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Figure 1: We present UnPose for zero-shot model-free pose estimation, that takes (a) RGB-D frames
and (b) object segments in the scene, to output (c) 3D priors and uncertainty from a diffusion model
to (d) reconstruct and continually refine the geometry of the object represented as 3DGS [1] for 6D
pose estimation. (d) shows the resulting object poses with globally consistent front and back views
from the input viewpoint.

Abstract: Estimating the 6D pose of novel objects is a fundamental yet challeng-
ing problem in robotics, often relying on access to object CAD models. However,
acquiring such models can be costly and impractical. Recent approaches aim to
bypass this requirement by leveraging strong priors from foundation models to
reconstruct objects from single or multi-view images, but typically require addi-
tional training or produce hallucinated geometry. To this end, we propose Un-
Pose, a novel framework for zero-shot, model-free 6D object pose estimation and
reconstruction that exploits 3D priors and uncertainty estimates from a pre-trained
diffusion model. Specifically, starting from a single-view RGB-D frame, UnPose
uses a multi-view diffusion model to estimate an initial 3D model using 3D Gaus-
sian Splatting (3DGS) representation, along with pixel-wise epistemic uncertainty
estimates. As additional observations become available, we incrementally refine
the 3DGS model by fusing new views guided by the diffusion model’s uncertainty,
thereby, continuously improving the pose estimation accuracy and 3D reconstruc-
tion quality. To ensure global consistency, the diffusion prior-generated views
and subsequent observations are further integrated in a pose graph and jointly
optimized into a coherent 3DGS field. Extensive experiments demonstrate that
UnPose significantly outperforms existing approaches in both 6D pose estimation
accuracy and 3D reconstruction quality. We further showcase its practical appli-
cability in real-world robotic manipulation tasks. Video demos can be found at
our project page: https://frankzhaodong.github.io/UnPose.

Keywords: 6D Pose Estimation, Diffusion Model, Object Reconstruction, Uncer-
tainty Estimation

∗Work done during an internship at Huawei Noah’s Ark Lab
†Corresponding author

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://frankzhaodong.github.io/UnPose


1 Introduction

6D object pose estimation is a fundamental challenge in robotic manipulation, enabling tasks
from precision grasping to complex assembly [2, 3]. While deep learning (DL) has driven no-
table progress, prior approaches have predominantly relied on object-specific textured CAD mod-
els [4, 5, 6, 7] or category-level training data [8, 9, 10, 11, 12], severely limiting their applica-
tion in dynamic, open-world environments. Even recent category-agnostic approaches [13, 14, 15]
still depend on ground-truth CAD models during inference, essentially approximating the model-
based paradigm rather than transcending it. As robots increasingly operate in open-world envi-
ronments with novel objects, the need for methods that can estimate poses without prior object
models has become increasingly urgent. Model-free pose estimation methods offer a promising
alternative by eliminating dependence on pre-existing object models, instead leveraging reference
views [14, 16, 17, 18], or image-to-3D reconstruction models [19, 20, 21, 22]. However, despite
their “model-free” designation, these methods still implicitly rely on reference object models gen-
erated in advance from either diffusion models or multiple reference views of the target objects.
Therefore, a key issue arises when 3D representations are generated from limited observations:
unobserved regions introduce variable confidence i.e., epistemic uncertainty during reconstruction.
Existing approaches typically fail to quantify this epistemic uncertainty [23], treating all generated
regions equally regardless of observability. This limitation becomes particularly problematic when
integrating new observations, as the system cannot appropriately weigh the reliability of the prior
model against newly observed data [24, 25].

To this end, we introduce UnPose, a principled framework for zero-shot, model-free 6D object pose
estimation that addresses these limitations through uncertainty-aware multi-view integration and
pose graph optimization. Starting from a single RGB-D observation, UnPose generates an initial
3D representation using an image-to-3D diffusion model with pixel-level uncertainty estimates that
quantify confidence in the diffusion priors and balance them with sensor measurements. This 3D
representation is encoded using 3D Gaussian Splatting (3DGS) [1], enabling efficient and high-
fidelity textured models. As more observations arrive, UnPose incrementally refines the geometry
and appearance via pose graph optimization, with uncertainty estimates guiding the fusion process
to prioritize reliable measurements while refining uncertain regions.

In summary, our contributions are: (1) we present a model-free approach that eliminates depen-
dencies on object-specific CAD models, category-level training, or multi-view requirements with
known camera poses; (2) we introduce an uncertainty-guided refinement that adaptively integrates
observed data into diffusion priors; (3) We formulate pose estimation as an incremental factor graph
optimization problem that incorporates both diffusion priors and observations, and ensures global
consistency; and (4) We demonstrate significant improvements in both pose estimation accuracy and
reconstruction quality compared to existing SOTA methods.

2 Related Works

2.1 Model-based Object Pose Estimation

Instance-level pose estimation techniques [6, 4, 5, 7] typically rely on textured CAD models for spe-
cific objects, where both training and testing are conducted on the same set of instances. In contrast,
category-level methods [9, 10, 8, 11, 12] aim to generalize to unseen instances within known cate-
gories, though they require costly category-specific annotations and are limited to predefined object
classes. To address these limitations, category-agnostic approaches [13, 14, 15] aim to estimate the
poses of novel objects without relying on predefined categories. However, many of these methods
still depend on ground-truth CAD models to render reference views during inference, which restricts
their practical use in open-world applications where such models are often unavailable or costly to
obtain. More recent works [26, 27] attempt to address this gap by retrieving CAD models from large
repositories, though retrieval accuracy and high quality datasets continue to pose challenges.
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Figure 2: We present an overview of our proposed pipeline. Starting from a single-view RGB-D
frame, UnPose uses a multi-view diffusion model to estimate an initial 3D model using 3D Gaus-
sian Splatting (3DGS) representation, along with pixel-wise epistemic uncertainty estimates. As
additional observations become available, we incrementally refine the 3DGS model by fusing new
views guided by the diffusion model’s uncertainty, thereby, continuously improving the pose esti-
mation accuracy and 3D reconstruction quality.

2.2 Model-free Object Pose Estimation

To reduce reliance on textured CAD models, recent research has shifted toward model-free object
pose estimation methods using either reference images [28, 14, 20] or single/multi-view images
or videos [29, 27]. However, current SOTA approaches still rely on posed reference views [14]
or reconstructed object models [30] and, thus, are not strictly model free. Several works attempt
to relax this requirement by estimating relative orientation from a single anchor image [18, 20],
using feature-matching [17] or language guidance [31]. Despite these advances, performance de-
grades when query views have limited overlap or severe occlusions. To tackle occlusion, recent
works [21, 20, 22] leverage image-to-3D diffusion priors to reconstruct object’s geometry from lim-
ited views and estimate the 6D pose, alleviating the need for object-specific CAD models. Yet, these
methods do not refine the generated 3D models to correct diffusion-induced hallucinations [32], of-
ten producing inaccurate geometry and appearance for unobserved regions. Another direction draws
on object-level SLAM [33, 34, 35], which incrementally refines object’s geometry over time and
handles occlusions. For example, GOM [25] combines diffusion priors with multi-view sensor data
in an alternative optimization scheme. However, the alternative optimizations between diffusion
and NeRF [36] yields suboptimal reconstruction quality. To address these challenges, we propose
a model-free approach that combines diffusion priors and observations into an incrementally re-
fined 3DGS [1] representation. We incorporate them into a factor graph [37] to ensure a globally
consistent object representation that leads to robust and accurate object pose estimations.

2.3 Uncertainty Estimation

Uncertainty has been widely studied in robotics and computer vision communities [24, 23] to im-
prove the robustness and accuracy under noisy (aleatoric uncertainty) or incomplete (epistemic un-
certainty) observations [38, 39]. We focus on epistemic uncertainty due to occlusions, ambiguities
and limited viewpoints. A common estimation approach is Deep Ensembles, which captures uncer-
tainty via prediction variance across independently initialized models [40]. Alternatively, Bayesian
Neural Networks [41] model a posterior distribution over weights, typically using variational infer-
ence with KL regularization to approximate the true posterior [42]. While effective, these methods
are costly, which recent works circumvent through post-hoc Laplace Approximations (LA) [43].
However, applying Bayesian uncertainty to image-to-3D diffusion models (DMs) is challenging due
to their high-dimensional parameter space and iterative reverse process, which complicates uncer-
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Figure 4: Illustration of UnPose for a real-world
robotic manipulation task.

tainty propagation. Additionally, DMs are known to hallucinate [32], potentially compromising
modeling accuracy. To address this, we model epistemic uncertainty in image-to-3D DMs using
efficient Bayesian inference [44], and further refined through future observations.

3 Method

Our proposed pipeline, visualized in Fig. 2, consists of four modules: initialization (Sec. 3.1), pose
estimation (Sec. 3.3), Backend Optimization (Sec. 3.4), 3DGS mapping (Sec. 3.2). For each object
O in a scene, we continuously refine its 3D model, represented as a 3DGS field Qo [1], in its own
object canonical coordinate frame F−→O, along with a relative pose, TOC , from the camera coordinate
frame, F−→C , to the object coordinate frame F−→O. Camera poses, TWC ∈ SE(3), are known using an
off-the-shelf SLAM method [45].

3.1 Initialization

Without relying on any CAD models or pre-reconstructed models, our system initializes from an
arbitrary RGB-D frame I0 = {I0 ∈ Rw×h×3,D0 ∈ Rw×h,M ∈ {0, 1}w×h×m} by synthesizing
multiview diffusion images Î1:k using the Wonder3D [46] where k is set to be 6. We assume that
object masks M are provided to us beforehand for m objects in the scene using a SOTA instance
segmentation model. We further estimate the corresponding pixel-wise uncertainty Var(Î)1:k ∈
Rw×h for the diffused views and align them together with the initial frame I0 following VGGT [47].
The aligned relative poses TC0Ck

together with the estimated uncertainties are refined using pose
graph optimization to reconstruct an initial 3DGS object field Qo [1].

Uncertainty Estimation. To estimate uncertainty from a pre-trained diffusion model (DM) with-
out additional training, we adapt the approach proposed in BayesDiff [44] into the Wonder3D frame-
work [46]. Specifically, we adopt last-layer Laplace approximation (LLLA) [48] to approximate the
predictive distribution of the DM’s noise prediction for efficient Bayesian inference, enabling the
DM to produce pixel-wise uncertainty alongside synthesized multi-view images.

Following LLLA [48], we approximate the distribution of the noise prediction ϵt of a pre-trained
DM given the noisy state xt at diffusion timestep t as a Gaussian distribution:

p(ϵt | xt, t) ≈ N (ϵθ(xt, t),Σϵt) , (1)

where θ represents the parameters of DM, ϵθ(xt, t) is the standard prediction of the pre-trained
model, and Σϵt is the predictive covariance derived from the LLLA appplied to the model’s last layer
parameters (see [44, 48] for more details). For pixel-wise uncertainty, we are primarily interested in
the diagonal elements of the covariance, Var (ϵt) = diag (Σϵt), visualized in Fig. 3.

Wonder3D [46] employs DDIM [49] for its deterministic sampling process. The standard DDIM
update step to obtain xt−1 from xt is given by

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵt(xt)√

αt

)
+

√
1− αt−1 − σ2

t · ϵt(xt), (2)
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where αt and σt are noise schedule parameters.

To propagate uncertainty through the denoising steps, we iteratively update the variance Var(xt−1)
based on the variance from the previous step Var(xt) and the uncertainty from the noise prediction
Var (ϵt). The variance update corresponding to the DDIM step, Eq. (2), is:

Var(xt−1) =
αt−1

αt

Var(xt)− 2

√
αt−1√
αt

(

√
1− αt−1 − σ2

t −
√
αt−1

αt

√
1− αt) Cov (xt, ϵt)

+ (

√
1− αt−1 − σ2

t −
√
αt−1

αt

√
1− αt)

2 Var (ϵt) (3)

The key challenge is estimating the covariance term Cov (xt, ϵt), which captures the correlation
between the noisy state and the model’s prediction. As this is analytically intractable, we estimate it
using Monte Carlo sampling [50]:

Cov (xt, ϵθ (xt, t)) ≈
1

S

S∑
i=1

(
xt,i ⊙ ϵθ(xt,i, t)

)
− E[xt]⊙

1

S

S∑
i=1

ϵθ(xt,i, t), (4)

where ⊙ denotes element-wise multiplication, S is the number of Monte Carlo samples, and xt,i are
samples drawn around the current state xt.

The entire uncertainty estimation pipeline operates during inference without any model retraining.
The final Var(x0) provides the pixel-wise uncertainty estimates Var(Î) for the generated images Î.
The accuracy of the uncertainty estimates depends on the number of samples and diffusion steps.
In practice, we use S = 20 samples per step across 50 denoising steps to balance the quality of the
uncertainty estimates and computational cost.

Real-world Alignment. The DM-generated multi-view images Î1:k typically lack the correct scale
relative to the real-world observations I . To recover the true scale and align the views to the real-
world measurements, we feed the diffusion images to the VGGT network [47], which outputs point-
cloud P̂1:k, associated confidence maps Ĉ1:k, and the relative transformations TC0Ci

between input
views. The predicted confidence maps are modulated by the estimated diffusion uncertainties Var(Î)
through weighted exponential operation C1:k = exp

(
Ĉ1:k

Var(̂I1:k)

)
.

To align the diffusion pointcloud P̂1:k with the real-world pointcloud P0 extracted from I0, we
first match the eigenvalues of their covariance matrices via Principal Component Analysis (PCA).
After recovering the scale s, we further refine the rigid transformation between them using Iterative
Closest Point (ICP) [51]. The refined diffusion multiview frames together with the first real frame
creates an initial pose graph, yielding a metrically consistent 3D reconstruction, aligned with the
real-world coordinate frame F−→W while preserving uncertainty estimates.

3.2 3D Gaussian Splatting Mapping

With the poses optimized, we proceed to generate a compact 3DGS field [1] for each object. Inspired
by SplaTAM [52], we model each 3D Gaussian as isotropic, encoding only RGB, 3D position, a
scalar radius, and opacity. Importantly, we incorporate pixel-wise uncertainty to guide the updates
of the 3DGS field when more observations are received. The overall mapping loss is defined as:

Lt =
∑

p

C(p) (S(p) > 0.99) (L1(D(p)) + 0.5L1(C(p))) , (5)

where C(p) denotes the uncertainty at pixel p, S(p) represents the visibility score, and D(p), C(p)
are the rendered depth and color residual, respectively. By incorporating certainties from diffusion
priors, our mapping is able to always maintain a complete shape while continuously improving he
geometric accuracy and photometric consistency when more information are observed.
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(a) Performance on YCB-Video [53] dataset. (b) Performance on LM-O [54] dataset.

Figure 5: We show quantitative comparison on YCB-V [53] and LM-O [54] using ADD and ADD-S
metric w.r.t the number of reference-views. UnPose significantly outperforms the baselines. Note the
consistent improvement in performance of our method as the number of reference views increases.

3.3 6D Pose Estimation

Once we have the optimized 3DGS representation of the object, we employ the Pose Refinement
network from FoundationPose [30] for 6D pose estimation due to its SOTA performance on speed
and accuracy. The network takes two inputs: (1) a rendered RGB-D view of the object from the
current pose estimate (2) a cropped RGB-D observation from the camera. In our implementation, we
modify the first input to be rendered directly from the 3DGS field [1], rather than a pre-reconstructed
3D model, improving applicability in open-world deployments. Both inputs are processed through a
Siamese encoder with shared weights to extract feature maps, which are concatenated and tokenized
into patches with positional embeddings. The transformer iteratively refines the pose estimates,
minimizing the discrepancy between rendered and observed views in feature space.

3.4 Backend Optimization

After estimating the relative transformation TOCi
for a new frame F−→Ci

, we evaluate its corre-
spondence to the closest existing keyframe, including both real and virtual diffusion frames, using
Mast3R [55]. If the number of matching inliers is below a threshold, the frame is added as a new
keyframe Ki and a bidirectional edge is created between Ki and its closest keyframe Ki−1, updating
the pose graph edge set E . To close loops for local and global pose graphs, we encode keyframe
features using Aggregated Selective Match Kernels (ASMK) [56, 57].

Geometric Pose Graph Optimization. Once loop closures are identified, we optimize the geo-
metric pose graph by minimizing a weighted geometric residual over keyframe correspondences:

Eg =
∑
i,j∈E

∑
m,n∈mi,j

∥∥∥∥∥ X̃i
i,m −TijX̃

j
j,n

w(qm,n,Cm,n, σ
2
g)

∥∥∥∥∥
ρ

, w(q,C, σ2) =

{
σ2/q otherwise
∞ q < qmin∥C < cmin

(6)

where m denotes set of matches between keyframes Ki and Kj predicted by Mast3R [55], and
X̃i

i,m, X̃j
j,n are the corresponding 3D points. qm,n is the match confidence, ∥∥ρ is Huber loss and

w(q,C, σ2) is per-match weighting [57] which we extend to include diffusion uncertainties. This
nonlinear least squares problem is solved efficiently via Gauss-Newton optimization with sparse
Cholesky decomposition in CUDA. To avoid ambiguity between virtual and real frames, we fix the
poses of all diffusion-rendered frames. The refined poses of real keyframes are then sent back to the
3DGS mapping module (see Sec. 3.2) to ensure a multi-view consistent object representation.

Relocalization. If object tracking fails due to occlusion, fast motion or other disruptions, relocal-
ization is triggered. Failure is detected through two signals: (a) a sharp drop in frame-to-keyframe
correspondence, and (b) a large geometric discrepancy between the observed point cloud and the ex-
pected model rendered from the current pose estimate. Our system benefits from the completeness
of the 3D model, allowing even unobserved parts to serve as weak priors. Upon failure detection,
the relocalization module retrieves top-k candidate frames from the retrieval database using ASMK
features and ranks them based on Euclidean distance. The selected frames are jointly optimized with
the current frame to recover its pose, allowing tracking to resume reliably.
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4 Experiments

We evaluate our proposed method, UnPose, on two benchmarks: YCB-Video [53] and LM-O [54].
For pose estimation, we compare against three SOTA baselines: GigaPose [21] (model-based),
SAM6D [14] (zero-shot reference view-based) and FoundationPose [30] (model-free reconstruction-
based). As mentioned in Sec. 2, these methods require estimation of the complete geometry prior to
estimating the 6D pose. To quantitatively evaluate how the view number of observations impact the
pose estimation results, we report the performance given 1, 8, and 16 reference images surrounding
the target object, representing pose estimation performance at single view, partial observations, and
complete observations cases. For reconstruction quality, we compare UnPose against three SOTA
baselines: BundleSDF [29] (neural implicit reconstruction), GOM [25] (3D diffusion priors-based
multi-view optimization), and Wonder3D [46] (single-view diffusion-based 3D generation), on sev-
eral objects from YCB-Video [53] dataset. Similarly, we test the reconstruction performance under
1, 8, 16 reference views. Pose estimation accuracy is evaluated using Area Under the Curve (AUC)
of Average Distance of Model Points (ADD) and its symmetric variant (ADD-S). Reconstruction
quality is measured by Chamfer Distance (CD) to ground truth. Furthermore, we report the compu-
tation time of UnPose.

4.1 Results

Pose Estimation. As visible in Figs. 5a and 5b, our method consistently outperforms all base-
lines in both sparse and dense observation settings, with performance continuously improving as
the number of reference views increase. In the single view case, UnPose surpasses the model-based
GigaPose [21] by 71.66%, and the model-free FoundationPose (also the second-best method) [30]
by 36.6% on average, benefiting from strong 3D diffusion priors in the initial pose graph. With addi-
tional views, our geometric pose graph optimization enforces multi-view consistency and leverages
uncertainty estimates to refine unreliable regions, further enhancing performance. For the sake of
page limit, we show per-object quantitative and qualitative comparisons in the appendix.

Figure 6: We show qualitative results using our uncertainty-aware 3D reconstruction when 1 and 16
reference views are used for reconstruction. Notice the improvement in geometry and appearance of
the object with our method as the number of reference views increases. Since Wonder3D [46] does
not support multi-view reconstruction, we do not show it.

Reconstruction. Fig. 7 shows the comparison of quantitative results for single-view object re-
construction against baselines [29, 25, 46] on a subset of objects from YCB-Video [53] dataset.
As visible in Figs. 6 and 7a, UnPose significantly outperforms the baselines. Compared to the
multiview-to-3D diffusion model [46, 58], UnPose is significantly faster while yielding compara-
ble reconstruction. In comparison to other optimization-based methods [29, 25], UnPose is 7× and
2× faster while being 2.3× and 3.8× accurate on average, respectively. These performance gains
are owing to the proposed uncertainty-guided reconstruction using 3D diffusion priors and global
consistency brought by pose graph optimization.

Runtime Analysis. For a fair comparison, all quantitative comparisons were performed on the
same hardware platform. Further, we report the time for reconstruction compared to prior works
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(a) Chamfer Distance (b) Reconstruction Time (s)

Figure 7: Quantitative comparison of object reconstruction for fidelity (a) and efficiency (b) using a
single reference view, on objects from YCB-Video [53] dataset.

in Fig. 7b, showcasing the efficiency and efficacy of our uncertainty-guided diffusion priors. We
also provide a comprehensive analysis of the runtime of each component of our framework in Tab. 2.

16 images 8 images

PSNR (↑)CD (↑)PSNR (↑)CD (↑)
Ours 35.70 0.023 32.90 0.032
↪→ w/o Uncertainty Estimation 29.80 0.027 29.3 0.034
↪→ w/o Bundle Adjustment 26.11 0.035 30.1 0.038
↪→ w/o Diffused frame in the pose graph 35.5 0.024 28.5 0.046
Table 1: Ablation study demonstrating the impact of uncertainty estimation and incremen-
tal refinement on appearance of real views (PSNR) and reconstructed geometry (CD). ↑
denotes higher is better.

Process Time (s)

Uncertainty Estimation 12.08
Remaining Initialization (Sec. 3.1) 1.07
3DGS Mapping (Sec. 3.2) 0.22
Pose Estimation (Sec. 3.3) 0.12

Backend Optimization (Sec. 3.4) 1.70

Total 13.49
Table 2: Runtime of each component of our
pipeline.

4.2 Ablation Study

We tested our method performance without uncertainty information, without bundle adjustment,
and without including diffused frames in pose graph optimization in two scenarios: 16 images and 8
images, using PSNR and CD metrics. With 16 images, uncertainty guidance and bundle adjustment
improved the performance by 20%, while incorporating diffused frames had minimum effect when
the density of observations is sufficient. In contrast, with only 8 images, incorporating diffused
frames into the pose graph yielded a 15% performance gain, highlighting their importance in sparser
observation scenarios.

4.3 Robotic Application

We further demonstrate the effectiveness of UnPose in robot arm manipulation tasks, where it is
used to estimate an object’s 6D pose and completed geometry, followed by grasp pose estimation
using AnyGrasp [59]. An example can be seen in Fig. 4, the in-hand camera initially captures the
mug with its handle occluded, leading to a grasp near the cup’s wall. This is not ideal for tasks such
as water pouring. As new views reveal the handle, UnPose incrementally updates the geometry,
resulting in a new handle-aligned grasp pose, thereby allowing the robot arm to successfully grasp
the mug by its handle. More details are provided in Appendix C.

5 Conclusion

We presented UnPose, a novel framework for model-free 6D pose estimation that exploits 3D priors
and uncertainty estimates from a diffusion model. Our method incrementally refines object geometry
by fusing diffused views with their uncertainty estimates and incorporating them into a factor graph.
We demonstrated qualitatively and quantitatively the advantages of our proposed method for pose
estimation and reconstruction tasks.
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6 Limitations

Our current backend optimization relies on correspondence computed from Mast3R[55], which lim-
its performance on textureless objects. A promising direction is to integrate direct matching losses
from the direct SLAM literature [60]. Additionally, despite the significant performance gains, real-
time deployment remains a challenge due to the computational overhead of Monte Carlo sampling
for diffusion-based uncertainty estimation. This could be addressed by training a diffusion model
that jointly predicts both mean and uncertainty. In addition, our current focus is on individual ob-
jects, incorporating scene-level priors and cross-object relationships may further improve global
consistency. We believe these limitation analysis and future directions offer valuable opportunities
for the community.
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A Additional Qualitative Results

Scene-level Reconstructions. To demonstrate the generalization capablities of UnPose, we test its per-
formance beyond tabletop objects (YCB-V, LM-O) on large-scale furniture objects from the ScanNet [61]. As
shown in Fig. 8, UnPose reconstruct multiple diverse objects in a scene, including four chairs, one sofa, and
one table, all from the same pipeline. We showcase the reconstruction of one object (chair) in the scene, and
show it from an input camera viewpoint (Front View) and two novel views (Back View 1 and 2). The smaller
floater images are real observations and diffusion frames provided to backend optimization, offering context on
the input data.

Figure 8: Visualization of a scene-level reconstruction on a ScanNet scene [61] by UnPose. We
show the reconstruction of one of the chairs from one input camera viewpoint (Front View) as well
as diffused novel views (Back View 1 and 2). Real and diffusion images of the scene used in backend
optimization are shown as floaters.

Fig. 9 visualizes the pixel-level uncertainty estimations associated with the novel views generated by the dif-
fusion model [46] used in our pipeline. For a better understanding, we also show the ground truth renderings
of the object alongside each diffused view. It can be seen that the diffusion model exhibits higher variance
(greater uncertainties) for novel views that significantly deviates from the input. This implies the model is less
confident when synthesizing unseen regions of the object.

Figure 9: Visualization of diffused views, the associated pixel-level uncertainty estimates, and the
corresponding ground-truth rendering perspectives. The diffused images show larger variance at
unseen angles.

We further provide qualitative comparisons with SOTA 6D pose estimation methods [21, 14, 30], including
GigaPose [21], SAM-6D [14], and FoundationPose [30] on standard 6D pose estimation benchmark datasets:
YCB-Video [53] and LM-O [54]. Fig. 10 clearly shows that compared to prior methods where the estimated
translation and rotation show high error, our proposed method, UnPose, accurately estimates the 6DOF of the
object.

B Additional Quantitative Results

In this section, we present additional quantitative comparison details on YCB-Video [53] and LM-O [54]
datasets, and further experiments on T-Less [62] and TYO-L [63]. We report object reconstruction results on
YCB-V [53] dataset in Tab. 3, evaluating performance with 1, 8 and 16 images. Our proposed method consis-
tently achieves lower reconstruction error (measured as Chamfer Distance) and is significantly faster than prior
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GigaPose SAM-6D FoundationPose Ours GT

Figure 10: Qualitative results of UnPose compared to prior pose estimation methods on YCB-
Video [53] and LM-O [54] datasets when 8 reference views are used.

methods [25, 29, 46]. We tabulate the 6D pose estimation results on YCB-Video [53], LM-O [54], T-Less [62],
and TYO-L [63] in Tabs. 4 to 6 respectively. Following prior works [30, 22, 20], we evaluate the performance
on pose estimation using ADD and ADD-S. Furthermore, for each method we report the results when 1, 8 and
16 images are used for reconstruction [21, 30] or as reference views [14]. It can be seen in Tabs. 4 to 6 that
our method consistently outperforms prior SOTA methods (visible as gradual increase in the brightness of the
gradient) in all settings i.e., both metric and the number of images.

Method Metric ycbv5 ycbv6 ycbv7 ycbv8 ycbv9 ycbv10
1 8 16 1 8 16 1 8 16 1 8 16 1 8 16 1 8 16

Wonder3d [46] CD 0.016 0.00 0.00 0.030 0.00 0.00 0.005 0.00 0.00 0.012 0.00 0.00 0.010 0.00 0.00 0.021 0.00 0.00
Time (s) 128.20 0.00 0.00 130.63 0.00 0.00 132.22 0.00 0.00 125.30 0.00 0.00 126.40 0.00 0.00 130.20 0.00 0.00

BundleSDF [29] CD 0.029 0.020 0.016 0.068 0.044 0.015 0.031 0.017 0.011 0.026 0.018 0.011 0.048 0.024 0.014 0.005 0.004 0.001
Time (s) 106.35 135.27 172.96 101.74 112.90 126.31 104.23 118.74 131.49 109.20 114.46 130.76 104.97 129.13 147.39 102.11 115.84 132.76

GOM [25] CD 0.064 0.117 0.080 0.148 0.121 0.100 0.056 0.066 0.079 0.036 0.169 0.092 0.037 0.039 0.046 0.153 0.268 0.170
Time (s) 28.88 53.64 121.19 28.63 54.92 128.65 28.38 53.53 120.24 28.39 52.47 116.98 27.97 53.11 115.53 28.27 52.58 117.18

Ours CD 0.015 0.005 0.004 0.028 0.023 0.020 0.007 0.006 0.005 0.016 0.008 0.007 0.009 0.009 0.004 0.021 0.005 0.003
Time (s) 13.20 26.20 41.20 13.80 27.20 41.70 12.90 26.30 43.22 13.50 25.30 40.25 14.10 22.21 41.30 11.30 23.20 42.10

Table 3: Quantitative comparison for reconstruction with 1, 8 and 16 images using UnPose in terms
of accuracy (reported using chamfer distance (CD) as 10−3) and time (sec) on objects from YCB-
V [53]. For both CD and time, brighter gradients denotes better performance.

(a) T-LESS [62]
# imgs Metric GigaPose [21] SAM6D [14] FoundationPose [30] Ours

1 ADD 10.0 14.9 16.6 32.5
ADD-S 71.3 78.5 82.2 89.2

8 ADD 17.2 28.9 33.2 40.1
ADD-S 73.0 81.8 85.4 93.6

16 ADD 44.0 50.1 53.5 54.2
ADD-S 76.7 89.5 90.7 94.7

(b) TYO-L [63]
# imgs Metric GigaPose [21] SAM6D [14] FoundationPose [30] Ours

1 ADD 14.2 37.5 42.2 55.3
ADD-S 62.2 75.8 82.7 88.2

8 ADD 23.3 42.7 45.5 67.2
ADD-S 72.2 82.6 86.2 93.6

16 ADD 59.2 68.3 72.2 75.3
ADD-S 87.3 93.3 97.3 98.1

Table 4: Quantitative comparison of pose estimation on T-LESS [62] and TYO-L [63]. Best in bold;
second best is underlined.

C Deployments on a Real-world Robotic Platform

We further demonstrate the effectiveness and the deployment capablity of UnPose in a real-world robotic ma-
nipulation pipeline using a PiPER robot arm. In this setup, UnPose estimates the complete 3D goemetry and 6D
pose of a target object from RGB-D stream inputs captured by a wrist-mounted Intel RealSense D435 camera.
This geometric and pose information is then passed to a subsequent grasp planning module, AnyGrasp [59],
to determine a suitable grasp pose for the robot. Fig. 11 provides a visual snapshot of this system in action,
showcasing UnPose’s reconstruction and pose estimation for a target mug on PiPER. Further details, includ-
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Method # imgs Metric Mean bath duck cat toy hole puncher power drill water can

Gigapose [21]

1 ADD 19.25 1.07 1.15 2.53 48.65 42.86
ADD-S 34.77 6.82 6.90 8.63 83.78 67.72

8 ADD 33.46 15.56 4.87 10.84 66.67 69.39
ADD-S 54.07 33.37 12.43 50.21 90.90 83.45

16 ADD 67.29 63.82 57.47 29.36 89.47 96.36
ADD-S 87.53 97.28 97.70 47.37 97.37 97.96

FoundationPose [30]

1 ADD 34.00 8.70 26.12 22.00 82.23 30.95
ADD-S 71.28 34.78 78.10 70.10 90.13 83.33

8 ADD 40.79 19.57 22.78 18.26 88.23 55.14
ADD-S 82.60 78.27 86.83 66.26 96.33 85.33

16 ADD 84.29 76.26 78.30 94.26 81.20 91.46
ADD-S 97.08 95.65 94.13 98.12 100.00 97.52

SAM6D [14]

1 ADD 29.16 6.13 16.49 33.23 50.47 39.50
ADD-S 61.69 14.55 60.82 94.10 67.20 71.81

8 ADD 37.00 11.35 31.96 42.13 52.12 47.47
ADD-S 70.35 33.67 64.95 95.10 76.25 81.81

16 ADD 82.65 69.21 69.16 88.36 96.12 90.40
ADD-S 93.00 90.22 76.29 99.93 99.59 98.99

Ours

1 ADD 50.11 40.30 34.22 40.10 83.63 52.31
ADD-S 84.20 66.67 85.23 88.30 92.10 88.70

8 ADD 67.27 52.21 52.10 71.10 86.67 74.27
ADD-S 91.58 87.70 90.12 90.20 97.30 92.62

16 ADD 85.00 77.21 81.10 88.20 90.21 88.30
ADD-S 98.19 97.34 95.33 98.30 100.00 100.00

Table 5: Quantitative performance of UnPose compared to SOTA baselines on LM-O [54] for 6D
Pose estimation. For both ADD and ADD-S metrics, we show higher values with brighter gradient
and vice-versa.

Observing Grasping

Figure 11: Visualization of UnPose for a real-world robotic manipulation task where it estimates the
complete geometry and 6D pose of the cup.

ing the dynamic operation of the system capturing multiple views, the resulting reconstruction, and the robot
successfully grasping the object, are presented in the accompanying video.
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Method # img Metric Mean 005 tomato soup can 006 mustard bottle 007 tuna fish can 009 gelatin box 010 potted meat can 011 banana

GigaPose [21]

1 ADD 13.58 8.20 4.15 1.77 45.92 4.72 16.74
ADD-S 24.44 26.23 10.66 5.42 66.69 14.17 23.48

8 ADD 21.48 17.74 14.03 3.33 75.00 6.62 12.16
ADD-S 39.52 58.06 28.87 14.35 79.62 22.47 33.78

16 ADD 60.58 88.80 62.38 13.67 93.75 62.35 42.56
ADD-S 86.8 96.82 100.00 49.33 100.00 92.35 82.33

FoundationPose [30]

1 ADD 30.34 1.69 40.00 7.69 76.00 16.67 40.00
ADD-S 74.58 42.01 86.90 71.10 100.00 72.10 75.40

8 ADD 45.57 44.07 55.00 41.00 80.00 13.33 40.00
ADD-S 90.17 76.20 87.33 91.20 100.00 89.10 97.20

16 ADD 71.2 62.10 66.00 72.30 100.00 60.60 66.20
ADD-S 95.56 98.37 95.00 100.00 100.00 80.00 100.00

SAM6D [14]

1 ADD 19.93 11.66 37.50 3.75 31.60 10.00 25.10
ADD-S 43.04 13.33 86.83 16.76 52.10 50.00 39.20

8 ADD 34.63 16.67 44.67 6.87 76.25 38.33 25.00
ADD-S 63.86 36.67 82.33 31.00 96.70 65.17 71.28

16 ADD 72.06 60.27 80.20 77.10 100.00 56.36 58.44
ADD-S 97.02 98.42 100.00 100.00 100.00 83.73 100.00

Ours

1 ADD 47.92 20.34 55.00 38.20 80.00 44.00 50.00
ADD-S 82.72 82.12 90.00 69.23 100.00 80.00 75.00

8 ADD 61.2 56.60 70.00 53.60 87.00 40.00 60.00
ADD-S 91.22 88.22 100.00 89.13 100.00 90.00 80.00

16 ADD 74.39 64.98 80.00 66.67 91.00 76.67 67.00
ADD-S 96.65 89.83 100.00 94.87 100.00 100.00 95.20

Table 6: Quantitative performance of UnPose compared to SOTA baselines on YCB-Video [53]
for 6D Pose estimation. For both ADD and ADD-S metrics, we show higher values with brighter
gradient and vice-versa.
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