defined in Equation (10). The training process consists of 500 steps. In each step, we sample a
mini-batch of 64 distinct logistic regression problems. For each problem in the batch, we unroll the
learned optimizer for Kmax = 100 iterations, starting from a random initialization x0. The loss for
that problem is computed based on the trajectory {xk}100k=0 according to Equation (10). To manage
memory and computational cost, we use Truncated Backpropagation Through Time (BPTT), dividing
the 100-step trajectory into 5 segments of 20 steps each. Gradients are computed for each segment
and then averaged. The final gradient for the parameters θ is the average of the gradients computed
across all 64 problems in the mini-batch. This gradient is then used to update θ with the Adam
optimizer.

LSTM-based Optimizer. The influential work by Andrychowicz et al. [28] introduced an optimizer
based on a Long Short-Term Memory (LSTM) network, which we denote as mwopt . This optimizer
operates coordinate-wise, meaning a small, shared-weight LSTM is applied to each parameter (coor-
dinate) of the function f(x) being optimized. For each coordinate, the LSTM takes the corresponding
component of the gradient ∇f(x(t)) and its own previous state, state(t), as input to compute the
parameter update component U(t) = mwopt

(∇f(x(t)), state(t)). The term state(t) for each coordi-
nate’s LSTM, typically a multi-layer LSTM (e.g., two layers as used in the paper), consists of a tuple
of (cell state, hidden state) pairs for each layer, i.e., ((ct,1, ht,1), (ct,2, ht,2)) for a two-layer LSTM.
These states allow the optimizer to accumulate information over the optimization trajectory, akin to
momentum. The function A is then defined as

A(wopt, x(t), t) = −
1

h
mwopt

(∇f(x(t)), state(t)). (28)

Here, wopt are the learnable weights of the shared LSTM optimizer.

RNNprop Optimizer. Building on similar principles, Lv et al. [29] proposed the RNNprop optimizer.
This optimizer also typically uses a coordinate-wise multi-layer LSTM (e.g., two-layer) as its
core recurrent unit. Before the gradient information ∇f(x(t)) is fed to the RNN, it undergoes
a preprocessing step, P . This preprocessing involves calculating Adam-like statistics, such as
estimates of the first and second moments of the gradients, s(t) = (m̂(t), v̂(t)), which are then
used to normalize the current gradient and provide historical context. The preprocessed features,
P(∇f(x(t)), s(t)), along with the RNN’s previous state, state(t), are input to the RNN. Similar

27

to the LSTM-optimizer described above, state(t) for each coordinate’s RNN consists of the (cell
state, hidden state) tuples for each of its layers. The output of the RNN is then passed through a
scaled hyperbolic tangent function to produce the final update U(t). Let this entire update-generating
function be Uwopt

(∇f(x(t)), s(t), state(t)). The corresponding A function is

A(wopt, x(t), t) = −
1

h
Uwopt

(∇f(x(t)), s(t), state(t)), (29)

where Uwopt
(·) can be more specifically written as α tanh(RNN(P(∇f(x(t)), s(t)), state(t);wopt)).

The parameters wopt encompass those for the preprocessing module P and the RNN, and α is a
scaling hyperparameter.

28

	Introduction
	Related Work

	Differentiable Stopping Time: From Continuous to Discrete
	Differentiating the Continuous Stopping Time
	Differentiable Discrete Stopping Time: An Effective Approximation
	Efficient Computation of the Sensitivity

	Applications of Differentiable Stopping Time
	L2O with Differentiable Stopping Time
	Online Adaptation of Optimizer Parameters via Stopping Time

	Experiments
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Details of Experiments

