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Abstract: The recent history of machine learning research has taught us that ma-
chine learning methods can be most effective when they are provided with very
large, high-capacity models, and trained on very large and diverse datasets. This
has spurred the community to search for ways to remove any bottlenecks to scale.
Often the foremost among such bottlenecks is the need for human effort, including
the effort of curating and labeling datasets. As a result, considerable attention in
recent years has been devoted to utilizing unlabeled data, which can be collected
in vast quantities. However, some of the most widely used methods for training on
such unlabeled data themselves require human-designed objective functions that
must correlate in some meaningful way to downstream tasks. I will argue that a
general, principled, and powerful framework for utilizing unlabeled data can be
derived from reinforcement learning, using general purpose unsupervised or self-
supervised reinforcement learning objectives in concert with offline reinforcement
learning methods that can leverage large datasets. I will discuss how such a pro-
cedure is more closely aligned with potential downstream tasks, and how it could
build on existing techniques that have been developed in recent years.

Keywords: Self-Supervised Learning, Embodied Learning

1 Introduction

Machine learning systems have mastered a breadth of challenging problems in domains ranging
from computer vision [1] to speech recognition [2] and natural language processing [3], and yet
the question of how to design learning-enable systems that match the flexibility and generality of
human reasoning remains out of reach. This has prompted considerable discussion about what
the “missing ingredient” in modern machine learning might be, with a number of hypotheses put
forward as the big question that the field must resolve. Is the missing ingredient causal reasoning [4],
inductive bias [5], better algorithms for self-supervised or unsupervised learning [6], or something
else entirely?

This question is difficult one, and any answer must necessarily involve a great deal of guesswork, but
the lessons we can glean from recent progress in artificial intelligence can provide us with several
guiding principles.

The first lesson is in the “unreasonable” effectiveness of large, generic models supplied with large
amounts of training data. As eloquently articulated by Sutton [7] in his essay on the “bitter lesson,”
as well as a number of other researchers in machine learning, a persistent theme in the recent history
of ML research has been that methods that effectively leverage large amounts of computation and
large amounts of data tend to often outperform methods that rely on manually engineered priors and
heuristics. While a full discussion of the reasons for this trend are outside the scope of this article,
in short they could be summarized (or perhaps caricatured) as follows: when we engineer biases or
priors for our models, we are injecting our own imperfect knowledge of how the world works, which
biases the model toward some solutions over others. When the model instead gleans this knowledge
from data, it will arrive at conclusions that are more accurate than those that we engineered our-
selves, and therefore will work better. Indeed, a similar pattern has been observed in how people
acquire proficiency. As discussed by Dreyfus and Dreyfus [8], “rule-based” reasoning that follows
rules we can articulate clearly tends to only provide people with “novice-level” performance at var-
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ious skills, while “expert-level” performance is associated with a mess of special cases, exceptions,
and patterns that people struggle to articulate clearly, and yet can leverage seamlessly in the moment
when the situation demands it. As Dreyfus points out, real human experts are rarely able to articulate
the rules they actually follow when exhibiting their expertise, and so it should come as no surprise
that in the same way that we must acquire expertise from experience, so must our machines. And
to do that, they will need powerful, high-capacity models that impose comparatively few biases and
can handle the large amounts of experience that will be needed.

The second, more recent lesson is that manual labeling and supervision do not scale nearly as well
as unsupervised or self-supervised learning. We’ve already seen that unsupervised pre-training has
become standard in natural language processing [9], and perhaps will soon become standard across
other fields. In a sense, this lesson is a corollary to the first one: if large models and large datasets
are the most effective, then anything that limits how large the models and datasets can be will
eventually end up as the bottleneck. Human supervision can be one such bottleneck: if all data
must be labeled manually by a person, then less data will be available to the system to learn from.
However, here we reach a conundrum: current methods for learning without human labels often vi-
olate the principles outlined in the first lesson, requiring considerable human insight (which is often
domain-specific!) to engineer self-supervised learning objectives that allow large models to acquire
meaningful knowledge from unlabeled datasets. These include relatively straightforward tasks such
as language modeling [10], as well as comparatively more esoteric tasks, such as predicting whether
two transformed images were produced by the same original image, or two different ones [11]. The
latter is a widely used and successful approach in modern self-supervised learning in computer vi-
sion. While such approaches can be effective up to a point, it may well be that the next bottleneck
we will face is in deciding how to train large models without requiring manual labeling or man-
ual design of self-supervised objectives, so as to acquire models that distill a deep and meaningful
understanding of the world and can perform downstream tasks with robustness generalization, and
even a degree of common sense.

I will argue that such methodology could be developed out of current algorithms for learning-based
control (reinforcement learning), though it will require a number of substantial algorithmic innova-
tions that will allow such methods to go significantly beyond the kinds of problems they’ve been
able to tackle so far. Central to this idea is the notion that, in order to control the environment in di-
verse and goal-directed ways, autonomous agents will necessarily need to develop an understanding
of their environment that is causal and generalizable, and hence will address many of the shortcom-
ings of current supervised models. At the same time, this will require going beyond the current
paradigm in reinforcement learning in two important ways. First, reinforcement learning algorithms
require a task goal (i.e., a reward function) to be specified by hand by the user, and then learn
the behaviors necessary to accomplish that task goal. This of course greatly limits their ability to
learn without human supervision. Second, reinforcement learning algorithms in common use today
are not inherently data-driven, but rather learn from online experience, and although such methods
can be deployed directly in real-world environments [12], online active data collection limits their
generalization in such settings [13], and many uses of reinforcement learning instead take place in
simulation, where there are few opportunities to learn about how the real world works.

2 Learning Through Action

Insofar as artificial intelligence systems are useful, it is because they provide inferences that can be
used to make decisions, which in turn affect something in the world. Therefore, it is reasonable to
conclude that a general learning objective should be one that provides impetus to learn those things
that are most useful for affecting the world in meaningful ways. Making decisions that create desired
outcomes is the purview of reinforcement learning and control. Therefore, we should consider how
reinforcement learning can provide the sort of automated and principled objectives for training high-
capacity models that can endow them with the ability to understand, reason, and generalize.

However, this will require addressing the two limitations: reinforcement learning requires manually-
defined reward functions, and it requires an active learning paradigm that is difficult to reconcile
with the need to train on large and diverse datasets. To address the issue with objectives, we can
develop algorithms that, instead of aiming to perform a single user-specified task, rather aim to
accomplish whatever outcomes they infer are possible in the world. Potential objectives for such
methods could include learning to reach any feasible state, learning to maximize mutual information
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between latent goals and outcomes, or learning through principled intrinsic motivation objectives
that lead to broad coverage of possible outcomes. To address the issue with data, we must develop
reinforcement learning algorithms that can effectively utilize previously collected datasets. These
are offline reinforcement learning algorithms [13], and they can provide a path toward training RL
systems on broad and diverse datasets in much the same manner as in supervised learning, followed
by some amount of active online finetuning to attain the best performance [14].

To provide a hypothetical example of a system that instantiates these ideas, imagine a robot that per-
forms a variety of manipulation tasks When given a user-specified goal, the robot performs that goal.
However, in its “spare time,” the robot imagines potential outcomes that it can produce, and then
“practices” taking actions to produce them. Each such practice session deepens its understanding of
the causal structure in the world.

Of course, the notion of a real-world commercially deployed robotic system that “plays” with its
environment in this way might seem far-fetched (it is also of course not a new idea [15]). This
is precisely why offline RL is important: since an offline algorithm would be comparatively in-
different to the source of the experience, the fraction of time that the robot spends accomplishing
user-specified objectives versus “playing” could be adjusted to either extreme, and even a system
that spends all of its time performing user-specified tasks can still use all of its collected experience
as offline training data for learning to achieve any outcome. Such a system would still “play” with
its environment, but only virtually, in its “memories.”

While robotic systems might be the most obvious domain in which to instantiate this design, it is
not restricted to robotics, nor to systems that are embodied in the world in an analogous way to peo-
ple. Any system that has a well-defined notion of actions can be trained in this way: recommender
systems, autonomous vehicles, systems for inventory management and logistics, dialogue systems,
and so forth. Online exploration may not be feasible in many of these settings, but learning with un-
supervised outcome-driven objectives via offline RL is still possible. As mentioned previously, ML
systems are useful insofar as they enable making intelligent decisions. It therefore stands to reason
that any useful ML system is situated in a sequential process where decision-making is possible, and
therefore such a self-supervised learning procedure should be applicable.

3 Unsupervised and Self-Supervised Reinforcement Learning

An unsupervised or self-supervised reinforcement learning method should fulfill two criteria: it
should learn behaviors that control the world in meaningful ways, and it should provide some mech-
anism to learn to control it in as many ways as possible. This leaves considerable room for interpre-
tation, for example concerning the term “meaningful,” and a wide range of potential definitions have
been offered in the literature [16, 17, 18]. This problem should not be confused with the closely re-
lated problem of exploration, which has also often been formulated as a problem of attaining broad
coverage [19], but which is not generally concerned with learning to control the world in meaning-
ful ways in the absence of a task objective. That is, exploration methods provide an objective for
collecting data, rather than utilizing it.

Perhaps the most direct way to formulate a self-supervised RL objective is to frame it as the problem
of reaching a goal state [20]. The problem then corresponds to training a goal-conditioned policy
π(a|s,g) with some choice of reward function r(s,g). Though this reward itself might constitutes a
manually designed objective, it’s possible to derive frameworks where the reward function is a con-
sequence of solving a well-defined inference problem, such as the problem of predicting the action
that is most likely to lead a particular outcome [21, 22]. This problem formulation provides consider-
able depth, with connections to density estimation [21], variational inference [23, 22], model-based
reinforcement learning [24, 25, 26], and exploration [27].

What does a policy trained to reach all possible goals learn about the world? As argued both in
recent work [25, 26] and classic literature in RL [24], solving such goal-conditioned RL problems
corresponds to learning a kind of dynamics model. Intuitively, being able to bring about any po-
tential desired outcome requires a deep understanding of how actions affect the environment over
a long horizon. Of course, one might then wonder – why not just learn a dynamics model directly,
of the form more commonly used in model-based RL? Model learning is likely also an effective
way to utilize diverse datasets without a specific user-provided objective. However, there is good
reason to believe that goal-conditioned RL either solves a very similar problem [24, 25, 26] or,

3



potentially, actually solves a problem that is more closely connected to downstream tasks – unlike
model-based RL, where the model objective is largely disconnected from actually bringing about
desired outcomes, the goal-conditioned RL objective is connected to long-horizon outcomes very
directly. Therefore, insofar as the end goal of an ML system is to bring about desired outcomes, we
would expect that the objective of goal-conditioned RL would be well-aligned.

However, current approaches suffer from a number of major limitations. Even standard goal-
conditioned RL methods can be difficult to use and unstable. But even more importantly, goal-
reaching does not span the full set of possible tasks that could be specified in RL. Even if an
agent learns to successfully accomplish every outcome that is possible in a given environment,
there may not exist a single desired outcome that would maximize an arbitrary user-specified re-
ward function. It may still be that such a goal-conditioned policy would have learned powerful and
broadly applicable features, and could be readily finetuned to the downstream task, but an interesting
problem for future work is to better understand whether more universal self-supervised objectives
could lift this limitation. A number of methods have been proposed for unsupervised acquisition of
skills [28, 29, 30], so we might reasonably ask whether more general and principled self-supervised
reinforcement learning objectives could be derived on this basis.

4 Offline Reinforcement Learning

As discussed previously, offline RL can make it possible to apply self-supervised or unsupervised
RL methods even in settings where online collection is infeasible, and such methods can serve as
one of the most powerful tools for incorporating large and diverse datasets into self-supervised RL.
This is likely to be essential to make this a truly viable and general tool for large-scale representation
learning. However, offline RL presents a number of challenges [13]. Foremost among these is that
offline RL requires answering counterfactual questions: given data that shows one outcome, can
we predict what would have happened if we had taken a different action? This is of course very
challenging in general. Nonetheless, our understanding of offline RL has progressed significantly
over the past few years. Besides understanding how distributional shift affects offline RL [31], the
performance of offline RL algorithms has advanced considerably, and new algorithms have been
developed that provide robustness guarantees [32], finetune online after offline pretraining [14], and
tackle a range of other problems in the offline RL setting.

Advances in offline RL have the potential to significantly increase the applicability of self-supervised
RL methods. Using the tools of offline RL, it is possible to construct self-supervised RL methods
that do not require any exploration on their own. Much like the “virtual play” mentioned in Sec-
tion 2, we can utilize offline RL in combination with goal-conditioned policies to learn entirely from
previously collected data [33, 34, 35]. However, major challenges remain. Offline RL algorithms
inherit many of the difficulties of standard (deep) RL methods, including sensitivity to hyperparam-
eters, but these difficulties are further exacerbated by the fact that we cannot perform multiple online
trials to determine the best hyperparameters. In supervised learning we can deal with such issues by
using a validation set, but a corresponding equivalent in offline RL is lacking. We need algorithms
that are more stable and reliable, as well as effective methods for evaluation, in order to make such
approaches truly broadly applicable.

5 Concluding Remarks

In this article, I discussed how self-supervised reinforcement learning combined with offline RL
could enable scalable representation learning. The motivation behind this approach is that, inso-
far that learned models are useful, it is because they allow us to make decisions that bring about
the desired outcome in the world. Therefore, self-supervised training with the goal of bringing
about any possible outcome should provide such models with the requisite understanding of how
the world works. Self-supervised RL objectives, such as those in goal-conditioned RL, have a close
relationship with model learning, and fulfilling such objectives is likely to require policies to gain
a functional and causal understanding of the environment in which they are situated. However, for
such techniques to be useful, it must be possible to apply them at scale to real-world datasets. Offline
RL can play this role, because it enables using large, diverse previously collected datasets. Putting
these pieces together may lead to a new class of algorithms that can understand the world through
action, leading to methods that are truly scalable and automated.
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