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ABSTRACT

We introduce NNetNav, a method for unsupervised interaction with websites that
generates synthetic demonstrations for training browser agents. Given any website,
NNetNav produces these demonstrations by retroactively labeling action sequences
from an exploration policy. Most work on training browser agents has relied on
expensive human supervision, and the limited prior work on such interaction-based
techniques has failed to provide effective search through the exponentially large
space of exploration. In contrast, NNetNav exploits the hierarchical structure of
language instructions to make this search more tractable: Complex instructions are
typically decomposable into simpler sub-tasks, allowing NNetNav to automatically
prune interaction episodes when an intermediate trajectory cannot be annotated
with a meaningful sub-task. LLama-3.1-8b finetuned on 10k NNetNav self-
generated demonstrations obtains over 16% success rate on WebArena, and 35%
on WebVoyager, an improvement of 15pts and 31pts respectively over zero-shot
LLama-3.1-8b, outperforming zero-shot GPT-4 and reaching the state-of-the-art
among unsupervised methods, for both benchmarks.

1 INTRODUCTION

Building grounded agents that map human language instructions to a sequence of executable actions
is a long-standing goal of artificial intelligence (Winograd, 1972). A promising new approach
for building such agents is to use large language models to control policies in environments like
web-browsers and computers (Yao et al., 2022; Murty et al., 2024; Xie et al., 2024, among others).

Unfortunately, language models struggle with such grounded instruction following out-of-the-box
because LMs do not know about the myriad and ever changing interaction possibilities of different
websites. For instance, on a new e-commerce website, a zero-shot LM browser agent may struggle to
make a return or change order details, without expensive test-time exploration. Even simple tasks
like choosing a flight can involve different UI element such as directly entering airport codes or
interacting with drop-down menus, and a zero-shot agent cannot know a priori the correct thing to do.

The most common solution is to provide LM browser agents with knowledge about new web
interfaces via expert demonstrations, that can either be used for in-context learning (Yao et al., 2022)
or supervised fine-tuning (Lai et al., 2024; Shen et al., 2024). These demonstrations are either fully
provided by human experts (Sodhi et al., 2023; Yao et al., 2022) or consist of human-generated
trajectories paired with model-generated instructions (Lai et al., 2024). However, collecting human
demonstrations that cover each possible use case for every website is an unattractively large, never-
ending task. Thus, in this work, we propose a method for training LM browser agents in a completely
unsupervised way, via synthetic demonstrations derived from interaction.

At a high level, our approach, NNetNav (Fig 2), uses a language model exploration policy to perform
extended interactions with a website, and another language model trajectory labeler to annotate
trajectories with instructions. To effectively control the exponential space of meaningful interactions,
NNetNav uses the hierarchical structure of language instructions as a pruning heuristic: for exploration
to discover a meaningfully complex task, trajectory prefixes must correspond to meaningful sub-tasks.
Thus, during an exploration episode, if a language model cannot label trajectory prefixes (at set
time-steps) with a sub-task, further exploration is automatically pruned. Imposing such a structure
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URL: http://..

Find out how Apple uses user data in Safari.

URL: http://.. URL: http://.. URL: http://..

[Axtree observation][exploration prompt]

Exploration Policy

[reward fn prompt]

Outcome Reward Model
Base LLM

[instruction, trajectory][trajectory-so-far][labeler prompt]

Trajectory Labeler
Base LLMBase LLM

Relabel or Prune

2.

3.
Create a new forum 
called "Funny Stuff" with 
the title "Memes and 
LOLs", description "A 
place for sharing and 
discussing funny memes 
and LOLs", and sidebar 
"Memes of the day".

Read the research paper 
about the ModernBERT-base 
model from Hugging Face.

Explore the 360° and Street 
View images of the Eiffel Tower

Find the price of the iPhone 16 and 
compare it with the price of the 
iPhone 16 Pro.

Find a pair of wireless earbuds and 
add them to your cart on Amazon

Read a review of Squid 
games season-2

Explore

NNetNav

1.

4.
…

Figure 1: Given web URLs (1), NNetNav (2) uses a structured exploration strategy to interact
with websites (3) and autonomously discover diverse (instruction, trajectory) demonstrations, as
summarized in (4). To effectively prune exploration, the trajectory-so-far is periodically evaluated
by a relabeling module and further exploration continues only if it can be assigned a meaningful
language instruction. All components in NNetNav are implemented with the same zero-shot base
LLM.

over search not only enhances efficiency, but also results in complex and hierarchical instructions (See
Table 6 for examples). NNetNav prompts the same base language model for exploration, relabeling
and inferring sub-tasks.

We use Llama-3.1-70B (Dubey et al., 2024) to collect a large scale dataset of over 10k demonstra-
tions (around 100k state, action transitions) from 20 websites, including 15 live, in-the-wild websites,
and 5 self-hosted websites from WebArena (Zhou et al., 2023). We classify these instructions
into various intents and find a highly diverse range of internet use cases, including flight booking,
finding recipes, buying iPhones, searching for trails, commenting on github issues, and posting
on Reddit (see Fig 3 for more examples). We use these demonstrations for supervised fine-tuning
of Llama-3.1-8B. On WebArena, our model achieves a success rate of 16.3%, outperforming
zero-shot GPT-4 by 2 points and reaching state-of-the-art performance among unsupervised methods.
On WebVoyager (He et al., 2024), our best model reaches a success rate of 35.2%, outperforming
zero-shot GPT-4 by 1.7 points and all known open methods on this task to the best of our knowl-
edge. Interestingly, we find that NNetNav enables effective self-training—fine-tuning a smaller LM
using NNetNav demonstrations generated by the same model yields a 4 point absolute improvement
(from 1% to 5%) on WebArena. NNetNav opens up interesting avenues for open-ended discovery of
workflows on unknown web-interfaces, without human supervision.

2 BACKGROUND

Following instructions on a web-browser is a multi-turn sequential decision making problem.
Given an instruction g, a browser agent interacts with the browser by issuing a sequence of com-
puter control actions ⟨a1, a2, . . . , aT ⟩ where each ai ∈ A is drawn in response to an observation
oi. Executing an action causes a state transition based on some unknown environment dynam-
ics, leading to a new observation oi+1. The entire episode can be summarized as a trajectory
τ := ⟨o1, a1, o2, a2, . . . oT−1, aT , oT ⟩. We formalize the instruction following agent as a mapping
π(at | ot, τ<t; g) where τ<t := ⟨o1, a1, . . . at−1⟩ is the trajectory so far. In our case, observations are
represented as either flattened DOM trees or website accessibility trees, and A consists of keyboard /
mouse commands that operate on elements of these trees (see Appendix A for the full action space).

LLMs for Browser Control. Recent work explores using instruction-tuned large language models
(LLMs) to directly parameterize the agent. These methods typically work in settings with textual
observations and action spaces. At time-step t, the agent πLM is provided with the following context:
the instruction g, the full action space described as a string, the current observation ot, and some
representation of the trajectory-so-far τ<t, typically the action history. Given this information, the
LLM generates an output that is parsed into an action. Typically, the LLM output contains both a
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g

URL: h'p://webarena-reddit.com  
Persona Type: Investor, Ac@ve on r/

inves@ng and r/wallstreetbets

type[…] hover[…] type[…][…]

g: Subscribe to the r/wallstreetbets forum 
and navigate to world news R: 1

g: Find out how the founder of WallStreetBets' 
experience relates to investing. R: 1

g: Find the post about Jaime Rogozinski, the founder of 
WallStreetBets, and his lawsuit against Reddit, and ask him 
about his experience with the platform. R: 1

click[…] click[…] click[…]

g: Find out how the founder of WallStreetBets' experience relates to investing.

previous-actions: 
[None]

g

previous-actions: 
[None, type[…]]

previous actions:          
[None, type[…], click[…], …]

g

hover[…]
[Axtree observation + 

previous actions]
[prompt + persona + 

action-space]

[action]

[prompt] [trajectory-so-far]

[instruction]

Base LLM

Trajectory 
Labeler

Exploration 
Policy

[prompt + instruction 
+ action-space]

[Axtree observation 
+ previous actions]

[action]
Instruction 

Following Policy

Base LLM

[reward fn prompt] [instruction, traj-so-far]

[reward]
Outcome 

Reward Model

Base LLM

Base LLM

g

previous actions:                       
[None, type[…], click[…], …, a_23]

1. Interact with a website with a structured exploration policy + trajectory labeler

2. Generate new action at each trajectory prefix based on labeled instructions

Figure 2: Left: NNetNav uses four components to interact with websites to create training examples,
built out of zero-shot language models. Right (Top): An exploration episode on a website begins
with sampling a persona, followed by generating persona-conditioned action sequences from the
exploration policy. At fixed intervals, the trajectory labeler infers an instruction to describe the
trajectory so far. If the resulting (instruction, trajectory) pair receives a low score from the ORM, the
episode is pruned (indicated by a red cross). Right (Bottom): For each instruction, we retroactively
generate a new action, given the (instruction, observation, previous actions) tuple to ensure that
actions at each time-step correspond directly to the inferred instruction.

reasoning step rt (e.g. Since my task is to buy a mug, given the current state, I should click on the buy
now button), and the chosen action command at (e.g. click [1234]).

Given expert demonstrations {gi, τ i} where τ i := ⟨oi1, ri1, ai1, oi2, ri2, ai2 . . . oiT ⟩, previous work adapts
LM agents using demonstrations as in-context examples (Yao et al., 2022; Shinn et al., 2023; Sun
et al., 2023; Kim et al., 2023, among others) or as training data for supervised fine-tuning (Furuta
et al., 2023; Lai et al., 2024; Lù et al., 2024; Patel et al., 2024). For supervised fine-tuning of πLM
on a dataset of demonstrations, we construct training instances {(gi, τ i<t, o

i
t), (r

i
t, a

i
t)} where rit, a

i
t

serves as the target reasoning step and action for an intermediate context (gi, τ i<t).

Prior Methods for Synthetic Demonstrations. Since collecting human demonstrations for browser
agents is time consuming and costly, recent work uses synthetic demonstrations as training data (Lai
et al., 2024; Furuta et al., 2023; Murty et al., 2024). These methods start by sampling synthetic
instructions from an instruction generator (a prompted LM that takes the website landing page and an
optional user persona), and use a zero-shot browser agent to convert these instructions into trajectories.
Resulting demonstrations are filtered using either the ground truth reward function (Furuta et al.,
2023), or using another LM outcome reward function (Lai et al., 2024; Murty et al., 2024). These
methods typically fine-tune smaller LMs using synthetic demonstrations from larger LMs.

Such instruction-first methods for data collection face several challenges. First, synthetic instructions
in these demonstrations are sampled from an ungrounded LM prior that generates only plausible1

instructions without ensuring feasibility; e.g., an instruction such as Delete the first post on r/callof-
dutyfans for reddit is plausible, but not always feasible. Second, generated instructions are limited to
those that reference visible features of the website; e.g., given the landing page of a github-like plat-
form, no LM prior can generate instructions like Find information about Eric Bailey’s contributions
to the byteblaze project, which require knowing about deeply embedded website-specific entities like
Eric Bailey. Finally, these methods provide no control over the complexity of instructions, and rely
entirely on the LM or bespoke prompts to generate complex instructions.

1We use the term plausible for instructions that match a website’s genre or intended use. For example,
searching for clothes on a retail site or checking notifications on a social media platform. Not all plausible
instructions are feasible.
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3 OUR APPROACH

Instead of starting with a sampled instruction, we start by sampling an interaction first, and then
retroactively labeling it into an instruction that is feasible by definition. NNetNav (Fig 2) is an
interaction-first method for constructing demonstrations: An exploration policy interacts with a
browser in a structured manner to sample long trajectories which are retroactively labeled into
instructions (§3.2). We then post-process each trajectory to add post-hoc actions corresponding to the
generated instructions.

3.1 LM COMPONENTS

All components in NNetNav are implemented with a zero-shot instruction-tuned LLM, with different
prompts (see Appendix A for prompts).

Exploration Policy. To interact with the environment, we use an exploration policy πexplore, imple-
mented as -a prompted language model, similar to πLM. Additionally, to simulate a diverse set of
behaviors from users and improve the diversity of resulting trajectories, we seed each episode with a
string description of a plausible user persona for the given website (Shanahan et al., 2023; Argyle
et al., 2023). At each time-step, πexplore is provided with the following context: a user persona, the
list of available actions, the current observation ot, and the action history. The output of πexplore is
then parsed into an action.

Summarizing Trajectory changes. Actions issued by πexplore result in a new observation in the
environment. We summarize this change as a short string description via another module ∆LM,
implemented using a language model. In particular, for any state ot, action at and the resulting
next state ot+1, δt = ∆LM(ot, at, ot+1) produces a string-valued description of the changes in the
observation as a result of the action. For a trajectory τ , we denote the sequence of state changes as δτ .

Trajectory Labeler. Given δτ , the trajectory labeler LfLM produces a plausible instruction ĝ =
LfLM(δτ ) that the agent could have followed to produce the given interaction.

Outcome Reward Model. Given ĝ and δτ , the outcome reward model (ORM) assigns a reward
sLM(ĝ, δτ ) ∈ {0, 1}, based on the degree to which state changes correspond to the given instruction
ĝ.

3.2 SAMPLING DEMONSTRATIONS VIA INTERACTIONS

At specific time steps t ∈ {t1, t2, . . . , tmax}, we apply a pruning heuristic to retroactively label
the current trajectory. Given a partial trajectory τ<t after interacting with the environment for t
steps, we compute a sub-task annotation ĝ = LfLM(δτ<t). If this sub-task receives no reward, i.e.,
sLM(ĝ, δτ<t) = 0, we prune the episode and sample a new rollout. Otherwise, we store (ĝ, τ<t) as a
synthetic demonstration and continue exploration. Each episode typically generates multiple such
demonstrations.

Post-processing with an Agent Policy. Actions at each time-step in our our demonstration set are
a result of un-directed exploration, and therefore might not be optimal for the retroactively generated
instruction. Thus, we post-hoc annotate each state with a new action that directly corresponds to the
generated instruction. Concretely, given every (ĝ, oi, τ<t) tuple in our synthetic demonstration set,
we use πLM to output a suitable action âi given the instruction ĝ and current observation oi.

BofK sampling (Optional). To further boost the quality of trajectories, we optionally use best-of-K
(BofK) sampling. In particular, given NNetNav generated instructions, we sample K − 1 additional
trajectories, with πLM using the same base LLM. Then, for each instruction, we use our ORM to
score each of the K − 1 trajectories and the original trajectory, and pair the best trajectory with the
given instruction, breaking ties arbitrarily.
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4 MAIN EXPERIMENTS

4.1 COLLECTING DEMONSTRATIONS IN THE WILD

We apply NNetNav on 20 websites to collect a dataset of over 10,000 demonstrations. We consider 15
live websites (same set as He et al. 2024): Allrecipes, Amazon, Apple, ArXiv, BBC News, Booking,
Cambridge Dictionary, Coursera, ESPN, GitHub, Google Flights, Google Map, Google Search,
Huggingface, and Wolfram Alpha, and 5 self-hosted websites from WebArena (WA; Zhou et al.,
2023).

We use instruct-tuned Llama-3.1-70b as the base LLM for all components in NNetNav, with
tmax set to 40, running NNetNav pruning every 4 time-steps at {4, 8, 12, 16, ..., 40}. Additionally,
we perform BofK sampling with K = 3, using πLM (with the same Llama-3.1-70b base model).
While we only consider text based browser agents in this work, we release both accessibility tree
strings as well as browser screenshots at each time step, to support future work on multi-modal
browser agents.

Difficulty NNetNav (WA) NNetNav (Live)
Easy 498 1448
Medium 2532 2369
Hard 1164 1204
Very-Hard 501 556

Total 4695 5577

Table 1: We report the breakdown of NNetNav demonstrations into categories defined based on the
number of actions in the trajectory.

Diversity and Complexity. To evaluate diversity in resulting instructions, we cluster them by
intent for each website. We obtain these intents through a two-step procedure—we input instructions
for each website into GPT-4o, prompting it to identify common intents, and then classify each
instruction into one of these intents in a second forward pass. On average, we identify 21 intents
per website for self-hosted websites and 25 for live websites. Analyzing the distribution of these
intents, we observe an average perplexity (PPL) of 13.5 for self-hosted sites and 16.2 for live websites.
Higher perplexity suggests a more evenly distributed set of intents, indicating substantial diversity in
the collected demonstrations. We provide a visual representation of this distribution as a sunburst
plot in Appendix D.

To analyze the complexity of demonstrations, we categorize each demonstration into one of four levels
based on the number of action sequences: easy (fewer than 5 actions), medium (5 to 10 actions), hard
(10 to 20 actions), and very hard (over 20 actions). Table 1 presents the distribution of demonstrations
across these categories, showing a substantial number of complex demonstrations.

4.2 FINETUNING: DETAILS AND RESULTS

We perform supervised fine-tuning of the smaller instruct-tuned Llama-3.1-8B with NNetNav
demonstrations. To measure transfer between knowledge learned from live websites and self-hosted
WebArena websites, we fine-tune on: only WebArena websites (Llama8B-NNetNav-WA), only live
websites (Llama8B-NNetNav-Live), and all websites together (Llama8B-NNetNav-All).

As described in Section 2, each demonstration expands into multiple training instances, resulting in
a total of 100k training examples for the full dataset. We fine-tune for 2 epochs with a batch size
of 128, truncating the max sequence length to 20000, with a learning rate of 2e-5, that is warmed
with a linear scheduler over 500 gradient updates (more details can be found in Appendix C). We
use open-instruct (Wang et al., 2023) for fine-tuning, and set up local inference servers using VLLM
(Kwon et al., 2023). During inference, we sample with a temperature of 0.01 and perform nucleus
sampling (Holtzman et al., 2019) with top-p set to 0.9.
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Agent #Params WebArena SR WebVoyager SR Human Supervision Used?

Using Closed Models
GPT-4 (Zhou et al., 2023; He et al., 2024) Unknown 14.1 33.5 ✗

GPT-4-AWM (Wang et al., 2024) Unknown 35.5 - ✗

GPT-4 + LLama-70b (Shen et al., 2024) Unknown 50.0 - ✓

Using Open Models
Llama-3.1-8b 8B 1.0 4.4 ✗

Lai et al. (2024) 7B 2.5 - ✗

Ou et al. (2024) 7B 6.3 - ✗

Patel et al. (2024) 72B 9.4 - ✗

LLaVa-7B PAE + Claude (Zhou et al., 2024) 7B - 22.3 ✗

LLaVa-34B PAE + Claude (Zhou et al., 2024) 34B - 33.0 ✗

Qwen2.5-7B-AgentTrek (Xu et al., 2024) 7B 10.5 - ✗

Qwen2.5-32B-AgentTrek (Xu et al., 2024) 32B 16.3 - ✗

Llama8B-NNetNav-WA (Ours) 8B 16.3 28.1 ✗

Llama8B-NNetNav-Live (Ours) 8B 9.5 35.2 ✗

Llama8B-NNetNav-All (Ours) 8B 14.9 34.1 ✗

Table 2: We present average success rate (SR) on browser tasks from WebArena and WebVoyager
for various approaches, along with key details such as model size, the use of open LLMs and
human supervision. For Lai et al. (2024), we report results from the setting that does not use human
supervision. Zero-shot GPT-4 results are sourced from Zhou et al. (2023) and He et al. (2024). The
last three rows report the performance of our fine-tuned Llama-3.1-8b agents, which achieve
state-of-the-art results, outperforming zero-shot GPT-4 and outperforming or matching prior open-
model approaches with significantly fewer parameters, across both benchmarks.

Benchmarks. We evaluate models on 812 tasks from WebArena (Zhou et al., 2023) and 557
tasks from WebVoyager (He et al., 2024), omitting tasks in Google Flights and Booking, as they
are no longer feasible (following Zhou et al., 2024). For WebArena, we report averaged success
rate (SR) across all tasks based on the provided evaluator that measures functional correctness.
For WebVoyager, we use the author-provided script that uses GPT-4V to judge success based on
instructions and browser screenshots at each time step. We report the average across all websites.

Results. We report our results in Table 2, where we present prior results from using closed models
(typically GPT-4o) as well as with open models. On WebArena, both Llama8B-NNetNav-WA and
Llama8B-NNetNav-All outperform zero-shot GPT-4o, with our best model achieving state-of-
the-art performance among unsupervised methods. On WebVoyager, Llama8B-NNetNav-Live and
Llama8B-NNetNav-All surpass zero-shot GPT-4o, establishing a new state-of-the-art among open-
source methods. Notably, they outperform the previous best OSS result from Zhou et al. (2024),
which relied on a significantly larger 34B-parameter vision-language model (VLM) and a closed-
model verifier. Interestingly, we find that Llama8B-NNetNav-WA, which is trained exclusively on
WebArena websites, exhibits poor transfer to live websites. We analyze cross-website transfer next.

4.3 CROSS-WEBSITE TRANSFER

We present per-website success rates of our fine-tuned models across all 18 websites in Table 3. For
WebArena websites, by comparing columns 2 and 3, we find that 3 out of 5 websites benefit from
incorporating in-domain data. By comparing columns 1 and 3, we observe an average performance
drop of 1.8 points, with the most significant decrease on the Maps domain. This decline is likely due to
the semantic search capabilities in Google Maps, which are absent in WebArena Maps, necessitating
more complex query formulation. For live websites, fine-tuning on in-domain live website data
improves performance on 10 out of 13 domains, as indicated by comparing columns 1 and 3. The
effect of incorporating out-of-domain WebArena data, however, is mixed. While it results in negative
transfer for 7 websites and positive transfer for 6, the overall average performance decreases by 1.3
points. Notable gains are observed in ESPN, Apple, and GitHub, suggesting potential synergies when
fine-tuning on closely related domains.

Overall, fine-tuning with in-domain website data improves performance on 13 out of 18 websites.
These findings underscore the importance of learning from unsupervised interaction on real websites,
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Website NNetNav (WA) NNetNav (Live) NNetNav (Live+WA)

Self-hosted Websites (WebArena)
Reddit 26.3 9.6 25.4
Gitlab 18.4 5.6 16.8
Maps 15.6 14.8 10.9
CMS 11.5 5.5 9.9
Shopping 13.0 9.9 13.0

Live Websites (WebVoyager)
Allrecipes 26.7 37.8 29.5
Amazon 24.4 43.9 34.1
Apple 32.6 27.9 34.9
ArXiV 27.9 46.5 44.2
BBC News 33.3 42.9 28.6
Cambridge Dictionary 46.5 58.1 48.8
Coursera 47.6 45.2 42.9
ESPN 20.5 22.7 27.3
GitHub 12.2 17.1 19.5
Google Maps 34.1 46.3 43.9
Google Search 0.0 2.7 6.2
Huggingface 30.2 18.6 30.2
Wolfram Alpha 26.1 43.5 45.7

Table 3: Per-website success rates on all websites, using a Llama-3.1-8b agent fine-tuned on (1)
the WebArena subset of NNetNav, (2) the live website subset of NNetNav, and (3) all demonstrations.
On WebArena, incorporating in-domain data improves performance on 3 out of 5 websites (comparing
columns 2 and 3). For live websites, incorporating in-domain data improves performance for 10
out of 13 websites (comparing columns 1 and 3). These results highlight the importance of scalable
methods to enable training on diverse websites.

as relying solely on human-labeled trajectories from a limited set of simulated websites may be
insufficient for developing generalist web agents.

5 CONTROLLED EXPERIMENTS

We conduct controlled experiments on a smaller scale to compare NNetNav with baselines. In
addition to evaluating on WebArena, we also consider MiniWoB++ (Shi et al., 2017; Liu et al., 2018).
MiniWoB++ is a dataset of synthetic web-interfaces with a shared action space. Tasks on MiniWoB++
range from clicking on buttons to complex tasks like making a booking on a website. We use a
subset of 8 complex tasks from MiniWoB++ as a toy benchmark to evaluate our method. We use
the bid-based action space from BrowserGym (Drouin et al., 2024), consisting of 12 actions, and a
DOM based observation space. Due to its synthetic nature, MiniWoB++ comes with an automatic
reward function. We report the mean reward over 20 random seeds for each task, similar to Drouin
et al. (2024).

5.1 EXPERIMENTAL SETTINGS

As before, we evaluate a Llama-3.1-8b based browser agent under the following settings:

1. Zero-Shot: A baseline zero-shot agent, prompted using chain-of-thought prompting (Wei
et al., 2022). Next, we consider various fine-tuned models.

2. SFT (Instruction-First): Supervised fine-tuning of the Llama-3.1-8b agent using data
collected via instruction-first sampling. Here, we use the same reward model for filtering
demonstrations as NNetNav, and also sample the same number of demonstrations for fair
comparison.

3. SFT (NNetNav): Supervised fine-tuning of the Llama-3.1-8b agent with demonstrations
collected via NNetNav.

4. SFT (NNetNav + Distil.): Ablation, where we only retain instructions found via NNetNav
and re-generate trajectories by prompting the same large LM as an agent. We use this setting
to isolate performance improvements attributable to NNetNav trajectories.
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For these small scale experiments, we use gpt-4o-mini-2024-07-18 as the base LLM for
both NNetNav and instruction-first methods. For Instruction-first data collection, we sample 50
instructions per website for WebArena, and 80 instructions per interface in MiniWoB++, and prompt
the instruction generator with the landing page as well as a persona (to improve diversity). For
NNetNav, we use our exploration policy to generate 50 episodes per website for WebArena, and 80
episodes per interface for MiniWoB++. We set Tmax to 40 for WebArena, and 20 for MiniWoB++.
For both MiniWoB++ and WebArena, we apply the pruning function every 4 time-steps. We use 16
persona types per website for WebArena, and 10 persona types per web-interface for MiniWoB++.

Model Setting MiniWoB++ WebArena

Zero-Shot 0.28 1.0
SFT (Instruction-First) 0.28 4.2
SFT (NNetNav) 0.48 7.2
SFT (NNetNav + Distil.) 0.36 6.0

Table 4: Controlled evaluation of NNetNav with instruction-first methods. We present results for
MiniWoB++ and WebArena, averaged across domain, reporting mean reward for MiniWoB++ and
task success rate (SR) for WebArena. Fine-tuning with NNetNav leads to the largest improvements:
from 28% to 48% on MiniWoB++; from 1% to 7.2% on WebArena.

5.2 RESULTS

NNetNav outperforms instruction-first methods. We report results from all settings in Table 4.
Fine-tuning Llama-3.1-8b using synthetic demonstrations generated by NNetNav yields signif-
icant improvements: an increase of 20 points on MiniWoB++ and over 6 points on WebArena.
Notably, NNetNav outperforms instruction-first methods by a substantial margin, with gains of 12
points on MiniWoB++ and 1.2 points on WebArena. Interestingly, SFT (NNetNav) outperforms SFT
(NNetNav + Distil.) on both MiniWoB++ and WebArena. This difference likely stems from the
distinct procedures used to generate trajectories. In NNetNav, the model first acts, and the corre-
sponding instruction is inferred afterward through a hindsight procedure. In contrast, NNetNav +
Distil. provides the instruction upfront, sampling the trajectory later.

Self-training with NNetNav. Can NNetNav demonstrations from an LM be used for improving the
same LM agent? To answer this, we collect another set of NNetNav demonstrations on WebArena,
using Llama-3.1-8b as the base LM for data collection. Given the limitations of this smaller
model, we anticipate fewer meaningful interactions. To compensate, we increase the number of
episodes to 200 episodes per website, resulting in 302 demonstrations which we use for fine-tuning
the same Llama-3.1-8b agent. From results in Table 5, we find improvements of 4.3 points on
WebArena.

Domain Zero-Shot Self-Train (NNetNav)

Shopping 3.8 15.4
CMS 0.0 0.0
Reddit 0.0 0.0
Gitlab 0.0 0.0
Maps 0.0 7.1

Avg. 1.0 5.3

Table 5: We generate NNetNav demonstrations using Llama-3.1-8b, which we use for supervised
fine-tuning of an agent based on the same LM, and find significant improvements on WebArena from
1% to 5.3%.
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6 RELATED WORK

Language Conditioned Digital Assistants. Mapping instructions to actions in digital environments
has been a long-standing goal in natural language understanding (Allen et al., 2007; Branavan et al.,
2009). Most pre-LLM approaches for this rely on expert demonstrations for behavioral cloning
(Chen & Mooney, 2011; Humphreys et al., 2022), along with appropriately shaped reward functions
(Branavan et al., 2009; Liu et al., 2018; Misra et al., 2017, among others). Here, learning is driven
purely by synthetic demonstrations derived via (language model) exploration of websites.

Linguistic Priors for Exploration. Several prior works have used natural language priors to
inform exploration for sequential decision making. Harrison et al. (2017) use a trained model of
associations between language and state/action pairs to guide exploration during policy learning. Mu
et al. (2022) use language annotations of states to train a goal generator module that provides intrinsic
rewards for achieving generated goals. Similarly, Du et al. (2023) constrain exploration towards goals
generated by a pre-trained LLM at each intermediate state of an agent. In constrast, NNetNav biases
exploration through two news ways of using language priors. First, we use natural language as a way
to filter meaningful interactions. Second, we use it as a pruning heuristic to navigate the potentially
exponential search space of these interactions.

Training Data for LLM browser agents. LLMs have shown strong performance over a wide range
of language understanding tasks, and are increasingly being used to interpret language in grounded
contexts such as browsers (Yao et al., 2022; Lai et al., 2024; Wang et al., 2024; Patel et al., 2024;
Lù et al., 2024, among others). Many of these approaches rely on human demonstrations, either
for in-context learning (Yao et al., 2022; Sodhi et al., 2023; Kim et al., 2023) or for finetuning (Lù
et al., 2024; Shen et al., 2024). Since human demonstrations are costly, recent work trains LLM
agents through synthetic demonstrations generated using instruction-first methods (Lai et al., 2024;
Patel et al., 2024). One exception is Murty et al. (2024), which introduces an interaction-first method
for generating synthetic demonstrations for in-context learning. Despite its novelty, their approach
does not scale well to real websites due to the lack of a mechanism for effective exploration in
environments with many possible interactions. In contrast, NNetNav also follows an interaction-first
approach but improves efficiency by leveraging linguistically motivated pruning to navigate the space
of meaningful interactions.

7 CONCLUSION

We propose NNetNav, a method for unsupervised interaction with websites “in-the-wild” that enables
training browser agents with synthetic demonstrations. NNetNav flips the standard paradigm of
synthetic data generation by first interacting with a website to generate trajectories and then hindsight
relabeling trajectories into instructions. Real websites have a prohibitively large set of possible
interactions; NNetNav searches over this space efficiently using a pruning function inspired by
the hierarchical structure of language instructions: any complex instruction consists of language
describable sub-tasks and so, if during an interaction a relabeling module cannot infer a meaningful
sub-task for the trajectory-so-far, further exploration is pruned. We apply NNetNav to collect a
diverse and complex set of 10k demonstrations from 15 live-websites and 5 self-hosted websites. We
use these demonstrations for supervised finetuning of a small, Llama-3.1-8b model, achieving
state-of-the-art results for unsupervised methods on both the WebArena and WebVoyager, surpassing
zero-shot GPT-4 by 1.7 to 2.2 points. NNetNav opens up the possibility of scaling up training data
for generalist web agents across a broad range of web interfaces without any human intervention.

IMPACT STATEMENT

The deployment of unsupervised exploration with LLM agents on live websites has real-world
implications, including website overload, unintended interactions, and the propagation of biases.
To mitigate potential disruptions to websites, we constrain our agents to a maximum of 10 parallel
instances, enforce a 0.5-second delay between actions, and prohibit login or content submission on
live websites. We suggest that anyone using our work closely monitor these agents and establish
robust monitoring frameworks to detect unintended behaviors and ensure compliance with ethical
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guidelines. Additionally, training agents on NNetNav data from live websites can reinforce biases
present in web content. We urge practitioners to conduct thorough bias audits before deployment.
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A PROMPTS FOR LM COMPONENTS

A.1 MINIWOB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing 1: Action Space
noop(wait_ms: float = 1000)

Examples:
noop()
noop(500)

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)
scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Examples:

select_option(’a48’, ’blue’)
select_option(’c48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[typing
.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
click(’a51’)
click(’b22’, button=’right’)
click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[
typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
dblclick(’12’)
dblclick(’ca42’, button=’right’)
dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Examples:

hover(’b8’)

press(bid: str, key_comb: str)
Examples:

press(’88’, ’Backspace’)
press(’a26’, ’Control+a’)
press(’a61’, ’Meta+Shift+t’)

focus(bid: str)
Examples:

focus(’b455’)

clear(bid: str)
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Examples:

upload_file(’572’, ’my_receipt.pdf’)
upload_file(’63’, [’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip
’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)

If you are done exploring, you can issue the stop action: ‘‘‘stop‘‘‘
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Here is an example with chain of thought of a valid action when clicking on a button: "In
order to accomplish my goal I need to click on the button with bid 12. In summary, the next
action I will perform is ‘‘‘click("12")‘‘‘

This is then directly used for various prompts as {action_str}.

Listing 2: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
Your objective is to simulate a task that a person might request, by interacting with the
interface through the use of specific actions.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
7. You can issue atmost 20 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Listing 3: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web-interface to fulfill a task given by a user. Your objective is to produce a

description of the changes made to the state of the browser.

Here’s the information you’ll have:
Initial state of the browser as a DOM representation: This is the webpage’s Document Object
Model (DOM) representation as a string.

Final state of the browser as a DOM representation: This is the DOM representation after
the agent took the action.

The action taken by the agent: This is the action taken by the agent to change the state of
the browser.

The actions the agent can take come from the following categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 4: Prompt for the Trajectory Labeling function LfLM

Given a task from a user, an autonomous intelligent agent carries out a sequence of actions
on a web-interface.

The actions the agent can take fall under the following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
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Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 5: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are very minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards the
given instruction or if there are major errors.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 6: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The user’s objective: This is the task you’re trying to complete.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

A.2 PROMPTS FOR WEBARENA AND LIVE WEBSITES

Next, we present all prompts for running policies on self-hosted WebArena websites and live websites.
The action space is:

Listing 7: Action Space
Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.
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‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).
‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done.

Additionally, for WebArena, models can visit the homepage at http://homepage.com,
which lists all the websites on WebArena. This is then directly used for various prompts as
{action_str}.

Listing 8: Prompt for the Exploration Policy πexplore in WebArena
You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start by reasoning out the current situation.
End with "In summary, the next action I will perform is" phrase, followed by action inside
‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I need to click

on the like button which has id 1234. In summary, the next action I will perform is ‘‘‘
click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘

For Exploration on live websites, we add a few extra rules for our model to ensure safety and terminate
exploration when CAPTCHAs or logins are triggered.

Listing 9: Prompt for the Exploration Policy πexplore in WebArena
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You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories:

Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.
‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).
‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done. You can use the stop action to convey
a message to the user, but know that your interaction will terminate after this.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has
a list of websites you can visit.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I
will perform is" phrase, followed by action inside ‘‘‘‘‘‘. For example, "In summary, the
next action I will perform is ‘‘‘click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Finally, here are some more rules that you should follow for specific websites:

1. On bookings and google flight, please use the date picker to choose start date
(2025-01-01) and end date (2025-01-03). Make sure you click search after you input the
dates.
2. Don’t click disabled or invisible links on any website.
3. On google map, try to search for some locations around the world.
4. On all websites, don’t click "Enroll", "Sign up", or other buttons indicating creating
new accounts. Instead, just stop by issuing ‘‘‘stop[’exit’]‘‘‘ if you want to pass control
to a user to sign-up.
5. On all websites, don’t click "Sign in", "Log in through Google", or other buttons
indicating logging into existing accounts. Instead, just stop if you want to pass control
to a user to sign-in by issuing ‘‘‘stop[’exit’]‘‘‘ action.
6. On arxiv.org, please always check html version of the papers. Don’t click view PDF.
7. When dealing pop ups, click "Maybe later" or other links that can turn off the pop up
temporarily.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved
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the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

3. Let’s think step-by-step. I want to see more of the page since the submit button is not
visible. I will scroll down to see the submit button. In summary, the next action I will
perform is ‘‘‘scroll [down]‘‘‘.

Listing 10: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web browser. Your objective is to produce a description of the changes made to the state

of the browser.

Here’s the information you’ll have:

Initial state of the browser as an accessibility tree: This is a simplified representation
of the webpage, providing key information.
Final state of the browser: This is the accessibility tree representation after the agent
took the action

The action taken by the web agent: The agent can take actions that fall under the following
categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 11: Prompt for the Trajectory Labeling function LfLM

Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

Here are some examples of user instructions:
1. Get the distance from SF airport to Palo Alto.
2. Find out the price of Apple airpods
3. Add 5 items to cart
4. Make a comment on the first post in the r/gaming subreddit.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 12: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
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2 Give a score of 4 if there are minor errors, or if the task was more than 70% completed.
Give a score of 3 (or below) if the model made very little progress towards the given
instruction.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 13: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous actions: These are all the action you have performed. It may be helpful to
track your progress.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. You are strictly forbidden from issuing a goto action to a URL that is not on the
homepage.
5. Generate the action in the correct format. Start by reasoning about the current
situation. End with "In summary, the next action I will perform is" phrase, followed by
action inside ‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I
need to click on the like button which has id 1234. In summary, the next action I will
perform is ‘‘‘click [1234]‘‘‘".
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

Both WebArena and WebVoyager require web-agents to output a special [stop] action at the end
of the episode. We append this stop token to NNetNav demonatrations via the following prompt to
the base LLM.

Listing 14: Prompt for appending the special [stop] action
Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories (we also provide the descriptions of each action): {action_str}

You are given the user instruction, and the final webpage after the agent finished its task
. Unfortunately, we forgot to collect the final stop action from the agent. Your objective
is to guess the agent’s stop action. To do this, you are given the following
Instruction: This is the instruction given by the user.
Final State: This is the final state of the web-page after the agent executed its actions
on the browser.

Here are some examples of valid outputs:
1. Let’s think step-by-step. The task requires me to find the person with the most number
of upvotes. I see the answer to that is Alice Oh. Therefore I will stop now. In summary, my
next action will be ‘‘‘stop [Alice Oh]‘‘‘.

2. Let’s think step-by-step. The task required setting the price of Sprite to 25$ which I
have already done. Thus I will stop now. In summary, my next action will be ‘‘‘stop [N/A
]‘‘‘.
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3. Let’s think step-by-step. I was supposed to find the distance from Brad’s house to the
coffee shop. I see this info on the map as 0.3 miles. Thus I will issue the stop action. In
summary, my next action will be ‘‘‘stop [0.3 miles]‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about what kind of a stop action was needed. For instance, if the user
requests information (e.g. Search for airports near CMU or Find developers with more than 5
merge requests), then the stop action should have the answer based on the final web-page (

e.g. ‘‘‘stop [Pittsburgh Airport]‘‘‘ or ‘‘‘stop [Don Knuth, Alan Turing]‘‘‘). Otherwise,
the stop action should be without any arguments (e.g. ‘‘‘stop‘‘‘).
2. Your output should include reasoning steps. Also make sure to wrap the stop action in
triple backticks for e.g. ‘‘‘stop [<your answer>]‘‘‘. Overall, follow the following format
for your output: "Let’s think step by step. <your reasoning>. In summary, my next action
should be ‘‘‘stop [<your answer>]‘‘‘.

B PROCESSING DEMONSTRATIONS FOR SFT

As mentioned in §2, for supervised finetuning each demonstration is converted into multiple training
instances. We perform this conversion differently based on input features of πLM.

MiniWoB++. For MiniWoB++, πLM conditions on the current observation ot, the goal g and the
previous action at−1 (see prompt in §A.1). Thus, we pre-process each (g, τ) demonstration into
inputs (g, ot, at−1) with the corresponding reasoning step and action (rt, at) as the target output.

WebArena and WebVoyager. For WebArena and WebVoyager, πLM conditions on the current
observation ot, the goal g and all previous actions {a1, a2, . . . , at−1} (see prompt in §A.2). Thus,
we pre-process each (g, τ) demonstration into inputs (g, ot, {a<t}) with (rt, at) as the target output.

C TRAINING DETAILS

Additional Hyperparameters. For all Llama-3.1-8b finetuning experiments, we set the batch
size for training as 128 × 20000 (where 20000 is our context window), train for 2 epochs, with a
learning rate of 2e-5 that linearly warms up from 0 over 3% of total training steps. We use 4 H100
GPUs with 80GB GPU memory, and additionally use DeepSpeed ZeRO-3 (Rajbhandari et al., 2020)
to speed up training and manage memory.

D DISTRIBUTION OF INTENTS IN NNetNav DEMONSTRATIONS AND
EXAMPLES
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Website Intent Categories Distribution (Top 10)

Loading [MathJax]/extensions/MathMenu.jsFigure 3: Top-10 intents per website for Live websites (left) and WebArena websites (right). We
find a highly diverse range of intents ranging from finding holiday and festive recipes, kid-friendly
cooking, finding restaurant and dining reviews, finding apple product pricing etc. Note that on
live-websites, we explicitly prevent models from logging in, and this inherently limits the kinds of
tasks it can do. No such limitations are placed on WebArena, leading to tasks that require logging
in such as itextitposting on forums, creating projects, managing order details etc. We report the
perplexity of intent distribution per website in Section 4.1
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Shopping

Find a kitchen utensil organizer.
Find a kitchen utensil organizer within a certain budget.
Write a review for the product “Citric Acid 2 Pounds 100% Pure Organic Food Grade”.
Find the price of kitchen gadgets that can be used for dining and entertaining, and add them to the cart.
Browse for women’s clothing items, specifically jumpsuits, and add some to cart.

CMS

Change the stock status of the Sprite Stasis Ball 65 cm to In Stock.
Create a new product in the Magento Admin panel with the name ’New Fashionable Watch’, SKU ’New
Fashionable WatchFW101’, price $100.00, and set as new from 2024-01-01.
Update the price of Sprite Stasis Ball 55 cm to $24.50 and set its quantity to 50.
Add two products, “Abominable Hoodie” and “Samsung Smart TV”, with respective prices $99.99 and
$50.00, and then start the process of adding a new customer.

Reddit

Create a new forum called “Funny Stuff” with the title “Memes and LOLs”, description “A place for sharing
and discussing funny memes and LOLs”, and sidebar “Memes of the day”.
Find a webpage related to intraday trading strategies on the wallstreetbets forum.
Find and participate in a discussion on the wallstreetbets forum about intraday trading strategy, specifically
on a post titled “Swings and roundabouts”.
Change my profile settings to use Deutsch as the language and Africa/Accra as the time zone, and then view
the search results for “r/art”.

Maps

Get walking directions from Logan Street, Pittsburgh, PA to Carnegie Mellon University on OpenStreetMap.
Get the cycling directions from Brooklyn to Manhattan.
Find the driving directions from TLC Medical Transportation Services in Syracuse to Times Square in
Manhattan.

Gitlab

Create a new project named ’My Blog Post Project’ and add an Apache License 2.0 file.
Create a new project, add a LICENSE file with Apache License 2.0, and approve the “Add verification
functions” merge request.
Search for a README.md file within the “My New Project” project and verify its contents.
Edit the issue “Link to WCAG 2.1 instead of 2.0?” in the First Contributions project on GitLab by updating
its title and description to point to WCAG 2.1 guidelines instead of 2.0 guidelines.
Investigate the node-http-proxy project’s issue #992 regarding connection headers and determine its relevance
to the Byte Blaze project.
Investigate and comment on the “Outdated dependencies” issue in the “Byte BlazeByte BlazeByte Blaze /
accessible-html-content-patterns” project.

Table 6: Some Example demonstrations obtained from NNetNav-WA. We note that these instructions
are hierarchical, refer to concrete features and entities and plausible by design.
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