
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NNETNAV: UNSUPERVISED LEARNING OF BROWSER
AGENTS THROUGH ENVIRONMENT INTERACTION IN
THE WILD

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce NNetNav, a method for unsupervised interaction with websites that
generates synthetic demonstrations for training browser agents. Given any website,
NNetNav produces these demonstrations by retroactively labeling action sequences
from an exploration policy. Most work on training browser agents has relied on
expensive human supervision, and the limited prior work on such interaction-based
techniques has failed to provide effective search through the exponentially large
space of exploration. In contrast, NNetNav exploits the hierarchical structure of
language instructions to make this search more tractable: Complex instructions are
typically decomposable into simpler sub-tasks, allowing NNetNav to automatically
prune interaction episodes when an intermediate trajectory cannot be annotated
with a meaningful sub-task. LLama-3.1-8b finetuned on 10k NNetNav self-
generated demonstrations obtains over 16% success rate on WebArena, and 35%
on WebVoyager, an improvement of 15pts and 31pts respectively over zero-shot
LLama-3.1-8b, outperforming zero-shot GPT-4 and reaching the state-of-the-art
among unsupervised methods, for both benchmarks.

1 INTRODUCTION

Building grounded agents that map human language instructions to a sequence of executable actions
is a long-standing goal of artificial intelligence (Winograd, 1972). A promising new approach
for building such agents is to use large language models to control policies in environments like
web-browsers and computers (Yao et al., 2022; Murty et al., 2024; Xie et al., 2024, among others).

Unfortunately, language models struggle with such grounded instruction following out-of-the-box
because LMs do not know about the myriad and ever changing interaction possibilities of different
websites. For instance, on a new e-commerce website, a zero-shot LM browser agent may struggle to
make a return or change order details, without expensive test-time exploration. Even simple tasks
like choosing a flight can involve different UI element such as directly entering airport codes or
interacting with drop-down menus, and a zero-shot agent cannot know a priori the correct thing to do.

The most common solution is to provide LM browser agents with knowledge about new web
interfaces via expert demonstrations, that can either be used for in-context learning (Yao et al., 2022)
or supervised fine-tuning (Lai et al., 2024; Shen et al., 2024). These demonstrations are either fully
provided by human experts (Sodhi et al., 2023; Yao et al., 2022) or consist of human-generated
trajectories paired with model-generated instructions (Lai et al., 2024). However, collecting human
demonstrations that cover each possible use case for every website is an unattractively large, never-
ending task. Thus, in this work, we propose a method for training LM browser agents in a completely
unsupervised way, via synthetic demonstrations derived from interaction.

At a high level, our approach, NNetNav (Fig 2), uses a language model exploration policy to perform
extended interactions with a website, and another language model trajectory labeler to annotate
trajectories with instructions. To effectively control the exponential space of meaningful interactions,
NNetNav uses the hierarchical structure of language instructions as a pruning heuristic: for exploration
to discover a meaningfully complex task, trajectory prefixes must correspond to meaningful sub-tasks.
Thus, during an exploration episode, if a language model cannot label trajectory prefixes (at set
time-steps) with a sub-task, further exploration is automatically pruned. Imposing such a structure

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

URL: http://..

Find out how Apple uses user data in Safari.

URL: http://.. URL: http://.. URL: http://..

[Axtree observation][exploration prompt]

Exploration Policy

[reward fn prompt]

Outcome Reward Model
Base LLM

[instruction, trajectory][trajectory-so-far][labeler prompt]

Trajectory Labeler
Base LLMBase LLM

Relabel or Prune

2.

3.
Create a new forum
called "Funny Stuff" with
the title "Memes and
LOLs", description "A
place for sharing and
discussing funny memes
and LOLs", and sidebar
"Memes of the day".

Read the research paper
about the ModernBERT-base
model from Hugging Face.

Explore the 360° and Street
View images of the Eiffel Tower

Find the price of the iPhone 16 and
compare it with the price of the
iPhone 16 Pro.

Find a pair of wireless earbuds and
add them to your cart on Amazon

Read a review of Squid
games season-2

Explore

NNetNav

1.

4.
…

Figure 1: Given web URLs (1), NNetNav (2) uses a structured exploration strategy to interact
with websites (3) and autonomously discover diverse (instruction, trajectory) demonstrations, as
summarized in (4). To effectively prune exploration, the trajectory-so-far is periodically evaluated
by a relabeling module and further exploration continues only if it can be assigned a meaningful
language instruction. All components in NNetNav are implemented with the same zero-shot base
LLM.

over search not only enhances efficiency, but also results in complex and hierarchical instructions (See
Table 6 for examples). NNetNav prompts the same base language model for exploration, relabeling
and inferring sub-tasks.

We use Llama-3.1-70B (Dubey et al., 2024) to collect a large scale dataset of over 10k demonstra-
tions (around 100k state, action transitions) from 20 websites, including 15 live, in-the-wild websites,
and 5 self-hosted websites from WebArena (Zhou et al., 2023). We classify these instructions
into various intents and find a highly diverse range of internet use cases, including flight booking,
finding recipes, buying iPhones, searching for trails, commenting on github issues, and posting
on Reddit (see Fig 3 for more examples). We use these demonstrations for supervised fine-tuning
of Llama-3.1-8B. On WebArena, our model achieves a success rate of 16.3%, outperforming
zero-shot GPT-4 by 2 points and reaching state-of-the-art performance among unsupervised methods.
On WebVoyager (He et al., 2024), our best model reaches a success rate of 35.2%, outperforming
zero-shot GPT-4 by 1.7 points and all known open methods on this task to the best of our knowl-
edge. Interestingly, we find that NNetNav enables effective self-training—fine-tuning a smaller LM
using NNetNav demonstrations generated by the same model yields a 4 point absolute improvement
(from 1% to 5%) on WebArena. NNetNav opens up interesting avenues for open-ended discovery of
workflows on unknown web-interfaces, without human supervision.

2 BACKGROUND

Following instructions on a web-browser is a multi-turn sequential decision making problem.
Given an instruction g, a browser agent interacts with the browser by issuing a sequence of com-
puter control actions ⟨a1, a2, . . . , aT ⟩ where each ai ∈ A is drawn in response to an observation
oi. Executing an action causes a state transition based on some unknown environment dynam-
ics, leading to a new observation oi+1. The entire episode can be summarized as a trajectory
τ := ⟨o1, a1, o2, a2, . . . oT−1, aT , oT ⟩. We formalize the instruction following agent as a mapping
π(at | ot, τ<t; g) where τ<t := ⟨o1, a1, . . . at−1⟩ is the trajectory so far. In our case, observations are
represented as either flattened DOM trees or website accessibility trees, and A consists of keyboard /
mouse commands that operate on elements of these trees (see Appendix A for the full action space).

LLMs for Browser Control. Recent work explores using instruction-tuned large language models
(LLMs) to directly parameterize the agent. These methods typically work in settings with textual
observations and action spaces. At time-step t, the agent πLM is provided with the following context:
the instruction g, the full action space described as a string, the current observation ot, and some
representation of the trajectory-so-far τ<t, typically the action history. Given this information, the
LLM generates an output that is parsed into an action. Typically, the LLM output contains both a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

g

URL: h'p://webarena-reddit.com
Persona Type: Investor, Ac@ve on r/

inves@ng and r/wallstreetbets

type[…] hover[…] type[…][…]

g: Subscribe to the r/wallstreetbets forum
and navigate to world news R: 1

g: Find out how the founder of WallStreetBets'
experience relates to investing. R: 1

g: Find the post about Jaime Rogozinski, the founder of
WallStreetBets, and his lawsuit against Reddit, and ask him
about his experience with the platform. R: 1

click[…] click[…] click[…]

g: Find out how the founder of WallStreetBets' experience relates to investing.

previous-actions:
[None]

g

previous-actions:
[None, type[…]]

previous actions:
[None, type[…], click[…], …]

g

hover[…]
[Axtree observation +

previous actions]
[prompt + persona +

action-space]

[action]

[prompt] [trajectory-so-far]

[instruction]

Base LLM

Trajectory
Labeler

Exploration
Policy

[prompt + instruction
+ action-space]

[Axtree observation
+ previous actions]

[action]
Instruction

Following Policy

Base LLM

[reward fn prompt] [instruction, traj-so-far]

[reward]
Outcome

Reward Model

Base LLM

Base LLM

g

previous actions:
[None, type[…], click[…], …, a_23]

1. Interact with a website with a structured exploration policy + trajectory labeler

2. Generate new action at each trajectory prefix based on labeled instructions

Figure 2: Left: NNetNav uses four components to interact with websites to create training examples,
built out of zero-shot language models. Right (Top): An exploration episode on a website begins
with sampling a persona, followed by generating persona-conditioned action sequences from the
exploration policy. At fixed intervals, the trajectory labeler infers an instruction to describe the
trajectory so far. If the resulting (instruction, trajectory) pair receives a low score from the ORM, the
episode is pruned (indicated by a red cross). Right (Bottom): For each instruction, we retroactively
generate a new action, given the (instruction, observation, previous actions) tuple to ensure that
actions at each time-step correspond directly to the inferred instruction.

reasoning step rt (e.g. Since my task is to buy a mug, given the current state, I should click on the buy
now button), and the chosen action command at (e.g. click [1234]).

Given expert demonstrations {gi, τ i} where τ i := ⟨oi1, ri1, ai1, oi2, ri2, ai2 . . . oiT ⟩, previous work adapts
LM agents using demonstrations as in-context examples (Yao et al., 2022; Shinn et al., 2023; Sun
et al., 2023; Kim et al., 2023, among others) or as training data for supervised fine-tuning (Furuta
et al., 2023; Lai et al., 2024; Lù et al., 2024; Patel et al., 2024). For supervised fine-tuning of πLM
on a dataset of demonstrations, we construct training instances {(gi, τ i<t, o

i
t), (r

i
t, a

i
t)} where rit, a

i
t

serves as the target reasoning step and action for an intermediate context (gi, τ i<t).

Prior Methods for Synthetic Demonstrations. Since collecting human demonstrations for browser
agents is time consuming and costly, recent work uses synthetic demonstrations as training data (Lai
et al., 2024; Furuta et al., 2023; Murty et al., 2024). These methods start by sampling synthetic
instructions from an instruction generator (a prompted LM that takes the website landing page and an
optional user persona), and use a zero-shot browser agent to convert these instructions into trajectories.
Resulting demonstrations are filtered using either the ground truth reward function (Furuta et al.,
2023), or using another LM outcome reward function (Lai et al., 2024; Murty et al., 2024). These
methods typically fine-tune smaller LMs using synthetic demonstrations from larger LMs.

Such instruction-first methods for data collection face several challenges. First, synthetic instructions
in these demonstrations are sampled from an ungrounded LM prior that generates only plausible1

instructions without ensuring feasibility; e.g., an instruction such as Delete the first post on r/callof-
dutyfans for reddit is plausible, but not always feasible. Second, generated instructions are limited to
those that reference visible features of the website; e.g., given the landing page of a github-like plat-
form, no LM prior can generate instructions like Find information about Eric Bailey’s contributions
to the byteblaze project, which require knowing about deeply embedded website-specific entities like
Eric Bailey. Finally, these methods provide no control over the complexity of instructions, and rely
entirely on the LM or bespoke prompts to generate complex instructions.

1We use the term plausible for instructions that match a website’s genre or intended use. For example,
searching for clothes on a retail site or checking notifications on a social media platform. Not all plausible
instructions are feasible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 OUR APPROACH

Instead of starting with a sampled instruction, we start by sampling an interaction first, and then
retroactively labeling it into an instruction that is feasible by definition. NNetNav (Fig 2) is an
interaction-first method for constructing demonstrations: An exploration policy interacts with a
browser in a structured manner to sample long trajectories which are retroactively labeled into
instructions (§3.2). We then post-process each trajectory to add post-hoc actions corresponding to the
generated instructions.

3.1 LM COMPONENTS

All components in NNetNav are implemented with a zero-shot instruction-tuned LLM, with different
prompts (see Appendix A for prompts).

Exploration Policy. To interact with the environment, we use an exploration policy πexplore, imple-
mented as -a prompted language model, similar to πLM. Additionally, to simulate a diverse set of
behaviors from users and improve the diversity of resulting trajectories, we seed each episode with a
string description of a plausible user persona for the given website (Shanahan et al., 2023; Argyle
et al., 2023). At each time-step, πexplore is provided with the following context: a user persona, the
list of available actions, the current observation ot, and the action history. The output of πexplore is
then parsed into an action.

Summarizing Trajectory changes. Actions issued by πexplore result in a new observation in the
environment. We summarize this change as a short string description via another module ∆LM,
implemented using a language model. In particular, for any state ot, action at and the resulting
next state ot+1, δt = ∆LM(ot, at, ot+1) produces a string-valued description of the changes in the
observation as a result of the action. For a trajectory τ , we denote the sequence of state changes as δτ .

Trajectory Labeler. Given δτ , the trajectory labeler LfLM produces a plausible instruction ĝ =
LfLM(δτ) that the agent could have followed to produce the given interaction.

Outcome Reward Model. Given ĝ and δτ , the outcome reward model (ORM) assigns a reward
sLM(ĝ, δτ) ∈ {0, 1}, based on the degree to which state changes correspond to the given instruction
ĝ.

3.2 SAMPLING DEMONSTRATIONS VIA INTERACTIONS

At specific time steps t ∈ {t1, t2, . . . , tmax}, we apply a pruning heuristic to retroactively label
the current trajectory. Given a partial trajectory τ<t after interacting with the environment for t
steps, we compute a sub-task annotation ĝ = LfLM(δτ<t). If this sub-task receives no reward, i.e.,
sLM(ĝ, δτ<t) = 0, we prune the episode and sample a new rollout. Otherwise, we store (ĝ, τ<t) as a
synthetic demonstration and continue exploration. Each episode typically generates multiple such
demonstrations.

Post-processing with an Agent Policy. Actions at each time-step in our our demonstration set are
a result of un-directed exploration, and therefore might not be optimal for the retroactively generated
instruction. Thus, we post-hoc annotate each state with a new action that directly corresponds to the
generated instruction. Concretely, given every (ĝ, oi, τ<t) tuple in our synthetic demonstration set,
we use πLM to output a suitable action âi given the instruction ĝ and current observation oi.

BofK sampling (Optional). To further boost the quality of trajectories, we optionally use best-of-K
(BofK) sampling. In particular, given NNetNav generated instructions, we sample K − 1 additional
trajectories, with πLM using the same base LLM. Then, for each instruction, we use our ORM to
score each of the K − 1 trajectories and the original trajectory, and pair the best trajectory with the
given instruction, breaking ties arbitrarily.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 MAIN EXPERIMENTS

4.1 COLLECTING DEMONSTRATIONS IN THE WILD

We apply NNetNav on 20 websites to collect a dataset of over 10,000 demonstrations. We consider 15
live websites (same set as He et al. 2024): Allrecipes, Amazon, Apple, ArXiv, BBC News, Booking,
Cambridge Dictionary, Coursera, ESPN, GitHub, Google Flights, Google Map, Google Search,
Huggingface, and Wolfram Alpha, and 5 self-hosted websites from WebArena (WA; Zhou et al.,
2023).

We use instruct-tuned Llama-3.1-70b as the base LLM for all components in NNetNav, with
tmax set to 40, running NNetNav pruning every 4 time-steps at {4, 8, 12, 16, ..., 40}. Additionally,
we perform BofK sampling with K = 3, using πLM (with the same Llama-3.1-70b base model).
While we only consider text based browser agents in this work, we release both accessibility tree
strings as well as browser screenshots at each time step, to support future work on multi-modal
browser agents.

Difficulty NNetNav (WA) NNetNav (Live)
Easy 498 1448
Medium 2532 2369
Hard 1164 1204
Very-Hard 501 556

Total 4695 5577

Table 1: We report the breakdown of NNetNav demonstrations into categories defined based on the
number of actions in the trajectory.

Diversity and Complexity. To evaluate diversity in resulting instructions, we cluster them by
intent for each website. We obtain these intents through a two-step procedure—we input instructions
for each website into GPT-4o, prompting it to identify common intents, and then classify each
instruction into one of these intents in a second forward pass. On average, we identify 21 intents
per website for self-hosted websites and 25 for live websites. Analyzing the distribution of these
intents, we observe an average perplexity (PPL) of 13.5 for self-hosted sites and 16.2 for live websites.
Higher perplexity suggests a more evenly distributed set of intents, indicating substantial diversity in
the collected demonstrations. We provide a visual representation of this distribution as a sunburst
plot in Appendix D.

To analyze the complexity of demonstrations, we categorize each demonstration into one of four levels
based on the number of action sequences: easy (fewer than 5 actions), medium (5 to 10 actions), hard
(10 to 20 actions), and very hard (over 20 actions). Table 1 presents the distribution of demonstrations
across these categories, showing a substantial number of complex demonstrations.

4.2 FINETUNING: DETAILS AND RESULTS

We perform supervised fine-tuning of the smaller instruct-tuned Llama-3.1-8B with NNetNav
demonstrations. To measure transfer between knowledge learned from live websites and self-hosted
WebArena websites, we fine-tune on: only WebArena websites (Llama8B-NNetNav-WA), only live
websites (Llama8B-NNetNav-Live), and all websites together (Llama8B-NNetNav-All).

As described in Section 2, each demonstration expands into multiple training instances, resulting in
a total of 100k training examples for the full dataset. We fine-tune for 2 epochs with a batch size
of 128, truncating the max sequence length to 20000, with a learning rate of 2e-5, that is warmed
with a linear scheduler over 500 gradient updates (more details can be found in Appendix C). We
use open-instruct (Wang et al., 2023) for fine-tuning, and set up local inference servers using VLLM
(Kwon et al., 2023). During inference, we sample with a temperature of 0.01 and perform nucleus
sampling (Holtzman et al., 2019) with top-p set to 0.9.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Agent #Params WebArena SR WebVoyager SR Human Supervision Used?

Using Closed Models
GPT-4 (Zhou et al., 2023; He et al., 2024) Unknown 14.1 33.5 ✗

GPT-4-AWM (Wang et al., 2024) Unknown 35.5 - ✗

GPT-4 + LLama-70b (Shen et al., 2024) Unknown 50.0 - ✓

Using Open Models
Llama-3.1-8b 8B 1.0 4.4 ✗

Lai et al. (2024) 7B 2.5 - ✗

Ou et al. (2024) 7B 6.3 - ✗

Patel et al. (2024) 72B 9.4 - ✗

LLaVa-7B PAE + Claude (Zhou et al., 2024) 7B - 22.3 ✗

LLaVa-34B PAE + Claude (Zhou et al., 2024) 34B - 33.0 ✗

Qwen2.5-7B-AgentTrek (Xu et al., 2024) 7B 10.5 - ✗

Qwen2.5-32B-AgentTrek (Xu et al., 2024) 32B 16.3 - ✗

Llama8B-NNetNav-WA (Ours) 8B 16.3 28.1 ✗

Llama8B-NNetNav-Live (Ours) 8B 9.5 35.2 ✗

Llama8B-NNetNav-All (Ours) 8B 14.9 34.1 ✗

Table 2: We present average success rate (SR) on browser tasks from WebArena and WebVoyager
for various approaches, along with key details such as model size, the use of open LLMs and
human supervision. For Lai et al. (2024), we report results from the setting that does not use human
supervision. Zero-shot GPT-4 results are sourced from Zhou et al. (2023) and He et al. (2024). The
last three rows report the performance of our fine-tuned Llama-3.1-8b agents, which achieve
state-of-the-art results, outperforming zero-shot GPT-4 and outperforming or matching prior open-
model approaches with significantly fewer parameters, across both benchmarks.

Benchmarks. We evaluate models on 812 tasks from WebArena (Zhou et al., 2023) and 557
tasks from WebVoyager (He et al., 2024), omitting tasks in Google Flights and Booking, as they
are no longer feasible (following Zhou et al., 2024). For WebArena, we report averaged success
rate (SR) across all tasks based on the provided evaluator that measures functional correctness.
For WebVoyager, we use the author-provided script that uses GPT-4V to judge success based on
instructions and browser screenshots at each time step. We report the average across all websites.

Results. We report our results in Table 2, where we present prior results from using closed models
(typically GPT-4o) as well as with open models. On WebArena, both Llama8B-NNetNav-WA and
Llama8B-NNetNav-All outperform zero-shot GPT-4o, with our best model achieving state-of-
the-art performance among unsupervised methods. On WebVoyager, Llama8B-NNetNav-Live and
Llama8B-NNetNav-All surpass zero-shot GPT-4o, establishing a new state-of-the-art among open-
source methods. Notably, they outperform the previous best OSS result from Zhou et al. (2024),
which relied on a significantly larger 34B-parameter vision-language model (VLM) and a closed-
model verifier. Interestingly, we find that Llama8B-NNetNav-WA, which is trained exclusively on
WebArena websites, exhibits poor transfer to live websites. We analyze cross-website transfer next.

4.3 CROSS-WEBSITE TRANSFER

We present per-website success rates of our fine-tuned models across all 18 websites in Table 3. For
WebArena websites, by comparing columns 2 and 3, we find that 3 out of 5 websites benefit from
incorporating in-domain data. By comparing columns 1 and 3, we observe an average performance
drop of 1.8 points, with the most significant decrease on the Maps domain. This decline is likely due to
the semantic search capabilities in Google Maps, which are absent in WebArena Maps, necessitating
more complex query formulation. For live websites, fine-tuning on in-domain live website data
improves performance on 10 out of 13 domains, as indicated by comparing columns 1 and 3. The
effect of incorporating out-of-domain WebArena data, however, is mixed. While it results in negative
transfer for 7 websites and positive transfer for 6, the overall average performance decreases by 1.3
points. Notable gains are observed in ESPN, Apple, and GitHub, suggesting potential synergies when
fine-tuning on closely related domains.

Overall, fine-tuning with in-domain website data improves performance on 13 out of 18 websites.
These findings underscore the importance of learning from unsupervised interaction on real websites,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Website NNetNav (WA) NNetNav (Live) NNetNav (Live+WA)

Self-hosted Websites (WebArena)
Reddit 26.3 9.6 25.4
Gitlab 18.4 5.6 16.8
Maps 15.6 14.8 10.9
CMS 11.5 5.5 9.9
Shopping 13.0 9.9 13.0

Live Websites (WebVoyager)
Allrecipes 26.7 37.8 29.5
Amazon 24.4 43.9 34.1
Apple 32.6 27.9 34.9
ArXiV 27.9 46.5 44.2
BBC News 33.3 42.9 28.6
Cambridge Dictionary 46.5 58.1 48.8
Coursera 47.6 45.2 42.9
ESPN 20.5 22.7 27.3
GitHub 12.2 17.1 19.5
Google Maps 34.1 46.3 43.9
Google Search 0.0 2.7 6.2
Huggingface 30.2 18.6 30.2
Wolfram Alpha 26.1 43.5 45.7

Table 3: Per-website success rates on all websites, using a Llama-3.1-8b agent fine-tuned on (1)
the WebArena subset of NNetNav, (2) the live website subset of NNetNav, and (3) all demonstrations.
On WebArena, incorporating in-domain data improves performance on 3 out of 5 websites (comparing
columns 2 and 3). For live websites, incorporating in-domain data improves performance for 10
out of 13 websites (comparing columns 1 and 3). These results highlight the importance of scalable
methods to enable training on diverse websites.

as relying solely on human-labeled trajectories from a limited set of simulated websites may be
insufficient for developing generalist web agents.

5 CONTROLLED EXPERIMENTS

We conduct controlled experiments on a smaller scale to compare NNetNav with baselines. In
addition to evaluating on WebArena, we also consider MiniWoB++ (Shi et al., 2017; Liu et al., 2018).
MiniWoB++ is a dataset of synthetic web-interfaces with a shared action space. Tasks on MiniWoB++
range from clicking on buttons to complex tasks like making a booking on a website. We use a
subset of 8 complex tasks from MiniWoB++ as a toy benchmark to evaluate our method. We use
the bid-based action space from BrowserGym (Drouin et al., 2024), consisting of 12 actions, and a
DOM based observation space. Due to its synthetic nature, MiniWoB++ comes with an automatic
reward function. We report the mean reward over 20 random seeds for each task, similar to Drouin
et al. (2024).

5.1 EXPERIMENTAL SETTINGS

As before, we evaluate a Llama-3.1-8b based browser agent under the following settings:

1. Zero-Shot: A baseline zero-shot agent, prompted using chain-of-thought prompting (Wei
et al., 2022). Next, we consider various fine-tuned models.

2. SFT (Instruction-First): Supervised fine-tuning of the Llama-3.1-8b agent using data
collected via instruction-first sampling. Here, we use the same reward model for filtering
demonstrations as NNetNav, and also sample the same number of demonstrations for fair
comparison.

3. SFT (NNetNav): Supervised fine-tuning of the Llama-3.1-8b agent with demonstrations
collected via NNetNav.

4. SFT (NNetNav + Distil.): Ablation, where we only retain instructions found via NNetNav
and re-generate trajectories by prompting the same large LM as an agent. We use this setting
to isolate performance improvements attributable to NNetNav trajectories.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For these small scale experiments, we use gpt-4o-mini-2024-07-18 as the base LLM for
both NNetNav and instruction-first methods. For Instruction-first data collection, we sample 50
instructions per website for WebArena, and 80 instructions per interface in MiniWoB++, and prompt
the instruction generator with the landing page as well as a persona (to improve diversity). For
NNetNav, we use our exploration policy to generate 50 episodes per website for WebArena, and 80
episodes per interface for MiniWoB++. We set Tmax to 40 for WebArena, and 20 for MiniWoB++.
For both MiniWoB++ and WebArena, we apply the pruning function every 4 time-steps. We use 16
persona types per website for WebArena, and 10 persona types per web-interface for MiniWoB++.

Model Setting MiniWoB++ WebArena

Zero-Shot 0.28 1.0
SFT (Instruction-First) 0.28 4.2
SFT (NNetNav) 0.48 7.2
SFT (NNetNav + Distil.) 0.36 6.0

Table 4: Controlled evaluation of NNetNav with instruction-first methods. We present results for
MiniWoB++ and WebArena, averaged across domain, reporting mean reward for MiniWoB++ and
task success rate (SR) for WebArena. Fine-tuning with NNetNav leads to the largest improvements:
from 28% to 48% on MiniWoB++; from 1% to 7.2% on WebArena.

5.2 RESULTS

NNetNav outperforms instruction-first methods. We report results from all settings in Table 4.
Fine-tuning Llama-3.1-8b using synthetic demonstrations generated by NNetNav yields signif-
icant improvements: an increase of 20 points on MiniWoB++ and over 6 points on WebArena.
Notably, NNetNav outperforms instruction-first methods by a substantial margin, with gains of 12
points on MiniWoB++ and 1.2 points on WebArena. Interestingly, SFT (NNetNav) outperforms SFT
(NNetNav + Distil.) on both MiniWoB++ and WebArena. This difference likely stems from the
distinct procedures used to generate trajectories. In NNetNav, the model first acts, and the corre-
sponding instruction is inferred afterward through a hindsight procedure. In contrast, NNetNav +
Distil. provides the instruction upfront, sampling the trajectory later.

Self-training with NNetNav. Can NNetNav demonstrations from an LM be used for improving the
same LM agent? To answer this, we collect another set of NNetNav demonstrations on WebArena,
using Llama-3.1-8b as the base LM for data collection. Given the limitations of this smaller
model, we anticipate fewer meaningful interactions. To compensate, we increase the number of
episodes to 200 episodes per website, resulting in 302 demonstrations which we use for fine-tuning
the same Llama-3.1-8b agent. From results in Table 5, we find improvements of 4.3 points on
WebArena.

Domain Zero-Shot Self-Train (NNetNav)

Shopping 3.8 15.4
CMS 0.0 0.0
Reddit 0.0 0.0
Gitlab 0.0 0.0
Maps 0.0 7.1

Avg. 1.0 5.3

Table 5: We generate NNetNav demonstrations using Llama-3.1-8b, which we use for supervised
fine-tuning of an agent based on the same LM, and find significant improvements on WebArena from
1% to 5.3%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 RELATED WORK

Language Conditioned Digital Assistants. Mapping instructions to actions in digital environments
has been a long-standing goal in natural language understanding (Allen et al., 2007; Branavan et al.,
2009). Most pre-LLM approaches for this rely on expert demonstrations for behavioral cloning
(Chen & Mooney, 2011; Humphreys et al., 2022), along with appropriately shaped reward functions
(Branavan et al., 2009; Liu et al., 2018; Misra et al., 2017, among others). Here, learning is driven
purely by synthetic demonstrations derived via (language model) exploration of websites.

Linguistic Priors for Exploration. Several prior works have used natural language priors to
inform exploration for sequential decision making. Harrison et al. (2017) use a trained model of
associations between language and state/action pairs to guide exploration during policy learning. Mu
et al. (2022) use language annotations of states to train a goal generator module that provides intrinsic
rewards for achieving generated goals. Similarly, Du et al. (2023) constrain exploration towards goals
generated by a pre-trained LLM at each intermediate state of an agent. In constrast, NNetNav biases
exploration through two news ways of using language priors. First, we use natural language as a way
to filter meaningful interactions. Second, we use it as a pruning heuristic to navigate the potentially
exponential search space of these interactions.

Training Data for LLM browser agents. LLMs have shown strong performance over a wide range
of language understanding tasks, and are increasingly being used to interpret language in grounded
contexts such as browsers (Yao et al., 2022; Lai et al., 2024; Wang et al., 2024; Patel et al., 2024;
Lù et al., 2024, among others). Many of these approaches rely on human demonstrations, either
for in-context learning (Yao et al., 2022; Sodhi et al., 2023; Kim et al., 2023) or for finetuning (Lù
et al., 2024; Shen et al., 2024). Since human demonstrations are costly, recent work trains LLM
agents through synthetic demonstrations generated using instruction-first methods (Lai et al., 2024;
Patel et al., 2024). One exception is Murty et al. (2024), which introduces an interaction-first method
for generating synthetic demonstrations for in-context learning. Despite its novelty, their approach
does not scale well to real websites due to the lack of a mechanism for effective exploration in
environments with many possible interactions. In contrast, NNetNav also follows an interaction-first
approach but improves efficiency by leveraging linguistically motivated pruning to navigate the space
of meaningful interactions.

7 CONCLUSION

We propose NNetNav, a method for unsupervised interaction with websites “in-the-wild” that enables
training browser agents with synthetic demonstrations. NNetNav flips the standard paradigm of
synthetic data generation by first interacting with a website to generate trajectories and then hindsight
relabeling trajectories into instructions. Real websites have a prohibitively large set of possible
interactions; NNetNav searches over this space efficiently using a pruning function inspired by
the hierarchical structure of language instructions: any complex instruction consists of language
describable sub-tasks and so, if during an interaction a relabeling module cannot infer a meaningful
sub-task for the trajectory-so-far, further exploration is pruned. We apply NNetNav to collect a
diverse and complex set of 10k demonstrations from 15 live-websites and 5 self-hosted websites. We
use these demonstrations for supervised finetuning of a small, Llama-3.1-8b model, achieving
state-of-the-art results for unsupervised methods on both the WebArena and WebVoyager, surpassing
zero-shot GPT-4 by 1.7 to 2.2 points. NNetNav opens up the possibility of scaling up training data
for generalist web agents across a broad range of web interfaces without any human intervention.

IMPACT STATEMENT

The deployment of unsupervised exploration with LLM agents on live websites has real-world
implications, including website overload, unintended interactions, and the propagation of biases.
To mitigate potential disruptions to websites, we constrain our agents to a maximum of 10 parallel
instances, enforce a 0.5-second delay between actions, and prohibit login or content submission on
live websites. We suggest that anyone using our work closely monitor these agents and establish
robust monitoring frameworks to detect unintended behaviors and ensure compliance with ethical

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

guidelines. Additionally, training agents on NNetNav data from live websites can reinforce biases
present in web content. We urge practitioners to conduct thorough bias audits before deployment.

REFERENCES

James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung, Mary Swift,
and William Taysom. Plow: a collaborative task learning agent. In Proceedings of the 22nd
National Conference on Artificial Intelligence - Volume 2, AAAI’07, pp. 1514–1519. AAAI Press,
2007. ISBN 9781577353232.

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
Wingate. Out of one, many: Using language models to simulate human samples. Political Analysis,
31(3):337–351, 2023.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement learning
for mapping instructions to actions. In Keh-Yih Su, Jian Su, Janyce Wiebe, and Haizhou Li
(eds.), Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 82–
90, Suntec, Singapore, August 2009. Association for Computational Linguistics. URL https:
//aclanthology.org/P09-1010.

David Chen and Raymond Mooney. Learning to interpret natural language navigation instructions
from observations. Proceedings of the AAAI Conference on Artificial Intelligence, 25(1):859–865,
Aug. 2011. doi: 10.1609/aaai.v25i1.7974. URL https://ojs.aaai.org/index.php/AAAI/
article/view/7974.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable
are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642–11662. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Brent Harrison, Upol Ehsan, and Mark O Riedl. Guiding reinforcement learning exploration using
natural language. arXiv preprint arXiv:1707.08616, 2017.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning, pp.
9466–9482. PMLR, 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

10

https://aclanthology.org/P09-1010
https://aclanthology.org/P09-1010
https://ojs.aaai.org/index.php/AAAI/article/view/7974
https://ojs.aaai.org/index.php/AAAI/article/view/7974
https://proceedings.mlr.press/v235/drouin24a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large
language model-based web navigating agent, 2024.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to
actions with reinforcement learning. arXiv preprint arXiv:1704.08795, 2017.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. Advances in
Neural Information Processing Systems, 35:33947–33960, 2022.

Shikhar Murty, Christopher D Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. BAGEL:
Bootstrapping agents by guiding exploration with language. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 36894–36910. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/murty24a.html.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. arXiv preprint arXiv:2409.15637, 2024.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. Large language models can self-improve at web agent tasks. arXiv
preprint arXiv:2405.20309, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
Nature, 623(7987):493–498, 2023.

Junhong Shen, Atishay Jain, Zedian Xiao, Ishan Amlekar, Mouad Hadji, Aaron Podolny, and Ameet
Talwalkar. Scribeagent: Towards specialized web agents using production-scale workflow data.
arXiv preprint arXiv:2411.15004, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Paloma Sodhi, SRK Branavan, and Ryan McDonald. Heap: Hierarchical policies for web actions
using llms. arXiv preprint arXiv:2310.03720, 2023.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. arXiv preprint arXiv:2305.16653, 2023.

11

https://proceedings.mlr.press/v235/murty24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far
can camels go? exploring the state of instruction tuning on open resources, 2023.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022.

Terry Winograd. Understanding natural language. Cognitive Psychology, 3(1):1–191, 1972.
ISSN 0010-0285. doi: https://doi.org/10.1016/0010-0285(72)90002-3. URL https://www.
sciencedirect.com/science/article/pii/0010028572900023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv preprint
arXiv:2412.09605, 2024. URL https://arxiv.org/abs/2412.09605.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
and Erran Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation model
internet agents. arXiv preprint arXiv:2412.13194, 2024.

12

https://www.sciencedirect.com/science/article/pii/0010028572900023
https://www.sciencedirect.com/science/article/pii/0010028572900023
https://arxiv.org/abs/2412.09605

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPTS FOR LM COMPONENTS

A.1 MINIWOB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing 1: Action Space
noop(wait_ms: float = 1000)

Examples:
noop()
noop(500)

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)
scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Examples:

select_option(’a48’, ’blue’)
select_option(’c48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[typing
.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
click(’a51’)
click(’b22’, button=’right’)
click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[
typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
dblclick(’12’)
dblclick(’ca42’, button=’right’)
dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Examples:

hover(’b8’)

press(bid: str, key_comb: str)
Examples:

press(’88’, ’Backspace’)
press(’a26’, ’Control+a’)
press(’a61’, ’Meta+Shift+t’)

focus(bid: str)
Examples:

focus(’b455’)

clear(bid: str)
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Examples:

upload_file(’572’, ’my_receipt.pdf’)
upload_file(’63’, [’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip
’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)

If you are done exploring, you can issue the stop action: ‘‘‘stop‘‘‘

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Here is an example with chain of thought of a valid action when clicking on a button: "In
order to accomplish my goal I need to click on the button with bid 12. In summary, the next
action I will perform is ‘‘‘click("12")‘‘‘

This is then directly used for various prompts as {action_str}.

Listing 2: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
Your objective is to simulate a task that a person might request, by interacting with the
interface through the use of specific actions.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
7. You can issue atmost 20 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Listing 3: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web-interface to fulfill a task given by a user. Your objective is to produce a

description of the changes made to the state of the browser.

Here’s the information you’ll have:
Initial state of the browser as a DOM representation: This is the webpage’s Document Object
Model (DOM) representation as a string.

Final state of the browser as a DOM representation: This is the DOM representation after
the agent took the action.

The action taken by the agent: This is the action taken by the agent to change the state of
the browser.

The actions the agent can take come from the following categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 4: Prompt for the Trajectory Labeling function LfLM

Given a task from a user, an autonomous intelligent agent carries out a sequence of actions
on a web-interface.

The actions the agent can take fall under the following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 5: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are very minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards the
given instruction or if there are major errors.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 6: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The user’s objective: This is the task you’re trying to complete.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

A.2 PROMPTS FOR WEBARENA AND LIVE WEBSITES

Next, we present all prompts for running policies on self-hosted WebArena websites and live websites.
The action space is:

Listing 7: Action Space
Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).
‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done.

Additionally, for WebArena, models can visit the homepage at http://homepage.com,
which lists all the websites on WebArena. This is then directly used for various prompts as
{action_str}.

Listing 8: Prompt for the Exploration Policy πexplore in WebArena
You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start by reasoning out the current situation.
End with "In summary, the next action I will perform is" phrase, followed by action inside
‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I need to click

on the like button which has id 1234. In summary, the next action I will perform is ‘‘‘
click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘

For Exploration on live websites, we add a few extra rules for our model to ensure safety and terminate
exploration when CAPTCHAs or logins are triggered.

Listing 9: Prompt for the Exploration Policy πexplore in WebArena

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories:

Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.
‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).
‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done. You can use the stop action to convey
a message to the user, but know that your interaction will terminate after this.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has
a list of websites you can visit.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I
will perform is" phrase, followed by action inside ‘‘‘‘‘‘. For example, "In summary, the
next action I will perform is ‘‘‘click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Finally, here are some more rules that you should follow for specific websites:

1. On bookings and google flight, please use the date picker to choose start date
(2025-01-01) and end date (2025-01-03). Make sure you click search after you input the
dates.
2. Don’t click disabled or invisible links on any website.
3. On google map, try to search for some locations around the world.
4. On all websites, don’t click "Enroll", "Sign up", or other buttons indicating creating
new accounts. Instead, just stop by issuing ‘‘‘stop[’exit’]‘‘‘ if you want to pass control
to a user to sign-up.
5. On all websites, don’t click "Sign in", "Log in through Google", or other buttons
indicating logging into existing accounts. Instead, just stop if you want to pass control
to a user to sign-in by issuing ‘‘‘stop[’exit’]‘‘‘ action.
6. On arxiv.org, please always check html version of the papers. Don’t click view PDF.
7. When dealing pop ups, click "Maybe later" or other links that can turn off the pop up
temporarily.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

3. Let’s think step-by-step. I want to see more of the page since the submit button is not
visible. I will scroll down to see the submit button. In summary, the next action I will
perform is ‘‘‘scroll [down]‘‘‘.

Listing 10: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web browser. Your objective is to produce a description of the changes made to the state

of the browser.

Here’s the information you’ll have:

Initial state of the browser as an accessibility tree: This is a simplified representation
of the webpage, providing key information.
Final state of the browser: This is the accessibility tree representation after the agent
took the action

The action taken by the web agent: The agent can take actions that fall under the following
categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 11: Prompt for the Trajectory Labeling function LfLM

Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

Here are some examples of user instructions:
1. Get the distance from SF airport to Palo Alto.
2. Find out the price of Apple airpods
3. Add 5 items to cart
4. Make a comment on the first post in the r/gaming subreddit.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 12: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2 Give a score of 4 if there are minor errors, or if the task was more than 70% completed.
Give a score of 3 (or below) if the model made very little progress towards the given
instruction.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 13: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous actions: These are all the action you have performed. It may be helpful to
track your progress.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. You are strictly forbidden from issuing a goto action to a URL that is not on the
homepage.
5. Generate the action in the correct format. Start by reasoning about the current
situation. End with "In summary, the next action I will perform is" phrase, followed by
action inside ‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I
need to click on the like button which has id 1234. In summary, the next action I will
perform is ‘‘‘click [1234]‘‘‘".
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

Both WebArena and WebVoyager require web-agents to output a special [stop] action at the end
of the episode. We append this stop token to NNetNav demonatrations via the following prompt to
the base LLM.

Listing 14: Prompt for appending the special [stop] action
Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories (we also provide the descriptions of each action): {action_str}

You are given the user instruction, and the final webpage after the agent finished its task
. Unfortunately, we forgot to collect the final stop action from the agent. Your objective
is to guess the agent’s stop action. To do this, you are given the following
Instruction: This is the instruction given by the user.
Final State: This is the final state of the web-page after the agent executed its actions
on the browser.

Here are some examples of valid outputs:
1. Let’s think step-by-step. The task requires me to find the person with the most number
of upvotes. I see the answer to that is Alice Oh. Therefore I will stop now. In summary, my
next action will be ‘‘‘stop [Alice Oh]‘‘‘.

2. Let’s think step-by-step. The task required setting the price of Sprite to 25$ which I
have already done. Thus I will stop now. In summary, my next action will be ‘‘‘stop [N/A
]‘‘‘.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

3. Let’s think step-by-step. I was supposed to find the distance from Brad’s house to the
coffee shop. I see this info on the map as 0.3 miles. Thus I will issue the stop action. In
summary, my next action will be ‘‘‘stop [0.3 miles]‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about what kind of a stop action was needed. For instance, if the user
requests information (e.g. Search for airports near CMU or Find developers with more than 5
merge requests), then the stop action should have the answer based on the final web-page (

e.g. ‘‘‘stop [Pittsburgh Airport]‘‘‘ or ‘‘‘stop [Don Knuth, Alan Turing]‘‘‘). Otherwise,
the stop action should be without any arguments (e.g. ‘‘‘stop‘‘‘).
2. Your output should include reasoning steps. Also make sure to wrap the stop action in
triple backticks for e.g. ‘‘‘stop [<your answer>]‘‘‘. Overall, follow the following format
for your output: "Let’s think step by step. <your reasoning>. In summary, my next action
should be ‘‘‘stop [<your answer>]‘‘‘.

B PROCESSING DEMONSTRATIONS FOR SFT

As mentioned in §2, for supervised finetuning each demonstration is converted into multiple training
instances. We perform this conversion differently based on input features of πLM.

MiniWoB++. For MiniWoB++, πLM conditions on the current observation ot, the goal g and the
previous action at−1 (see prompt in §A.1). Thus, we pre-process each (g, τ) demonstration into
inputs (g, ot, at−1) with the corresponding reasoning step and action (rt, at) as the target output.

WebArena and WebVoyager. For WebArena and WebVoyager, πLM conditions on the current
observation ot, the goal g and all previous actions {a1, a2, . . . , at−1} (see prompt in §A.2). Thus,
we pre-process each (g, τ) demonstration into inputs (g, ot, {a<t}) with (rt, at) as the target output.

C TRAINING DETAILS

Additional Hyperparameters. For all Llama-3.1-8b finetuning experiments, we set the batch
size for training as 128 × 20000 (where 20000 is our context window), train for 2 epochs, with a
learning rate of 2e-5 that linearly warms up from 0 over 3% of total training steps. We use 4 H100
GPUs with 80GB GPU memory, and additionally use DeepSpeed ZeRO-3 (Rajbhandari et al., 2020)
to speed up training and manage memory.

D DISTRIBUTION OF INTENTS IN NNetNav DEMONSTRATIONS AND
EXAMPLES

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

gitlab

shopping_admin

shopping
map

reddit

Project Creation & Management

Is
su

e
Tr

ac
ki
ng

 a
nd

 M
an

ag
em

en
t

Re
po

si
to

ry
 N

av
ig

at
io

n
an

d
M

an
ag

em
en

t

D
oc

um
en

ta
ti
on

 a
nd

 C
on

tr
ib

ut
io

n

M
er

ge
 R

eq
ue

st
s

an
d

C
od

e
R
ev

ie
w

A
I and M

achine Learning Projects

A
ccessibility and Inclusive D

esign

S
ecurity and V

ulnerability M
anagem

ent

O
pen Source Contribution and Com

m
unity Engagem

ent

G
am

e D
evelopm

ent Projects

Order Management

Product Management

Product and Catalog Updates

Pricing and Discounts

Customer Management

Search and Filter Functionality

Sales Reporting and Analytics

Bestse
llers a

nd Sales Trends

Inventory a
nd Stock

Contro
l

Advan
ced

 Report
ing Tool

s

Pro
du

ct
Pri

cin
g a

nd
 Com

pa
ris

on

He
alt

h
an

d
Pe

rs
on

al
Ca

re

Cl
ot

hi
ng

 a
nd

 A
pp

ar
el

Tr
av

el
 A

cc
es

so
rie

s
an

d
Es

se
nt

ia
ls

Be
au

ty
 a

nd
 S

ki
nc

ar
e

Pr
od

uc
ts

Bo
ok

s
an

d
Ed

uc
at

io
na

l M
at

er
ia

ls

G
ift

 I
de

as
 a

nd
 S

ug
ge

st
io

ns
H

om
e

an
d

G
ar

de
n

Pr
od

uc
ts

Ec
o-

Fr
ie

nd
ly

 a
nd

 S
us

ta
in

ab
le

 P
ro

du
ct

s
W

eb
si

te
 N

av
ig

at
io

n
an

d
Fu

nc
ti
on

al
it
y D

riving D
irections and R

outes
R
estaurant and D

ining Locations

W
alking and H

iking D
irections

Bicycling D
irections and Routes

City-Specific Directions and Inform
ation (e.g., NYC, Pittsburgh)

Exploring Bike-Friendly and Bicycle Routes

Public Transportation Directions and Options

Distance Measurem
ent and Calculation

Hospital and Medical Facility Locations

Trail and Outdoor Activity Routes

Online Forums and Communities

Woodworking and DIY Projects

Music, Arts, and Entertainment

Investing and Financial Advice

Science and Technology Research

Technology and Programming

Family and Parenting

Food, Cooking, and Diet

Humor, Memes, and Funny Content

News and Current Affairs

Website Intent Categories Distribution (Top 10)

Loading [MathJax]/extensions/MathMenu.js

www.google.com_maps

github.com

w
w

w
.b

oo
ki

ng
.c

om

w
w

w
.allrecipes.com

huggingface.cowww.espn.com

www.google.com_travel_flights

www.wolfra
malpha.co

m

arxiv.org

w
w

w
.a

pp
le

.c
om

w
w

w
.coursera.org

dictionary.cam
bridge.org

www.google.com

www.bbc.com_news

www.amazon.com

Restaurant and Dining Reviews
Hotel Search and Booking

Public Transport and Directions

Outdoor Activities and Nature Exploration

Tourist
 Attra

ctio
ns and Travel Planning

Acce
ssib

ility
 and Wheelchair A

cce
ss

Neig
hborhood In

form
atio

n an
d Explorat

ion

Even
t P

lan
ning an

d Rese
rva

tio
ns

Envir
on

mental
 Studies

 an
d Aware

ness

Cultu
ral

 an
d H

isto
ric

al
Site

s

GitH
ub

 Cop
ilo

t:
Fe

atu
res

, P
ric

ing
, U

sa
ge

, a
nd

 Sec
ur

ity

Ex
plo

rin
g
an

d
Man

ag
ing

 G
itH

ub
 R

ep
os

ito
rie

s a
nd

 O
pe

n
So

ur
ce

 P
ro

je
ct
s

Gi
tH

ub
 P

ric
in
g

Pl
an

s,
 C

om
pa

ris
on

s,
 a

nd
 F

ea
tu

re
s

Gi
tH

ub
 S

ec
ur

ity
: V

ul
ne

ra
bi

lit
ie
s,

 A
dv

iso
rie

s,
 a

nd
 A

dv
an

ce
d

Fe
at

ur
es

Gi
tH

ub
's
 P

ro
je

ct
 M

an
ag

em
en

t a
nd

 D
ev

O
ps

 In
te

gr
at

io
n

Pr
oj

ec
t a

nd
 C

od
e

Co
lla

bo
ra

tio
n

To
ol

s
on

 G
itH

ub

G
ra

ph
Q
L

an
d

RE
ST

 A
PI

 U
til

iz
at

io
n

w
ith

 G
itH

ub

Si
gn

in
g

Up
, S

et
tin

g
Up

, a
nd

 M
an

ag
in

g
G
itH

ub
 A

cc
ou

nt
s

Ed
uc

at
io

n,
 L

ea
rn

in
g,

 a
nd

 C
ou

rs
es

 o
n

G
itH

ub

G
itH

ub
 M

ob
ile

 a
nd

 D
es

kt
op

 A
pp

lic
at

io
n

Fe
at

ur
es

D
at

e-
Sp

ec
ifi

c
an

d
Fl

ex
ib

le
 S

ea
rc

he
s

H
ot

el
 B

oo
ki

ng
 a

nd
 R

es
er

va
ti
on

s

Lo
ca

ti
on

 a
nd

 C
it
y-

S
pe

ci
fic

 A
cc

om
m

od
at

io
n

Pr
ic

e
an

d
R
at

in
g

C
om

pa
ri
so

ns

Fa
m

ily
,

G
ro

up
,

an
d

S
pe

ci
al

 O
cc

as
io

n
Pl

an
ni

ng

Lu
xu

ry
 a

nd
 S

ta
r

R
at

in
g

Pr
ef

er
en

ce
s

V
ac

at
io

n
an

d
H

ol
id

ay
 T

ra
ve

l P
la

nn
in

gB
usiness and C

onference Travel A
rrangem

ents

B
udget-Friendly O

ptions and D
eals

Transportation and C
onnectivity

H
oliday and Festive R

ecipes

D
esserts and B

aked G
oods

K
id-Friendly C

ooking

Q
uick and Easy M

eals

Barbecue and G
rilled D

ishes

C
hicken and Poultry D

ishes

G
luten-Free and Special D

iets

Recipe Review
s and Com

parisons

M
eal Planning and Prep

H
ealthy Eating and N

utrition

Hugging Face M
odels, Features, and Com

m
unity

AI M
odel Exploration and Search

Text-to-Im
age and Im

age Generation Models

Natural Language Processing (NLP) and Transform
ers

Dataset Collection, Search, and Analysis

Model Deploym
ent, Installation, and Integration

AI Research Papers and Model Documentation

Sentiment, Emotion, and Text Classification

Performance Evaluation, Optimization, and Metrics

Translation and Multi-Lingual Text Processing

NCAAF Games and Standings

NBA Game Scores and Player Statistics

NFL Game Results and Standings

NFL Team Comparisons and Statistics

Soccer Scores, Highlights, and Transfers

Sports Schedules and Comparisons

NFL and College Football Injuries and Odds

EPL Scores and Match Information

College Football Standings and Playoffs

Sports News and Video Highlights

Flight Booking and Arrangement
Travel Date and Duration Management

Flight Price Comparison and Checks

Round-Trip and Multi-Destination Planning

Destination and Location-specific Search

Travel Availability and Options

Hotel and Accommodation Booking

Flight Search Optimization and Advanced Criteria

Travel Cancellations, Refunds, and Modifications

Flight Preferences (Airline, Non-Stop, Class)

Mathematics
and Problem Solving

Chemistr
y and Materials S

cience

Economics
and Fin

ancia
l Analy

sis

Heal
th, N

utrit
ion

, a
nd Medica

l R
ese

arc
h

Ph
ysi

cs
an

d F
unda

men
tal

 Con
cep

ts

Stat
ist

ica
l A

na
lys

is
an

d P
rob

ab
ilit

y

Astr
on

om
y a

nd
 Spa

ce
 Stud

ies

Clim
ate

 an
d E

nv
iro

nm
en

tal
 Scie

nc
e

Com
pu

tat
ion

al
To

ols
 an

d D
igi

tal
 Pl

atf
orm

s

La
ng

ua
ge

 an
d L

ing
uis

tic
s

ar
Xiv

 an
d

Pr
ep

rin
t R

es
ea

rch

Qua
nt

um
 C

om
pu

tin
g

Mac
hi
ne

 L
ea

rn
in
g

As
tr
op
hy
sic
s

Ga
m

eF
i a

nd
 D

ec
en

tr
al

iz
ed

 G
am

in
g

M
ac

hi
ne

 L
ea

rn
in

g
in

 S
ci
en

tif
ic
 R

es
ea

rc
h

Sc
ie

nt
ifi

c
Ar

tic
le

s
an

d
Re

fe
re

nc
es

Ar
tif

ic
ia

l I
nt

el
lig

en
ce

 a
nd

 A
pp

lic
at

io
ns

H
ig

h
En

er
gy

 a
nd

 P
ar

tic
le

 P
hy

si
cs

To
po

lo
gy

 a
nd

 M
at

he
m

at
ic

s
Ap

pl
e

Pr
od

uc
t
Pr

ic
in

g
an

d
Pu

rc
ha

se
 O

pt
io

ns

C
om

pa
ri
so

n
of

 A
pp

le
 D

ev
ic

e
M

od
el

s
an

d
Fe

at
ur

es

iP
ho

ne
 C

am
er

a
Fe

at
ur

es
 a

nd
 S

pe
ci

fic
at

io
ns

A
pp

le
 F

am
ily

 S
ha

ri
ng

 a
nd

 P
ar

en
ta

l C
on

tr
ol

s

A
pp

le
 B

us
in

es
s

an
d

En
te

rp
ri
se

 S
ol

ut
io

ns

A
pp

le
 W

at
ch

 C
us

to
m

iz
at

io
n

an
d

Fe
at

ur
es

A
pp

le
 P

ro
du

ct
 R

ep
ai

r
an

d
W

ar
ra

nt
y

In
fo

rm
at

io
n

A
pp

le
's

 E
nv

ir
on

m
en

ta
l R

es
po

ns
ib

ili
ty

 a
nd

 S
us

ta
in

ab
ili

ty
A
cc

es
so

ri
es

 f
or

 A
pp

le
 P

ro
du

ct
s

A
pp

le
 H

ea
lt
h

an
d

Fi
tn

es
s

Fe
at

ur
es

D
at

a
S
ci

en
ce

 a
nd

 A
na

ly
si

s

A
rtificial Intelligence and M

achine Learning
Finance and Econom

ics
Python Program

m
ing

Professional C
ertifications and Training Program

s

Language Learning and Translation

Project and Tim
e M

anagem
ent S

kills

H
ealth, N

utrition, and W
ellness

Program
m

ing Languages and S
oftw

are D
evelopm

ent

Education and Teaching M
ethods

D
efinition and M

eaning of W
ords

English Pronunciation and Phonetics

Translation and Language Interpretation

Synonym
s and Antonym

s

Dictionary Features and Tools

Business and Financial Term
inology

Gram
m

ar Rules and Usage

Adjectives and Adverbs

Psychological and Em
otional Vocabulary

Idiom
atic Expressions and Proverbs

AI and Machine Learning

Health and W
ellness

Event Planning and Managem
ent

News and Current Events

Search Engines and SEO

Sports News and Updates

Home and Lifestyle

Job Search and Career Development

DIY and Woodworking Projects

Technology and Electronics

Website Navigation & User Experience

Travel, Culture & Hospitality

Sports News & Updates

International Relations & Global Conflicts

Climate & Environmental News

Video & Broadcast Content

Technology & AI Innovations

Science, Space & Astronomy

Aviation Incidents & Safety

Middle East Politics & Conflict

Eco-friendly and Sustainable Products

Exercise Equipment and Fitness Gear

Gift Shopping and Special Occasions

Books and Literature

Cart Management and Checkout Process

Grocery and Gourmet Food Products

Luxury and Designer Fashion Accessories

Price Comparison and Product Reviews

Pet Supplies and Toys
Women's Clothing and Accessories

Website Intent Categories Distribution (Top 10)

Loading [MathJax]/extensions/MathMenu.jsFigure 3: Top-10 intents per website for Live websites (left) and WebArena websites (right). We
find a highly diverse range of intents ranging from finding holiday and festive recipes, kid-friendly
cooking, finding restaurant and dining reviews, finding apple product pricing etc. Note that on
live-websites, we explicitly prevent models from logging in, and this inherently limits the kinds of
tasks it can do. No such limitations are placed on WebArena, leading to tasks that require logging
in such as itextitposting on forums, creating projects, managing order details etc. We report the
perplexity of intent distribution per website in Section 4.1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Shopping

Find a kitchen utensil organizer.
Find a kitchen utensil organizer within a certain budget.
Write a review for the product “Citric Acid 2 Pounds 100% Pure Organic Food Grade”.
Find the price of kitchen gadgets that can be used for dining and entertaining, and add them to the cart.
Browse for women’s clothing items, specifically jumpsuits, and add some to cart.

CMS

Change the stock status of the Sprite Stasis Ball 65 cm to In Stock.
Create a new product in the Magento Admin panel with the name ’New Fashionable Watch’, SKU ’New
Fashionable WatchFW101’, price $100.00, and set as new from 2024-01-01.
Update the price of Sprite Stasis Ball 55 cm to $24.50 and set its quantity to 50.
Add two products, “Abominable Hoodie” and “Samsung Smart TV”, with respective prices $99.99 and
$50.00, and then start the process of adding a new customer.

Reddit

Create a new forum called “Funny Stuff” with the title “Memes and LOLs”, description “A place for sharing
and discussing funny memes and LOLs”, and sidebar “Memes of the day”.
Find a webpage related to intraday trading strategies on the wallstreetbets forum.
Find and participate in a discussion on the wallstreetbets forum about intraday trading strategy, specifically
on a post titled “Swings and roundabouts”.
Change my profile settings to use Deutsch as the language and Africa/Accra as the time zone, and then view
the search results for “r/art”.

Maps

Get walking directions from Logan Street, Pittsburgh, PA to Carnegie Mellon University on OpenStreetMap.
Get the cycling directions from Brooklyn to Manhattan.
Find the driving directions from TLC Medical Transportation Services in Syracuse to Times Square in
Manhattan.

Gitlab

Create a new project named ’My Blog Post Project’ and add an Apache License 2.0 file.
Create a new project, add a LICENSE file with Apache License 2.0, and approve the “Add verification
functions” merge request.
Search for a README.md file within the “My New Project” project and verify its contents.
Edit the issue “Link to WCAG 2.1 instead of 2.0?” in the First Contributions project on GitLab by updating
its title and description to point to WCAG 2.1 guidelines instead of 2.0 guidelines.
Investigate the node-http-proxy project’s issue #992 regarding connection headers and determine its relevance
to the Byte Blaze project.
Investigate and comment on the “Outdated dependencies” issue in the “Byte BlazeByte BlazeByte Blaze /
accessible-html-content-patterns” project.

Table 6: Some Example demonstrations obtained from NNetNav-WA. We note that these instructions
are hierarchical, refer to concrete features and entities and plausible by design.

22

	Introduction
	Background
	Our Approach
	LM Components
	Sampling Demonstrations via Interactions

	Main Experiments
	Collecting Demonstrations in the Wild
	Finetuning: Details and Results
	Cross-Website Transfer

	Controlled Experiments
	Experimental Settings
	Results

	Related Work
	Conclusion
	Prompts for LM components
	MiniWoB++
	Prompts for WebArena and Live Websites

	Processing Demonstrations for SFT
	Training Details
	Distribution of Intents in NNetNav demonstrations and Examples

