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Abstract

Deep multi-view clustering (DMVC) has emerged as a promising paradigm for
integrating information from multiple views by leveraging the representation power
of deep neural networks. However, most existing DMVC methods primarily focus
on modeling pairwise relationships between samples, while neglecting higher-
order structural dependencies among multiple samples, which may hinder further
improvements in clustering performance. To address this limitation, we propose
a hypergraph neural network (HGNN)-driven multi-view clustering framework,
termed Hypergraph-enhanced cOntrastive learning with hyPEr-Laplacian reg-
ulaRization (HOPER), a novel model that jointly captures high-order correlations
and preserves local manifold structures across views. Specifically, we first construct
view-specific hypergraph structures and employ the HGNN to learn node represen-
tations, thereby capturing high-order relationships among samples. Furthermore,
we design a hypergraph-driven dual contrastive learning mechanism that integrates
inter-view contrastive learning with intra-hyperedge contrastive learning, promot-
ing cross-view consistency while maintaining discriminability within hyperedges.
Finally, a hyper-Laplacian manifold regularization is introduced to preserve the
local geometric structure within each view, thereby enhancing the structural fidelity
and discriminative power of the learned representations. Extensive experiments on
diverse datasets demonstrate the effectiveness of our approach.

1 Introduction

Multi-view data, collected from diverse sources or extracted via multiple feature extractors, contain
both consensus and complementary information. As such data become increasingly prevalent in
real-world applications, multi-view learning has emerged as a fundamental paradigm in machine
learning for enhancing downstream performance by leveraging cross-view correlations [1H6]. Among
its various tasks, multi-view clustering (MVC) plays a pivotal role in unsupervised learning by
partitioning samples into meaningful groups without label supervision, thereby facilitating effective
data analysis and organization [7H10]] .

With the advance of deep representation learning, a variety of deep multi-view clustering (DMVC)
methods have emerged, which can be broadly categorized into two main paradigms: representation
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learning-based and graph learning-based approaches [11]. The former typically leverages self-
supervised learning frameworks to extract informative and discriminative latent representations
directly from raw input features [12H14]]. For instance, Wu et al. [[15] employed view-specific
deep autoencoders to extract embedded features and applied self-weighted contrastive fusion to
learn robust global features. Cui et al. [16] enhanced information consistency across views and
reduced redundancy by maximizing the lower bound of sufficient representation. Although deep
representation learning methods have achieved significant success, they often struggle to explicitly
model the complex relationships between samples, particularly those arising from intricate data
structures. To address this limitation, deep graph learning methods have gained attention by using
a shared graph neural network (GNN) encoder and projection head to represent each view as a
graph, enabling unified cross-view representation learning in a common latent space [17419]. For
example, Xia et al. [20] employed graph convolutional networks (GCN5s) to learn modality-specific
representations, and introduced contrastive losses to encourage discriminative and clustering-friendly
alignment across modalities. Similarly, Du et al. [21] utilized multiple GCNs with shared weights
to extract view-specific representations, and incorporated a clustering embedding layer to jointly
optimize representation learning and clustering performance. In addition, Dong et al. [22]] performed
contrastive learning at the graph structure level under the guidance of a consensus graph, thereby
capturing the underlying structural information of the data.

Despite the performance improvements achieved by deep multi-view clustering (DMVC) methods
through modeling pairwise relationships among samples, several critical limitations remain to be
addressed. First, most existing DMVC methods primarily focus on modeling pairwise correlations
between samples, while overlooking high-order and complex interactions among data points. This
simplification significantly limits their ability to capture rich structural priors that are critical for
effective clustering. Second, many contrastive learning-based DMVC approaches suffer from the
false negative problem, where semantically similar samples from different views are incorrectly
treated as negatives. This misidentification undermines the discriminative power of the learned
representations. Third, these methods often lack explicit constraints to preserve high-order local
geometric structures in the latent space, which are essential for maintaining topological consistency
and enhancing the robustness of clustering.

To address the limitations of existing deep multi-view clustering methods, we propose a hypergraph-
enhanced contrastive learning approach with hyper-Laplacian regularization. Specifically, for each
view, we construct a hypergraph based on the sample features. This hypergraph structure, along with
the corresponding features, is then input into a hypergraph neural network with shared weights to
learn view-specific node representations, capturing high-order correlations among the data. Subse-
quently, a hypergraph-induced dual contrastive learning mechanism is employed to regularize the
node representations: the inter-view contrastive loss regularization enhances consistency across views,
while the intra-view contrastive loss regularization helps mitigate the false negative issue, promoting
more discriminative representation learning. Finally, we introduce a hyper-Laplacian manifold regu-
larization term to preserve the view-specific high-order local geometric structure, further enhancing
the discriminative power of the node representations. In summary, the contributions of the proposed
framework are as follows:

* We introduce a hypergraph neural network (HGNN)-based representation learning frame-
work for multi-view clustering, which captures high-order data correlations by leveraging a
hypergraph structure and a shared-weight HGNN.

* We propose a hypergraph-enhanced dual contrastive learning mechanism, which consists
of an inter-view contrastive loss to reinforce consistency across different views and a intra-
hyperedge contrastive loss to enhance the discriminability of individual samples within each
hyperedge.

* We incorporate hyper-Laplacian manifold regularization to preserve view-specific higher-
order local geometric structures, thereby further enhancing the robustness and effectiveness
of representation learning.

» Experimental results demonstrate the superiority of our approach, highlighting its effective-
ness in capturing high-order correlations and improving clustering performance compared
to existing methods.



2 Related work

2.1 Hypergraph neural network

A hypergraph G = (V, £) is a generalized graph structure capable of modeling high-order relation-
ships, where ) denotes the set of vertices and £ denotes the set of hyperedges. The hyperedges can
be represented using an incidence matrix H € {0, 1}/VI*I€| where each entry h(v, e) equals 1 if
vertex v belongs to hyperedge e, and 0 otherwise. Each hyperedge is associated with a non-negative
weight, which can be encoded in a diagonal matrix W € RI€I*I€] with diagonal elements w(e). The
degree of a vertex and a hyperedge are defined as:

d(v) - Zw(@)h(l}, 6), d(e) = Z h(U, 6)7 (D

eef veEY
which can be organized into diagonal matrices D,, and D, respectively.

Based on these definitions, the normalized hypergraph Laplacian matrix is formulated as:
Ly =D,-HWD_'H' )

Owing to the expressive power of hypergraph structures in modeling high-order relationships, hy-
pergraph neural networks (HGNNs) have attracted increasing attention in recent years. The general
HGNN framework typically consists of two key components: hypergraph construction and hypergraph
convolution [23]]. According to whether hyperedge construction is performed explicitly or implic-
itly, hypergraph construction methods can be broadly categorized into four types: distance-based,
representation-based, attribute-based, and network-based approaches [24]. Hypergraph convolutions
can be further classified into spatial and spectral methods, depending on how the convolutional opera-
tors are defined [25]. Recently, hypergraph-based models have demonstrated impressive performance
in clustering tasks. For instance, [20] and [27] leverage hypergraphs to effectively capture attribute
information and high-order structural dependencies, achieving strong results in single-view node
classification and clustering. However, most existing approaches are tailored to single-view settings,
and relatively limited attention has been paid to exploring hypergraph learning in the context of
multi-view clustering.

2.2 Multi-view contrastive clustering

In the domain of multi-view clustering, contrastive learning demonstrated strong potential in promot-
ing cross-view alignment [28433]]. For instance, Trosten et al. [34] enhanced multi-view clustering
by aligning representations at the instance level. Similarly, Xu et al. [35] introduced contrastive
learning at multiple feature levels, including high-level semantic consistency and cluster-level con-
sistency across views. Their approach effectively mitigated the negative impact of view-specific
inconsistencies in low-level features, resulting in more stable representation alignment. Pan and
Kang [36] proposed a method that first obtains a smooth node representation through graph filtering
and then learns a robust consensus graph guided by graph contrastive loss for clustering. Xu et
al. [37]] introduced a self-supervised framework that utilizes global pseudo-labels to help different
views collaboratively learn discriminative features, improving both the consistency and robustness of
multi-view clustering. In addition, Zhang et al. [38]] leveraged contrastive learning to align generated
and real views by applying diffusion and reverse denoising processes to intra-view data, enabling the
model to capture distributional consistency and improve clustering performance.

3 Method

In this section, we introduce the proposed HOPER model. We first provide an overview of the
HOPER framework, then describe the latent representation learning based on hypergraph neural net-
works, the hypergraph-enhanced dual contrastive learning mechanism, and the hypergraph Laplacian
regularization. Lastly, we present the unified loss function that integrates all these components.

3.1 Framework outline

Given a multi-view dataset {XV € RV*DPv1M  with N samples and M views, where X* denotes

the raw input of the v-th view, the goal of multi-view clustering is to partition the data into K clusters.
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Figure 1: Illustration of the HOPER model. Given a multi-view dataset {X"V}£,, we first learn latent
representations and build view-specific hypergraphs. These are fed into a shared HGNN to generate
embeddings. Then, a dual contrastive learning mechanism enhances consistency and discrimination.

Finally, hyper-Laplacian regularization preserves the local geometric structure.

The overall framework of the proposed HOPER model is illustrated in Figure[I] Specifically, for each
view, we first employ an autoencoder to project the raw features into a latent space and then construct
a corresponding hypergraph structure based on the latent representations. The sample features and
the corresponding hypergraph structure are then fed into a hypergraph neural network (HGNN)
with shared parameters to learn node representations. Subsequently, a hypergraph-enhanced dual
contrastive learning strategy is applied to the embeddings to improve both cross-view consistency
and sample-level discriminability. Finally, a hyper-Laplacian regularization term is introduced to
automatically preserve the local high-order geometric structure of each view in the embedding space.

3.2 Hypergraph construction and HGNN-based representation learning

To effectively model high-order correlations among data instances, we first construct view-specific
hypergraph structures. Considering that raw multi-view data may contain noise and redundant
information, directly constructing hyperedges based on the original features can degrade the quality
of the hypergraphs. To address this issue, instead of relying on raw input features, we adopt an
autoencoder to project the original data X" into a compact latent space. Specifically, the autoencoder
comprises an encoder Z* = f(X";0") and a decoder X = g(Z"; ¢"), where ¥ and ¢V are trainable
parameters. The model is trained to minimize the reconstruction loss, as defined in Eq. (3).

M
Lr=) |X"-X"|3 3)

v=1

After training, compact latent embeddings Z" are obtained from the encoder module. Subsequently,
multi-view hypergraph structures are constructed by applying a k-nearest neighbors strategy to these
latent embeddings, where k is a predefined parameter specifying the number of neighbors to select.
Specifically, for each view, we compute the pairwise Euclidean distances between all samples to
capture local geometric relationships. For each sample, we identify its top-k nearest neighbors and
construct a hyperedge connecting the sample with its neighbors. This process generates a collection
of hyperedges that encode high-order relationships beyond simple pairwise connections, represented
by the incidence matrix H". Finally, the hypergraph for the v-th view is obtained, denoted as
Gv = (V?, EY), with feature matrix Z?, and incidence matrix H".



To further enhance the discriminative capability of latent representations by leveraging high-order
relationships among samples, we incorporate a hypergraph neural network (HGNN) into our frame-
work to learn more expressive node embeddings. Specifically, we adopt a two-layer HGNN module
composed of stacked hypergraph convolution layers for node representation learning. Following [23]],
a hyperedge convolutional layer is formulated as:

-1 —1yqT
Zj = (Dv HWDe H P;)—l(_:)l)v (4)
where o denotes the nonlinear activation function, ©; denotes the learnable parameter, P} is the node

representation at [ layer, P§j = Z". Notably, the HGNN network of different views share parameters
in order to better align the learned representations across views.

3.3 Hypergraph-enhanced dual contrastive learning

Multi-view data provide complementary perspectives of the same underlying object, and typically
exhibit semantic consistency across views. This cross-view consistency can be effectively exploited
through contrastive learning. However, existing multi-view contrastive learning methods focus on
aligning paired samples across views, treating them as positives while largely ignoring intra-view
structural characteristics. Specifically, in each view, samples connected by the same hyperedge in the
underlying hypergraph often interact through a message passing scheme, which can induce an over-
smoothing effect—making originally distinguishable samples overly similar in representation space.
While such samples may share local semantic information, they should still remain discriminative
to preserve meaningful structural distinctions. The failure to account for this nuance limits the
expressiveness of the learned representations, ultimately hindering clustering performance.

To address this limitation, we propose a hypergraph-enhanced dual contrastive learning mecha-
nism, which jointly performs inter-view and intra-view contrastive learning. Specifically, inter-view
contrastive learning aligns representations across views by encouraging cross-view consistency,
while the intra-view contrastive learning leverages hyperedge structural information to enhance the
discriminability among samples within each view.

Inter-view contrastive loss: This loss function is typically designed to compare node representations

learned from different views, aiming to maintain consistency across views. Let P” denote the node

features, i.e., the output of the projection head for node representations. Specifically, representations

of the same instance across different views are treated as positive pairs, while all other instances are

regarded as negative pairs. The inter-view contrastive 10ss L;, ¢ is defined as:
exp (s(py, B;")/7)

N - - )
Zj:l Zmy&u €xp (S(Pf, PT)/T)
where 7 denotes the temperature parameter, s(-) denotes the similarity function which is implemented
as cosine similarity.

Ez’nter(f)g) = - log (5)

Intra-view contrastive loss: Due to the strong connectivity introduced by hyperedges, the message
passing mechanism in HGNN may lead to an over-smoothing issue, where node representations
tend to become indistinguishable—especially for nodes connected by the same hyperedge—thus
undermining their discriminative power [39]. To mitigate this, we introduce an intra-view contrastive
learning strategy that enhances the distinctiveness of individual samples. Specifically, each node is
treated as a positive pair with itself, while other nodes within the same hyperedge are considered
negative samples. The intra-view contrastive loss L;,+.q is formulated as

- exp (s(p?,py)/T
Conma(BY) = — log (B, BE)/T)___
ZjeN;) €xp (5(pi s pj)/T)
where /Y denotes the set of neighbors which are in the same hyperedges as node 7 in v-th view. In
our experiments, the temperature parameters in Equation (3)) and Equation (6)) are shared optimized.

6)

By integrating the aforementioned dual contrastive learning strategy, the model not only enforces
global alignment across views but also enhances local discriminability within each view, thereby
yielding more robust and semantically meaningful representations.

3.4 Hyper-Laplacian regularization

To better preserve the intrinsic local structure of the data, we incorporate a hypergraph Laplacian
regularization term into our model. By leveraging the hypergraph Laplacian, this regularizer embeds



Algorithm 1 Hypergraph-enhanced Multi-view Representation Learning

Input: Multi-view raw features {X"}*,, number of clusters K

Qutput: Cluster assignments via k-means on unified representations
Pretraining:
for each view v = 1 to M do

Pretrain the view-specific autoencoder by optimizing Eq.(3)
end for
Feature Encoding:
Obtain node features {Z"}} | from encoder networks
Hypergraph Construction:
Construct view-specific hypergraphs via k-NN strategy on Z"
Joint Optimization:
for t = 1to 1.« do

Update the shared hypergraph encoder and projection head by optimizing Eq.(8)
: end for
: Fusion:
: Compute unified representations using Eq.(9)
: Clustering:
. Apply k-means to obtain final clustering results
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the manifold assumption into the learning process—that is, if multiple data points are close in
the intrinsic geometry of the data space, their representations in the latent space should also be
similar. This mechanism promotes smoothness of the learned representations over the hypergraph,
thereby enhancing the model’s ability to capture higher-order structural information and improving
its generalization performance on downstream tasks. The mathematical expression is as follows:

M
Lreg =Y tr(P"Ly(P")7), (7)

v=1

where L} is hyper-graph Laplacian matrix of the v-th view. By introducing this hyper-Laplacian
regularization, our model gains the ability to exploit richer structural information beyond simple
pairwise constraints, leading to improved representation quality and better generalization performance
across downstream tasks.

3.5 The overall loss function

By integrating the intra-view and inter-view contrastive loss, and the hypergraph Laplacian regular-
ization, the overall loss function of the proposed HOPER model is formulated as follows:

L= Linter + Alﬁintra + AQACT’eg (8)

Overall, the optimization of our method consists of two stages: initialization and fine-tuning. During
the initialization stage, we first pretrain a view-specific autoencoder for each view by minimizing the
reconstruction loss, as defined in Eq.(3). Once pretraining is completed, we construct a hypergraph
structure for each view based on the learned latent representations. In the fine-tuning stage, the
entire network is trained by optimizing the objective function given in Eq.(8). After optimization, the
learned node embeddings from all views are concatenated to form the unified representation P:

M
N dy
P=[P,P% .., PYcR Xz , )

where d,, denotes the dimension of P" Finally, the unified representation P is used as input to the
k-means algorithm to produce the clustering results. The whole learning process is summarized in
Algorithm 1]

3.6 Comparison with Previous Studies

Although recent studies have explored Hypergraph Contrastive Learning (HCL) [40-44] and Hyper-
Laplacian Regularization [45-551], our approach differs fundamentally from these existing methods.



First, regarding application scenarios, existing HCL methods [40-42]] generally treat multi-view data
as augmented variants of a single view, whereas our framework defines multi-view data as heteroge-
neous feature sets extracted from the same instance, capturing genuinely distinct and complementary
perspectives. Second, the learning objectives differ significantly: [40-42] primarily target node
classification, while [43]] focuses on recommendation tasks. In contrast, our model is specifically
designed for unsupervised multi-view clustering, aiming to discover shared semantics and cross-view
consistency without label supervision. Although [44] incorporates HCL into multi-view clustering,
the two methods diverge fundamentally in terms of model design motivation, the perspective for
exploiting multi-view data, and the contrastive learning mechanism. Furthermore, while some studies
have incorporated Hyper-Laplacian Regularization into multi-view clustering [45H52]], most adopt
shallow learning paradigms based on matrix/tensor factorization or graph self-representation, lacking
the representational capacity of deep neural models. In contrast, our approach leverages a deep
learning framework that integrates Hyper-Laplacian Regularization with hypergraph neural networks,
enabling richer feature representations and improved clustering quality.

4 Experiments

This section presents a comprehensive empirical evaluation of the proposed HOPER model, en-
compassing experimental settings, performance comparisons, parameter sensitivity analysis, feature
visualizations, and ablation studies.

4.1 Experimental settings

Datasets: To comprehensively evaluate the ef-
fectiveness of the proposed HOPER framework, Table 1: Statistics of six benchmark datasets.
we conduct experiments on six publicly avail-

able multi-view datasets. Their statistical details  Dataset #Samples #Views #Clusters

are shown in Table [[] BBCsport contains 544

samples with 2 views, corresponding to five cat-  BBCSport 544 2 S
egories. Synthetic3d is a 3-D dataset containing ~ Synthetic3d 600 3 3
600 samples with 3 views. WebKB contains 203 ~ WebKB 1051 2 2
web pages of 4 categories. Each web page is COIL'Z(_) 1440 3 20
described from 3 views. COIL-20 consists of ~ Handwritten 2000 6 10

Hdigit 10000 2 10

1440 samples with 3 views which belongs to 20

categories. Handwritten contains 2000 samples

of handwritten digits from 0-9, where each sam-

ple is described from 6 views. Hdigit is a digit dataset from MNIST Handwritten Digits and USPS
Handwritten Digits which consists of 10000 samples described by 2 views.

Evaluation metrics: For evaluation, three widely-used metrics, including the clustering Accu-
racy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI) are calculated to
comprehensively compare the performance of various methods.

Comparison methods: We compare our framework with the following state-of-the-art DMVC
algorithms to investigate the effectiveness of our framework, i.e., MFLVC (2022) [35], CVCL
(2023) 53], DealMVC (2023) [54], SEM (2023) [55]], DIVIDE (2024) [56], MAGA (2024) [33].

Implementation details: The proposed framework consists of two main modules: initialization
and fine-tuning. In the initialization module, we utilize a four-layer autoencoder to obtain the
latent embeddings. The number of nearest neighbors of hyperedge construction is tuned over
{5,10,15,20,25,30} on different datasets. In the fine-tuning module, we optimize the hyperpa-
rameters A\; and \;. Based on empirical observations, we perform a grid search over the values
{0.0001,0.001,0.01,0.1,1,5, 10} to select the optimal values for both hyperparameters on multiple
datasets. The best performance is obtained under the combination of A\; = 5 and Ay = 0.0001. These
specific values were then used for all experiments reported in this paper. The training process consists
of 2000 epochs for the autoencoder initialization phase and 200 epochs for the fine-tuning phase.
We employ a cosine learning rate decay to adjust the learning rate dynamically. All experiments are
conducted using the PyTorch framework on an NVIDIA GeForce RTX 3090 GPU.



Table 2: Clustering performance across benchmark datasets.

Dataset Metric  MFLVC CVCL DealMVC SEM DIVIDE MAGA HOPER
ACC  0.7224  0.6211 0.8070 0.6085  0.4467  0.5533  0.9504
BBCSport NMI 05344  0.3645 0.6559 0.3666  0.1507  0.2808  0.8509
ARI 0.5874  0.3137 0.6005 0.2918  0.1091  0.2286 0.8677
ACC 09500 0.9546 0.8033 0.9467 09497  0.9600 0.9717
Syntheticdd NMI  0.8218  0.8158 0.5797 0.8095 0.8083  0.8388 0.8775
ARI 0.8582  0.8689 0.5667 0.8494  0.8553  0.8846 0.9165
ACC  0.7174 0.7181 0.6974 0.9486 0.8325 0.9010 0.9829
WebKB NMI  0.2986  0.2832 0.2474 0.6809 0.1791  0.4201 0.8416
ARI 0.1885  0.7810 0.1552 0.7897 0.2985  0.5986 0.9249
ACC  0.3875 0.6882 0.2299 0.7403  0.6486  0.4569 0.8285
COIL-20 NMI  0.5450 0.7851 0.4783 0.8296 0.7608  0.6317 0.8880
ARI 0.3093  0.7007 0.1735 0.6588 0.5466  0.4151 0.7869
ACC  0.8990 09194 0.8220 0.7645 0.8708  0.9415 0.9685
Handwritten NMI  0.8259  0.8878 0.8163 0.7285  0.8277  0.9083 0.9317
ARI 0.7939  0.8473 0.7367 0.6317 0.8086  0.8854 0.9308
ACC 09882  0.9505 0.9980 09864 09646  0.9954 0.9961
Hdigit NMI 09841  0.8900 0.9934 0.9606 09103  0.9856 0.9876
ARI 0.9882  0.8930 0.9980 09701 09229  0.9898 0.9961

4.2 Performance comparison

Table 2] summarizes the performance of all methods, with the best and second-best results highlighted
in bold and underlined, respectively. The experimental comparison demonstrates that the HOPER
model achieves highly competitive clustering performance compared to existing baseline methods
across all evaluation metrics. For instance, on the COIL-20 dataset, HOPER improves upon the
second-best SEM model by approximately 8.8%, 5.4%, and 12.8% in terms of ACC, NMI, and ARI,
respectively. These results validate that our approach, leveraging hypergraph-enhanced contrastive
learning and hypergraph Laplacian manifold regularization, enhances the discriminability of latent
representations, thereby improving clustering performance. Moreover, although the HOPER model
does not achieve the best result on the Hdigit dataset, its accuracy is nearly 100% and only 0.19%
lower than that of DealMVC, further validating the effectiveness of our approach.

4.3 Parameter sensitivity analysis

In the HOPER model, two hyperparameters, A; and A2, are introduced to balance the contrastive
learning objective and the hyper-Laplacian regularization term. To evaluate the model’s sensitivity, we
conduct a grid search over \; € {1,2,3,4,5} and Ay € {0.0001, 0.0002, 0.0003, 0.0004, 0.0005}.
The clustering results (ACC) on various datasets are reported in Figure[2] On Synthetic3D, WebKB,
and COIL-20 datasets, HOPER demonstrates consistent and stable clustering performance across
the range of parameter values. Some fluctuations are observed on BBCSport, Handwritten, and
Hdigit datasets, which may be attributed to the trade-off between the regularization terms affecting
the discriminative quality of the learned representations. Overall, despite minor variations, HOPER
maintains robust and competitive clustering results within the evaluated hyperparameter ranges.

4.4 Visualization of representation evolution

In this section, we present a qualitative analysis of the proposed HOPER model on the BBCSport
dataset by visualizing the learned representations at different stages of the framework. As shown
in Figure [3| subfigures (a) and (b) illustrate the raw data from two views, X' and X2, while (c)
and (d) show the corresponding latent embeddings Z' and Z? obtained via the autoencoder module.
Compared with the raw inputs, the latent embeddings reveal a clearer clustering structure, suggesting
that the autoencoder effectively denoises the data and captures more compact representations. Subfig-
ures (e) and (f) visualize the node representations P! and P2 refined by the hypergraph contrastive
learning module and the hypergraph Laplacian regularization. These representations exhibit more dis-
criminative and well-separated clusters than their latent counterparts, highlighting the effectiveness of
the proposed hypergraph-based enhancements in capturing high-order and local relational structures



(a) BBCSport

(c) WebKB

(d) COIL-20 (e) Handwritten (f) Hdigit

Figure 2: Hyperparameter sensitivity analysis of the HOPER model on multiple datasets.

within each view. Finally, subfigure (g) depicts the unified representation aggregated from multiple
views. It exhibits the most compact and separable cluster structures among all stages, demonstrating
the ability of HOPER to effectively exploit cross-view complementary information and enhance the
overall representation quality, thereby leading to improved clustering performance.

(a) View 1: X! (b) View 2: X2 (c) View 1: Z! (d) View 2: Z?
o0 o "‘" %
‘ - & ™
Pwie
wle
(e) View 1: P (f) View 2: P2, (g) Unified P.

Figure 3: Visualization of the learned representations at different stages of the HOPER.

4.5 Convergence analysis

In this subsection, we demonstrate the convergence of HOPER across six datasets by reporting the
loss values. As shown in Figure[d] the horizontal axis represents the training epochs and the vertical
axis denotes the loss value. It can be observed that the loss drops rapidly during the first 100 epochs
and then gradually decreases until convergence.



4.6 Ablation studies

As defined in Eq. |8} the overall loss function of HOPER consists of
three components. To investigate the individual contribution of each
term, we conduct ablation studies by systematically removing each

—— BBCSport
Synthetic3d
—— WebKB
— COIL-20
—— Handwritten

—— Hdigit

component and retraining the model under the same experimental set-
tings. Table[3|reports the clustering performance on multiple datasets 4o
under different loss configurations, where a checkmark indicates that 30
the corresponding loss term is included. The experimental results 2
demonstrate that removing any single component from the com-
plete HOPER model consistently leads to performance degradation
across all datasets, with some cases exhibiting significant drops. This
highlights that HOPER effectively integrates inter-view contrastive
learning, intra-view contrastive learning, and hypergraph Laplacian
manifold regularization, which together promote cross-view consistency in sample representations
while preserving inter-sample discriminability, ultimately enhancing clustering performance.

0 100 200

Epochs

Figure 4: Convergence analy-
sis of the HOPER model on
multiple datasets.

Table 3: Ablation study on the effects of individual loss components in HOPER.

Components BBCSport Synthetic3d WebKB
Lintra Linter Lreg | ACC NMI ARI ACC NMI ARI ACC NMI ARI
v v 0.8897 0.7785 0.8076 | 0.9650 0.8624 0.8990 | 0.9686 0.7520 0.8659
v v' 109449 0.8371 0.8529 | 0.9500 0.8117 0.9504 | 0.9724 0.7744 0.8815
v v' | 0.5147 04724 0.2553 | 0.9667 0.8607 0.9027 | 0.9629 0.7151 0.8387
v v v 109504 0.8509 0.8677 | 0.9717 0.8775 0.9165 | 0.9829 0.8416 0.9249
Components COIL-20 Handwritten Hdigit
Lintra  Linter Lreqg | ACC__NMI _ ART | ACC NMI _ ARI | ACC NMI _ ARI
v v 0.7910 0.8740 0.7597 | 0.8285 0.8573 0.7857 | 0.7022 0.8661 0.7173
v v' | 0.7549 0.8781 0.7358 | 0.8695 0.8529 0.7915 | 0.8471 09117 0.8406
v v' | 0.7847 0.8687 0.7496 | 0.8240 0.8814 0.8410 | 0.9268 0.8439 0.6537
v v v | 0.8285 0.8880 0.7869 | 0.9685 0.9317 0.9308 | 0.9961 0.9876 0.9961

5 Conclusion

This paper proposes a novel multi-view clustering framework, HOPER, which integrates hypergraph-
enhanced contrastive learning with hypergraph Laplacian regularization to learn discriminative
feature representations. Specifically, HOPER captures high-order relationships among samples
through hypergraph construction and hypergraph neural networks. To further improve representation
quality, a hypergraph-driven dual contrastive learning mechanism is introduced, comprising inter-view
contrastive learning and intra-hyperedge contrastive learning, which promotes cross-view consistency
while preserving discriminability within hyperedge. In addition, hypergraph Laplacian regularization
is employed to preserve high-order local structural information. Extensive experiments on six
benchmark datasets demonstrate that HOPER achieves highly competitive performance, validating
its effectiveness for discriminative representation learning.

6 Limitations

A potential limitation of our method is its relatively higher computational complexity compared to
traditional graph-based approaches. This is because hypergraphs introduce hyperedges that connect
multiple nodes to capture high-order relationships, leading to more complex operations involving the
incidence and Laplacian matrices than in conventional graphs where edges link only two nodes.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the key contributions and
align well with the paper’s overall scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper acknowledges a limitation of the proposed approach, namely the
higher complexity of hypergraph modeling compared to traditional graphs.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not involve any theoretical results or formal proofs.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details on the experimental setup, datasets,
evaluation metrics, and implementation settings to support reproducibility of the main
results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the appendix, and all datasets used are publicly
available, ensuring reproducibility of the results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details data splits, hyperparameters, and optimizer settings to ensure
clarity and reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We reported the experimental results but did not include error bars or other
information regarding statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides information on the type of computing devices used for the
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully complies with all aspects of the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research is foundational and is not related to specific applications or
practical deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the original papers that produced the code packages or
datasets used.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code is provided in the supplementary material.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this study does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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