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ABSTRACT

As low-quality housing and in particular certain roof characteristics are associated
with an increased risk of malaria, classification of roof types based on remote
sensing imagery can support the assessment of malaria risk and thereby help
prevent the disease. To support research in this area, we release the Nacala-Roof-
Material dataset, which contains high-resolution drone images from Mozambique
with corresponding labels delineating houses and specifying their roof types. The
dataset defines a multi-task computer vision problem, comprising object detection,
classification, and segmentation. In addition, we benchmarked various state-of-the-
art approaches on the dataset. Canonical U-Nets, YOLOv8, and a custom decoder
on pretrained DINOv2 served as baselines. We show that each of the methods has
its advantages but none is superior on all tasks, which highlights the potential of
our dataset for future research in multi-task learning. While the tasks are closely
related, accurate segmentation of objects does not necessarily imply accurate
instance separation, and vice versa. We address this general issue by introducing a
variant of the deep ordinal watershed (DOW) approach that additionally separates
the interior of objects, allowing for improved object delineation and separation. We
show that our DOW variant is a generic approach that improves the performance of
both U-Net and DINOv2 backbones, leading to a better trade-off between semantic
segmentation and instance segmentation.

1 INTRODUCTION

Mosquito-borne diseases refer to a group of infectious illnesses transmitted by the bite of mosquitoes.
Malaria is a mosquito-borne disease caused by single-celled parasites of the Plasmodium group spread
through bites of infected female Anopheles mosquitoes. It ranks among the world’s most severe public
health problems and is a leading cause of mortality and disease in many developing countries. It is
therefore crucial to improve prevention, control, and surveillance measures of malaria, particularly in
sub-Saharan Africa (Venkatesan, 2024; WHO, 2023). Low-quality housing built of natural materials,
for example, having a thatched roof of grass or palm and having cane, grass, shrub, or mud as internal
and external walls, is associated with an increased risk of malaria infection (Dlamini et al., 2017).
Sub-standard housing has more mosquito entry points and most malaria transmissions in sub-Saharan
Africa occur inside dwellings while the inhabitants are asleep (Tusting et al., 2020; 2017; Jatta et al.,
2018; Tusting et al., 2019). Houses with metal roofs are hotter in the daytime than houses with
thatched roofs. This may reduce mosquito survival and inhibit parasite development within the
mosquito in metal roof houses. On this basis, the proliferation of modern construction materials in
sub-Saharan Africa may have contributed decisively to the reduction of malaria cases (Tusting et al.,
2019). Classification of roof characteristics thus holds potential to support malaria surveillance and
control programs. Roof characteristics, such as geometry, material, and condition can be monitored
using remote sensing imagery to advance risk assessment of mosquito-borne diseases and guide
mitigation strategies, especially when detailed health and socioeconomic data are scarce.

Here, we introduce the Nacala-Roof-Material drone-imagery dataset to support the development of
machine learning algorithms for automated building and roof type mapping in low-income areas
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prone to malaria risk. Our dataset is based on high-resolution drone imagery (≈ 4.4 cm) of peri-urban
and rural settlements in Nacala, Mozambique. An NGO (anonymous during peer review) delineated
17954 buildings and categorized them according to five roof types, and the authors again carefully
verified all annotations.

We define three tasks on the Nacala-Roof-Material dataset, building detection, multi-class roof
type classification, and pixel-level building segmentation. While these tasks are related, closer
inspection reveals a misalignment between their objectives. Accurate segmentation as measured by
the intersection over union (IoU) does not necessarily imply accurate object separation, and vice
versa. For accurate detection and classification, it would be sufficient to only detect the interior of
an object as long as the segmented area allows to correctly classify the type. If the roofs of two
buildings are (almost) touching, then some segmentation may have a high IoU but could make it
difficult to separate buildings for counting. This is also a common issue in other applications, e.g.,
when studying cells in medical images (Ronneberger et al., 2015) or trees from satellite images
(Brandt et al., 2020; Mugabowindekwe et al., 2022)).

We benchmark three conceptually different state-of-the-art approaches on our multi-task dataset.
First, we evaluate YOLOv8 (Jocher et al., 2023) developed for object detection, classification, and
instance segmentation. Second, we build a segmentation model based on DINOv2 (Oquab et al.,
2024), a state-of-the-art pretrained vision transformer. Lastly, we evaluate U-Net (Ronneberger et al.,
2015) a fully-convolutional encoder-decoder architecture, designed for semantic segmentation. To
address the potential conflicts between pixel-level segmentation and correct object separation as
outlined above, we propose a simple approach based on the recent work by Cheng et al. (2024), which
we refer to as the Deep Ordinal Watershed (DOW) method. We extend both U-Net and DINOv2 to
produce an additional output map that predicts the interior of objects. While the original exterior
segmentation map maximizes the IoU, we show that the interior map supports object separation.

The main contributions of our work are the following:

1. We provide the Nacala-Roof-Material dataset containing drone imagery from peri-urban and rural
areas in a sub-Saharan African region. The dataset contains accurate segmentation labels for
buildings, categorized into five roof types.

2. Based on the dataset, we define a multi-task machine learning benchmark for binary and multi-
class object detection and semantic segmentation. We implemented and benchmarked different
carefully adopted baseline methods, reflecting three different approaches to address these tasks.

3. We propose a general and simple approach to extend models for semantic segmentation to yield
good segmentation and object separation results.

The data and code for reproducing the experiments are available through this anonymous url:
https://osf.io/us628/?view_only=3c25a48d420f4ec7a43cb76e66e92b26. A
project page, with link to data and code, will be setup upon acceptance.

The next section presents the Nacala-Roof-Material data, provides some background about roof types
and risk of vector-borne diseases, and briefly discussed related datasets. Section 3 describes the deep
learning models we evaluated with an emphasis on deep watershed methods. Experimental results
are presented in Section 4 before we conclude.

2 NACALA-ROOF-MATERIAL DATA

2.1 BACKGROUND: HOUSING CONDITIONS AND RISK OF MOSQUITO-BORNE DISEASES

In sub-Saharan Africa, housing conditions, health outcomes, and socioeconomic status of the residents
are interrelated (Gram-Hansen et al., 2019; Degarege et al., 2019; Tusting et al., 2020). As poverty
is widespread, diseases are more prevalent, and data are scarce in this region, automatic profiling
of housing conditions based on analysis of satellite imagery holds the potential to estimate the
socioeconomic status of the inhabitants and assess the risk of disease. This may in turn support
targeted public health interventions.

Mosquitoes are vectors for diseases such as malaria, dengue, Zika, West Nile fever, Chikungunya,
and Yellow fever. In 2022, more than 600 000 deaths occurred due to malaria globally and out of the
approximately 249 million documented cases, around 233 million occurred within the WHO African
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Region, accounting for roughly around 94% of the total documented cases. The economic impact of
malaria in Sub-Saharan Africa not only impedes progress towards achieving Sustainable Development
Goal 3 (Good Health and Well-being) but also undermines efforts to attain SDG 1 (No Poverty) and
SDG 8 (Decent Work and Economic Growth) by compromising economic productivity. Extreme
weather conditions caused by climate change will likely exacerbate problems with mosquito-borne
diseases in sub-Saharan Africa, as floods are expected to increase in frequency and have been linked
to outbreaks of malaria in Africa (Githeko et al., 2000).

Low-quality housing increases the risk of transmission of diseases by mosquitoes, as sub-standard
houses have more mosquito entry points and thereby increase human exposure to infection in the
home (Tusting et al., 2015; Dlamini et al., 2017). Mosquito survival is lower in metal-roof houses
compared to thatched-roof houses due to higher daytime temperatures (Tusting et al., 2015). Most
malaria transmissions in sub-Saharan Africa occur indoors at night, and poor climatic performance of
housing has been linked to increased malaria risk (Jatta et al., 2018). This is because elevated indoor
temperatures can cause discomfort for inhabitants, which may result in decreased use of mosquito
nets during the night. Roof materials, geometry, and conditions are critical for indoor climate, as
roofs comprise the primary surface exposed to the sun. Automatic classification of roof characteristics
thus holds potential for informing risk assessment of malaria and support targeted interventions.

2.2 THE NACALA-ROOF-MATERIAL DATASET

We gathered drone imagery of the Nacala region in Mozambique. The burden of malaria in Mozam-
bique is approximately 10-fold the world average (number of documented cases compared to the
total population, Venkatesan, 2024). The data covers three informal settlements of Nacala, a city of
350 000 inhabitants on the northern coast of Mozambique. Aerial imagery was collected using a DJI
Phantom 4 Pro drone and processed using AgiSoft Metashape software. The flight height was 120 m,
the total flight duration was 504 minutes (the drone flight protocols are available in the supplementary
material). All data was recorded between October and December 2021, under a development project
led by an NGO and supported by the Nacala Municipal Council.

The total number of buildings in the study areas is 17 954. We distinguished five major types of roof
materials in Nacala, namely metal sheet, thatch, asbestos, concrete, and no-roof, and their counts are
9776, 6428, 566, 174, and 1010, respectively. The region is mostly dominated by metal sheets and
thatch roofs.

From the three informal settlements, see Figure 1, the first two areas were split into training Dtrain,
validation Dval, and test Dtest using stratified sampling. We created a square grid of 225 meters and
counted the roof types in these cells. Then we partitioned the cells into three sets based on the class
counts to achieve a similar class distribution in each set, where we prioritized the distribution of
minority classes (i.e., concrete and asbestos). We defined that a building only belongs to a specific
grid cell if its centroid falls into the cell. If a building area falls into two grid cells and those two cells
belong to two different sets (e.g., training and test set), we choose to have data pixels in the set where
the centroid of the building is placed. The remaining part of the building in the other set was masked
to avoid data leaking between sets.

Although objects in training, validation, and test sets are from different cells, they stem from the same
two areas. To evaluate the generalization to a new area without adjacent training data, we hold out
the third settlement as a second test set referred to as Dext.

2.3 ANNOTATION PROCESS AND QUALITY

Building boundary and roof type annotations were collected and corrected in three steps. First, local
university students from the Nacala region and members of the NGO mapping community manually
traced building boundaries, and collected roof types on-site, as part of a wider survey campaign.
Local mapping teams used field papers and GPS tracking apps on smartphones. Secondly, the field
data was then digitized, corroborated by observation of the drone orthomosaics. Finally, all building
boundaries and roof types were verified by new observation of the drone orthomosaics conducted by
the authors, and corrections made whenever necessary (almost all of the annotations were manually
adjusted slightly in this second step, missing annotations were added). The authors created a grid over
all annotations and verified all buildings in each grid cell to ensure double-checking every building.

3
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Figure 1: (a) Visualisation of the training, validation and test sets with reference to longitude and
latitude; (b) Drone imagery with labels; (c) Instance counts for each class in all sets.

For the building boundaries, the quality can be accurately measured by direct observation of the drone
orthomosaics. In rare cases, under very specific lighting and imagery conditions, some uncertainties
can arise between two similarly looking roof types, for instance asbestos and concrete. These cases
are, however, rare and do not compromise the overall quality of the annotated data. The three-steps
process – having at least two people independently looking at the images and the labeling – ensured
a high label quality. An estimated 120 person-hours were required for the first of these steps and
around 40 person-hours for the second.

2.4 RELATED DATASETS

The project “Mapping Informal Settlements in Developing Countries using Machine Learning with
Noisy Annotations and Multi-resolution Multi-spectral Data” (Helber et al., 2018; Gram-Hansen
et al., 2019) is most closely related to our work. They used freely available 10m/pixel resolution
imagery from the Sentinel-2 satellite and obtained labels for three roof types (metal, shingles, thatch)
from geo-located survey data provided by Afrobarometer1. These labels are very noisy in space
and time. The labels are often not aligned with buildings because the geo-located coordinates were
distorted for privacy reasons. Furthermore, the survey questions and satellite image observations may
not be aligned in time. While the low spatial resolution of the Sentinel-2 imagery might allow to
cover large geographic regions, it makes roof type classification challenging (Helber et al., 2018).

There are many datasets that contain remote sensing imagery with building labels, which, however,
typically do not distinguish roof types. In particular, Open Buildings is a freely available continental-
scale building dataset covering the whole of Africa (Sirko et al., 2021). In comparison, Nacala-Roof-
Material is much more focused, providing significantly higher resolution images, more accurate
delineations, and in particular roof type classifications.

Alidoost and Arefi (2018) distinguish between roof types in aerial images. However, they map a
rather high-income town in Germany, where they distinguish between three roof shapes common
in that region (flat, gable, and hip). Another dataset for classifying roof geometry is provided by
Persello et al. (2023), who distinguish 12 fine-grained details of roof geometry.

1www.afrobarometer.org
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Figure 2: Baseline (top) and DOW (bottom) variants of our systems using either ResNet34 (in the
case of the U-Net architectures) or DINOv2 as encoders. When using DOW, The watershed algorithm
takes two segmentation masks as input, the predicted objects (level 1) and their interiors (level 2). In
the two-stage approach, the classifier shown in Figure 4 is using the binary building segmentation
(left). In the end-to-end setting, the roof material is predicted directly with a multi-class segmentation
approach (right).

3 BENCHMARKED METHODS

This section presents the approaches we benchmarked on the Nacala-Roof-Material dataset. The goal
is to accurately segment the buildings (as assessed by metrics based on the IoU), separate individual
buildings, and classify the roof materials. As baselines, we considered U-Net (Ronneberger et al.,
2015), YOLOv8 (Jocher et al., 2023), and a model performing segmentation based on DINOv2 (Oquab
et al., 2024). Furthermore, we extend the U-Net and the DINOv2 based systems with the deep ordinal
watershed method recently proposed by Cheng et al. (2024). These approaches are compared in
two settings. In the two-stage setting, we first solved the building segmentation and separation tasks
and afterwards classified the roof material for each detected building. In the end-to-end setting,
segmentation and classification were done in parallel.

3.1 BASELINE MODELS

U-Net. The U-Net is arguably the most common architecture for semantic segmentation (Ron-
neberger et al., 2015). We utilized a ResNet34 (He et al., 2016) encoder pretrained on ImageNet and
a decoder similar to the original U-Net, except that we used nearest-neighbor upsampling instead of
transposed convolutions (Odena et al., 2016), see Figure A.6 in the Appendix.

To identify individual instances in the semantic segmentation output map, the connected components
in the map were determined (Brandt et al., 2020). To better separate individual buildings, we used
a pixel-wise weight map during training that puts more emphasis on the space between buildings
as already suggested by Ronneberger et al. (see Appendix A.1 for details) and commonly used in
remote sensing (e.g. Brandt et al., 2020). However, this is not sufficient to separate buildings that
are very close to each other or touch each other. Thus, we modified the target segmentation masks
during training: Some border pixels were relabeled as background to ensure that there is a minimum
gap of ngap = 7 pixels between roofs. This modification of the target masks was only applied during
training, before computing the weight map but not when calculating any performance metrics.

YOLOv8. We trained YOLOv8 (Jocher et al., 2023), which is among the state-of-the-art methods
for instance segmentation. We fine-tuned a model pretrained on the COCO dataset. While the original
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YOLO architecture was designed for object detection, YOLOv8 allows for instance segmentation by
integrating concepts from YOLACT (Bolya et al., 2019).

DINOv2. We benchmarked an approach based on DINOv2 (Oquab et al., 2024), a state-of-the-art
pretrained vision transformer. It uses the DINOv2 Base model as an encoder, which is extended by
a convolutional decoder. The DINOv2 output, a patch embedding with the shape of R1024×768, is
reshaped into feature maps of size R32×32×768. Then convolutional and linear upsampling layers
are used on top of these feature maps as a decoder (see Appendix A.3). We used the same loss
function, weighting function, training label adjustment, and training strategy as for U-Net. We froze
the encoder weights and only the convolutional decoder was trained.

Figure 3: The U-NetDOW architecture creates two output maps that segment objects and their interiors,
respectively. The architecture differs from the baseline U-Net only in the definition of their output
heads.

3.2 DEEP ORDINAL WATERSHED

U-Nets and the DINOv2 based method described above try to classify each pixel as accurately as
possible. However, for proper separation of objects it is sufficient – and typically preferable – if only
the interior of an object is segmented. If the border of a building can be classified as background,
even touching buildings can be separated. This reasoning leads to the deep ordinal watershed (DOW)
model introduced by Cheng et al. (2024).

In the watershed approach, each pixel is assigned a height and the image is viewed as a topological
map (Soille and Ansoult, 1990). A DOW architecture does not only predict a single segmentation
mask but nlev feature maps for nlev + 1 discrete height levels, {0, 1, . . . , nlev}, where 0 corresponds
to the highest and nlev to the lowest elevation. Background pixels are assumed to have level 0. The
Euclidean distance transformation is computed for each object, and the distances are discretized into
the remaining nlev height levels. Target feature map m ∈ {1, . . . , nlev} marks all pixel with a distance
level of m or higher. That is, the objects in the target feature maps get smaller with increasing m (if
nlev = 1 we recover the standard U-Net). Learning the discrete height levels of pixels this way solves
an ordinal regression task (Frank and Hall, 2001; Cheng et al., 2008). Given the pixel heights, the
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watershed algorithm can be applied as a post-processing step for instance segmentation (Soille and
Ansoult, 1990). Local minima in the elevation map define basins, each of which defines a distinct
object. Adopting a flooding metaphor, the watershed algorithm now floods the basins until basins
attributed to different starting points meet on watershed lines. Pixels attributed to the same basin
belong to the same object.

Cheng et al. (2024) employ a DOW U-Net for individual tree segmentation, however, without
a comparison with a standard U-Net or exploring different numbers of levels. For our task, we
hypothesize that a minimal number of nlev = 2 different non-background heights is sufficient. In this
setting, the system outputs two masks representing the full object and its interior, respectively. Let
npix denote the difference in distance between two levels. The smallest building in our dataset has
size 1.463m2. Thus, for the given image resolution, the number of pixels per side is approximately√
1.46

/
0.044. This suggests to define the levels such that npix < 13, and we picked npix = 10.

We empirically evaluated DOW variants of both our U-Net and DINOv2 based systems, see Figure 2.
We describe the U-Net extension in more detail in Appendix A.2, the DINOv2 based systems
were modified analogously. The DOW U-Net network architecture U-NetDOW used in our study is
illustrated in Figure 3. For a comparison with a DOW U-Net with nlev = 6 we refer to Appendix A.2
and Appendix B.

Although the approaches are related, we would like to stress the DOW method is conceptually
different from deep level sets, where deep neural networks learn a (continuous) level set function, the
zero-set of which defines object boundaries (Hu et al., 2017; Hatamizadeh et al., 2020), as well as
from predicting interior and border of an object as, for instance, done by Girard et al. (2021).

3.3 TWO-STAGE VS. END-TO-END

All the neural network architectures described above can directly classify the roof types of detected
buildings by predicting multi-class segmentation masks. However, encouraged by good classification
results using DINOv2 features, we also studied an alternative two-stage approach: First we seg-
mented and separated the buildings using the algorithms described above ignoring the roof material
information. That is, we reduced the multi-class problem to a binary task. After that, we predicted the
roof material of each detected building. We used DINOv2 to processes a 448× 448 patch centered
around each building, see Figure 4. The output of DINOv2, a patch embedding with the shape of
R1024×768 was reshaped into feature maps of R32×32×768. These feature maps were then upsampled
to the input patch size, masked with a target binary building mask, and average pooling was applied to
obtain the final feature vector for the building. Standard machine learning classifiers were applied to
this embedding to predict the roof material, where linear probing gave the best results (see Appendix
B.2 for a comparison of different classifiers).

The two-stage methods are referred to as U-Net, DINOv2, U-NetDOW, and DINOv2DOW, and the
corresponding end-to-end methods are denoted by U-NetMulti, DINOv2DOW-Multi, U-NetDOW-Multi, and
DINOv2DOW-Multi, see Figure 2 for an overview.

Figure 4: The architecture of the DINOv2 based roof material classifier used in the two-stage setting.
A classifier (e.g., logistic regression) is applied to the resulting feature vector.
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4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

All models, except for YOLOv8 where we followed its original training protocol, were trained using
cross-entropy loss with pixel-wise weighting. We employed the AdamW optimizer (Loshchilov and
Hutter, 2019) with an initial learning rate of 0.0003. All models were trained for 300 epochs, utilizing
a learning rate scheduler that decreased the learning rate by a factor of 10 every 50 epochs. The final
weight configuration and hyperparameters for each model were selected based on the highest IoU
score achieved on the validation dataset. The hyperparameters of the U-Net were chosen by observing
results on the validation dataset in an iterative process. The high training speed of YOLOv8 allowed
for more systematic model selection: We applied the genetic algorithm that comes as part of the
YOLOv8 framework for hyperparameter optimization (Jocher et al., 2023). The input patch sizes for
the U-Net variants, YOLOv8, and DINOv2 models were 512, 640, and 448, respectively.

4.2 EVALUATION METRICS

The semantic segmentation performance was evaluated by the IoU. We considered both the IoU of
the binary building segmentation and the mean IoU for class-specific roof segmentation. The roof
materials concrete and asbestos are very rare. While Dtrain, Dval, and Dtest are stratified samples
containing all classes, the spatially distinct data Dext does not contain any example of the two roof
types, see Figure 1. To allow for a better comparison between the two test sets and to see the effect of
the rare classes on the macro-averaged mean IoU, we provide the mean IoU of the three main classes
(mIoU3) alongside with the mean IoU of all five classes (mIoU5).

Instance segmentation was assessed using the AP50 score, that is, the average precision evaluated
at an IoU threshold of 0.5 (Everingham et al., 2010; Lin et al., 2014). We evaluated the AP for
both the predictions of building instances and the predictions of multi-class roof type instances (i.e.,
in the latter case an object is only detected if the roof material is correctly identified). Similar to
IoU, mAP3

50 and mAP5
50 denote the mean AP50 over three and five classes. To estimate the average

precision, a confidence score is required for each building segment. The confidence score of binary
and multi-class segmentation models was obtained by interpreting the neural networks’ outputs
as probability distributions over classes and calculating the mean probability of belonging to the
predicted class over all pixel within a predicted segment. The exception was YOLOv8, which
provides its own confidence score. When a classifier using DINOv2 features was used on top of
binary segmentation models, the confidence score was derived from the canonical probability score
of the classifier. Additional metrics, AP50-95 and TPs, are shown in Appendix B. Information on the
computer resources is provided in Appendix A.4.

4.3 RESULTS AND DISCUSSION

Our experimental results on Dtest and Dext are presented in Table 1, additional details can be found in
Appendix B. All metrics on the test sets were computed on raw images instead of patches to avoid
artifacts when splitting images. We report averages over five trials on the corresponding standard
deviations. The methods reached AP50 and IoU values on the spatially separated test set of up to
0.963 and 0.880, respectively. Thus the tasks can be solved with an accuracies high enough for
subsequent analysis while still leaving room for improvement. Detecting thatch roofs is particularly
relevant, as they are associated with an increased malaria risk (Tusting et al., 2019), and these roofs
can be identified particularly well, see Table B.4 in the Appendix.

Comparison of methods. When comparing the different approaches, we find that there is no
method that was better than the others across all metrics. The U-Nets and YOLOv8 did well on their
home grounds: YOLOv8 gave good object detection results (e.g., the best AP50 scores), while the
U-Nets performed well for semantic segmentation as measured by IoU. DINOv2 combined with a
simple decoder was also competitive. Exemplary results are shown in Figure 5. As could be expected,
classifying the minority roof types asbestos and especially concrete (which resembles concreted
background areas) was most difficult, in particular for end-to-end YOLOv8, see Table B.4. YOLOv8
had the tendency to produce artefacts when applied to the larger images. This is one of the reasons
for its lower IoU score.
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Table 1: Benchmarking results on the Nacala-Roof-Material dataset. The table reports averages over
five trials ± standard deviations. The upper five models were trained in the two-stage setting. The
lower half of the models was trained in the end-to-end setting, where multi-class classification is
performed together with the segmentation as indicated by the subscript Multi. Models that used the
DOW extension are indicated by the subscript DOW. IoU and AP50 were computed on the binary
output, where the predictions of multi-class models were binarized. mIoU and mAP50 are macro
averages, the superscipts indicate whether the averaging was done over all five classes or over the
three frequent roof types. Results for individual roof types can be found in Appendix B.

Dtest Dext

pixel level object level pixel level object level

Model Name IoU mIoU3 mIoU5 AP50 mAP3
50 mAP5

50 IoU mIoU3 AP50 mAP3
50

YOLOv8 0.866
± 0.012

0.713
± 0.019

0.568
± 0.015

0.941
± 0.003

0.815
± 0.011

0.698
± 0.018

0.896
± 0.002

0.761
± 0.006

0.963
± 0.005

0.846
± 0.008

U-Net 0.895
± 0.003

0.757
± 0.024

0.570
± 0.016

0.910
± 0.005

0.810
± 0.008

0.688
± 0.014

0.909
± 0.001

0.748
± 0.007

0.929
± 0.000

0.787
± 0.011

U-NetDOW
0.895
± 0.002

0.775
± 0.013

0.577
± 0.009

0.935
± 0.001

0.836
± 0.005

0.730
± 0.011

0.911
± 0.002

0.764
± 0.006

0.947
± 0.004

0.812
± 0.008

DINOv2 0.880
± 0.002

0.741
± 0.002

0.549
± 0.005

0.881
± 0.004

0.783
± 0.005

0.673
± 0.011

0.904
± 0.001

0.718
± 0.015

0.922
± 0.005

0.804
± 0.008

DINOv2DOW
0.881
± 0.001

0.761
± 0.002

0.566
± 0.004

0.931
± 0.004

0.836
± 0.003

0.718
± 0.009

0.904
± 0.001

0.767
± 0.006

0.961
± 0.005

0.861
± 0.009

YOLOv8Multi
0.824
± 0.023

0.708
± 0.010

0.550
± 0.017

0.910
± 0.005

0.816
± 0.009

0.597
± 0.007

0.885
± 0.002

0.785
± 0.006

0.948
± 0.003

0.849
± 0.015

U-NetMulti
0.879
± 0.012

0.783
± 0.010

0.634
± 0.024

0.924
± 0.004

0.850
± 0.011

0.716
± 0.018

0.903
± 0.002

0.805
± 0.020

0.943
± 0.010

0.844
± 0.039

U-NetDOW-Multi
0.893
± 0.002

0.779
± 0.011

0.674
± 0.041

0.933
± 0.003

0.838
± 0.005

0.710
± 0.006

0.906
± 0.002

0.798
± 0.012

0.944
± 0.005

0.830
± 0.017

DINOv2Multi
0.879
± 0.001

0.768
± 0.005

0.694
± 0.013

0.894
± 0.004

0.810
± 0.008

0.680
± 0.019

0.899
± 0.001

0.819
± 0.006

0.940
± 0.003

0.871
± 0.015

DINOv2DOW-Multi
0.884
± 0.002

0.783
± 0.005

0.732
± 0.008

0.918
± 0.002

0.810
± 0.009

0.701
± 0.027

0.901
± 0.001

0.823
± 0.007

0.944
± 0.005

0.843
± 0.012

In general, the DOW extension improved both U-Nets and DINOv2 based architectures. Comparing
DINOv2 with DINOv2DOW and U-Net with U-NetDOW, the DOW variants were better in all ten
performance indices (except for IoU on Dtest where U-Net and U-NetDOW gave the same result).
Comparing DINOv2Multi with DINOv2DOW-Multi, the latter was better in all indicators except mAP3

50
on Dext. Only for U-NetDOW-Multi the results were mixed, using DOW gave lower values for five
indices and higher values for the other half. Overall, the DOW extension had a statistically significant
positive effect on the object separation as intended. If we pool all 20 DOW trials and compare with
the corresponding trials predicting a single mask, then the AP50 improved significantly (two-sided
Wilcoxon rank sum test, p < 0.001) while the difference in IoU was not significant (p > 0.05).

Computational requirements. Since compute resources might be limited for researchers interested
in this application, we analyze the runtime for deployment of these models (see Table A.2). While all
methods run in a reasonable time, the end-to-end approach is faster than the two-stage approach, with
U-NetMulti being the fastest and DINOv2DOW the slowest model. For example, mapping the entire
city of Nacala (31910 ha), U-NetMulti would take approximately 6.36 GPU hours on a single AMD
MI250X GPU with 64 GB VRAM.

Dataset size. We ran the experiments with an 80% stratified subset of the data, see Table B.8 in the
supplementary material. The results changed only very slightly, indicating that our training dataset is
representative and large enough for the defined task given the regional constraints.

Limitations. The Nacala-Roof-Material dataset is not a large-scale dataset by current standards
and it is restricted to a single region. However, considering the proliferation of low-cost drone
technologies, high-resolution geospatial surveying is becoming increasingly affordable and common
in sub-Saharan Africa. Accordingly, similar but unlabelled data will likely become available in the
coming years at large scale, which makes it important to develop methods to make good use of these

9
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Figure 5: Exemplary predictions on Dtest by different models. The predictions are polygonized and
colored by class. The roof types with few training examples, asbestos and concrete, are particularly
difficult, see bottom row.

data now. The Nacala-Roof-Material dataset covering informal settlements is a good example for
the target areas of our risk disease monitoring and prevention research. In this context, Mozambique
is particularly relevant because the country suffers from a high malaria incidence rate (Venkatesan,
2024). The second test set allows for testing generalization in an area geographically separated from
the main training/test/validation data. In general, we would argue that there is a need for medium
size benchmark datasets such as the Nacala-Roof-Material data to support equity in machine learning
research, as we need benchmarks that can be utilized by researchers with limited compute resources.

5 CONCLUSIONS

The Nacala-Roof-Material dataset contains high-resolution drone imagery from informal settlements
in Mozambique, where buildings and their roof material were carefully annotated. We curated
the dataset as part of an intercontinental and interdisciplinary research project on risk assessment
of mosquito-borne diseases, especially malaria, with the goal to predict risk maps and to develop
and support measures for risk reduction. From a methodological perspective, the dataset defines
a multi-task problem. We are interested in accurate semantic segmentation to determine the roof
areas and also in identifying the individual buildings and classifying their roof types. Thus, the
dataset adds to the landscape of computer vision benchmarks by providing a relevant resource for the
development and evaluation of frameworks that strive at solving semantic segmentation as well as
object detection and classification simultaneously with a high accuracy. For example, working on the
Nacala-Roof-Material data has led us to the proposed deep ordinal watershed (DOW) approach, a
reduced variant of the method described by Cheng et al. (2024). This variant method first segments
objects along with their interiors into two elevation levels and then performs a watershed segmentation
to separate objects. The DOW idea is applicable beyond the Nacala-Roof-Material data, on which it
improved both the standard U-Net architectures as well as a system based on DINOv2 features for
segmentation. Implementations of all algorithms will be publicly available together with the data.
With the Nacala-Roof-Material dataset, we invite the machine learning community to develop new
approaches for interpreting high-resolution drone images that can ultimately support risk assessments
of vector-borne diseases.

10
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6 REPRODUCIBILITY STATEMENT

The data and code for reproducing the experiments are available anonymously through https:
//osf.io/us628/?view_only=3c25a48d420f4ec7a43cb76e66e92b26. All mate-
rial will be made freely available on an official project homepage upon acceptance.

7 ETHICS STATEMENT

We did not identify any ethical issues; we refer to the data sheet in Appendix C.
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A DETAILS ON MODELS AND TRAINING PROCEDURE

A.1 U-NET

Figure A.6: Basic U-Net architecture

The basic U-Net architecture we used is shown in Figure A.6.

During training, the loss of each background pixel x is multiplicatively weighted by w(x) defined as

w(x) = w0 · exp
(
− (d1(x) + d2(x))

2

2σ2

)
(A.1)

following Ronneberger et al. (2015). Here, d1(x) denotes the distance to the border of the nearest
segment, and d2(x) is the distance to the border of the second nearest segment. We set w0 = 10 and
σ = 5 according to Ronneberger et al. (2015).

During training, we modified the target masks to ensure that d1(x) + d2(x) ≥ ngap = 7 for each
background pixel x before we computed the weights w(x).

A.2 DEEP ORDINAL WATERSHED U-NETS

We considered a stripped down version of the DOW U-Net proposed by Cheng et al. (2024) and set
the number of elevation levels to nlev = 2. The architecture of the resulting DOW network is depicted
in main text Figure 3, which extends the basic U-Net architecture shown in Figure A.6. In contrast
to the original U-Net, the DOW model has two heads. One is predicting an object’s area, while the
other predicts its interior. The interior is defined by removing pixels within a 10-pixel distance from
the border of the building segment. Each head comprises a convolutional layer, batch normalization,
ReLU activation, and finally a pointwise convolutional layer with outputs equal to the number of
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classes. While the first head had filters of size 3× 3 in its first convolutional layer, the second head
for the interior used 64 filters. The class label of an object was derived from the second head. If no
interior was predicted, which can happen in the case of small objects, the output from the first head
defined the class.

We compared this DOW variant, referred to as U-NetDOW, to the original DOW with several elevation
levels, in which the levels are added to the standard U-Net architecture (Figure A.6) simply by
increasing the number of output masks. We considered nlev = 6 discrete height levels and accordingly
refer to the model as U-NetDOW-6. The pixel margin npix for each height level was determined
experimentally by testing npix ∈ {1, 3, 5, 7, 9, 11, 13, 15} on validation data, leading to npix = 5
for U-NetDOW-6. An experimental comparison of U-NetDOW and U-NetDOW-6 can be found in the
extended results in Section B in the appendix.

A.3 SEGMENTATION AND CLASSIFICATION USING DINOV2

The segmentation architecture based on DINOv2 is illustrated in Figure A.7. We refer to it simply as
DINOv2. From this architecture, we derived DINOv2DOW in the same way as we extended U-Net to
U-NetDOW .

Figure A.7: DINOv2 architecture

A.4 COMPUTE RESOURCES

All experiments were conducted on AMD MI250X GPUs provided by LUMI2. A total of 8550 GPU
hours were used for the project, including preliminary experiments not included in the paper. The
computation time for training semantic segmentation model was approximately 20 hours for 300
epochs when the entire data were loaded to GPU memory.

B ADDITIONAL RESULTS

B.1 DETAILED RESULTS FOR DIFFERENT ROOF MATERIALS

Additional results on Dtest are presented in Table B.3 and Table B.4. The tables report the IoU scores
for the individual roof material classes. They also show the true positive rates TPs in addition to the
AP50 the AP50-95. The AP50-95 is defined as the mean AP over IoU thresholds from 50% to 95% with
an interval of 5%. The mean of AP50-95 over all classes is mAP50-95. TPs are the number of segments
that overlap with ground truth segments with a minimum IoU of 0.5, we used this metric to assess
the counting of buildings.

2https://lumi-supercomputer.eu
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Table A.2: Computation time deploying the models using a single AMD MI250X GPU with 64 GB
VRAM. The prediction time includes segmentation, polygonisation, and post processing in case of
the DOW method. The DOW method takes longer since its post-processing step currently runs on
the CPU. We used our research code without any additional optimization for speed. We used our
research code without optimization for speed.

Model Prediction time on Dtest (minutes)

Two-stage approach

YOLOv8 3.84
U-Net 3.53
U-NetDOW 5.37
DINOv2 6.81
DINOv2DOW 11.10

End-to-end approach

YOLOv8Multi 1.59
U-NetMulti 1.52
U-NetDOW-Multi 4.62
DINOv2Multi 5.36
DINOv2DOW-Multi 6.52

Beyond the performance metrics already discussed, we have included the results for U-NetDOW-6 as
described in Section A.2 in the appendix, showing that the two DOW architectures perform on par.

The corresponding results on Dext are given in Table B.5 and Table B.6 The mean IoU in Table B.5,
and mAP50 and mAP50-95 in Table B.6 estimated on only four classes as there are no asbestos roofs in
Dext. Also, there are only two buildings of concrete found in Dext and these two buildings were not
identified from any of the experimental models, so results for the concrete class were not added to
both tables.

B.2 PERFORMANCE OF DIFFERENT CLASSIFIERS

In the two-stage approach, we used a classifier based on DINOv2 features, as described in Section 3.3
and illustrated in Figure 4. The input representation was fixed and was processed by standard classifi-
cation algorithms. We compared linear probing based on logistic regression with L2-regularization
and k-nearest neighbours (kNN) classification trained on our data. For evaluating the classifiers
and tuning their hyperparameters, we combined the training and validation data and performed
10-fold cross-validation (CV) with F1-score as performance metric. The best CV results gave logistic
regression with L2-regularization, and this model was used for all subsequent two-stage experiments,
see Table B.2.

We also performed an ablation study to show the importance of the masking and the upsampling in
our architecture shown in Figure 4. The results are also depicted in Table B.2. When we omitted the
masking and considered all features, the results got considerably worse. If we omitted the upsampling
of the DINOv2 output and downsampled the masks instead, the performance also slightly dropped.
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Table B.3: Pixel-level accuracies on Dtest. IoU refers to the IoU computed on the binary outputs,
where the predictions of multi-class models were binarized. mIoU5 refers to the macro average of the
IoUs for the individual classes. The subscript Multi indicates the end-to-end setting.

IoU-Score of each class

Model Name Metal
Sheet Thatch Asbestos Concrete No

Roof mIoU5 IoU

YOLOv8 0.807
± 0.003

0.852
± 0.038

0.450
± 0.023

0.250
± 0.027

0.480
± 0.034

0.568
± 0.015

0.866
± 0.012

DINOv2 0.796
± 0.006

0.855
± 0.003

0.335
± 0.019

0.189
± 0.017

0.571
± 0.005

0.549
± 0.005

0.880
± 0.002

DINOv2DOW
0.814
± 0.002

0.868
± 0.002

0.351
± 0.006

0.195
± 0.019

0.602
± 0.004

0.566
± 0.004

0.881
± 0.001

U-Net 0.813
± 0.009

0.881
± 0.002

0.408
± 0.012

0.171
± 0.021

0.577
± 0.073

0.570
± 0.016

0.895
± 0.003

U-NetDOW
0.824
± 0.005

0.879
± 0.010

0.384
± 0.042

0.174
± 0.010

0.623
± 0.028

0.577
± 0.009

0.895
± 0.002

U-NetDOW-6
0.824
± 0.006

0.887
± 0.002

0.424
± 0.055

0.160
± 0.026

0.591
± 0.057

0.577
± 0.011

0.888
± 0.009

YOLOv8Multi
0.750
± 0.030

0.824
± 0.004

0.405
± 0.021

0.223
± 0.059

0.549
± 0.026

0.550
± 0.017

0.824
± 0.023

DINOv2Multi
0.824
± 0.002

0.866
± 0.002

0.491
± 0.022

0.675
± 0.044

0.614
± 0.015

0.694
± 0.013

0.879
± 0.001

DINOv2DOW-Multi
0.840
± 0.003

0.874
± 0.002

0.545
± 0.015

0.767
± 0.021

0.634
± 0.014

0.732
± 0.008

0.884
± 0.002

U-NetMulti
0.819
± 0.012

0.880
± 0.004

0.514
± 0.025

0.306
± 0.091

0.650
± 0.029

0.634
± 0.024

0.879
± 0.012

U-NetDOW-Multi
0.830
± 0.022

0.884
± 0.003

0.502
± 0.039

0.533
± 0.194

0.623
± 0.017

0.674
± 0.041

0.893
± 0.002

Table B.4: Object-level accuracy on Dtest. We report the AP for each roof type, and mAP 50 and
mAP 50-95 are macro averages over the roof types. The rightmost three columns give the results when
we discard the roof type information and just consider building detection. The TPs columns count
true positives, where TPs are the number of objects that overlap with ground truth objects with a
minimum IoU of 0.5. The total number of ground truth objects in the Dtest is 2527.

AP50 of each class average over classes ignoring roof type

Model Name Metal
Sheet Thatch Asbestos Concrete No

Roof mAP50 mAP50-95 TPs AP50 AP50-95 TPs

YOLOv8 0.841
± 0.003

0.945
± 0.008

0.505
± 0.032

0.542
± 0.055

0.661
± 0.026

0.698
± 0.018

0.548
± 0.010

2262.2
± 7.386

0.941
± 0.003

0.798
± 0.002

2405.0
± 5.514

DINOv2 0.799
± 0.006

0.892
± 0.004

0.455
± 0.023

0.565
± 0.034

0.657
± 0.016

0.673
± 0.011

0.526
± 0.005

2131.0
± 6.841

0.881
± 0.004

0.732
± 0.004

2257.4
± 8.089

DINOv2DOW
0.849
± 0.005

0.944
± 0.004

0.478
± 0.005

0.601
± 0.036

0.717
± 0.009

0.718
± 0.009

0.568
± 0.004

2236.2
± 5.636

0.931
± 0.004

0.780
± 0.002

2375.8
± 5.115

U-Net 0.826
± 0.005

0.924
± 0.006

0.499
± 0.016

0.511
± 0.042

0.679
± 0.015

0.688
± 0.014

0.578
± 0.014

2191.2
± 11.25

0.910
± 0.005

0.797
± 0.003

2323.0
± 6.033

U-NetDOW
0.855
± 0.005

0.946
± 0.005

0.545
± 0.019

0.596
± 0.049

0.707
± 0.012

0.730
± 0.011

0.614
± 0.007

2249.4
± 4.128

0.935
± 0.001

0.819
± 0.003

2383.6
± 5.314

U-NetDOW-6
0.851
± 0.006

0.943
± 0.004

0.551
± 0.011

0.587
± 0.049

0.687
± 0.022

0.724
± 0.007

0.606
± 0.005

2243.2
± 3.487

0.929
± 0.004

0.818
± 0.002

2374.4
± 5.783

YOLOv8Multi
0.849
± 0.006

0.923
± 0.007

0.467
± 0.035

0.070
± 0.027

0.676
± 0.020

0.597
± 0.007

0.481
± 0.003

2195.6
± 15.383

0.910
± 0.005

0.751
± 0.007

2328.2
± 9.988

DINOv2Multi
0.866
± 0.004

0.927
± 0.006

0.445
± 0.043

0.525
± 0.076

0.637
± 0.028

0.680
± 0.019

0.509
± 0.008

2230.8
± 5.344

0.894
± 0.004

0.732
± 0.002

2305.6
± 5.678

DINOv2DOW-Multi
0.885
± 0.005

0.942
± 0.006

0.542
± 0.026

0.529
± 0.122

0.605
± 0.019

0.701
± 0.027

0.557
± 0.027

2270.2
± 8.376

0.918
± 0.002

0.769
± 0.004

2360.8
± 7.467

U-NetMulti
0.883
± 0.009

0.940
± 0.010

0.531
± 0.022

0.498
± 0.051

0.728
± 0.040

0.716
± 0.018

0.603
± 0.011

2262.4
± 6.119

0.924
± 0.004

0.797
± 0.007

2358.4
± 9.091

U-NetDOW-Multi
0.894
± 0.006

0.943
± 0.000

0.516
± 0.038

0.517
± 0.038

0.678
± 0.018

0.710
± 0.006

0.606
± 0.007

2275.2
± 5.879

0.933
± 0.003

0.813
± 0.003

2382.0
± 9.055
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Table B.5: Pixel-level accuracies on Dext. IoU refers to the IoU computed on the binary outputs,
where the predictions of multi-class models were binarized. mIoU5 refers to the macro average of the
IoUs for the individual classes. The subscript Multi indicates the end-to-end setting.

IoU-Score of each class

Model Name Metal
Sheet Thatch No

Roof
IoU

(Mean)
IoU

(Binary)

YOLOv8 0.888
± 0.003

0.879
± 0.003

0.516
± 0.011

0.761
± 0.006

0.896
± 0.002

DINOv2 0.844
± 0.012

0.854
± 0.005

0.456
± 0.037

0.718
± 0.015

0.904
± 0.001

DINOv2DOW
0.886
± 0.004

0.875
± 0.003

0.541
± 0.013

0.767
± 0.006

0.904
± 0.001

U-Net 0.896
± 0.005

0.883
± 0.005

0.463
± 0.017

0.748
± 0.007

0.909
± 0.001

U-NetDOW
0.905
± 0.002

0.895
± 0.003

0.493
± 0.018

0.764
± 0.006

0.911
± 0.002

U-NetDOW-6
0.900
± 0.008

0.889
± 0.002

0.452
± 0.031

0.747
± 0.009

0.902
± 0.003

YOLOv8Multi
0.890
± 0.006

0.860
± 0.006

0.606
± 0.019

0.785
± 0.006

0.885
± 0.002

DINOv2Multi
0.907
± 0.001

0.874
± 0.004

0.676
± 0.022

0.819
± 0.006

0.899
± 0.001

DINOv2DOW-Multi
0.912
± 0.001

0.881
± 0.003

0.676
± 0.020

0.823
± 0.007

0.901
± 0.001

U-NetMulti
0.913
± 0.005

0.884
± 0.003

0.617
± 0.061

0.805
± 0.020

0.903
± 0.002

U-NetDOW-Multi
0.913
± 0.005

0.884
± 0.003

0.617
± 0.061

0.805
± 0.020

0.903
± 0.002
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Table B.6: Object-level accuracies on Dext. We report the AP for each roof type, and mAP 50 and
mAP 50-95 are macro averages over the classes. The rightmost three columns give the results when we
discard the roof type information and just consider building detection. TPs are the number of objects
that overlap with ground truth objects with a minimum IoU of 0.5. The total number of ground truth
objects in the Dext is 1541.

AP50of each class Objects with Classes Only Building Objects

Model Name Metal
Sheet Thatch No

Roof mAP50 mAP50-95 TPs AP50 AP50-95 TPs

YOLOv8 0.928
± 0.001

0.947
± 0.000

0.661
± 0.023

0.846
± 0.008

0.428
± 0.002

1447.2
± 4.534

0.963
± 0.005

0.838
± 0.002

1493.8
± 3.826

DINOv2 0.896
± 0.010

0.883
± 0.012

0.634
± 0.019

0.804
± 0.008

0.390
± 0.003

1382.8
± 8.818

0.922
± 0.005

0.785
± 0.005

1434.2
± 6.524

DINOv2DOW
0.932
± 0.007

0.944
± 0.005

0.709
± 0.016

0.861
± 0.009

0.426
± 0.004

1444.8
± 5.455

0.961
± 0.005

0.830
± 0.003

1494.4
± 4.363

U-Net 0.915
± 0.006

0.921
± 0.006

0.520
± 0.027

0.590
± 0.006

0.407
± 0.004

1399.4
± 4.758

0.929
± 0.000

0.836
± 0.002

1438.4
± 4.499

U-NetDOW
0.932
± 0.003

0.946
± 0.004

0.559
± 0.027

0.812
± 0.008

0.528
± 0.003

1429.0
± 6.229

0.947
± 0.004

0.858
± 0.004

1468.6
± 6.499

U-NetDOW-6
0.935
± 0.001

0.940
± 0.004

0.509
± 0.022

0.795
± 0.008

0.518
± 0.005

1421.0
± 3.688

0.939
± 0.000

0.851
± 0.004

1458.8
± 4.118

YOLOv8Multi
0.949
± 0.004

0.934
± 0.007

0.664
± 0.044

0.849
± 0.015

0.423
± 0.008

1446.0
± 4.899

0.948
± 0.003

0.808
± 0.005

1477.2
± 3.655

DINOv2Multi
0.951
± 0.004

0.929
± 0.003

0.732
± 0.043

0.871
± 0.015

0.424
± 0.007

1453.2
± 5.154

0.940
± 0.003

0.796
± 0.003

1467.8
± 5.154

DINOv2DOW-Multi
0.955
± 0.002

0.942
± 0.010

0.633
± 0.028

0.843
± 0.012

0.503
± 0.038

1462.2
± 5.192

0.944
± 0.005

0.810
± 0.002

1481.4
± 4.499

U-NetMulti
0.956
± 0.004

0.926
± 0.008

0.651
± 0.107

0.844
± 0.039

0.548
± 0.017

1439.0
± 16.358

0.943
± 0.010

0.838
± 0.006

1463.6
± 13.063

U-NetDOW-Multi
0.956
± 0.004

0.926
± 0.008

0.651
± 0.107

0.844
± 0.039

0.438
± 0.017

1439.0
± 16.358

0.943
± 0.010

0.838
± 0.006

1463.6
± 13.063

Table B.7: Multi-class prediction using DOW-Multi models. There are several ways to derive multi-
class predictions in the DOW models. The approach in the main part of this study derives class labels
by taking the majority vote of all inner segmentations combined with the border pixels from the outer
mask that do not overlap with the inner one. Alternatively, one could solely consider only the inner
mask or outer mask, indicated by the suffixes -inner and -outer, respectively, in the subscripts of the
model suffixes. This table adds the results for these alternative methods, reporting again averages
over five trials ± standard deviations. The upper five models were added to compare DINOv2 models
and the lower half of the models were added using U-Net-based methods.

Dtest Dext

pixel level object level pixel level object level

Model Name IoU mIoU3 mIoU5 AP50 mAP3
50 mAP5

50 IoU mIoU3 AP50 mAP3
50

DINOv2Multi
0.879
± 0.001

0.768
± 0.005

0.694
± 0.013

0.894
± 0.004

0.810
± 0.008

0.680
± 0.019

0.899
± 0.001

0.819
± 0.006

0.940
± 0.003

0.871
± 0.015

DINOv2DOW-Multi
0.884
± 0.002

0.783
± 0.005

0.732
± 0.009

0.918
± 0.002

0.810
± 0.009

0.701
± 0.027

0.901
± 0.001

0.822
± 0.007

0.944
± 0.005

0.843
± 0.012

DINOv2DOW-Multi-outer
0.884
± 0.002

0.783
± 0.005

0.732
± 0.008

0.918
± 0.002

0.810
± 0.009

0.701
± 0.027

0.901
± 0.001

0.823
± 0.007

0.944
± 0.005

0.843
± 0.012

DINOv2DOW-Multi-inner
0.884
± 0.002

0.782
± 0.005

0.730
± 0.009

0.918
± 0.002

0.810
± 0.009

0.699
± 0.027

0.901
± 0.001

0.821
± 0.007

0.944
± 0.005

0.842
± 0.012

U-NetMulti
0.879
± 0.012

0.783
± 0.010

0.634
± 0.024

0.924
± 0.004

0.850
± 0.011

0.716
± 0.018

0.903
± 0.002

0.805
± 0.020

0.943
± 0.010

0.844
± 0.039

U-NetDOW-Multi
0.893
± 0.002

0.779
± 0.011

0.674
± 0.041

0.933
± 0.003

0.838
± 0.005

0.709
± 0.006

0.906
± 0.002

0.798
± 0.012

0.944
± 0.005

0.830
± 0.017

U-NetDOW-Multi-outer
0.893
± 0.002

0.779
± 0.011

0.674
± 0.041

0.933
± 0.003

0.838
± 0.005

0.710
± 0.006

0.906
± 0.002

0.798
± 0.012

0.944
± 0.005

0.830
± 0.017

U-NetDOW-Multi-inner
0.893
± 0.002

0.779
± 0.011

0.673
± 0.040

0.933
± 0.003

0.838
± 0.006

0.709
± 0.006

0.906
± 0.002

0.797
± 0.012

0.944
± 0.005

0.830
± 0.017
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Table B.8: We ran the experiments with an 80% stratified subset of the data. The results changed only
very slightly, indicating that our training dataset is representative and large enough for the defined
task.

Dtest Dext

pixel level object level pixel level object level

Model Name IoU mIoU3 mIoU5 AP50 mAP3
50 mAP5

50 IoU mIoU3 AP50 mAP3
50

YOLOv8 0.855
± 0.020

0.715
± 0.018

0.560
± 0.014

0.937
± 0.004

0.823
± 0.008

0.679
± 0.009

0.894
± 0.001

0.773
± 0.006

0.960
± 0.005

0.854
± 0.008

U-Net 0.893
± 0.007

0.758
± 0.021

0.571
± 0.004

0.914
± 0.004

0.824
± 0.008

0.683
± 0.009

0.912
± 0.002

0.738
± 0.011

0.941
± 0.004

0.818
± 0.017

U-NetDOW
0.896
± 0.003

0.792
± 0.006

0.582
± 0.003

0.933
± 0.001

0.846
± 0.005

0.695
± 0.011

0.911
± 0.001

0.743
± 0.011

0.953
± 0.005

0.820
± 0.014

DINOv2 0.880
± 0.002

0.721
± 0.027

0.535
± 0.010

0.883
± 0.001

0.793
± 0.008

0.657
± 0.014

0.904
± 0.001

0.729
± 0.008

0.928
± 0.005

0.825
± 0.006

DINOv2DOW
0.879
± 0.001

0.758
± 0.006

0.554
± 0.006

0.931
± 0.004

0.841
± 0.005

0.697
± 0.007

0.903
± 0.001

0.755
± 0.007

0.961
± 0.004

0.863
± 0.006

YOLOv8Multi
0.806
± 0.028

0.697
± 0.018

0.536
± 0.029

0.901
± 0.002

0.798
± 0.010

0.583
± 0.009

0.881
± 0.001

0.777
± 0.007

0.942
± 0.003

0.832
± 0.004

U-NetMulti
0.886
± 0.005

0.786
± 0.008

0.666
± 0.023

0.924
± 0.004

0.839
± 0.011

0.712
± 0.023

0.906
± 0.001

0.799
± 0.011

0.948
± 0.000

0.839
± 0.012

U-NetDOW-Multi
0.887
± 0.003

0.782
± 0.009

0.670
± 0.044

0.929
± 0.005

0.837
± 0.011

0.709
± 0.013

0.905
± 0.003

0.812
± 0.012

0.951
± 0.004

0.855
± 0.020

DINOv2Multi
0.870
± 0.004

0.771
± 0.004

0.675
± 0.004

0.901
± 0.005

0.824
± 0.013

0.690
± 0.023

0.895
± 0.003

0.809
± 0.013

0.945
± 0.007

0.870
± 0.022

DINOv2DOW-Multi
0.880
± 0.001

0.785
± 0.004

0.738
± 0.008

0.911
± 0.008

0.823
± 0.008

0.703
± 0.036

0.899
± 0.002

0.819
± 0.003

0.955
± 0.004

0.868
± 0.009

Table B.9: Cross-validation accuracies on combined training and validation data of k-nearest neigh-
bour classification (kNN) and logistic regression applied to the DINOv2 features. The baseline is the
architecture depicted in Figure 4, w/o mask refers to omitting the masking and averaging the DINOv2
features across the whole input patch, and w/o upsampling did not upsample the DINOv2 features
but downsampled the building mask instead.

F1-Score

baseline w/o mask w/o upsampling

Classifier Mean Std Mean Std Mean Std

Logistic Regression 0.770 0.063 0.573 0.077 0.768 0.067
kNN 0.734 0.045 0.389 0.029 0.733 0.051

C DATASHEET

C.1 MOTIVATION

C.1.1 FOR WHAT PURPOSE WAS THE DATASET CREATED? WAS THERE A SPECIFIC TASK IN
MIND? WAS THERE A SPECIFIC GAP THAT NEEDED TO BE FILLED?

The dataset was created to support research on multi-task computer vision problems and to support
mosquito-borne disease risk assessment in African cities. The list of tasks include classification,
semantic segmentation, and instance segmentation of roofs and their material. While these tasks are
closely related, each serves a different purpose and accurate segmentation of objects need not imply
accurate object separation, and vice versa. The dataset is ideal for bench-marking methods for the
above mentioned tasks.
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C.1.2 WHO CREATED THE DATASET (E.G., WHICH TEAM, RESEARCH GROUP) AND ON BEHALF
OF WHICH ENTITY (E.G., COMPANY, INSTITUTION, ORGANIZATION)?

The dataset was created by authors. The drone imagery and building footprints were captured by an
NGO. The imagery and the building footprints were fused, re-registered, cleaned, verified, and split
into given datasets by the authors.

C.1.3 WHO FUNDED THE CREATION OF THE DATASET? IF THERE IS AN ASSOCIATED GRANT,
PLEASE PROVIDE THE NAME OF THE GRANTOR AND THE GRANT NAME AND NUMBER

We will provide the project and grant details later.

C.1.4 ANY OTHER COMMENT?

None.

C.2 COMPOSITION

C.2.1 WHAT DO THE INSTANCES THAT COMPRISE THE DATASET REPRESENT (E.G.,
DOCUMENTS, PHOTOS, PEOPLE, COUNTRIES)? ARE THERE MULTIPLE TYPES OF
INSTANCES (E.G., MOVIES, USERS, AND RATINGS; PEOPLE AND INTERACTIONS
BETWEEN THEM; NODES AND EDGES)? PLEASE PROVIDE A DESCRIPTION

The dataset comprises of very-high resolution orthophotos captured through a drone and expert drawn
polygons for all buildings with annotation of their roof material. The dataset covers three informal
settlements in Nacala. Five classes of roof material are identified: metal sheet, thatch, asbestos,
concrete, and no-roof. An example of a portion of the orthophoto and roof labels is shown in Fig.
C.8.

Figure C.8: Drone Imagery with RGB (Red, Green, and Blue channels) and annotations

C.2.2 HOW MANY INSTANCES ARE THERE IN TOTAL (OF EACH TYPE, IF APPROPRIATE)?

The total number of building polygons in the data is 17954. The distribution of roof material classes
is imbalanced. The number of buildings belonging to metal sheet, thatch, asbestos, concrete, and
no-roof classes are 9776, 6428, 566, 174, and 1010, respectively.

C.2.3 DOES THE DATASET CONTAIN ALL POSSIBLE INSTANCES OR IS IT A SAMPLE (NOT
NECESSARILY RANDOM) OF INSTANCES FROM A LARGER SET? IF THE DATASET IS A
SAMPLE, THEN WHAT IS THE LARGER SET? IS THE SAMPLE REPRESENTATIVE OF THE
LARGER SET (E.G., GEOGRAPHIC COVERAGE)? IF SO, PLEASE DESCRIBE HOW THIS
REPRESENTATIVENESS WAS VALIDATED/VERIFIED. IF IT IS NOT REPRESENTATIVE OF
THE LARGER SET, PLEASE DESCRIBE WHY NOT (E.G., TO COVER A MORE DIVERSE
RANGE OF INSTANCES, BECAUSE INSTANCES WERE WITHHELD OR UNAVAILABLE)

The dataset contains all available instances. All informal settlements in Nacala that have drone
orthophotos available are prepared as a dataset. Furthermore, all buildings visible in the orthophotos
are included, and the five identified building classes cover all possible roof materials in the area, and
the most predominant roof materials present in the wider Nacala region.
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C.2.4 WHAT DATA DOES EACH INSTANCE CONSIST OF? “RAW” DATA (E.G., UNPROCESSED
TEXT OR IMAGES)OR FEATURES? IN EITHER CASE, PLEASE PROVIDE A DESCRIPTION

The data consists of aerial images and corresponding labels. Labels are building footprints with the
attribute of roof class. The raw images are GeoTiff images tagged with a spatial reference system.
The raw labels are GeoJSON files with the same spatial reference system as images.

C.2.5 IS THERE A LABEL OR TARGET ASSOCIATED WITH EACH INSTANCE? IF SO, PLEASE
PROVIDE A DESCRIPTION.

The labels on the image are polygons describing the geometry of the building footprints and their
associated roof material classes, as described above. In the raw data, the material class is saved
under the attribute name of mater_id in GeoJSON files. The values of metal sheet, thatch, asbestos,
concrete, and no-roof in the attribute are 1, 2, 3, 4, and 5, respectively. The same values are assigned
to the patch labels.

C.2.6 IS ANY INFORMATION MISSING FROM INDIVIDUAL INSTANCES? IF SO, PLEASE
PROVIDE A DESCRIPTION, EXPLAINING WHY THIS INFORMATION IS MISSING (E.G.,
BECAUSE IT WAS UNAVAILABLE). THIS DOES NOT INCLUDE INTENTIONALLY REMOVED
INFORMATION BUT MIGHT INCLUDE, E.G., REDACTED TEXT.

Everything is included. No data is missing.

C.2.7 ARE RELATIONSHIPS BETWEEN INDIVIDUAL INSTANCES MADE EXPLICIT (E.G., USERS’
MOVIE RATINGS, SOCIAL NETWORK LINKS)? IF SO, PLEASE DESCRIBE HOW THESE
RELATIONSHIPS ARE MADE EXPLICIT.

No, the geometry and material attribute of each building footprint is independently recorded.

C.2.8 ARE THERE RECOMMENDED DATA SPLITS (E.G., TRAINING,
DEVELOPMENT/VALIDATION, TESTING)? IF SO, PLEASE PROVIDE A DESCRIPTION OF
THESE SPLITS, EXPLAINING THE RATIONALE BEHIND THEM.

The roof material classes are not balanced and are not geographically distributed uniformly. The
data is split into training, validation, and test sets using stratified random sampling to account for
the class imbalance. We created a square grid of 225 meters and counted the roof types in these
cells. Then we partitioned the cells into three sets based on the class counts to achieve a similar class
distribution in each dataset, where we prioritized the distribution of minority classes (i.e., concrete
and asbestos). We defined that a building only belongs to a specific grid cell if its centroid falls into
the cell. These grid cells separate the images and labels into training, validation and test sets. See
Fig. C.9 as an example. Initially, only two informal settlements were labelled and therefore, only
these two settlements are divided into the 3 sets. The third informal settlement was labelled later and
treated as a second test set.

C.2.9 ARE THERE ANY ERRORS, SOURCES OF NOISE, OR REDUNDANCIES IN THE DATASET? IF
SO, PLEASE PROVIDE A DESCRIPTION.

The images exhibit a high level of details and the building footprint geometry and material attributes
are meticulous noted by experts. The dataset is free from errors, noise, or redundancies to the greatest
extent possible but we acknowledge that even with expert craftsmanship, there is always a chance of
human error.
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Figure C.9: Visualization of the training, validation and testing sets with reference to longitude and
latitude

C.2.10 IS THE DATASET SELF-CONTAINED, OR DOES IT LINK TO OR OTHERWISE RELY ON
EXTERNAL RESOURCES (E.G., WEBSITES, TWEETS, OTHER DATASETS)? IF IT LINKS TO
OR RELIES ON EXTERNAL RESOURCES, A) ARE THERE GUARANTEES THAT THEY WILL
EXIST, AND REMAIN CONSTANT, OVER TIME; B) ARE THERE OFFICIAL ARCHIVAL
VERSIONS OF THE COMPLETE DATASET (I.E., INCLUDING THE EXTERNAL RESOURCES
AS THEY EXISTED AT THE TIME THE DATASET WAS CREATED); C) ARE THERE ANY
RESTRICTIONS (E.G., LICENSES, FEES) ASSOCIATED WITH ANY OF THE EXTERNAL
RESOURCES THAT MIGHT APPLY TO A FUTURE USER? PLEASE PROVIDE
DESCRIPTIONS OF ALL EXTERNAL RESOURCES AND ANY RESTRICTIONS ASSOCIATED
WITH THEM, AS WELL AS LINKS OR OTHER ACCESS POINTS, AS APPROPRIATE.

The dataset is entirely self-contained.

C.2.11 DOES THE DATASET CONTAIN DATA THAT MIGHT BE CONSIDERED CONFIDENTIAL
(E.G., DATA THAT IS PROTECTED BY LEGAL PRIVILEGE OR BY DOCTOR–PATIENT
CONFIDENTIALITY, DATA THAT INCLUDES THE CONTENT OF INDIVIDUALS’
NONPUBLIC COMMUNICATIONS)? IF SO, PLEASE PROVIDE A DESCRIPTION.

The dataset does not contain any confidential data.

C.2.12 DOES THE DATASET CONTAIN DATA THAT, IF VIEWED DIRECTLY, MIGHT BE
OFFENSIVE, INSULTING, THREATENING, OR MIGHT OTHERWISE CAUSE ANXIETY? IF
SO, PLEASE DESCRIBE WHY.

No.

C.2.13 DOES THE DATASET IDENTIFY ANY SUBPOPULATIONS (E.G., BY AGE, GENDER)? IF
SO, PLEASE DESCRIBE HOW THESE SUBPOPULATIONS ARE IDENTIFIED AND PROVIDE
A DESCRIPTION OF THEIR RESPECTIVE DISTRIBUTIONS WITHIN THE DATASET.

No.
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C.2.14 IS IT POSSIBLE TO IDENTIFY INDIVIDUALS (I.E., ONE OR MORE NATURAL PERSONS),
EITHER DIRECTLY OR INDIRECTLY (I.E., IN COMBINATION WITH OTHER DATA) FROM
THE DATASET? IF SO, PLEASE DESCRIBE HOW.

It is not possible to identify individuals in the drone imagery. In any publicly available and geo-coded
image, it is possible to identify individual houses and reverse geocode into a human-readable address.

C.2.15 DOES THE DATASET CONTAIN DATA THAT MIGHT BE CONSIDERED SENSITIVE IN ANY
WAY (E.G., DATA THAT REVEALS RACE OR ETHNIC ORIGINS, SEXUAL ORIENTATIONS,
RELIGIOUS BELIEFS, POLITICAL OPINIONS OR UNION MEMBERSHIPS, OR LOCATIONS;
FINANCIAL OR HEALTH DATA; BIOMETRIC OR GENETIC DATA; FORMS OF
GOVERNMENT IDENTIFICATION, SUCH AS SOCIAL SECURITY NUMBERS; CRIMINAL
HISTORY)? IF SO, PLEASE PROVIDE A DESCRIPTION

No.

C.2.16 ANY OTHER COMMENTS?

None.

C.3 COLLECTION PROCESS

C.3.1 HOW WAS THE DATA ASSOCIATED WITH EACH INSTANCE ACQUIRED? WAS THE DATA
DIRECTLY OBSERVABLE (E.G., RAW TEXT, MOVIE RATINGS), REPORTED BY SUBJECTS
(E.G., SURVEY RESPONSES), OR INDIRECTLY INFERRED/DERIVED FROM OTHER DATA
(E.G., PART-OF-SPEECH TAGS, MODEL-BASED GUESSES FOR AGE OR LANGUAGE)? IF
DATA WAS REPORTED BY SUBJECTS OR INDIRECTLY INFERRED/DERIVED FROM OTHER
DATA, WAS THE DATA VALIDATED/VERIFIED? IF SO, PLEASE DESCRIBE HOW.

The data is observable as images. The ground sampling distance of pixel or spatial resolution of
the imagery is ≈ 4.4 cm/pixel. QGIS was used for the visualization of images and re-registration,
cleaning, and verification of building footprints and their attributes.

C.3.2 WHAT MECHANISMS OR PROCEDURES WERE USED TO COLLECT THE DATA (E.G.,
HARDWARE APPARATUS OR SENSOR, MANUAL HUMAN CURATION, SOFTWARE
PROGRAM, SOFTWARE API)? HOW WERE THESE MECHANISMS OR PROCEDURES
VALIDATED?

The drone imagery was captured using a DJI Phantom 4 Pro drone and processed using AgiSoft
Metashape software. All building footprints are annotated using Open Street Map (JOSM) that use
OpenStreetMap in the backend. Before splitting into train, validation, and test sets, the missing labels
and all geometric and attribute errors were corrected in QGIS software.

Table C.10: Drone flight information summary

Number of flights: 4
Drone: DJI Phantom 4 Pro
Camera Brand: DJI
Camera Model: FC6310
Image Resolution: 4864 × 3648 (∼18MP)
Flight Altitude: 120 m
Flight dates: 27-30, October 2021
Total flight duration: 504 minutes
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C.3.3 IF THE DATASET IS A SAMPLE FROM A LARGER SET, WHAT WAS THE SAMPLING
STRATEGY (E.G., DETERMINISTIC, PROBABILISTIC WITH SPECIFIC SAMPLING
PROBABILITIES)?

The data was prepared based on its availability. All data from the project was made available and
used in this dataset.

C.3.4 WHO WAS INVOLVED IN THE DATA COLLECTION PROCESS (E.G., STUDENTS,
CROWDWORKERS, CONTRACTORS) AND HOW WERE THEY COMPENSATED (E.G., HOW
MUCH WERE CROWDWORKERS PAID)?

The drone imagery was captured by an NGO. Nacala residents and local university students performed
the field data collection, receiving stipends and data bundles. The polygons and attributes of building
footprints were corrected by authors.

C.3.5 OVER WHAT TIMEFRAME WAS THE DATA COLLECTED? DOES THIS TIMEFRAME MATCH
THE CREATION TIMEFRAME OF THE DATA ASSOCIATED WITH THE INSTANCES (E.G.,
RECENT CRAWL OF OLD NEWS ARTICLES)? IF NOT, PLEASE DESCRIBE THE TIMEFRAME
IN WHICH THE DATA ASSOCIATED WITH THE INSTANCES WAS CREATED.

All drone imagery was captured between October and December 2021. All labels are manually
annotated on the imagery beginning January 2022 until May 2024.

C.3.6 WERE ANY ETHICAL REVIEW PROCESSES CONDUCTED (E.G., BY AN INSTITUTIONAL
REVIEW BOARD)? IF SO, PLEASE PROVIDE A DESCRIPTION OF THESE REVIEW
PROCESSES, INCLUDING THE OUTCOMES, AS WELL AS A LINK OR OTHER ACCESS
POINT TO ANY SUPPORTING DOCUMENTATION.

No ethical review was conducted. All data collection, including drone flights and on-site mapping,
was approved and supported by the Nacala Municipal Council and facilitated on the ground by
neighbourhood-level authorities.

C.3.7 DID YOU COLLECT THE DATA FROM THE INDIVIDUALS IN QUESTION DIRECTLY, OR
OBTAIN IT VIA THIRD PARTIES OR OTHER SOURCES (E.G., WEBSITES)?

The data was not collected from individuals.

C.3.8 WERE THE INDIVIDUALS IN QUESTION NOTIFIED ABOUT THE DATA COLLECTION? IF
SO, PLEASE DESCRIBE (OR SHOW WITH SCREENSHOTS OR OTHER INFORMATION) HOW
NOTICE WAS PROVIDED, AND PROVIDE A LINK OR OTHER ACCESS POINT TO, OR
OTHERWISE REPRODUCE, THE EXACT LANGUAGE OF THE NOTIFICATION ITSELF.

N/A.

C.3.9 DID THE INDIVIDUALS IN QUESTION CONSENT TO THE COLLECTION AND USE OF THEIR
DATA? IF SO, PLEASE DESCRIBE (OR SHOW WITH SCREENSHOTS OR OTHER
INFORMATION) HOW CONSENT WAS REQUESTED AND PROVIDED, AND PROVIDE A LINK
OR OTHER ACCESS POINT TO, OR OTHERWISE REPRODUCE, THE EXACT LANGUAGE TO
WHICH THE INDIVIDUALS CONSENTED.

N/A.

C.3.10 IF CONSENT WAS OBTAINED, WERE THE CONSENTING INDIVIDUALS PROVIDED WITH
A MECHANISM TO REVOKE THEIR CONSENT IN THE FUTURE OR FOR CERTAIN USES?
IF SO, PLEASE PROVIDE A DESCRIPTION, AS WELL AS A LINK OR OTHER ACCESS
POINT TO THE MECHANISM (IF APPROPRIATE).

N/A.
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C.3.11 HAS AN ANALYSIS OF THE POTENTIAL IMPACT OF THE DATASET AND ITS USE ON
DATA SUBJECTS (E.G., A DATA PROTECTION IMPACT ANALYSIS) BEEN CONDUCTED? IF
SO, PLEASE PROVIDE A DESCRIPTION OF THIS ANALYSIS, INCLUDING THE OUTCOMES,
AS WELL AS A LINK OR OTHER ACCESS POINT TO ANY SUPPORTING DOCUMENTATION.

N/A.

C.3.12 ANY OTHER COMMENTS?

None.

C.4 PREPROCESSING/CLEANING/LABELING

C.4.1 WAS ANY PREPROCESSING/CLEANING/LABELING OF THE DATA DONE (E.G.,
DISCRETIZATION OR BUCKETING, TOKENIZATION, PART-OF-SPEECH TAGGING, SIFT
FEATURE EXTRACTION, REMOVAL OF INSTANCES, PROCESSING OF MISSING VALUES)?
IF SO, PLEASE PROVIDE A DESCRIPTION. IF NOT, YOU MAY SKIP THE REMAINDER OF
THE QUESTIONS IN THIS SECTION.

Because of the large size of raw aerial imagery, the images of training and validation sets were
cropped to 512 × 512 pixels of patches. The data processing optimized is usefulness in training
deep learning models. The total number of patches in the training and validation sets are 8366 and
1799, respectively, after cropping them without any overlap. The test sets were provided without
cropping into patches, so these images are provided in different sizes. The images in test sets are not
cropped because dividing them into patches may lead to under- or over-estimation of instances and
may influence counting accuracy over large areas. The test-1 set consists of 22 images and the test-2
set consists of a single image. There are 10930, 2956, 2527 and 1541 buildings in train, validation,
test-1 and test-2 sets, respectively.

For the classification of buildings into different roof classes, the DINOv2 features were extracted
for train, validation and test-1 sets and made available with the dataset. These features of the train,
validation, and test-1 buildings are saved in train.npy, test.npy and valid.npy files, respectively. Each
row in the NumPy file is a DINOv2 feature of a single building along with a label in its last column.
The five roof classes are there in the data: 1-Metal Sheet, 2-Thatch, 3-Asbestos, 4-Concrete and 5-No
Roof. The feature extraction is further explained in our research paper.

C.4.2 WAS THE “RAW” DATA SAVED IN ADDITION TO THE
PREPROCESSED/CLEANED/LABELED DATA (E.G., TO SUPPORT UNANTICIPATED FUTURE
USES)? IF SO, PLEASE PROVIDE A LINK OR OTHER ACCESS POINT TO THE “RAW” DATA.

Yes. Along with patches and their labels, the dataset contains the raw data.

C.4.3 IS THE SOFTWARE USED TO PREPROCESS/CLEAN/LABEL THE INSTANCES AVAILABLE?
IF SO, PLEASE PROVIDE A LINK OR OTHER ACCESS POINT.

The Python script is used to prepare patches and label different deep-learning models (e.g., UNet and
YOLOv8). The Python script is available in the provided zip files.

C.4.4 ANY OTHER COMMENTS?

None.

C.5 USES

C.5.1 HAS THE DATASET BEEN USED FOR ANY TASKS ALREADY? IF SO, PLEASE PROVIDE A
DESCRIPTION

At the time of preparing this datasheet, the dataset was only used for tasks performed in our paper.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.5.2 IS THERE A REPOSITORY THAT LINKS TO ANY OR ALL PAPERS OR SYSTEMS THAT USE
THE DATASET? IF SO, PLEASE PROVIDE A LINK OR OTHER ACCESS POINT

No.

C.5.3 WHAT (OTHER) TASKS COULD THE DATASET BE USED FOR?

There are other objects in the images that can also be mapped, for example, trees, roads, water bodies,
etc.

C.5.4 IS THERE ANYTHING ABOUT THE COMPOSITION OF THE DATASET OR THE WAY IT WAS
COLLECTED AND PREPROCESSED/CLEANED/LABELED THAT MIGHT IMPACT FUTURE
USES? FOR EXAMPLE, IS THERE ANYTHING THAT A DATASET CONSUMER MIGHT NEED
TO KNOW TO AVOID USES THAT COULD RESULT IN UNFAIR TREATMENT OF
INDIVIDUALS OR GROUPS (E.G., STEREOTYPING, QUALITY OF SERVICE ISSUES) OR
OTHER RISKS OR HARMS (E.G., LEGAL RISKS, FINANCIAL HARMS)? IF SO, PLEASE
PROVIDE A DESCRIPTION. IS THERE ANYTHING A DATASET CONSUMER COULD DO TO
MITIGATE THESE RISKS OR HARMS?

There is no risk of using this dataset.

C.5.5 ARE THERE TASKS FOR WHICH THE DATASET SHOULD NOT BE USED? IF SO, PLEASE
PROVIDE A DESCRIPTION.

None.

C.5.6 ANY OTHER COMMENTS

None.

C.6 DISTRIBUTION

C.6.1 WILL THE DATASET BE DISTRIBUTED TO THIRD PARTIES OUTSIDE OF THE ENTITY
(E.G., COMPANY, INSTITUTION, ORGANIZATION) ON BEHALF OF WHICH THE DATASET
WAS CREATED? IF SO, PLEASE PROVIDE A DESCRIPTION.

Currently, the dataset is made available through this anonymous url: https://osf.io/us628/
?view_only=3c25a48d420f4ec7a43cb76e66e92b26. But later, we will publish through
our webpage.

C.6.2 HOW WILL THE DATASET WILL BE DISTRIBUTED (E.G., TARBALL ON WEBSITE, API,
GITHUB)? DOES THE DATASET HAVE A DIGITAL OBJECT IDENTIFIER (DOI)?

Same as above answer.

C.6.3 WHEN WILL THE DATASET BE DISTRIBUTED?

We will distribute our dataset through other sources as soon as our paper is accepted.

C.6.4 WILL THE DATASET BE DISTRIBUTED UNDER A COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY (IP) LICENSE, AND/OR UNDER APPLICABLE TERMS OF USE (TOU)? IF SO,
PLEASE DESCRIBE THIS LICENSE AND/OR TOU, AND PROVIDE A LINK OR OTHER
ACCESS POINT TO, OR OTHERWISE REPRODUCE, ANY RELEVANT LICENSING TERMS OR
TOU, AS WELL AS ANY FEES ASSOCIATED WITH THESE RESTRICTIONS

The dataset will be released under Open Data Commons Open Database License (ODbL) v1.0 licence.
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C.6.5 HAVE ANY THIRD PARTIES IMPOSED IP-BASED OR OTHER RESTRICTIONS ON THE DATA
ASSOCIATED WITH THE INSTANCES? IF SO, PLEASE DESCRIBE THESE RESTRICTIONS,
AND PROVIDE A LINK OR OTHER ACCESS POINT TO, OR OTHERWISE REPRODUCE, ANY
RELEVANT LICENSING TERMS, AS WELL AS ANY FEES ASSOCIATED WITH THESE
RESTRICTIONS.

No

C.6.6 DO ANY EXPORT CONTROLS OR OTHER REGULATORY RESTRICTIONS APPLY TO THE
DATASET OR TO INDIVIDUAL INSTANCES? IF SO, PLEASE DESCRIBE THESE
RESTRICTIONS, AND PROVIDE A LINK OR OTHER ACCESS POINT TO, OR OTHERWISE
REPRODUCE, ANY SUPPORTING DOCUMENTATION

No

C.6.7 ANY OTHER COMMENTS?

None.

C.7 DATASET MAINTENANCE

C.7.1 WHO IS SUPPORTING/HOSTING/MAINTAINING THE DATASET?

Two of our authors will be responsible for hosting and maintaining our dataset. We will add more
details here as soon as our paper accepted.

C.7.2 HOW CAN THE OWNER/CURATOR/MANAGER OF THE DATASET BE CONTACTED (E.G.,
EMAIL ADDRESS)?

Curators of this dataset can be communicated through our email addresses. We will provide more
details as soon as our paper is accepted.

C.7.3 IS THERE AN ERRATUM? IF SO, PLEASE PROVIDE A LINK OR OTHER ACCESS POINT.

No, this is the initial release.

C.7.4 WILL THE DATASET BE UPDATED (E.G., TO CORRECT LABELING ERRORS, ADD NEW
INSTANCES, DELETE INSTANCES)? IF SO, PLEASE DESCRIBE HOW OFTEN, BY WHOM,
AND HOW UPDATES WILL BE COMMUNICATED TO DATASET CONSUMERS (E.G.,
MAILING LIST, GITHUB)?

In case of any updates, we will communicate through our webpage (we will provide the link later).

C.7.5 IF THE DATASET RELATES TO PEOPLE, ARE THERE APPLICABLE LIMITS ON THE
RETENTION OF THE DATA ASSOCIATED WITH THE INSTANCES (E.G., WERE THE
INDIVIDUALS IN QUESTION TOLD THAT THEIR DATA WOULD BE RETAINED FOR A FIXED
PERIOD OF TIME AND THEN DELETED)? IF SO, PLEASE DESCRIBE THESE LIMITS AND
EXPLAIN HOW THEY WILL BE ENFORCED.

N/A.

C.7.6 WILL OLDER VERSIONS OF THE DATASET CONTINUE TO BE
SUPPORTED/HOSTED/MAINTAINED? IF SO, PLEASE DESCRIBE HOW. IF NOT, PLEASE
DESCRIBE HOW ITS OBSOLESCENCE WILL BE COMMUNICATED TO DATASET
CONSUMERS. THE DATASET HAS ALREADY BEEN UPDATED; OLDER VERSIONS ARE
KEPT AROUND FOR CONSISTENCY

N/A.
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C.7.7 IF OTHERS WANT TO EXTEND/AUGMENT/BUILD ON THIS DATASET, IS THERE A
MECHANISM FOR THEM TO DO SO? IF SO, IS THERE A PROCESS FOR
TRACKING/ASSESSING THE QUALITY OF THOSE CONTRIBUTIONS. WHAT IS THE
PROCESS FOR COMMUNICATING/DISTRIBUTING THESE CONTRIBUTIONS TO USERS?

N/A

C.7.8 ANY OTHER COMMENTS?

None.
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	What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)or features? In either case, please provide a description
	Is there a label or target associated with each instance? If so, please provide a description.
	Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information but might include, e.g., redacted text.
	Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these relationships are made explicit.
	Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them.
	Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.
	Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a future user? Please provide descriptions of all external resources and any restrictions associated with them, as well as links or other access points, as appropriate.
	Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor–patient confidentiality, data that includes the content of individuals’ nonpublic communications)? If so, please provide a description.
	Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why.
	Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.
	Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.
	Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history)? If so, please provide a description
	Any other comments?

	Collection Process
	How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how.
	What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human curation, software program, software API)? How were these mechanisms or procedures validated?
	If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)?
	Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were crowdworkers paid)?
	Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created.
	Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.
	Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g., websites)?
	Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or other information) how notice was provided, and provide a link or other access point to, or otherwise reproduce, the exact language of the notification itself.
	Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or other information) how consent was requested and provided, and provide a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.
	If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses? If so, please provide a description, as well as a link or other access point to the mechanism (if appropriate).
	Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so, please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation.
	Any other comments?

	Preprocessing/Cleaning/Labeling
	Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in this section.
	Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
	Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point.
	Any other comments?

	Uses
	Has the dataset been used for any tasks already? If so, please provide a description
	Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point
	What (other) tasks could the dataset be used for?
	Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that a dataset consumer might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks, financial harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate these risks or harms?
	Are there tasks for which the dataset should not be used? If so, please provide a description.
	Any other comments

	Distribution
	Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created? If so, please provide a description.
	How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object identifier (DOI)?
	When will the dataset be distributed?
	Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions
	Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.
	Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation
	Any other comments?

	Dataset Maintenance
	Who is supporting/hosting/maintaining the dataset?
	How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
	Is there an erratum? If so, please provide a link or other access point.
	Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how updates will be communicated to dataset consumers (e.g., mailing list, GitHub)?
	If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were the individuals in question told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced.
	Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to dataset consumers. The dataset has already been updated; older versions are kept around for consistency
	If others want to extend/augment/build on this dataset, is there a mechanism for them to do so? If so, is there a process for tracking/assessing the quality of those contributions. What is the process for communicating/distributing these contributions to users?
	Any other comments?



