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Abstract—Defect prediction and quality control are critical in
manufacturing, where Convolutional Neural Networks (CNNs)
demonstrate significant potential. However, traditional Finite
Element Method (FEM) simulations, despite their accuracy,
are hindered by high computational demands. This paper in-
troduces a novel framework that integrates FEM simulations
with generative CNNs to predict strain distributions during
antenna manufacturing. By employing physics-informed dataset
generation from FEM simulations, the proposed method trains
a generative CNN to predict strain distributions during antenna
manufacturing, enabling physically consistent strain predictions.
Validated against FEM-calculated data, the framework demon-
strates its efficacy in defect prevention, while addressing the
limitations of traditional offline FEM capabilities. Furthermore,
a comprehensive analysis of weight initialization and cost func-
tion choices, along with experimental validation, highlights the
method’s efficiency, establishing a cost-effective and practical
approach to integrating numerical simulations with CNN-based
deep learning in manufacturing.

Index Terms—Defect prediction, finite element method, gener-
ative AI, simulation, physics-informed dataset generation.

I. INTRODUCTION

IN the context of antenna manufacturing, a critical issue
arises during the bending process, where the antenna is

placed on the bending surface using a robotic arm, as seen
in Fig. 1. There are cases where the robotic arm does not
place the antenna accurately, resulting in misplacements char-
acterized by offsets on the X-axis, Y-axis, or rotations in the
XY-plane. These misplacements have significant implications,
as the pneumatic press used for bending may induce unin-
tended strain distributions, leading to defects such as cracks
and alterations in mechanical properties. Hereupon, a Finite
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Element (FE) model was created to replicate the effects of
the misplacement, as well as to determine the developed
strain, and deformation that potentially could be provoked.
These numerical simulations confirmed the hypothesis that
misplacing the antenna can indeed cause defects, as observed
during a thorough inspection of the production line [1].

Deep Learning (DL) has revolutionized manufacturing, sig-
nificantly advancing defect detection [2], [3], [4], [5], failure
prediction [6], and quality control processes [7], aligning
with the goals of Zero Defect Manufacturing. Among these,
Convolutional Neural Networks (CNNs) have become indis-
pensable for their ability to analyze large datasets and extract
complex patterns, enabling precise anomaly detection and
process optimization. These capabilities have been applied
in tasks such as visual inspection, surface defect detection,
and predictive maintenance, driving cost savings and improved
product quality.

The Finite Element Method (FEM) has long been a corner-
stone for numerical simulations, offering unparalleled accuracy
in analyzing structural integrity, thermal performance, and ma-
terial behavior under various conditions [8]. In manufacturing
processes like bending, FEM excels at predicting strain dis-
tribution and deformation, optimizing material efficiency and
minimizing defects. However, FEM’s widespread industrial
adoption is limited by its high computational cost and time
inefficiency, particularly for real-time applications.

f

Fig. 1. (a) Antenna placement on the bending surface during the manufactur-
ing process, with the blade and bottom part labeled. (b) Top view illustrating
an imprecise placement with 0 mm offsets on the x-axis and y-axis, and a
5-degree rotation in the XY-plane.

This paper addresses these limitations by integrating FEM
simulations with generative AI to predict strain fields during
antenna bending processes. By employing CNNs trained via
physics-informed dataset generation, the proposed framework
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delivers physically consistent predictions, mitigating defects
caused by manufacturing inaccuracies. This approach bridges
the gap between FEM precision and the efficiency of AI,
offering a practical solution for defect prediction in antenna
manufacturing. Here, defect prediction refers to predicting
strain fields that exceed material limits and would cause cracks
or fractures if the bending process proceeds unmodified. The
main contributions are as follows.

1) FEA-AI Integration: Introducing a hybrid framework
that combines FEM simulations and CNN-based gen-
erative models to enhance predictive accuracy in critical
manufacturing processes like bending.

2) Optimized CNN Design: Investigating the impact of
weight initialization and loss function choices on CNN-
based image synthesis, ensuring fast, accurate and phys-
ically consistent predictions.

3) Physics-Informed Dataset Generation: Leveraging FEM-
generated datasets to train the CNN, enabling efficient
real-time prediction of strain fields and structural in-
tegrity.

4) Practical Demonstration: Validating the method’s appli-
cability by demonstrating its ability to predict antenna
defects based on misplacement in the bending process.

The rest of the paper is structured as follows: Section II
provides a review of related work in the domains of DL
and FEA for defect prediction tasks in industrial applications.
In Section III, the specific use case of defect prediction
examined in this study, along with the proposed methodology
is outlined. This section also includes a detailed description of
the available data and introduces the utilized deep architecture.
Section IV presents the evaluation of the methodology and
showcases the experimental results. Finally, Section V offers
concluding remarks to summarize the findings of this study.

II. RELATED WORK

In this section, an overview of the most recent work related
to the proposed method is provided. Since a DL model is de-
veloped to generate images akin to the ones produced utilizing
FEM simulations; an elaboration on the recent advancements
in the fields of defect prediction via DL, FEM simulations,
and generative AI is conducted.

A. Defect Prediction via Deep Learning and Generative AI

The integration of Machine Learning (ML) approaches in
Industry 4.0 has transformed manufacturing operations, creat-
ing smart factories that use sensors and devices to continuously
collect data. ML algorithms analyze this data to improve
efficiency and quality without major resource changes.In spe-
cific, ML’s predictive capabilities enable intelligent decision
support systems for various manufacturing tasks, including
inspection, maintenance, quality improvement, optimization,
and scheduling [9]. Moreover, ML techniques have signifi-
cantly advanced defect detection, particularly through com-
puter vision technology based on CNN [10]. As an emerging
representative of AI, DL is already considered a mainstream
technology for industrial vision [11], providing researchers
with a reference and guidance for applying advanced ML

technology effectively. Finally, the work in [12] introduced
a real-time quality control solution applied in antenna manu-
facturing, leveraging lightweight Deep Residual Networks and
Blockchain technology to enhance defect detection efficiency
and maintain low inference times

It should be noted that ML has become a powerful tool
for image synthesis, producing realistic, high-quality images.
Recently, generative models like Generative Adversarial Net-
works (GANs) and Variational Autoencoders (VAEs) have
transformed image synthesis by learning complex patterns
from large datasets. DL techniques, especially CNNs, need
large annotated datasets for supervised learning. Hence, to
address this issue, a novel data augmentation framework
deploying GAN technologies was introduced in order to create
synthetic images [13]. In general, automated defect inspection
modules in manufacturing industries often faces a shortage of
defect samples. Therefore, defect-GAN methodologies were
introduced to generate realistic and diverse defect samples for
training inspection networks [14]. The author in [15] explored
the capability to predict future events in industrial processes
to improve manufacturing and prevent defects. The study
introduced a method employing 3D Convolutional Neural
Networks (3DCNN) to model changes in the 3D shape of
objects based on past measurements.

B. Defect Prediction using Finite Element Method simulations

FEM is one of the efficient numerical approaches simulating
complex industrial processes and optimizing structural in-
tegrity, aiding in defect prediction and prevention. In [16], the
authors introduced a novel generalized Lagrangian formulation
to analyze industrial forming procedures, where the suggested
methodology can be applied in various types of analysis for
both fluid and solid environments. FEA has been essential for
optimizing the design and structural integrity of pneumatic
press machines [17] and crucial for chipless manufacturing
processes like cold stamping. In [17], FEA played a vital role
in designing, analyzing, and optimizing the machine’s struc-
tural components. Furthermore, advancements in FEA have
led to significant progress in understanding and optimizing se-
vere plastic deformation (SPD) methods like semi-constrained
groove pressing (SCGP) [18]. In SCGP, researchers induced
repetitive shear deformation in commercially pure aluminium
plates using asymmetrically grooved dies. Moreover, the paper
in [19] presented an improved looping method for generating
quadrilateral finite elements, customized for automated metal
forming simulations. This method incorporates a novel split-
ting criterion, an artificial boundary scheme, and an optimal
nodal placement scheme, all designed to enhance mesh quality
for metal forming engineering applications.

It is worth mentioning that the past ten years ML techniques
are being increasingly integrated into numerical simulation
processes to improve accuracy, efficiency, and predictive capa-
bilities across diverse domains. The work in [20] focuses on
predicting failure pressure in high-strength pipes with stray
current corrosion defects, and a novel approach was intro-
duced, that combines parametric FE modeling with multilayer
feed-forward Artificial Neural Networks (ANN). Combining
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causal relationships with hidden dependencies from large
datasets, hybrid modeling enables the development of compre-
hensive systems [21]. The application of ML and numerical
methodologies in predicting structural behavior and optimizing
manufacturing processes is evident across various engineering
domains, such as superplastic forming processes for bipolar
plates [22] and wind tunnel simulations [23]. Additionally,
analytical equations derived from FEA and ML algorithms
provide accurate predictions for failure pressure in corroded
pipelines [24] and the static behavior of bridge structures [25].

It should be noted that at least to the authors’ knowledge,
there have been no previous studies that integrate FEM sim-
ulation data with DL to generate images corresponding to
physically consistent FEM simulation frames. This observation
combined with the potential to replace FEM simulations
for defect prediction with a more efficient DL network has
inspired the current work.

III. PROPOSED METHODOLOGY

A. Overview

Fig. 2. Schematic overview of the proposed methodology. Before training,
ANSYSTM simulation software is used to extract ground truth simulation
frames.

This framework translates the precision of FEM simulations
into manufacturing predictions using a deep CNN. For each
data sample u(dx, dy, dθ), representing antenna misplacement,
two representations are generated, I(u) from FEM simulations
and Î(u) from the CNN. The simulation frames I(u) form a
dataset {(ui, Ii)}

N
i=1, which is used to train a network h(u,w)

such that

h(u,w∗) ≈ f(u) (1)

where f(·) represents FEM and w∗ are the optimal network
parameters minimizing the cost function

w∗ = argmin
w

N∑
i=1

L(h(ui,w), Ii)) (2)

Here L(h(ui,w), Ii) denotes a valid cost function. A
schematic overview is provided in Fig. 2. The CNN predicts
h(u,w) = Î , with its parameters adjusted to minimize the
error e = I − Î .

B. Studied Use Case

This study focuses on the bending process in antenna
manufacturing, where misplacement of the square tube at
the antenna’s core can cause defects such as wrinkling and
fracturing. The square tube, designed with perforations to
accommodate circular tubes, is bent using a blade as the upper

Fig. 3. Wrinkling of the aluminium profile.

Fig. 4. Fracturing of the aluminium profile.

forming tool to reduce wrinkling. Using CAD software and
graphical data from the bending machine, a FEM model was
developed to simulate bending-related phenomena, including
deformation at stress-concentrated zones like perforations.

Defects like wrinkling and fracturing significantly impact
production quality, as shown in Fig. 3 and 4, respectively. The
studied defect types are the ones affecting production quality
as identified by end-users. It is imperative to underscore the
significance of the bending process in ensuring the quality
of the produced antenna. Traditional FEM simulations occur
offline, making real-time defect prevention challenging. This
highlights the need for a predictive methodology that can
estimate strain fields based on antenna misplacement during
manufacturing, enabling timely defect mitigation and ensuring
product quality.

C. FEM simulations

The ANSYSTM software (Ansys® Academic Research Me-
chanical, Release 24.1, ANSYS, Inc., Canonsburg, PA, USA)
was used to analyze the antenna’s mechanical behavior during
pneumatic press bending and to create a dataset for training a
generative CNN for defect prediction. Explicit dynamic analy-
sis captured the antenna’s response to bending, modeling large
deformations and bi-linear material behavior. Misalignment-
induced strain was emphasized as a key factor in structural
weaknesses.

Finite element analysis (FEA) simulated strain behavior and
safety factors under various conditions, incorporating material
properties derived from nanoindentation tests. A material
erosion algorithm studied failure and separation, removing
distorted elements along the aluminum beam based on fracture
mechanics.

To replicate the bending process, velocity was applied to the
bottom part while the blade was fixed, as shown in Fig. 5. The
Courant-Friedrichs-Lewy (CFL) condition limited time-step
size (0.001 s) for stability. Frictionless body interactions were
assumed, and pre-existing defects were excluded. A conver-
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Fig. 5. Simulation setup showing the imposed velocity applied to the bottom
part.

gence study validated mesh independence with approximately
262,100 elements, ensuring reliable stress predictions.

Using the ANSYSTM software, 28 bending scenarios were
simulated with FEM analysis, exploring x-axis and y-axis
offsets (-3 to 3 mm) and rotations within the xy plane (-
2 to 2 degrees). Each scenario produced 20 RGB frames
(totalling 560 frames) showing strain evolution, with higher
strain regions in red. The ANSYSTM software generates
1628 × 580 pixel images, but most of the pixels contain
irrelevant metadata. To focus on essential information, images
were cropped to a 560 × 560 pixel area around the antenna
body, which captures the critical strain data, as shown in Fig.
6. Finally, the frames were resized to 512 × 512 pixels for
CNN compatibility.

To address the limited dataset size, spatial transformations
including rotations (±5◦) and translations (±2 mm) were
applied to the input parameters and strain fields during train-
ing, simulating natural variations in antenna placement while
preserving physical validity.

Fig. 6. Example of FEM simulation frames after preprocessing. Images
are resized to 512 by 512 pixels after being cropped to focus on the
relevant segments of the antenna configuration while removing unnecessary
experimental references and backgrounds.

For dataset consistency, 80% of simulations (22) were
used for training, and 20% (6) for validation and testing,
preserving temporal and contextual integrity. A neural network
was designed to input a vector of four parameters (x-axis, y-
axis offsets, xy-plane rotation, and frame number) and output
512× 512× 3 RGB images.

Preprocessing included writing metadata in CSV files, de-
tailing filenames, translations, rotations, and frame numbers.

This structured approach ensured efficient data handling, ro-
bust neural network training, and a strong foundation for
further antenna manufacturing optimization.

The mesh convergence resulted in a predominance of hexa-
hedral elements, ensuring higher numerical accuracy and com-
putational efficiency. Tetrahedral elements were selectively
used for the blade and HDPE plastic end parts, where complex
geometries required finer meshing. The average element aspect
ratio was 3.71, with a minimum value of 1.03, ensuring a well-
shaped mesh for accurate stress distribution analysis. The FEA
simulation was conducted on a system equipped with an AMD
Ryzen 5 5600G processor (6 cores, 12 logical processors, 4.45
GHz) and 64 GB of RAM. The total computation time for
the simulation was approximately 80 minutes under full CPU
utilization.

D. Model Architecture

The framework uses a decoder with sequential residual
upsampling blocks to transform a four-dimensional input
(translation x, translation y, rotation xy, frame number) into a
high-dimensional output, as seen in Fig. 7. Each block includes
two transposed convolutional layers, two batch normalization
layers, and a Rectified Linear Unit (ReLU). The model has
905,495 parameters, balancing accuracy and computational
efficiency for strain field predictions.

The input tensor x is transformed into output tensor y with
double the spatial dimensions using:

y = Φ(x; θ) + (x ↑ 2) (3)

where (x ↑ 2) denotes bicubic upsampling and θ represents
learnable parameters. Residual connections improve learning
from limited FEM data and mitigate overfitting.

The residual decoder consists of:
1) An initial linear layer for the latent vector (size 4).
2) A reshaping layer to convert the vector into a tensor.
3) Five residual upsampling blocks, transforming a 1024×

8× 8 tensor into a 3× 512× 512 image.
A convolutional autoencoder was implemented for image

reconstruction tasks, consisting of a convolutional encoder and
a convolutional residual decoder, as seen in Fig. 7. The encoder
processes 3-channel inputs through four convolutional layers
(4x4 filters, stride 2, padding 1), reducing filters from 96 to
12. Outputs are flattened into a 12 × 32 × 32 vector, passed
through a fully connected layer (64 units with ReLU), and
mapped to 4 neurons using Sigmoid activation.

The residual decoder reconstructs images from a 1 × 4
latent vector, generating 1× 3× 512× 512 outputs. Residual
connections enhance image quality by easing gradient flow,
retaining fine details, and reducing artifacts.

The autoencoder training involves two phases. First, the en-
tire autoencoder (encoder and residual decoder) is trained end-
to-end to minimize reconstruction loss, aligning output images
with inputs and establishing a coherent mapping between
image and latent spaces. In the second phase, only the residual
decoder is fine-tuned using weights from the first phase. This
initialization leverages prior learning, enhancing the decoder’s
ability to synthesize accurate and detailed images.
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Fig. 7. Architecture of the residual decoder. The convolutional autoencoder consists of a convolutional encoder and a convolutional residual decoder. The
latter one is enclosed in the the green border. The training process of the autoencoder consists of two phases, an initial training of the entire autoencoder in
order to calculate and save the weights of the convolutional residual decoder and then a exclusive training of the residual decoder. The decoder is initialized
with the weights obtained from the initial autoencoder training.

For benchmarking purposes, a simple convolutional decoder
will also be trained and evaluated to compare its performance
with the proposed residual decoder architecture. The same
procedure, including prior training of a convolutional autoen-
coder, will be carried out to initialize the weights of the simple
convolutional decoder.

To optimize the neural network’s training for generating
images from latent vectors, four loss functions were evaluated::
L1, L2, LV GG, and LC integrating both LV GG and L1.
L1 (Mean Absolute Error) measures average absolute dif-

ferences between predicted yi and ground truth ŷi values:

L1 =
1

n

n∑
i=1

|yi − ŷi| (4)

L2 (Mean Squared Error) calculates average squared differ-
ences:

L2 =
1

n

n∑
i=1

(yi − ŷi)
2 (5)

The LV GG uses pre-trained CNNs (e.g., VGG16, VGG19)
to compute feature-wise differences between generated y and
target ŷ images based on feature map dissimilarity:

LV GG =
1

n

n∑
i=1

wi ∥ϕi(y)− ϕi(ŷ)∥2 (6)

Here, ϕi represents the feature maps at layer i and wi are layer
weights. This loss emphasizes high-level perceptual similarity.

The LC combines LV GG and L1:

LC = a× L1 + b× LV GG (7)

Coefficients a and b adjust the balance between pixel-level
accuracy L1 and perceptual similarity LV GG. The weighting
coefficients a and b were determined through comprehensive
ablation studies, with results shown in Figure 9. Our experi-
ments demonstrated that training convergence requires the L1

weight a to be substantially smaller than the perceptual term
weight b, with a = 0.1 representing the maximum stable value.

The perceptual term (LVGG) must dominate (b ≥ 0.6) to gen-
erate physically plausible results, with optimal performance
achieved at a = 0.1 and b = 1.0. This configuration ensures
perceptual consistency while maintaining baseline pixel-level
accuracy through minimal L1 contribution.

The combined loss function, LC , offers several advantages.
By integrating L1 for precise pixel-level accuracy and LV GG

for high-level perceptual similarity, LC ensures the generated
images are both realistic and detailed. This balanced approach
improves the network’s ability to retain structural details and
fine textures while minimizing pixel-based discrepancies. Ad-
ditionally, the flexibility of LC allows adjustment of weighting
coefficients to prioritize either perceptual or pixel accuracy,
making it suitable for diverse application requirements. These
benefits make LC an optimal choice for generating wireframe
bending images in antenna manufacturing.

E. Integration
Deployment follows a sequential quality control protocol,

depicted in Figure 8. An industrial camera first captures the
antenna position, while a computer vision system calculates
misalignment parameters dx, dy and dθ. These parameters
are fed to an computing unit running the trained CNN model,
which generates a complete strain simulation. The system then
evaluates whether predicted strains exceed the manufacturer-
defined threshold. For cases with excessive strain, it sends
an actuation signal to remove and reposition the antenna.
For acceptable strains, it authorizes the press controller via
industrial protocols to initiate bending.

For reliable production deployment, the vision system incor-
porates vibration-resistant camera mounting, automated image
quality checks, and calibration of exposure and focal length,
along with regular lens maintenance and cleaning. Environ-
mental hardening measures include protective housings and
thermal stabilization of the installed camera. To enhance
prediction robustness, the CNN is trained with synthetic noise
augmentation. Additionally, mechanical guides are recom-
mended to prevent extreme misplacements during antenna
positioning.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2025.3568966

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL XX, 202X 6

Fig. 8. Deployment of the proposed framework (a) System architecture
showing vision system, the proposed trained CNN-based network, the press,
and the actuation components (b) production floor deployment with camera,
press controller, and robotic arm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation Metrics

To evaluate the neural network’s performance in gener-
ating accurate antenna representations, three metrics were
used: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM).

MSE quantifies pixel-level differences between the gener-
ated y and ground truth ŷ images, where lower values indicate
greater similarity. It is computed as follows:

MSE =
1

n×m

n∑
i=1

m∑
j=1

(yi,j − ŷi,j)
2 (8)

where n and m represent the height and width of the image,
respectively. The terms yi,j and ŷi,j denote the pixel intensity
at position (i, j) in the generated and ground truth images,
respectively. The summation calculates the squared differences
between corresponding pixels, and the result is averaged over
all pixels in the image to obtain the final MSE value.

PSNR measures reconstruction fidelity, with higher values
indicating fewer perceptual errors. It is calculated as:

PSNR = 10× log(
MAX2

MSE
) (9)

where MAX represents the maximum possible pixel value
(e.g., 255 for an 8-bit image).

SSIM evaluates structural similarity between images, con-
sidering luminance, contrast, and structure. SSIM produces a
score ranging from −1 to 1, where 1 denotes perfect similarity
between images:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(10)

where µx represents the mean value of the image x, while µy

represents the mean value of image y. The terms σx and σy

refer to the standard deviations of images x and y, respectively,
which measure the variability in pixel intensities. The term σxy

represents the covariance between images x and y, indicating
how the pixel values in the two images vary together. Finally,
c1 and c2 are small constants used to stabilize the division
with weak denominators, preventing division by zero.

B. Results

All of the experiments were conducted on the same en-
vironment, utilizing the NVIDIA GeForce RTX 3060 12GB
as GPU, the Intel i5-12400F as CPU, 16 GB of RAM, and
a Python 3.9 environment with Pytorch backend. During the
training phase, each of the developed CNN models were
trained until convergence. At the evaluation stage, a misplace-
ment vector was provided and the trained model generated the
image that visualizes the developed distribution fields over the
antenna body during the bending process.

Figure 9 presents a quantitative analysis of the LVGG
weight (b) impact with fixed a = 0.1. All metrics show
substantial improvement with increasing b values, with the
optimal b = 1.0 configuration achieving 67% lower MSE
(0.0022 vs 0.0067 at b = 0.1), 4.1 dB higher PSNR (26.84
dB vs 22.75 dB), and 18% greater SSIM (0.922 vs 0.873)
compared to b = 0.1. While the overall trend shows monotonic
improvement, deviations at b = 0.4 and b = 0.9 suggest
complex interactions between the loss components. These
results conclusively demonstrate that perceptual loss (LVGG)
is essential for predicting physically meaningful strain fields
in our application.

Qualitative results for various misplacements are shown in
Fig. 10. Each row represents a sample of a test misplace-
ment, corresponding to A = (−2, 3,−2), B = (−2,−2, 0),
C = (−2,−1,−2), D = (−2, 0,−2), respectively. Frames Î10
and Î20 are generated from the residual decoder, corresponding
to the 10th and 20th frames, respectively, while I10 and I20 are
the actual frames from the simulation at the same timestamps,
computed by ANSYSTM software. For each CNN generated
frame, the region of most interest is also highlighted, as
this is where the most defects occur and the highest strain
levels develop. Different strain levels are represented using a
colormap, with higher strain levels indicated in red. The upper
limit of 2% plastic strain is a practical criterion balancing
safety, structural integrity, material performance, compliance
with standards, and the long-term durability of the material.
This limit helps ensure that aluminium alloys can perform
reliably in their intended applications without experiencing
detrimental permanent deformation. Notably, in all cases, the
CNN generated 20th frame (Î20), is visually close to the FEM
calculated one (I20).

To provide comprehensive architectural comparison, the
Residual Decoder was benchmarked against three representa-
tive approaches: (1) a basic Convolutional Decoder as minimal
baseline, (2) a Variational Auto Encoder (VAE) [26] decoder,
and (3) a U-Net [27] decoder for its proven multi-scale
capabilities in image synthesis. VAE and UNET decoders were
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Fig. 9. Figure X: Impact of LVGG weight (b) with fixed L1 weight (α = 0.1) on model performance. (a) MSE (lower values better), (b) PSNR (higher
values better), and (c) SSIM (higher values better). Red circles mark the optimal configuration (b = 1.0).

Fig. 10. Simulation results. Each of the total four rows, represents a misplacement in our test set. The misplacements correspond to A = (−2, 3,−2),
B = (−2,−2, 0), C = (−2,−1,−2), D = (−2, 0,−2). The maximum strain that is developed in each one of cases is 0.93, 2.12, 1.88, 2.35, respectively.
Next to each CNN generated frame, noted with Îi, is depicted the FEM calculated frame Ii, produced by the ANSYSTM software.

adapted to the specific task by removing skip connections
and standardizing input/output dimensions. The experiments,
summarized in Table I and Table II, reveal that the Residual
Decoder achieves superior accuracy compared to all bench-
marked architectures, including Convolutional, VAE, and U-
Net decoders across all metrics (MSE, PSNR, and SSIM). The
Residual Decoder with LC loss achieves optimal performance

(MSE=0.0022, PSNR=26.838, SSIM=0.9219), demonstrating
both its accuracy and physical consistency. While the VAE de-
coder shows competitive results (MSE=0.0023, SSIM=0.9154)
with 90% fewer parameters, and the U-Net variant achieves
comparable SSIM (0.9117), the Residual Decoder maintains
consistent advantages in prediction ability. Notably, the Con-
volutional Decoder’s best configuration (L2 loss) remains sub-
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TABLE I
NUMERIC RESULTS FOR THE DIFFERENT LOSS FUNCTIONS

Architecture MSE ↓ PSNR ↑ SSIM ↑ Training
Time ↓

Convolutional Decoder + L1 0.0226 17.328 0.7954 48 min
Convolutional Decoder + L2 0.0133 19.170 0.7913 50 min
Convolutional Decoder + LV GG 0.0364 15.988 0.5471 95 min
Convolutional Decoder + LC 0.0374 15.695 0.7687 73 min
Residual Decoder + L1 0.0025 26.520 0.9163 34 min
Residual Decoder + L2 0.0025 26.193 0.8948 24 min
Residual Decoder + LV GG 0.0209 21.396 0.8634 80 min
Residual Decoder + LC 0.0022 26.838 0.9219 69 min
VAE Decoder + L1 0.0023 26.689 0.9154 69 min
VAE Decoder + L2 0.0035 24.703 0.8900 22 min
VAE Decoder + LV GG 0.0157 19.373 0.8961 62 min
VAE Decoder + LC 0.0041 24.027 0.8573 60 min
UNET Decoder + L1 0.0025 26.161 0.9131 34 min
UNET Decoder + L2 0.0035 24.626 0.8912 16 min
UNET Decoder + LV GG 0.0159 19.414 0.8385 41 min
UNET Decoder + LC 0.0043 23.792 0.9117 29 min

TABLE II
NUMBER OF PARAMETERS FOR THE DIFFERENT ARCHITECTURES

Architecture Parameters
Convolutional Decoder 905,495
Residual Decoder 11,441,123
VAE Decoder 1,029,299
UNET Decoder 12,488,451

stantially inferior (MSE=0.0133, PSNR=19.170), highlighting
the importance of residual connections for this task.

The choice of loss function plays a crucial role in model
performance, with optimal selections varying significantly by
architecture. For the Convolutional Decoder, L2 and L1 losses
yield better results (MSE=0.0133 and 0.0226 respectively),
while LVGG and LC underperform (MSE>0.036). The VAE
decoder shows different preferences, achieving best results
with L1 (MSE=0.0023), whereas the U-Net performs opti-
mally with L1 and LC (MSE=0.0025 and 0.0043). In contrast,
the Residual Decoder demonstrates robust performance across
all loss functions, with LC yielding the overall best metrics
(MSE=0.0022, SSIM=0.9219). These findings highlight that
while loss function sensitivity is architecture-dependent, the
Residual Decoder provides both superior performance and
greater training stability across loss variants.

The training times, depicted in Table I, range from 16
minutes (UNET Decoder + L2) to 95 minutes (Convolutional
Decoder + LVGG), with the optimal configuration (Residual
Decoder + LC) requiring 69 minutes. While these training
times are comparable to a single FEM simulation (∼80 min-
utes), FEM incurs significant hidden costs: each simulation
requires hours of expert-led setup (e.g., mesh generation,
boundary condition configuration, and material property cali-
bration) and must be rerun for every new scenario. By contrast,
the proposed network incurs a one-time training cost and
subsequently generates predictions in seconds per simulation
without requiring FEM expertise.

V. CONCLUSION

This study presents an innovative approach to defect predic-
tion in antenna manufacturing by integrating Finite Element

Method (FEM) simulations with deep learning (DL) tech-
niques. Through the use of generative convolutional neural net-
works (CNNs), the proposed framework efficiently generates
physically consistent strain distributions, addressing the high
computational cost of traditional FEM simulations. The exper-
imental results demonstrate the effectiveness of the model in
predicting defects during antenna bending, with performance
metrics that closely match FEM-calculated outcomes, but with
significantly faster inference times. This advancement not only
offers practical advantages for real-time defect prediction but
also supports the optimization of manufacturing processes, ul-
timately improving production efficiency and product quality.

Despite the promising results, the methodology faces certain
limitations, including the need for further fine-tuning to im-
prove robustness and extend its application to a broader range
of manufacturing scenarios. Future work could explore the op-
timization of the proposed model, incorporating more diverse
manufacturing processes and enhancing its scalability. More-
over, expanding the integration of CNN-based deep learning-
driven predictions with real-time control systems could further
enhance the overall defect prevention strategy across various
industries. As manufacturing processes continue to evolve,
this work paves the way for deeper integration of CNN-based
deep learning with simulation-based methodologies, ensuring
smarter and more efficient production lines.
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