Synthesizing Verified Mathematical Problems

Xuefeng Li''2 Yanheng He!> Pengfei Liu!-23*

!Shanghai Jiao Tong University
2Generative Al Research Lab 3Shanghai AI Laboratory

Abstract

Mathematical data synthesis offers a potentially effective solution for enhancing
the mathematical capabilities of large language models. However, existing meth-
ods either synthesize a large number of rationales based on existing questions,
limiting the diversity of the questions, or rely on advanced proprietary models to
directly generate new questions without verification, which cannot guarantee the
correctness of the synthesized problems. This paper introduces a novel method,
mathematical data synthesis through Algorithmic Abstraction, Implementation,
and Contextualization (AIC), to synthesize new and verifiable mathematical prob-
lems. AIC abstracts mathematical problems into algorithms, implements these
algorithms as code functions, and contextualizes them under different conditions
to create new problems, which are then verified using code functions. Experimen-
tal results on multiple challenging mathematical benchmarks show that models
fine-tuned on our synthesized data are superior to previous state-of-the-art models.
Further experiments indicate that, when controlling for the same synthesizer, data
synthesized using the AIC method is not only more accurate but also more effective
at improving the model’s mathematical abilities.

1 Introduction

Large language models (LLMs) have made significant strides, expanding from natural language
processing to areas like code generation and creative writing [3} 29, 4]. Their success stems from
vast amounts of high-quality training data [30}9]]. As the availability of untapped high-quality data
diminishes, LLM research faces a problem of data scarcity [25]. Consequently, data synthesis, using
generative models to create data similar to real data, offers a solution to this scarcity by supplementing
real-world data [18 [2]]. For synthetic data to be effective, it must maintain quality comparable to real
data [27, 24], particularly for mathematical data, which demands high logical consistency.

Research on enhancing LLMs’ mathematical abilities through instruction tuning mainly follows two
approaches. The first generates rationales for known mathematical problems using LLMs, filtering
rationales based on the correctness of the final answer [30, 26} 23] 122} [10], though this limits the
diversity of problems. The second approach uses advanced LLMs, like GPT-4 [1]], to generate
new questions and rationales [6} |19} 17, 21} [13| [16], enhancing data diversity but risking accuracy
without verification [28, 20]]. Therefore, a method that generates new problems while ensuring their
correctness is essential for producing diverse and accurate synthetic mathematical data.

In this paper, we propose Mathematical Data Synthesis via Algorithmic Abstraction, Implementation,
and Contextualization (AIC). The central idea is that many mathematical problems can be addressed by
abstract algorithms. By abstracting such algorithms from mathematical problems and contextualizing
them, we can generate new mathematical questions and corresponding rationales. Moreover, abstract
mathematical algorithms can be implemented using Python to verify the correctness of the synthesized

*Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024). Workshop on MATH-AI

Seed Data

L Natural Language Algorithm
Question: Find the maximum Question: Find out the peak
value of f(x) = —2x2 + 4x+ 1 Abstraction Algorithm Objective: Find the Contextualization value of —4x2 — 8x
Rationale: Finding the x- maximum value of a quadratic Rationale: Finding the x-
coordinate of the vertex: == ?{@' -~ function £(x). prmmmmmao> 6@ -==-> coordinate of the vertex:
AAAAAA Algorithm Process: Step1: !
S0, fax = 3 LLM Finding the x-coordinate of the i LLM S0, fax = 4
Final Answer: 3 vertex. i Final Answer: 4

S S

i Implementation | £00 = —4x% — 8x J |
! Code Function i ! i
N 2N J

i
i

| import sympy :

| PN] . .

| P Verification | def maximum value (£) : v . ﬁ Verification for

|

S
Jor Code =7 New Problem

return max value

Figure 1: An Overview of AIC: (1) The synthesizer(LLM) abstracts mathematical problems (Seed
Data) into natural language algorithms. (2) These algorithms are implemented in python by the
synthesizer, with their correctness verified through a verification process. (3) Finally, the synthesizer
contextualizes the abstract algorithms to generate new problems, employing a verification mechanism
to ensure the correctness of the newly synthesized problem.

data. As shown in Figure [1} the process of AIC is divided into two stages. Stagel Algorithm
Abstraction and Implementation: First, we use large language models (LLMs) as a synthesizer to
abstract existing mathematical problems, which serve as seed data. Each entry includes the question,
rationale, and final solution, and is transformed into a natural language algorithm. Next, we prompt
the synthesizer to implement the algorithm as a Python code function and verify its correctness using
a verification mechanism. Stage2 Algorithm Contextualization: The synthesizer contextualizes the
natural language algorithm and generates a new mathematical problem. Then, the conditions of this
newly generated problem are fed into the corresponding code function, and by checking if the final
answer generated by the synthesizer aligns with the result of the code execution, thereby verifying
the correctness of the synthesized problem.

We evaluated the model on several challenging mathematics benchmarks, including MATH [12],
MathOdyssey [8], finding that data synthesized using AIC can significantly improve the performance
of the synthesis model itself and is highly competitive compared to other methods. AIC not only has
the capability to synthesize a large volume of high-quality mathematical data but also paves a new
way for generating verifiable mathematical problems.

2 Methods

In this paper, we propose a data synthesis method for generating new mathematical problems with
verified solutions. Our method comprises two stages. In the first stage, we employ an LLM as
a synthesizer to abstract algorithms from existing mathematical problems. We then prompt the
synthesizer to implement these algorithms as Python code functions and verify the code’s correctness.
In the second stage, the synthesizer contextualizes the algorithms into new mathematical problems,
using the code functions to verify the correctness of the synthesized problems.

Let Dyeea = (i, 74, @) £V:1 represent a typical mathematical training dataset, which serves as seed data,
where q;, r;, a; are question, rationale and final answer of the i-th problem. In addition to the seed data,
the synthesis process utilizes large language models such as M (e.g., Mixtral-8 x 7B-Instruct [15]],
Llama3-70B-Instruct [7]]) and a code interpreter C.

2.1 Stagel: Algorithm Abstraction and Implementation

For each piece of data d; = (g¢;, 74, a;), the LLM is asked to first analyze the question ¢; and the
rationale r; to understand the core goals of the problem, identify the key operations and steps of
reasoning, determine the sequential relationships between steps, and finally, identify the mathematical
objects such as integers, series and expressions in question g; that are independent of the core steps in
reasoning, parameterizing them as placeholder variables. This way, a question g; and its rationale
r; can be transformed into an algorithm objective o, and an algorithm process p;. As show in
Figure [2] We also prompt the synthesizer M to generate additional information about the algorithm,

(a) Original Mathematical Problem

Question:
If ¢ is a nonzero constant such that 2 +
cz+ 9c can be expressed as (« + a)?, find
the value of a + ¢.

Solution:

Let’s expand (z + a)*: (z + a)? = 2° +
2az + a®. Now, we can equate the coeffi-
cients of 2% + cz + 9c and 2 + 2az + a®

c=2
9c = a®

From the term, we can express ¢ in terms
of a: ¢ = 2a. Substitute this into the con-
stant term equation, we get 18a = a® Ei-
ther a = 0 or a = 18. But a can’t be 0, be-
cause we're told that ¢ is nonzero, and ¢ =
2a. Therefore, a = 18. Now that we know
a, we can find ¢: ¢ = 2a = 2(18) = 36
The value of a-+cis a+c = 18436 = 54

Final Answer:
54

5,

Abstraction

Stagel: Algorithm Abstraction and Implementation

(b) Natural Language Algorithm

Algorithm Objective:

Given:

1. f(c) and g(c) are known linear expressions

2. ha,) is a known expression

3. 2% + f(c)x + g(c) can be expressed as (z + a)?, where ¢ is a
non-zero constant

Find:

The value of h(a, ¢)

Algorithm Process:

a)? to get & +2azx +a? and compare coefficients
g(c) term by term, resulting in the equations

2a = f(c),a® = g(c)

2. Solve the system of equations 2a = f(c), a* = g(c) to find
the values of a and ¢, and eliminate solutions that don’t meet the
condition of ¢ being a non-zero constant

3. Substitute the values of a and ¢ into h(a, ¢) to calculate the
final answer

() Python Function

import sympy
&

sympify(coeh),

5y
Sp.sympify(constant), sp.sympify(obj)

eql =spEqQ2*a, coef)
eq2 = 5p.Eq(a**2, constant)

solutions = sp.solve((eql, eq2), 2. ©))
for solution in solutions:
i solution 1] 1= 0
avalue, cvalue=solution

_&,

Implementation

retum obj subs({"a” avalue, <’: evalue})

Algorithm Set

xecution® =

h(a, ¢): ‘a+c’}

are linear expressions in terms of ¢
4 expression in terms of aand c.

¢’ constant="9°¢", obj="a<")

@ 9>

Repeat Stage 1

equal(54, result)

Verify Correctness of Code Function

(b) Natural Language Algorithm

Algorithm Objective:
Given:

1. f(c) and g(c) are known linear expressions

2. h(a, ¢) is a known expression

3. 2% + f(c)x + g(c) can be expressed as (z + a)?, where cis a
non-zero constant

Find:

The value of h(a, ¢)

Algorithm Process:

1. Expand (z+a)? to get 2 +2az +a? and compare coefficients
with 2% + f(c)x + g(c) term by term, resulting in the equations
2a = f(c),a® = g(c)

2. Solve the system of equations 2a = f(c),a® = g(c) to find
the values of a and c, and eliminate solutions that don't meet the
condition of ¢ being a non-zero constant

3. Substitute the values of a and ¢ into /(a, ¢) to calculate the
final answer

Placeholder Variables:

{f(c): *c’, g(c): “9%*c’, h(a, c): ‘a+c’}

Constraints:

1. f(c) and g(c) are linear expressions in terms of ¢

Stage2: Algorithm Contextulization

Verify Correctness of New Problem

(e) Synthesized New Mathematical Prolem
(D Verification code 2
Context:

3 . lt=solve(coef="2c+2’,
{F(©): *2042", 20): *4%0+1’, h(a, ©): (a-c)H42} TP LNl 2

e cqual(1, result)

constant="-4%c+1,

Question:
The quadratic expression 22 + (2c + 2)z —4c+ 1
can be expressed as perfect square form (z + a)?,
find the value of (a — ¢)2. cis a non zero number.

Execution
Solution:
Now, let’s compare the coefficients of 2 + (2¢ +
2)z + (—4c + 1) with & + 2az + a.
The coefficient of z gives us: 2a = 2¢+2. Solving

Contextulization for aza = ¢ + 1 The constant term gives us: a° —
—4c+ 1 Substituting a = ¢+ 1 into this equation:
(c+1)? = —4c+ 1. Expanding the lefi-hand side:
—4c+ 1 Simplifying: ¢ +6¢ = 0.
0, we use the quadratic formula:

=0Soc=1orc=06Ascisanon '

Synthesized Problem Set

zero number, ¢ = 6. a = ¢+ 1
The value of (a — ¢)*> = (6 — 7,

Final Answer:

2. h(a,) is a expression in terms of a and c.

Figure 2: A more detailed overview of the synthesis pipeline.

including placeholder constraint c;, which specify the placeholder variables’ types, value ranges and
relationships with other placeholder variables; placeholder values v;, which indicate the values of
the placeholder variables in the original problem. Overall, we prompt the synthesizer M to abstarct a
mathematical problem d; = (g;, r;, a;) into a natural language algorithm ;.

For each algorithm ¥, the synthesizer M programs a code function f; by Python, where the
parameters are the placeholder variables, and the return value is the final result of the algorithm.
Furthermore, to ensure the correctness of the algorithm and function, we propose a verification
mechanism, using the original problem d; = (g;, ;, a;) as a test case, inputting placeholder values v;
into the function f;, obtaining the function’s return value and comparing it with the original answer
a;, to filter out incorrect functions. If verification fails, we regenerate the algorithm for the problem,
repeating until the algorithm passes the verification or reaches the maximum number of iterations I.

2.2 Stage2: Algorithm Contextualization

Contextualization aims to transform abstract natural language algorithms into specific mathematical
problems. For any given algorithm ¥; = (o;, p;, vi, ¢;) and the corresponding code function f;, first,
the synthesizer generates K possible values of placeholder variable based on the algorithm, denote

as pv],j = 1,..., K, which assigning specific mathematical objects that comply with the algorithm’s
constraints, which can also be referred to as a context. With the algorithm and placeholder variables

in place, the synthesizer generates specific mathematical question ¢/, corresponding rationale r;, and
final answer a? for the algorithm ¥; in the current context pv7.

Unlike traditional synthesis algorithms that lack verification, here we can input the placeholder
variable values puv! into the code function f; and execute it by code interpreter C, filtering out

incorrect synthesized data by checking whether the execution result gf matches the final answer ag
given by the synthesizer through algorithm contextualization. By generating numerous contexts, an
algorithm can be contextualized into many mathematical instruction-tuning data points.

3 Experimental Results

3.1 Experiments Setting

Data We use the training set from MATH [12] and a small subset of MAmmoTH2 [31]] including
about 30,000 data points as seed data. subset includes approximately 30,000 data points. Data
synthesis is conducted using Mixtral-8 x 7B-Instruct and Llama3-70B-Instruct, resulting in the AIC-
M and AIC-L datasets, respectively. Further details about the data are provided in Appendix [A]

Training We follow a standard supervised fine-tuning approach to train several models, including
Mistral-7B-Base [14], Llama3-8B-Base, Mixtral-8 x 7B-Instruct [15], and Llama3-70B-Instruct.

Evaluation We evaluate the effectiveness of our method using five high-difficulty mathemat-
ical benchmarks, including the in-domain benchmark MATH and out-of-domain benchmarks
GaoKaoBench-Math [32], MathOdyssey [8]], OlympiadBench-Math [11], and TheoremQA [5]].

More detailed information on the experimental settings is provided in Appendix [B]

3.2 Effetiveness of Synthesized Data

Table 1: Mixtral-AIC and Llama3-70B-AIC refer to models trained using AIC-M on Mixtral-8 x 7B-
Instruct and AIC-L on Llama3-70B-Instruct, respectively. On the other hand, Mixtral-Seed and
Llama3-70B-Seed are models trained with the seed data on corresponding models.

Model MATH GaoKao Odyssey Olypaid TheoremQA Avg
Mixtral-8 x 7B-Instruct
Mixtral-Seed 27.6 16.9 8.7 6.8 12.8 14.6
Mixtral-AIC 354 19.0 12.6 9.9 13.8 18.1
Llama3-70B-Instruct
Llama3-70B-Seed 39.2 22.0 9.5 10.5 15.0 19.2
Llama3-70B-AIC 48.7 30.5 14.4 15.1 18.3 25.4

We separately fine-tune Mixtral-8 x 7B-Instruct and Llama3-70B-Instruct using data synthesized by
Mixtral-87B-Instruct (AIC-M) and Llama3-70B-Instruct (AIC-L) to evaluate whether the synthesized
data can enhance the performance of the models. Since the data synthesis process involves both large
language models (LLMs) and seed data, we compared the performance of models trained with both
synthesized and seed data. As shown in Table [I] training with the synthesized data significantly
outperforms training with the original seed data, demonstrating the effectiveness of our approach.

3.3 Comparison with other model

Table 2: Comparison of different models testing accuracy on mathematical benchmarks.

Model Synthesis Model MATH GaoKao Odyssey Olypaid TheoremQA Avg
Mistral-7B-WizardMATH GPT4 323 - - - - -
Mistral-7B-MetaMATH GPT3.5 27.7 14.9 5.9 6.5 6.0 13.1
Mistral-7B-MMIQC GPT4 31.5 17.9 7.2 6.8 9.2 14.5
Mistral-7B-MathScale GPT4 35.2 - - - - -
Mistral-7B-AIC Llama3 36.4 20.8 8.7 11.1 12.5 17.9
Llama3-8B-MetaMATH GPT4 315 14.7 6.4 6.8 10.2 13.9
Llama3-8B-MAmmoTH2 GPT4 35.8 - - - -
Llama3-8B-MMIQC GPT4 375 15.3 11.3 6.9 9.7 16.1
Llama3-8B-AIC Llama3 39.0 20.6 10895 88 11.6 18.1

In this section, we train two base models Mistral-7B-Base and Llama3-8B-Base using AIC-L and
compare them with other models, including WizardMath, MetaMath, MMIQC, MathScale, and
MAmmoTH2. Additional details about baselines are provided in Appendix [B.3]

Table [2]presents the performance of our method compared to other data synthesis approaches across
various high-difficulty math benchmarks. Among models based on Mistral-7B-Base, Mistral-7B-

AIC demonstrated an average improvement of 3.4%. For models derived from Llama3-8B-Base,
Llama3-8B-AIC showed an improvement of 2.0%. Additionally, while most competing models utilize
closed-source advanced models (e.g., GPT-3.5, GPT-4) for data synthesis, our approach leverages the
open-source model, further underscoring the effectiveness of our method.

3.4 Fair Comparison with Other Methods

—«— MMIQC Xwin-Math —e— NumReplace —a— RFT —e— Ours
Llama3-8B-Base 34 DeepSeekMath-7B-Base 2 Mistral-7B-Base

22 20
- 33
E 21 19

32

520 18
o
e 31 17
3 19
£ 2 16

18 15

17 29 14

0 +7.5k +15k +30k 0 +7.5k +15k +30k 0 +7.5k +15k +30k

Figure 3: Fair comparison with other methods.

Given the variation in both the models used for data synthesis and the scale of data synthesis across
the comparison objects in Section[3.3] these differences do not accurately represent the strengths and
weaknesses of the synthesis methods. To address this, we standardize both the data synthesis models
and the scale of data synthesis in this section, allowing for a more comprehensive evaluation of the
methods. We chose MATH as the seed data and conducted all evaluations on MATH. The methods
compared include NumReplace, MMIQC, and Xwin-MATH, as introduced in Appendix [B.3] We
trained models on various data scales to thoroughly assess the effectiveness of the synthesis methods.

The results in Figure [3]show that our method outperforms the baselines at any scale. We believe this
is because, when generating more difficult problems, methods without a verification mechanism often
lead to errors in the synthesized data, thereby reducing its quality.

3.5 Effectiveness of Verification

We investigate the verification mechanism’s effectiveness
by comparing two equal-sized datasets: one before and Typle 3: Ablation Study on the verifica-
one after its application. For simplicity, this experiment tjon mechanism.

uses only MATH as the seed data and test set.

The results in Table 3] demonstrate that the verification Verification Samples MATH

mechanism enhances model performance. This improve- Llama3-8B-Base

ment stems from the fact that the final answers generated 34k 21.2
by the code are generally correct, and filtering the rationale X 34k 20.1
based on these answers improves the logical and compu- Mistral-7B-Base
tational accuracy of the data, thereby enhancing its overall 34k 18.8
quality. These findings highlight the importance of veri- X 34k 17.8

fying the correctness of synthesized data.

4 Conclusion

The paper proposes a mathematical synthesis approach generating diverse, verified synthetic data
through algorithmic abstraction and contextualization, offering a scalable solution for enhancing
LLM mathematical capability.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] A.Bauer, S. Trapp, M. Stenger, R. Leppich, S. Kounev, M. Leznik, K. Chard, and I. Foster. Com-
prehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524,
2024.

[3] T.B. Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[5] W. Chen, M. Yin, M. Ku, P. Lu, Y. Wan, X. Ma, J. Xu, X. Wang, and T. Xia. Theoremqa: A
theorem-driven question answering dataset. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

[6] E. Chern, H. Zou, X. Li, J. Hu, K. Feng, J. Li, and P. Liu. Generative ai for math: Abel.
https://github.com/GAIR-NLP/abel, 2023.

[7] A.Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[8] M. Fang, X. Wan, F. Lu, F. Xing, and K. Zou. Mathodyssey: Benchmarking mathematical
problem-solving skills in large language models using odyssey math data. arXiv preprint
arXiv:2406.18321, 2024.

[9] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[10] Z. Gou, Z. Shao, Y. Gong, Y. Yang, M. Huang, N. Duan, W. Chen, et al. Tora: A tool-integrated
reasoning agent for mathematical problem solving. arXiv preprint arXiv:2309.17452, 2023.

[11] C. He, R. Luo, Y. Bai, S. Hu, Z. L. Thai, J. Shen, J. Hu, X. Han, Y. Huang, Y. Zhang, J. Liu,
L. Qi, Z. Liu, and M. Sun. Olympiadbench: A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific problems, 2024.

[12] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

[13] Y. Huang, X. Liu, Y. Gong, Z. Gou, Y. Shen, N. Duan, and W. Chen. Key-point-driven data
synthesis with its enhancement on mathematical reasoning. arXiv preprint arXiv:2403.02333,
2024.

[14] A.Q.Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. 1. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[15] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. L.
Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088,
2024.

[16] C.Li, W. Wang, J. Hu, Y. Wei, N. Zheng, H. Hu, Z. Zhang, and H. Peng. Common 7b language
models already possess strong math capabilities. arXiv preprint arXiv:2403.04706, 2024.

[17] H. Liu and A. C.-C. Yao. Augmenting math word problems via iterative question composing.
arXiv preprint arXiv:2401.09003, 2024.

[18] R. Liu, J. Wei, F. Liu, C. Si, Y. Zhang, J. Rao, S. Zheng, D. Peng, D. Yang, D. Zhou, et al.
Best practices and lessons learned on synthetic data for language models. arXiv preprint
arXiv:2404.07503, 2024.

https://github.com/GAIR-NLP/abel

[19] H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng, Q. Lin, S. Chen, and D. Zhang.
Wizardmath: Empowering mathematical reasoning for large language models via reinforced
evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

[20] A. Mitra, H. Khanpour, C. Rosset, and A. Awadallah. Orca-math: Unlocking the potential of
slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

[21] Z. Tang, X. Zhang, B. Wan, and F. Wei. Mathscale: Scaling instruction tuning for mathematical
reasoning. arXiv preprint arXiv:2403.02884, 2024.

[22] Y. Tong, X. Zhang, R. Wang, R. Wu, and J. He. Dart-math: Difficulty-aware rejection tuning
for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

[23] S. Toshniwal, I. Moshkov, S. Narenthiran, D. Gitman, F. Jia, and I. Gitman. Openmathinstruct-1:
A 1.8 million math instruction tuning dataset. arXiv preprint arXiv:2402.10176, 2024.

[24] B. Van Breugel, Z. Qian, and M. Van Der Schaar. Synthetic data, real errors: how (not) to
publish and use synthetic data. In International Conference on Machine Learning, pages

34793-34808. PMLR, 2023.

[25] P. Villalobos, J. Sevilla, L. Heim, T. Besiroglu, M. Hobbhahn, and A. Ho. Will we run out
of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325, 2022.

[26] K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song, M. Zhan, and H. Li.
Mathcoder: Seamless code integration in llms for enhanced mathematical reasoning. arXiv
preprint arXiv:2310.03731, 2023.

[27] Z. Xu, F. Jiang, L. Niu, Y. Deng, R. Poovendran, Y. Choi, and B. Y. Lin. Magpie: Align-
ment data synthesis from scratch by prompting aligned llms with nothing. arXiv preprint
arXiv:2406.08464, 2024.

[28] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu.
Metamath: Bootstrap your own mathematical questions for large language models. arXiv
preprint arXiv:2309.12284, 2023.

[29] A. Yuan, A. Coenen, E. Reif, and D. Ippolito. Wordcraft: story writing with large language
models. In Proceedings of the 27th International Conference on Intelligent User Interfaces,
pages 841-852, 2022.

[30] Z. Yuan, H. Yuan, C. Li, G. Dong, K. Lu, C. Tan, C. Zhou, and J. Zhou. Scaling relationship on
learning mathematical reasoning with large language models. arXiv preprint arXiv:2308.01825,
2023.

[31] X. Yue, T. Zheng, G. Zhang, and W. Chen. Mammoth2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548, 2024.

[32] X. Zhang, C. Li, Y. Zong, Z. Ying, L. He, and X. Qiu. Evaluating the performance of large
language models on gaokao benchmark. arXiv preprint arXiv:2305.12474, 2023.

Appendix

A Data

A.1 Seed Data

We use the MATH training set and a small subset of MAmmoTH?2 as the seed data for data synthesis.
The MATH dataset consists of competition-level math problems, covering a wide range of topics
such as algebra, geometry, probability, number theory, and more. MAmmoTH2, on the other hand, is
an instruction-tuned dataset created by retrieving, cleaning, and rewriting mathematical content from
the internet, containing a large number of math problems.

The MATH training set contains 7,500 problems, and we selected all of them as seed data. MAm-
moTH?2 consists of 10 million entries, of which 2 million have been open-sourced. From this, we
selected 30,000 high-quality examples to be used as seed data. We applied LLMs to filter the data,
prioritizing high quality and the presence of correct answers, and included these filtered examples in
the seed data.

A.2 Synthesized Data

We used two models, Llama3-70B-Instruct and Mixtral-8 x 7B-Instruct, to synthesize the data. The
total amount of data, as well as the data from each type of seed data, is shown in Table E[

Table 4: The statistics of synthesized data.

Synthesis Model Total MATH MAmmoTH2-Subset
Llama3-70B-Instruct 1670k 970k 700k
Mixtral-8 x 7B-Instruct 1350k 700k 650k

B Experiments Setting

B.1 Training

When performing standard supervised fine-tuning, we used the template shown in Figure] whether
fine-tuning the Base model or the Instruct model. This is because we found that using the native
Instruct template or the new template made almost no difference in model performance after training.

Figure 4: Template for supervised fine-tuning.

Training Template

Question: {Question }

Answer: Let’s think Step by Step.
{Rationale }

{Final Answer}

For all models, we applied full-parameter fine-tuning using the Adam optimizer, with a warmup ratio
set to 0.1 and the learning rate scheduler set to a cosine scheduler. The values for the number of
epochs, learning rate, and batch size vary depending on the model and are shown in Table 3]

B.2 Benchmarks

We selected five high-difficulty benchmarks, which include the MATH test set, GaoKao-MATH,
OlympiadBench-MATH, MathOdyssey, and TheoremQA.

Table 5: The statistics of synthesized data.

Model Batch size Epoch Learning Rate
Mistral-7B-Base 128 3 2e-6
Llama3-8B-Base 128 1 le-5
Mixtral-8 x 7B-Instruct 128 3 le-5
Llama3-70B-Instruct 128 1 le-5

* The MATH test set is distributed similarly to the MATH training set, featuring high difficulty
and wide coverage.

* GaoKao-MATH contains 5000 pieces of math problems from China’s Gaokao (college
entrance examination).

» MathOdyssey consists of 387 pieces of professional math problems from both university and
high school levels, serving as the problem set for the 2024 Global AI Competition (GAIC)
math contest.

* OlympiadBench-MATH consists of 675 pieces of Olympiad-level math competition prob-
lems. We selected only the pure text-based math problems from OlympiadBench.

* TheoremQA includes 800 problems from various fields such as mathematics, physics, and
economics, which require domain-specific theorems to solve.

B.3 Baselines

Our comparisons focus on various methods for synthesizing mathematical instruction-tuning data
and the corresponding models, including WizardMATH, MetaMATH, MMIQC, MAmmoTH?2,
MATHScale, and Xwin-MATH.

* WizardMATH enhances existing data using the Eval-Instruct method, which includes in-
creasing and decreasing the difficulty. Additionally, WizardMATH employs reinforcement
learning to further improve model performance.

* MetaMATH introduces methods for rephrasing questions and backward reasoning to expand
the existing data.

« MMIQC iterates on existing questions to increase their complexity, generating new and
more challenging questions.

e MAmmoTH?2 retrieves, cleans, and rewrites mathematical content from the internet to create
instructional question data.

* MATHScale extracts knowledge points from existing data and uses these points as seed
information for large-scale data synthesis.

* Xwin-MATH directly requires the LLM to generate a completely new math problem based
on an existing one.

Since MetaMATH and MMIQC have open-sourced their data, the experimental results for MetaMATH
and MMIQC were obtained from our own training and testing. For MMIQC, we used only the
synthetic data for training and did not use StackExchange data. For WizardMATH, MAmmoTH2,
MATHScale, and Xwin-MATH, since the data was not open-sourced, we compared our results
directly with those reported in the corresponding papers.

B.4 Evaluation
In evaluation, we use greedy decoding and apply the same template as used in training. We evaluate

using exact match criteria, where only results that are either exactly the same as the correct answer or
meet certain rules for matching the correct answer are considered correct.

C Synthesized Examples

We provide an example of synthesized new problem, along with its original mathmatical problem,
natural language algorithm and code function.

Original Mathematical Problem

Question:
A printer prints 17 pages per minute. How many minutes will it take to print 200 pages?
Express your answer to the nearest whole number.

Solution:
200 pages minutes.

17 pages per minute

Final Answer:
12

Natural Language Algorithm

Algorithm Objective

Given:

- A printer prints p pages per minute.

- The desired number of pages to be printed is n.

Find:

- Approximate number of minutes needed to print | n | pages.

Algorithm Process
1. **Calculate the Number of Minutes Needed:**

Total number of pages
Number of minutes = Pag

Pages per minute

. n
Number of minutes = —
p

Placeholder Variables:
{"p": 17, "n": 200}

Constraints:
None 12

Code Function

def print_time(p, n):
minutes = round(n / p)
return minutes

Synthesized New Problem

Question:
A printer produces 24 pages per minute. How many minutes will it take to print 240 pages?
Round your answer to the nearest whole number.

Solution:
240/24=10. So it will take 10 minute to print 240 pages.

Final Answer:
10

D Compute Resources

For algorithm abstraction and implementation, the required GPU time depends on the maximum
number of iterations. When the iteration count is set to 50, it requires about 20 hours of runtime
on 8*A100 machines. For contextualization, it depends on the number of generated problems. To
generate 100,000 problems, it takes approximately 20 hours on 8*A100 machines.

10

E Limitations and Future Work

Our method is limited to mathematical data synthesis and needs to be further extended to other types
of inference data. Additionally, our method lacks diversity in problem generation, which requires
defining more meta-level algorithms and proposing corresponding algorithm abstraction methods and
validation mechanisms to improve the diversity of both algorithms and generated problems.

11

	Introduction
	Methods
	Stage1: Algorithm Abstraction and Implementation
	Stage2: Algorithm Contextualization

	Experimental Results
	Experiments Setting
	Effetiveness of Synthesized Data
	Comparison with other model
	Fair Comparison with Other Methods
	Effectiveness of Verification

	Conclusion
	Data
	Seed Data
	Synthesized Data

	Experiments Setting
	Training
	Benchmarks
	Baselines
	Evaluation

	Synthesized Examples
	Compute Resources
	Limitations and Future Work

