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ABSTRACT

CNNs and computational models of biological vision share some fundamental
principles, which, combined with recent developments in deep learning, have
opened up new avenues of research in neuroscience. However, in contrast to bi-
ological models, conventional CNN architectures are based on spatio-temporally
discrete representations, and thus cannot accommodate certain aspects of biolog-
ical complexity such as continuously varying receptive field sizes and temporal
dynamics of neuronal responses. Here we propose deep continuous networks
(DCNs), which combine spatially continuous convolutional filter representations,
with the continuous time framework of neural ODEs. This allows us to learn
the spatial support of the filters during training, as well as model the temporal
evolution of feature maps, linking DCNs closely to biological models. We show
that DCNs are versatile. Experimentally, we demonstrate their applicability to a
standard classification problem, where they allow for parameter reductions and
meta-parametrization. We illustrate the biological plausibility of the scale distri-
butions learned by DCNs and explore their performance in a pattern completion
task, which is inspired by models from computational neuroscience. Finally, we
suggest that the continuous representations learned by DCNs may enable compu-
tationally efficient implementations.

1 INTRODUCTION

Computational neuroscience and computer vision have a long and mutually beneficial history of
cross-pollination of ideas (Sejnowski, 2020; Cox & Dean, 2014). The current state-of-the-art in
computer vision relies heavily on deep neural networks (DNNs), and in particular convolutional
neural networks (CNNs), from which multiple analogies can be drawn to biological circuits (Kiet-
zmann et al., 2018). Specifically, recent advances in DNNs have enabled researchers to learn more
accurate models of the response properties of neurons in the visual cortex (Klindt et al., 2017; Ca-
dena et al., 2019; Ecker et al., 2019), as well as to test decades old hypotheses from neuroscience
in the domain of computer vision (Lindsey et al., 2019). However, contrary to biological models,
CNNs typically operate in the domain of spatio-temporally discrete signals, and employ appropri-
ately discretized kernels, as a natural part of digital image processing.

In computational neuroscience, on the other hand, large scale neural network models of the visual
system often adopt continuous, closed-form expressions to describe spatio-temporal receptive fields,
as well as the interaction strength between populations of neurons (Dayan & Abbott, 2001). Among
others, such descriptions serve to limit the scope and parameter space of a model, by utilizing prior
information regarding receptive field shapes (Jones & Palmer, 1987) and principles of perceptual
grouping (Li, 1998). In addition, the choice of continuous—and often analytic—functions help re-
tain some analytical tractability in complex models involving a large number of coupled populations.
Our approach draws inspiration from such computational models to propose continuous representa-
tions of receptive fields in CNNs, where both the shape and the scale of the filters are trainable in
the continuous domain.

In a complementary fashion, recent influential work in deep learning has introduced neural ordinary
differential equations (ODEs) (Lu et al., 2018; Ruthotto & Haber, 2019; Chen et al., 2018) which
propose a continuous time (or depth) interpretation of CNNs. Such continuous time models both
offer end-to-end training capabilities with backpropagation which are highly applicable to computer
vision problems (e.g. by way of adopting ResNet blocks (He et al., 2016)), as well as help bridge
the gap to computational biology where networks are often modelled as dynamical systems which

1



Under review as a conference paper at ICLR 2021

evolve according to differential equations. In this work we aim to extend the impetus of the contin-
uous time neural ODEs to the spatio-temporal domain.

To that end we introduce deep continuous networks (DCNs), which are spatio-temporally continuous
in that the neurons have spatially well-defined receptive fields based on scale-spaces and Gaussian
derivatives (Florack et al., 1996) and their activations evolve according to equations of motion com-
prising convolutional layers. We combine spatial and temporal continuity in a network with neural
ODEs by learning linear weights for a set of analytic basis functions (as opposed to pixel-based
weights), which can also intuitively be parametrized as a function of time, or network depth.

The following outlines our main contributions: (i) We provide a theoretical formulation of spatio-
temporally continuous deep networks building on Gaussian derivative basis functions and neural
ODEs; (ii) We demonstrate the applicability of DCN models, namely, that they exhibit a reduction
in parameters, and can be used to parametrize convolutional filters as a function of time in a straight-
forward fashion, while achieving performance comparable with or better than ResNet and ODE-Net
baselines; (iii) We show that filter scales learned by DCNs are consistent with biological observa-
tions and we propose that the combination of our design choices for spatial and temporal continuity
may be helpful in studying the emergence of biological receptive field properties as well as high-
level phenomena such as pattern completion; (iv) We suggest that the continuous representations
learned by DCNs may be leveraged for computational savings.

We believe DCNs can bring together two communities as they provide a test bed for hypotheses and
predictions pertaining to both biological systems as well as pushing the boundaries of biologically
inspired computer vision.

2 DEEP CONTINUOUS NETWORKS

2.1 NEUROSCIENTIFIC MOTIVATION

There is little doubt that modern deep learning frameworks will be conducive to effective and insight-
ful collaborations between neuroscience and machine learning (Richards et al., 2019). In particular
in vision research, CNNs are becoming increasingly popular for modelling early visual areas (Batty
et al., 2017; Ecker et al., 2019; Lindsey et al., 2019). Here we propose a model which can facili-
tate such investigations by linking the end-to-end trainable but discrete CNN architectures with the
biologically more plausible and spatio-temporally continuous computational models.

Structured receptive fields. Classical receptive fields (RFs) of cortical neurons display complex
response properties with a wide array of selectivity structures already at early visual areas (Van den
Bergh et al., 2010). Such response properties may also vary greatly based on multiple factors. For
example the RF size (spatial extent) is known to depend on eccentricity (Harvey & Dumoulin, 2011)
and visual area (Smith et al., 2001) and may even change with depth within a cortical layer (Bauer
et al., 1999). Similarly, studies have shown that receptive field size and spatial frequency selectivity
of neurons may co-vary with input contrast (Sceniak et al., 2002).

Based on these observations, we aim to build a model which can accommodate the biological realism
better than conventional CNNs, by explicitly modelling the RF size as a trainable parameter. To that
end, we adopt a Gaussian scale-space representation for the convolutional filters, which we call
structured receptive fields (SRFs) (Jacobsen et al., 2016). Previously, Gaussian scale-spaces have
been proposed as a plausible model of biological receptive fields and feature extraction in low-
level vision (Florack et al., 1992; Lindeberg & Florack, 1994; Lindeberg, 1993). Here, we are
inspired partially by computational models which investigate the origin of response properties in the
visual system, by employing RFs and recurrent interaction functions which scale as a difference of
Gaussians (Somers et al., 1995; Ernst et al., 2001). Partially, we are motivated by the success of
algorithms which utilize Gaussian scale-spaces (Lowe, 2004).

Neural ODEs. Studies have shown that both the contrast (Albrecht et al., 2002) and spatial fre-
quency (Frazor et al., 2004) response functions of cortical neurons display characteristic temporal
profiles. However, temporal dynamics are not incorporated into typical feed-forward CNN models.
In addition, it has been suggested that lateral interactions play an important role in the generation of
complex and selective neuronal responses (Angelucci & Bressloff, 2006). Such activity dynamics
are often computationally modeled using recurrently coupled neuronal populations whose activa-
tions evolve according to coupled differential equations (Ben-Yishai et al., 1995; Ernst et al., 2001).
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Figure 1: SRF filters based on N-jet filter approximation. Convolutional filters are defined as
the weighted sum of Gaussian derivative basis functions up to order 2, with corresponding scales
σ1 = 2.28 (left) and σ2 = 0.90 (right). Our DCN models learn both the coefficients α, and the
scale σ end-to-end during training.

For temporally continuous computational representations consistent with biological models, we
adopt the framework of neural ODEs (Chen et al., 2018). Neural ODE interpretation of ResNet mod-
els presents an opportunity to explicitly model the temporal dynamics of feature extractors in DNNs.
Under certain assumptions, neural ODEs can be interpreted as recurrent interactions (Rousseau et al.,
2019), which are biologically plausible (Liao & Poggio, 2016). Unlike ODEs based on pixel-based
convolutional filters, the combination with structured filters (SRFs) also provide an intuitive way to
parametrize the evolution of the kernels as a function of depth.

Ultimately, we see spatio-temporally continuous representations in end-to-end trainable networks as
a link between modern CNN architectures and computational models of biological vision. Although
for small spatio-temporal scales it may be more appropriate to use discrete descriptions of biological
neurons, such as photoreceptors or populations located in spatially discrete locations, or to consider
temporally distinct spiking dynamics, computational models using continuous population activity
or rate-based models provide reasonably good explanations of phenomena observed at the network
or systems level (Ben-Yishai et al., 1995; Dayan & Abbott, 2001). We believe such larger scale
computational models align well with the purposes of computer vision.

2.2 STRUCTURED RECEPTIVE FIELDS

We use the multiscale local N-jet formulation (Florack et al., 1996) to define the filters in convo-
lutional layers. Structured receptive fields (SRFs) based on the Gaussian N-jet basis functions are
highly applicable to CNNs, as they represent a Taylor expansion of the input image or feature maps
in a local neighbourhood in space and scale, and can be used to approximate pixel-based filters
(Appendix A.1). This means that each filter F (x, y;σ) in the network is a weighted sum of N
basis functions, which are partial derivatives of the isotropic two-dimensional Gaussian function

G(x, y;σ) = 1
2πσ2 e

−(x2+y2)

2σ2 . The scale, or the spatial extent, of the filter is explicitly modelled in
the σ parameter of the Gaussian, which also indirectly determines the spatial frequency response of
the SRF (Figure 1).

Formally, the N-jet formulation of an SRF filter F (x, y) is given by:

Fα(x, y;σ) =

i+j ≤ N∑
0 ≤ i, 0 ≤ j

αi,j G
i,j (x, y; σ) =

i+j ≤ N∑
0 ≤ i, 0 ≤ j

αi,j
∂i+j

∂xi∂yj
G (x, y; σ) , (1)

where Gi,j (x, y; σ) are the partial derivatives of the Gaussian G(x, y;σ) with respect to x and
y, N is the degree of the Taylor polynomial which determines the basis order, and α encodes the
expansion coefficients.

Defined this way, SRFs have favourable properties over pixel-based filters. SRF filters are steerable
by the coefficients α and the basis functions are spatially separable. Likewise, due to their spatially
continuous description, the filters can be trivially scaled, or rotated, without interpolation.

Figure 1 shows the N-jet approximation of two filters in two different scales σ1 and σ2. We note that
both the coefficients α and the scale σ are learnable filter parameters. Instead of fixing the scale σ
a priori and optimizing for α as in Jacobsen et al. (2016) and Sosnovik et al. (2020), we integrate
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both these parameters in the network optimization, thus learning not only the shape but also the
spatial support of the filters.

2.3 NEURAL ODES

We model the continuous evolution of feature maps within an ‘ODE block’. Formally, an ODE
block contains a stack of M convolutional layers, each with its own convolutional filters wm with
m = 1 . . .M , followed by normalization Gnorm(·) and non-linear activation CELU(·) functions.
Following the notations of Chen et al. (2018) and Ruthotto & Haber (2019), we define the equations
of motion for the feature states h ∈ Rn as:

dh(t)

dt
= f(h(t), t,wm,dm) = Gnorm

[
K2(w2)g(K1(w1)g(h) + J1(d1)t) + J2(d2)t

]
(2)

where g(x) = CELU(Gnorm(x)), the linear operators Km ∈ Rn×n denote the convolution operators
parametrized by wm, and Jm ∈ Rn × R denote the linear explicit t-terms parametrized by dm.
The filters wm, dm(θ) are functions of some learnable parameters θ. As a typical CNN convolution
operator, Km(wm) with 2 input and 2 output channels can be written as

Km(wm) =

(
K1,1
m (wm1,1) K1,2

m (wm1,2)
K2,1
m (wm2,1) K2,2

m (wm2,2)

)
(3)

with wmji the convolutional kernels for input channel i and output channel j of the m-th convolution.
In this definition, the discrete depth of feed-forward networks such as ResNets is reimagined as a
continuous dimension defined by time t, where the input image defines the initial conditions h(0).
For the rest of this paper, we stick to the original ODE-Net interpretation that the number of function
evaluations performed by the numerical ODE solver is analogous to network depth.

In accordance with conventional ResNet blocks, we pick M = 2. Based on the original imple-
mentation by Chen et al. (2018), Gnorm is defined as group normalization (Wu & He, 2018). For
generalized compatibility with neural ODEs and the adjoint method, we choose a non-linear acti-
vation function with a theoretically unique and bounded adjoint, namely continuously differentiable
exponential linear units, or CELU (Barron, 2017). Similarly, we keep the linear dependence of the
equations of motion on time (or network depth) t. Finally, we adapt the GPU implementation of
ODE solvers1 to solve the equations of motion for a predefined time interval t ∈ [0, T ] using the
adaptive step size DOPRI method.

2.4 DEEP CONTINUOUS NETWORKS WITH SRFS AND NEURAL ODES

We formulate deep continuous networks (DCNs) by employing learnable, continuous SRF filter
descriptions to define the weights in the evolution of a neural ODE. This means that for DCNs, each
wmji in Eq. 2 is a discretization of the continuous SRF filter Fα(x, y;σ) given in Eq. 1, sampled in
[−2σ, 2σ]. We define the spatial axes such that the width and height of a pixel is δx = δy = 1 and
the sampling rate is 1 (δ−1x ). αmji and σm are trainable filter parameters, where σmji = σm is shared
between the filters in a convolutional layer unless stated otherwise. All our code is available at2.

Network architecture and training. We construct DCNs by stacking ODE blocks separated by
downsampling blocks (Figure 2). Each downsampling block is a sequence of normalization, non-
linear activation and strided convolution. We use a convolutional layer for increasing the channel
dimensionality at the input level and employ global average pooling and a fully connected layer at the
output level. We train our networks using cross entropy loss and the CIFAR-10 dataset (Krizhevsky,
2009). (See Appendices A.2-A.3 for further details regarding training parameters.)

As a baseline without spatial continuity, we compare DCN performance to the ODE-Net introduced
in Chen et al. (2018), where the convolutions within the ODE blocks are performed using discrete,
pixel-based kernels, with k × k parameters. As a baseline without temporal continuity, we define
the ‘ResNet-blocks’ model where the ODE blocks are replaced by generic, discrete ResNet blocks,
comprising two convolutional layers and a skip connection, with comparable number of parameters

1https://github.com/rtqichen/torchdiffeq/
2code will be made available at github
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to the ODE-Net. This is similar to the baseline model used in Chen et al. (2018). In the ResNet-SRF-
blocks model, we provide the discrete-time and continuous-space baseline by replacing the k × k
filter definition of ResNet-blocks with SRF definitions.

Input Image (32x32x3)

kxk conv, 32

ODE Block 1, 32

Downsampling block 1, 64

ODE Block 2, 64

ODE Block 3, 128

fc, 10

normalization

nonlinear activation

Global Average Pooling

Downsampling block 2, 128

Figure 2: DCN model ar-
chitecture with CIFAR-10
input images. Downsam-
pling is performed via
convolutions with stride 2.
The convolutional kernel
size k depends on the
model, and is learned
during training in DCNs.
The equations of motion
(Eq. 2) are solved within
ODE blocks.

We test two versions of DCNs and ResNet-SRF-blocks to quantify
the viability of SRF filters outside of the ODE blocks. In DCN-ODE
and ResNet-SRF-blocks we use the SRF filters only within the ODE
(ResNet) blocks, and for the remaining layers we use discrete kernels
with the same hyperparameters as the baselines. In the second version,
DCN-full (ResNet-SRF-full), we use spatially continuous kernels ev-
erywhere, including the downsampling layers.

Finally, we investigate the case where we drop scale sharing within
a layer, and optimize the scale parameter σmji independently for each
input channel i and output channel j, which we call DCN σji.

Meta-parametrization. DCNs enable us to parametrize the trainable
filter parameters α and σ as a function of time t. This both enables
the kernels to vary smoothly over time, and lets us define temporal dy-
namics for the neuronal responses in our network. We test the viability
of such models by introducing DCN variants where σ and/or α are de-
fined using linear or quadratic functions of t and learnable parameters
a, b, c, as, bs, aα and bα (Table 3).

3 EXPERIMENTAL ANALYSIS

3.1 PARAMETER REDUCTION AND DATA EFFICIENCY

Similar to biological models, where analytical receptive fields limit
the scope of the model using prior information, we find that DCNs are
more parameter efficient compared to baseline networks. Evaluated on
CIFAR-10, DCNs perform on par with baselines, despite using SRFs
of a small basis order 2, which means each filter shape is defined by
only 6 free parameters as opposed to 9 for the conventional 3× 3 ker-
nels (Table 1). In addition, we find that parameter reduction via the use of SRFs with a small
basis order also leads to data efficiency. When trained on a subset of CIFAR-10 images (small-data
regime), DCNs outperform the discrete baseline networks (Table 2a).

As an additional demonstration of the versatility of the spatio-temporal representations learned by
DCNs, we perform an image reconstruction experiment. We use the feature maps generated by the
networks trained on the CIFAR-10 classification task (output of ODE Block 3 in Fig. 2), as input to a
decoder network. The decoder networks are composed of 2 DCN-ODE, ODE-Net or ResNet blocks,
separated by bilinear upscaling layers and 1 × 1 convolutions to reduce the output dimensionality

Model Continuity Accuracy (%) # Parameters
Spatial Temporal

ResNet-blocks x x 89.01 ± 0.17 555K
ResNet-SRF-blocks X x 88.26 ± 0.03 426K
ResNet-SRF-full X x 89.32 ± 0.39 323K
ODE-Net (Chen et al., 2018) x X 89.60 ± 0.28 560K

DCN-ODE X X 89.46 ± 0.16 429K
DCN-full X X 89.18 ± 0.32 326K
DCN σji X X 89.74 ± 0.30 472K

Table 1: CIFAR-10 validation accuracies of DCN models, averaged over 3 runs, compared to base-
line models. ODE-Net and ResNet-blocks baselines are as introduced in Chen et al. (2018). DCNs
perform on par with spatially and/or temporally discrete baselines, despite having a lower number
of trainable parameters.
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Model # images per class Model Reconstruction
Loss (%)52 103 512 1024

ResNet-blocks 39.8 ± 0.6 49.0 ± 0.2 70.4 ± 1.2 76.8 ± 0.7 ResNet-blocks 21.0 ± 0.4
ODE-Net 41.7 ± 1.2 48.6 ± 0.5 71.7 ± 1.5 77.4 ± 0.5 ODE-Net 20.2 ± 1.3
DCN-ODE 44.5 ± 0.8 54.2 ± 0.8 75.5 ± 0.8 79.7 ± 0.3 DCN-ODE 17.1 ± 0.3

(a) (b)

Table 2: (a) Validation accuracies on a subset of CIFAR-10 (small-data regime) for the DCN-ODE
model versus baselines when the training data is limited. The DCN model outperforms spatially and/
or temporally discrete baselines as parameter efficiency leads to data efficiency. (b) DCNs achieve
lower MSE loss in the reconstruction task than baselines on the CIFAR-10 validation set, despite
using a smaller number of parameters. All results are averaged over 3 runs.

to three (RGB). We train the networks to reconstruct CIFAR-10 images using mean squared error
(MSE) loss. We find that the DCN models outperform discrete baseline models on the validation set
(Table 2b), despite having a lower number of parameters as before. Additional details and example
images are shown in Appendix A.4.

Similarly, we find that meta-parametrized DCN variants match the classification performance of
baselines and may outperform DCNs with static weights (Table 4). This is an interesting finding
since we test only a few models, with little hyperparameter optimization, which indicates that DCNs
can potentially be used to parametrize the dependence of convolutional kernel weights on network
depth, for further parameter reduction.

3.2 LINK WITH BIOLOGICAL MODELS

Scale fitting. As an advantage over conventional CNNs, it is possible to directly investigate the
optimal receptive field (RF) size in each DCN block after training, since DCNs fit the kernel scale
σ explicitly. We observe an upward trend in the SRF scale σ with the depth of the convolutional
layer within the network (Fig. 3a). While the RF size grows with depth also in conventional CNNs,
it typically grows linearly over convolutions, as the kernel size is constant across layers. This is a
limitation in most CNNs that the visual system does not necessarily have. DCNs, on the other hand,
can learn RF sizes which grow non-linearly as a function of depth, which seems to be in line with
the behaviour in downstream visual areas (Smith et al., 2001). In addition, we plot the distribution of
learned σji in different ODE blocks of the model DCN σji (Fig. 3b). Note that the scale parameter
σ controls the bandwidth of the SRF filters and is thus related to their spatial frequency response.
We find that the σji distributions after training are approximately log-normal and display a positive
skew, which is consistent with the scale and spatial frequency tuning distributions in the primate
visual system (Yu et al., 2010). We believe these results are promising for bridging the gap between
deep learning and traditional models of biological systems.

Pattern completion. Established models from computational neuroscience, with continuous tem-
poral dynamics and well-defined recurrent interaction structures, such as the Ermentrout-Cowan
model (Bressloff et al., 2001), or neural field models (Amari, 1977), display interesting high-level
phenomena such as spontaneous pattern formation and travelling waves (Coombes, 2005). Such
models employ local, distance-dependent interactions, similar to the SRF based ODE blocks in the
DCN formulation. Based on this resemblance, we hypothesize that DCNs can perform well in the
case of locally missing information in images, through pattern completion at the feature map level.

Model Parametrization

DCN σ(t) σ = 2at+b

DCN σ(t2) σ = 2at
2+bt+c

DCN σ(t), α(t) σ = 2ast+bs , α = aαt+ bα

Table 3: Meta-parametrization of filter parame-
ters σ and α as a function of time t in different
DCN variants.

Model Accuracy (%)

DCN σ(t) 89.97 ± 0.30
DCN σ(t2) 89.93 ± 0.28
DCN σ(t) and α(t) 89.88 ± 0.25

Table 4: CIFAR-10 validation accu-
racies for DCN models with meta-
parametrization.
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Figure 3: (a) Learned σ values increase with depth within the network. (b) σji distributions within
the ODE blocks display a positive skew in line with biological observations. (c) CIFAR-10 valida-
tion accuracies on the pattern completion task with increasing mask size.

We test this hypothesis by masking n × n pixels on the CIFAR-10 validation set at test time. The
masks have zero pixel values, and are placed at the center of the image. We find that when confronted
with a small patch of missing information, DCNs can generate feature maps similar to those obtained
from intact images. Specifically, we observe that the differenceD(t) = 1

A

∑
|him(t)− him masked(t)|

between the feature maps generated by an intact image him(t) and a masked image him masked(t),
normalized by the amplitude of the intact image A, is reduced within an ODE block (Figure 4a). In
terms of the overall classification performance with masked images at test time, we find that DCNs
are marginally more robust against zero-masking than baselines (Fig. 3c).

3.3 CONTRAST ROBUSTNESS AND COMPUTATIONAL EFFICIENCY

The selectivity of neuronal responses is invariant to contrast in mammalian vision (Sclar & Freeman,
1982; Skottun et al., 1987). However, we observe that DCN and ODE-Net models are sensitive to
changes in input contrast. This is not unexpected since ODE blocks compute the solution to the
initial value problem posed by the equations of motion and the input feature maps, and contrast
variations change the initial conditions. To quantify this sensitivity we vary the contrast c of the
input images at test time, where for each image Hi in the CIFAR-10 validation set we define the
input as Hj = cHi. When naively changing the input contrast c this way, we find that the validation
accuracy decays rapidly for both models (solid lines in Fig. 4b, top).

Empirically, we notice that, with the appropriate choice of normalization functions, the input contrast
c has a direct effect on the time scales of the solution h(t). Based on this observation, we heuristi-
cally test whether scaling the integration time interval T (used during training) of ODE block 1 by c
for each input image j, Tj = c T , can improve contrast robustness at test time. We find that with the
scaled integration interval DCN validation accuracy is relatively robust against changes in contrast
c, compared to naive baselines and ODE-Net, until c << 1 when time scales become too fast and
the ODE solver becomes unstable for all models (dashed lines in Fig. 4b, top).

Interestingly, we observe a reduction in the number of function evaluations (NFEs) in ODE block 1
for c < 1 (Fig. 4b, middle). Furthermore, we show that as long as the error tolerance of the ODE
blocks are not decreased, this effect can be exploited by scaling the input feature maps of all ODE
blocks by c for significant computational savings. We find that decreasing c leads to considerable
efficiency improvements, where total NFEs can be reduced from 102 to 60, (for c = 1 and 0.06),
with less than 0.5% loss in accuracy (Fig. 4b, bottom).

4 RELATED WORK

Spatially continuous filter representations. Structured filters have been traditionally used in com-
puter vision for extracting image structure at multiple scales. N-jet filter basis is first introduced
by Florack et al. (1996) based on previous work on Gaussian scale-spaces (Florack et al., 1992; Lin-
deberg, 2013). We use the N-jet basis in order to approximate convolutional filters, as they enable a
spatially continuous representation with an explicit scale parameter σ.

Similar to the N-jet basis, a set of oriented multi-scale wavelets, called a steerable pyramid, is
proposed by Simoncelli et al. (1992) and complex wavelets have been used by Bruna & Mallat
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Figure 4: (a) Pattern completion in the DCN feature maps for an example image. Feature maps are
shown for a single channel in ODE block 1. We find that the difference D(t) between the feature
maps him(t) of an intact image and him masked(t) of a masked image is reduced as t → T . We
also show the mean D(t) for 1000 validation images (bottom right), where the shaded area is the
standard deviation over different images. Example feature maps from other models are provided in
Appendix A.5. (b) Top: In terms of CIFAR-10 validation performance, DCNs are more robust than
baseline ODE-Nets to changes in input contrast c at test time. Interestingly, the number of function
evaluations (NFEs) in the first ODE block (middle) or the whole DCN network (bottom) can be
reduced considerably by modulating c.

(2013) and Mallat (2012) as part of scattering transforms. CNN filters based on linear combinations
of Gabor wavelets are adopted by Luan et al. (2017), while Worrall et al. (2017) propose circular
harmonics, as spatially continuous filter representations.

Similar to our approach, Shelhamer et al. (2019) combine free-form filters with Gaussian kernels,
thus learning the filter resolution. Likewise, Xiong et al. (2020) learn filter sizes using Gaussian
kernels optimized using variational inference. Here, we use the N-jet framework based on Gaussian
derivatives as in Jacobsen et al. (2016), however our main motivation is retaining compatibility with
biological models. Also, unlike Jacobsen et al. (2016) we learn the scale parameter σ during training.

Continuous time representations in deep networks. Along with work by Lu et al. (2018)
and Ruthotto & Haber (2019), networks continuous in the temporal (or depth) dimension have been
proposed by Chen et al. (2018) under the name neural ordinary differential equations (ODEs). They
propose ODE-Nets based on the ResNet formulation (He et al., 2016) for classification tasks, which
is used as a baseline in this paper. In this work we focus mainly on an image classification task, how-
ever, there is extensive ongoing work on generative models and normalizing flows using the neural
ODE continuous time interpretation (Salman et al., 2018; Grathwohl et al., 2019). We note that
DCNs can be readily incorporated into continuous flow models, as well as other spatio-temporally
continuous DNN interpretations based on partial differential equations (Ruthotto & Haber, 2019).

Even though the adjoint method described in Chen et al. (2018) offers considerable computational
savings, especially in terms of memory, recent work has improved upon it both in terms of stability,
computational efficiency and performance (Dupont et al., 2019; Finlay et al., 2020; Zhuang et al.,
2020b). Likewise, the contrast robust formulation of DCNs, as well as the synergy between theO(1)
memory complexity of the adjoint method and spatially separable SRF filters (the implementations
of which may otherwise inflate the memory cost) provide potential computational benefits over
conventional CNNs where the number of function evaluations is fixed.

Other studies have suggested that, similar to our DCN variants where the filter definitions are inde-
pendent of time, neural ODEs based on ResNet architectures with weight sharing can be interpreted
as recurrent neural networks (Rousseau et al., 2019; Kim et al., 2016), which bridges the gap be-
tween deep learning, dynamical systems and the primate visual cortex (Massaroli et al., 2020; Liao
& Poggio, 2016). Similar to these works, we capitalize on the parallels between neural ODEs and the
dynamical systems approach of the computational models of recurrent, biological circuits in order
to extend them to fully continuous networks, where not only the depth of the network is continuous
but also the shape and spatial resolution of the filters are end-to-end trainable.
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CNNs and RNNs as models of biological networks. There is extensive prior work on CNNs and
recurrent neural networks (RNNs) for modeling biological computation. The visual cortex is highly
recurrent (Dayan & Abbott, 2001; Liao & Poggio, 2016) which is thought to be responsible for
complex neuronal dynamics (Ben-Yishai et al., 1995; Angelucci & Bressloff, 2006). Accordingly,
computational models with lateral connections (Sompolinsky et al., 1988; Ernst et al., 2001) and
more recently RNNs (Laje & Buonomano, 2013; Mante et al., 2013; Mastrogiuseppe & Ostojic,
2018) have been extensively used as models of biological neural computation. For example the first-
order reduced and controlled error (FORCE) algorithm, have been used to reproduce the dynamics
of different biological circuits (Sussillo & Abbott, 2009; Laje & Buonomano, 2013; Carnevale et al.,
2015; Rajan et al., 2016; Enel et al., 2016). Similarly, optimization via gradient-based algorithms
such as the Hessian-free method (HF) or stochastic gradient-descent (SGD) have been adopted to
train recurrent networks (Mante et al., 2013; Barak et al., 2013; Song et al., 2016) to replicate
experimental observations. It has also been suggested to use spiking recurrent networks (Kim &
Chow, 2018; Kim et al., 2019) and incorporate synaptic dynamics (Ba et al., 2016; Miconi et al.,
2018) for improved physiological realism. Finally, recurrent convolutional networks (RCNNs) have
been proposed (Liang & Hu, 2015; Spoerer et al., 2017; Hu & Mihalas, 2018), which can emulate
biological lateral connectivity structures and extra-classical receptive field effects.

In contrast to typical RNNs, our model is based on the ResNet inspired model of neural ODEs, and
in its current form (Eq. 2), does not accept time-variant input. In that sense, the spatio-temporal
dynamics of DCNs refer to the dynamics of the neurons and not the input. Although with weight
sharing DCNs can be thought of as recurrent networks (Rousseau et al., 2019) and can be modified
to process time-variant input (such as videos), in this paper we consider the DCN models to be an
extension of conventional feed-forward CNNs, with extended temporal dynamics and continuous
spatial representations, which are applicable to feed-forward models of the visual system similar to
works by Lindsey et al. (2019); Ecker et al. (2019); Schrimpf et al. (2018); Zhuang et al. (2020a).

5 DISCUSSION

We introduce DCNs, CNN models which learn spatio-temporally continuous representations, con-
sistent with biological models. We showed that DCNs can match baseline performance in an image
classification task and outperform baselines in the small-data regime and in a reconstruction task,
while using a smaller number of parameters. Similarly, we have proposed different methods of meta-
parametrization of the convolutional filter as a function of time, which may not only be viable for
network compression purposes, but also for modelling the temporal profiles of biological responses.
As a further link with biological models, we have demonstrated that the learned scale distributions
in DCNs are compatible with experimental observations, which seems promising for the applica-
bility of DCN models to future neuroscientific investigations regarding the emergence of RF sizes.
In addition, we have presented the capability of DCNs to reduce errors in feature maps caused by
masking. Finally, we have empirically shown an interplay between the input contrast to ODE blocks
and the time scales of the solutions, which can be capitalized on for computational savings.

However, one of the biggest limitations of DCNs is that they may become unstable during training.
This is a combined problem of neural ODE models and scale fitting, which may lead to exploding
filter sizes with larger learning rates. Especially for meta-parametrization, it would be advisable to
clip the integration time and filter parameters within a reasonable range. Nevertheless, we believe
there are exciting future research opportunities involving DCNs. A rigorous mathematical analysis
of the nonlinear system of ODEs is beyond the scope of this paper, however, neural ODE formula-
tions provide interesting opportunities for establishing a theoretical understanding of DNNs based
on dynamical systems. The interplay of input contrast and integration time is one such observation
which requires further scrutiny. Similarly, our choice of filters based on well-behaved Gaussian
derivatives allow for further analytical investigations, unlike conventional CNNs.

Similarly, DCNs offer interesting possibilities for biological modelling. Although there is still a
large gap between modern CNNs, DCNs and the complex biological realism, the inbuilt smooth
evolution of filters in DCNs can be used, for example, to incorporate response dynamics such as
synaptic depression or short-term potentiation (similar to previous work by Ba et al. (2016); Miconi
et al. (2018)). Likewise, the equations of motion can be modified to reflect axonal delays or generate
oscillations. In short, we believe by offering a link between dynamical systems, biological models
and CNNs, DCNs display an interesting potential to bring together ideas from both fields.
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A APPENDIX

A.1 GAUSSIAN MULTISCALE LOCAL N-JET

Based on the Schwartz theory of smooth test functions, the Gaussian scale-space paradigm states
that the derivatives Li1...in(~x;σ) of a function L0(~x) with respect to the spatial variables xi, with
i = 1 . . . d, and at scale σ is given by the convolution

Li1...in(~x;σ) = L0 ∗ ∂i1...inG(~x;σ) (4)

where ∂i1...in is the n-th order partial derivative and G(~x;σ) is the normalized, isotropic Gaussian
kernel with standard deviation σi = σ and mean µi = 0 (Florack et al., 1996). Note that L0(~x) does
not need to be a smooth function, and therefore the Gaussian scale-space paradigm can be applied
to obtain local image derivatives in different scales, where ~x denote the spatial coordinates and σ
can be interpreted as the coordinate in the scale dimension.

We build upon this definition of local image derivatives to build our structured receptive fields
(SRFs), similar to Jacobsen et al. (2016). The main idea we leverage is that using a Taylor ap-
proximation, one can decompose an input image into a superimposition of its local derivatives. This
decomposition can then be performed by local convolution kernels in CNNs, where the relative
weight of each derivative order can be learned during training. In order to show this, we observe
that the N -th order Taylor expansion of an image L : R2 → R around a point (a, b) is given by

L(x, y) =

N∑
i=0

N−i∑
j=0

(x− a)i(y − b)j

i!j!

∂i+j

∂xi∂yj
L(a, b) (5)

where the partial derivatives of L with respect to x and y can be interpreted as L11...1n(x, y;σ0)
and L21...2n(x, y;σ0) from equation 4 at some original scale σ0. This means that, via the linearity
of convolution, and under the assumption that L(x, y;σ) does not diverge, it is equivalent to either
use the N -th order derivatives of the input image, or use the N -th order derivatives of the Gaussian
function G(~x;σ), to perform the decomposition at scale σ. The local N-jets can thus be seen to be
parametrized by the coefficients in the expansion in equation 5. By definition, we consider the Taylor
expansion coefficients to be covariant derivatives of the image L(x, y;σ), which are independent
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of the local coordinate system, to reach the filter approximations given in equation 1, where the
coefficients take the form αi,j .

In short, the multiscale local N-jet provides a natural decomposition of an image in a local neigh-
borhood in the spatial and scale dimensions. Under convolution with G(~x;σ), this decomposition
provides a framework for defining convolutional filters in a CNN using N -th order Taylor polyno-
mials. The SRF filters we use are based on this N-jet definition and allow us to learn the scale,
spatial frequency and orientation of the filters during training, which are fundamental properties of
biological receptive fields (Jones & Palmer, 1987; Lindeberg, 1993).

In addition, the Gaussian scale-space formulation of SRFs (Jacobsen et al., 2016) lead to theoret-
ically interesting properties which strengthen the motivation for our choice of filters based on the
Gaussian N-jet. For example, the semi-group property of Gaussian scale-spaces indicates for a
Gaussian derivative kernel Gi,j(x, y; t) parametrized by the variance t = σ2

Gi,j(x, y; t+ t′) = Gi,j(x, y; t) ∗G(x, y; t′) (6)

where the superscripts (i, j) denote the partial derivatives with respect to x and y. This means
that a translation in scale dimension can be achieved through convolution with a simple (0-th order)
Gaussian kernel. For DCNs, this means that we have a solid understanding of the scale of the feature
maps (in the sense of the Gaussian scale-space) at every layer in the network, as long as we know
the learned value of the σs. In the absence of SRFs with an explicit scale parameter, this information
is lost.

Similarly, SRF filters based on Gaussian derivatives are steerable by the coefficients ai,j . For exam-
ple, a filter with orientation θ can be described using second order basis functions as

G2,0
θ = a2,0G

2,0 + a1,1G
1,1 + a0,2G

0,2 = cos2(θ)G2,0 − 2 cos(θ) sin(θ)G1,1 + sin2(θ)G0,2. (7)

Finally, the set of Gaussian derivative basis functions Gi,j(x, y;σ) are spatially separable

Gi,j(x, y;σ) = Gi(x;σ)Gj(y;σ) (8)

which is useful for computational efficiency in numerical applications.

A.2 TRAINING PROCEDURE

The basic architecture of all our models is given in figure 2. Unless otherwise stated, in all models we
use group normalization (Wu & He, 2018) with 32 groups in every layer as the normalization func-
tion. As the nonlinear activation, we use continuously differentiable exponential linear units (Bar-
ron, 2017), or CELU for DCN models. Based on the original ODE-Net implementation (Chen et al.,
2018), for ODE-Net models and ResNet-block models, we use rectified linear units (ReLU). Like-
wise, when defining the integration time interval T , we stick to the original implementation, with
T = 1 for ODE-Net models, whereas we use T = 2 for DCN models. Otherwise, all the hyperpa-
rameters are kept constant between models. For a brief overview of hyperparameter optimization,
see appendix A.3.

All models are trained for 100 epochs on the standard CIFAR-10 training set (Krizhevsky, 2009)
using cross-entropy loss. As data augmentation, we use random translations up to 4 pixels in each
spatial dimension and random horizontal flips. Optimization is performed using SGD with a mini-
batch size of 128, initial learning rate 10−1, momentum 0.9, and a learning rate decay by a factor
of 0.1 at epochs 40 and 70. For continuous time models based on neural ODEs, we use the adjoint
method for backpropagating the losses and ODE solvers with error tolerance set to 10−3.

For convolutional layers with pixel-based k× k filters, the weights are initialized using the standard
Kaiming uniform initialization (He et al., 2015). For layers using SRF filters, the initial α values are
randomly sampled from a normal distribution with mean 0 and standard deviation 0.1, and initial σ
values are sampled from a normal distribution with mean 0 and standard deviation 2/3.

For the restricted CIFAR-10 experiments (small-data regime), we pick the total number of training
images to match our mini-batch size of 128, or otherwise have a minimal number of samples in
the final batch (which is dropped in each epoch). In order to confirm convergence, for the training
set sizes [520, 1030, 5120], we increased the number of training epochs by a factor of [10, 5, 2]
respectively.
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For meta-parametrized models the initial values for the learnable parameters follow normal distri-
butions N (µ, σN ): a ∼ N (0, 2/3), b ∼ N (0, 0.1), for the DCN σ(t) model; a ∼ N (0, 2/3),
b ∼ N (0, 2/3), c ∼ N (0, 0.1) for the DCN σ(t2) model; and as ∼ N (0, 2/3), bs ∼ N (0, 0.1),
aα ∼ N (0, 0.1) and bα ∼ N (0, 0.05) for the DCN σ(t), α(t) model.

For all our models using SRF filters, except for the DCN σij model, we use scale sharing within a
convolutional layer such that σmij = σm for allm. This makes the GPU implementation trivial, as all
filters within a layer are sampled in the interval [−2σm, 2σm], and hence the convolutional kernel
sizes within a layer are uniform. However, for the DCN σij model, a GPU implementation would
be highly inefficient if we truncated the kernels at a fixed factor of σij , independently for each input
and output channel i, j. Therefore for the DCN σij model we fix the kernel size at 7×7, but we still
learn the shape and the scale (bandwidth) of the filters during training.

We use the Dormand–Prince (DOPRI) method (Dormand & Prince, 1980) as the numerical ODE
solver. The DOPRI method is an explicit, adaptive solver of the Runge-Kutta family, which uses 6
function evaluations to compute fourth- and fifth-order accurate solutions to ODEs, along with an
error estimate. The size of the adaptive steps taken by the solver can be regulated by specifying an
error tolerance on this error estimate.

As is the case with most modern ODE solvers, the GPU implementation of the DOPRI solver that
we use (Chen et al., 2018) considers the input arguments for the integration time interval t ∈ [0, T ]
(or t ∈ [0, 2] in the case of all DCN models) as soft bounds. This means that the DOPRI algorithm
may explore time points outside of this interval, based on its internal error estimation, and may then
employ interpolation to return solutions within the specified bounds. In the meta-parametrized mod-
els, where for example σ is an explicit function of t, this may lead to very large or very small kernel
sizes, ordinarily unexpected within the integration time interval. In order to avoid numerical insta-
bility and memory issues in the meta-parametrized models, we scale down and clip the integration
time t when passing it into the parameter definitions as σ(τtclip) and α(τtclip). We clip the t values
in the interval [−0.5, 2.5] and use τ = 0.5.

A.3 HYPERPARAMETER TUNING

As mentioned in appendix A.2, we share all the design choices and hyperparameters between all
DCN and baseline ODE-Net models, except for the nonlinear activation function and integration
time interval T .

This difference in design choices arises since for the ODE-Net baseline we stay faithful to the origi-
nal ODE-Net implementation, where ReLU is the nonlinear activation function and T = 1, whereas
for DCN models we use CELU as the activation function, due to its generalized compatibility with
the adjoint method, and T = 2. In order to verify that our design choices do not provide an un-
fair advantage over the ODE-Net baseline, we run some control experiments, where we vary the
activation function and T in the ODE-Net baseline.

We find that the change of activation functions or integration interval T do not provide a significant
increase to the CIFAR-10 classification performance in the ODE-Net baseline (Table 5).

Model Accuracy (%)

DCN-ODE 89.46 ± 0.16
ODE-Net (baseline) 89.60 ± 0.28
ODE-Net with T = 2 89.50 ± 0.07
ODE-Net with CELU 89.33 ± 0.16
ODE-Net with CELU and T = 2 89.25 ± 0.30

Table 5: CIFAR-10 validation accuracy (averaged over 3 runs) in the control experiments testing the
effect of DCN model design choices on the baseline ODE-Net.
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A.4 CIFAR-10 IMAGE RECONSTRUCTION

For the reconstruction task, we use the network architectures with 3 DCN-ODE blocks (Fig. 2), or
for the baseline networks ODE-Net or ResNet-blocks, trained on the CIFAR-10 classification task
as an encoder. We use the feature maps at the end of ODE Block 3 as the input to a small decoder
network. The decoder DCN network is made up of an ODE block with 128 input channels, followed
by bilinear upscaling, a 1 × 1 convolution to reduce the number of channels to 64, another ODE
block, followed by bilinear upscaling, normalization, non-linear activation and a 1 × 1 convolution
to generate the output in RGB space.

We implement reconstruction as a regression task and use the mean squred error (MSE) as the loss
function. Otherwise, the training parameters are the same as the classification experiments: We use
the SGD optimizer with a mini-batch size of 128, learning rate 10−1 and momentum 0.9, together
with the adjoint method and an error tolerance of 10−3.

The reconstruction of some example images (randomly selected) from the CIFAR-10 validation set
by the DCN and baseline networks are shown in figure 5.

A.5 PATTERN COMPLETION IN FEATURE MAPS

In figure 6, we show the feature map evolution within the first ODE block (or ResNet block) of
different models with and without masking of some example input images. Size of the mask depicted
here is 6× 6 pixels and the example images were chosen so as to have the mask located close to the
middle of the object. We picked some channels with visible mask-related artifacts in the input feature
maps to the first ODE (ResNet) block. Since there is no feature map trajectory in the ResNet-blocks
model, but only one input and one output feature map, the difference between the feature maps of
the intact and masked image is given as a scatter plot of two data points connected by a red line.

Figure 7 depicts the average difference of intact and masked feature maps D(t) averaged over 1000
images and the standard deviation for the DCN and baseline networks.
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Input
Image DCN-ODE ODE-Net

ResNet-
Blocks

Figure 5: Example CIFAR-10 validation images and their reconstruction by the DCN-ODE model
as compared to baseline models.
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Figure 6: Feature map evolution within the first ODE block (or ResNet block) of different models.
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Figure 7: Evolution of the mean difference D(t) between feature maps of an intact input image and
a masked input image, averaged over 1000 images in the CIFAR-10 validation set. The shaded areas
(or in the case of ResNet, the errorbars) show the standard deviation.
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