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ABSTRACT

As neural language models achieve human-comparable performance on Machine
Reading Comprehension (MRC) and see widespread adoption, ensuring their ro-
bustness in real-world scenarios has become increasingly important. Current ro-
bustness evaluation research, though, primarily develops synthetic perturbation
methods, leaving unclear how well they reflect real life scenarios. Considering
this, we present a framework to automatically examine MRC models on natu-
rally occurring textual perturbations, by replacing paragraph in MRC benchmarks
with their counterparts based on available Wikipedia edit history. Such pertur-
bation type is natural as its design does not stem from an arteficial generative
process, inherently distinct from the previously investigated synthetic approaches.
In a large-scale study encompassing SQUAD datasets and various model archi-
tectures we observe that natural perturbations result in performance degradation
in pre-trained encoder language models. More worryingly, these state-of-the-art
Flan-T5 and Large Language Models (LLMs) inherit these errors. Further exper-
iments demonstrate that our findings generalise to natural perturbations found in
other more challenging MRC benchmarks. In an effort to mitigate these errors,
we show that it is possible to improve the robustness to natural perturbations by
training on naturally or synthetically perturbed examples, though a noticeable gap
still remains compared to performance on unperturbed data.

1 INTRODUCTION

Transformer-based pre-trained language models demonstrate remarkable efficacy in addressing
questions based on a given passage of text, a task commonly referred to as Machine Reading Com-
prehension (MRC) (Devlin et al., 2019; Brown et al., 2020; He et al., 2021; Wei et al., 2022; Touvron
et al., 2023; OpenAI et al., 2024). Despite these advancements, high-performing MRC systems are
also known to succeed by relying on shortcuts in benchmark datasets rather than truly demonstrating
understanding of the passage, thereby lacking robustness to various types of test-time perturbations
(Ho et al., 2023; Schlegel et al., 2023; Levy et al., 2023).

Evaluating models’ resilience to textual perturbations during inference aids in identifying adversarial
instances that highlight their shortcut behavior and provides insights into mitigating these shortcuts
(Ho et al., 2023). While numerous synthetic perturbation approaches have been explored and reveal
the vulnerabilities of MRC models to various linguistic challenges (Ribeiro et al., 2018; Jiang &
Bansal, 2019; Welbl et al., 2020; Tan et al., 2020; Tan & Joty, 2021; Schlegel et al., 2021; Cao et al.,
2022; Tran et al., 2023), a serious concern is that these carefully designed perturbations might not
necessarily appear in real-world settings. Consequently, this poses a risk of neglecting the weak-
nesses of reading comprehension systems to real challenges when deployed in practical scenarios,
thus potentially hindering the improvement of their reliability in practical applications.

To counteract this issue, in this paper, we develop a framework to inject textual changes that arise
in real-world conditions into MRC datasets and audit how well contemporary language models per-
form under such perturbations. We deem them as natural because the perturbation process does
not involve any artificial manipulation, in line with the definitions by Belinkov & Bisk (2018);
Hendrycks et al. (2021); Pedraza et al. (2022); Agarwal et al. (2022); Le et al. (2022) (Figure 1).
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Development of the fertilized eggs is direct, in other words there is no distinctive larval form. 
Juveniles of all groups are generally planktonic, and in most species resemble miniature adult 

cydippids, gradually developing their adult body forms as they grow. In the genus Beroe, 
however, the juveniles have large mouths and, like the adults, lack both tentacles and 

tentacle sheaths, and in some groups, such as the flat, bottom-dwelling platyctenids, the 
juveniles behave more like true larvae, as they live among the plankton and thus occupy a 

different ecological niche from their parents, and only attain the adult form by a more radical 
metamorphosis after dropping to the sea-floor.

Development of the fertilized eggs is direct, in other words there is no distinctive larval form, and 
juveniles of all groups generally resemble miniature cydippid adults. In the genus Beroe the juveniles, like 
the adults, lack tentacles and tentacle sheaths. In most species the juveniles gradually develop the body 
forms of their parents. In some groups, such as the flat, bottom-dwelling platyctenids, the juveniles 
behave more like true larvae, as they live among the plankton and thus occupy a different ecological 
niche from their parents and attain the adult form by a more radical metamorphosis, after dropping to 
the sea-floor.

Development of the fertilized eggs is direct, in other words theorJe is no distinctive larval form, and 
juveniles of all groups generally resemble miniature cydippid adults. In the genus Beroe the 
juveniles, like the adults, lack tentacles and 4tent!aLcle sheaths. In most species the juveniles 
gQradua4llsy develop the body forms of their parents. In some grkouups, suacSh as the Gfmlat, 
bottom - dwelling platyctenids, the juveniles behave more like tr0uVe larvae, as gthtey live among 
the mplacnk1ton and thus +o7ccupy a different ecological niche from their parents and attain the 
adult form by a more radical metamorphosis, after dropping to the sea - floor.

Development of the fer tilized eg gs is dire ct, in other wor ds there is no distinctive larv al f orm, and 
j uveniles of all groups general ly re semble miniature cydippid adults. In the g enus Beroe the juve 
niles, li ke the a dults, lack tentacl es and tentacle she aths. In m ost spe cies the ju veniles gradually 
develop the body f orms of the ir parents. In some groups, such as the flat, bot tom - dwel ling 
platycte nids, the juveniles behave m ore l ike true larvae, as t hey live among the plankton and thus 
occupy a different ecological niche fr om their pa rents and attain the adu lt form by a more radical 
metamorphosis, after dropping to the sea - fl oor.

Figure 1: Given a reading context, we extract and use Wikipedia revision history to construct its
naturally perturbed version for a more realistic robustness evaluation (Bottom), rather than relying
on a set of synthetic methods (Top).

Results of robustness evaluation are therefore more representative of real-world applications. Sim-
ilar to Belinkov & Bisk (2018), our approach utilises Wikipedia revision histories as the source of
natural perturbations, given that the differences between revisions authentically capture the textual
modifications made by human editors in the real world1. Despite this, significant differences ex-
ist in the perturbation construction methodology between us. Perturbation in (Belinkov & Bisk,
2018) is restricted to single word replacements and applied on non-English source-side sentences in
machine translation. In detail, they build a look-up table of possible lexical replacements by harvest-
ing naturally occurring errors (typos, misspellings, etc.) from available corpora of French/German
Wikipedia edits (Max & Wisniewski, 2010; Zesch, 2012). Afterwards, they replace every word in
the source-side sentences with an error if one exists in the look-up table. Different from (Belinkov
& Bisk, 2018), our approach does not restrict the perturbation level and utilise English Wikipedia.
By comparing the variances between each adjacent revision, we identify perturbed versions for each
Wikipedia reading passage in the original MRC benchmarks (if it exists). This enables us to capture
more comprehensive and critical natural perturbation patterns (see Section 5.2) that can not be pos-
sible to capture in (Belinkov & Bisk, 2018). Our perturbation method only alter the reading context,
while the questions and ground truth answers remain unchanged.

With the established framework, we conduct extensive experiments on five datasets, evaluating
twenty-nine models, including nine recently proposed LLMs. Experimental results on Stanford
Question Answering Dataset (SQUAD) (Rajpurkar et al., 2016; 2018) indicate that natural pertur-
bations encompass rich linguistic variations and can lead to failures in the encoder-only models,
while humans are almost undeterred by their presence. Crucially, these errors also transfer to larger
and more powerful models, such as Flan-T5 and state-of-the-art LLMs. These findings also gen-
eralise to other and more challenging MRC benchmark (e.g., HOTPOTQA (Yang et al., 2018)) re-
sulting in a decrease of SOTA LLMs’ performance, emphasising its harmful effects. Adversarial re-
training with either naturally or synthetically perturbed MRC instances can enhance the robustness
of encoder-only models against natural perturbations, with the latter sometimes providing greater
benefits. However, there is still ample room for improvement, calling for better defense strategies.

The contributions of this paper are as follows:

• A novel Wikipedia revision history-based framework to generate natural perturbed MRC
benchmarks for realistic robustness evaluation.

• Empirical demonstration of the validity of natural perturbations, their characterisation by
different linguistic phenomena and their harmful effects on diverse model architectures
across five benchmarks generated with the proposed framework.

1Wikipedia happens to allow us to track changes and automatically construct a benchmark to test the be-
haviour of neural language models on natural perturbations, but the phenomenon of natural perturbations is by
no means limited to Wikipedia. Instead, these can occur in any kind of text that evolves over time.
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• Showcasing adversarial re-training with natural or, especially, synthetic perturbations as a
way to enhance the robustness of encoder-only MRC models against natural perturbations.

2 RELATED WORK

Robustness Evaluation in MRC A typical approach to evaluate the robustness of MRC models is
via test-time perturbation. This line of research develops different perturbation methods as attacks,
such as adversarial distracting sentence addition (Jia & Liang, 2017; Tran et al., 2023), low-level
attacks (Eger & Benz, 2020), word substitution (Wu et al., 2021), character swap (Si et al., 2021),
entity renaming (Yan et al., 2022) and paraphrasing (Gan & Ng, 2019; Lai et al., 2021; Wu et al.,
2023). Our work also fits within the category of test-time perturbation, but differs from previous
works in that we introduce perturbations that naturally occur in real-world scenarios, therefore con-
tributing to a more practical robustness examination.

Natural Perturbation for Robustness Assessment Compared with deliberately crafting the per-
turbed instances, the study of natural perturbation is under-explored. In the computer vision do-
main, researchers find that real-world clean images without intentional modifications can confuse
deep learning models as well, terming them as natural adversarial examples (Hendrycks et al., 2021;
Pedraza et al., 2022). Similarly, in the field of Natural Language Processing (NLP), naturally occur-
ring perturbations extracted from human-written texts can also degrade model performance in tasks
such as machine translation (Belinkov & Bisk, 2018) and toxic comments detection (Le et al., 2022).
Motivated by these, we attempt to harvest natural perturbations from available Wikipedia revision
histories and utilise them to modify the original MRC instances. To the best of our knowledge, we
are the first to investigate MRC model robustness under real natural perturbations. Furthermore,
it should be noted that the concept of natural perturbed examples in this paper differs from what
is defined in previous NLP literature, where the latter measures the extent to which synthetically
modified text preserves certain linguistic characteristics such as fluency, coherence, grammaticality
and clarity, i.e., its naturalness (Jin et al., 2020; Li et al., 2020; Schlegel et al., 2021; Qi et al., 2021;
Wang et al., 2022a; Dyrmishi et al., 2023). Some works also propose that a natural synthetically
perturbed sample should be imperceptible to human judges (Li et al., 2020; Garg & Ramakrish-
nan, 2020) or convey the impression of human authorship (Dyrmishi et al., 2023). However, this
proposition remains a subject of debate (Zhao et al., 2018; Wang et al., 2022b; Chen et al., 2022).

3 NATURAL PERTURBATION PIPELINE

We design a pipeline to automatically construct label-preserving stress MRC test sets with noises
that occur in real-world settings by leveraging Wikipedia revision histories (Figure 2). Our approach
comprises two modules: candidate passage pairs curation and perturbed test set construction.

Candidate passage pairs curation. For each English Wikipedia article within the development
set2 of MRC datasets, we systematically extract its entire revision histories and preprocess them,
including the removal of markups and the segmentation of content. Subsequently, we obtain the
content differences between each current revision and the previous adjacent one, identifying three
distinct editing patterns: addition, deletion, and modification. In the case of an edit falling within
the modification pattern, we retain the paragraph from the prior version as the original and the
corresponding one from the current version as the perturbed, provided both paragraphs exceed 500
characters3.

Perturbed test set construction. To generate the naturally perturbed test set, we begin by acquir-
ing all reading passages from the development set of each MRC dataset and identifying their entries
in the collection of previously extracted candidate original passages, along with the corresponding
perturbed counterparts. Subsequently, for the matched original passages with a single occurrence,

2Since not all test sets are public, we apply natural perturbations to the development sets. For simplicity, we
use the term “test set” throughout.

3This threshold setting adheres to the methodology employed in the collection of SQuAD 1.1 (Rajpurkar
et al., 2016).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Candidate Passage Pairs Curation

Wikipedia Article TitlesMRC Test Set

 

Original 
Passages

Perturbed 
Passages

O1 P1

O2 P2

… …

On Pn

Original Reading
Passages

verbatim original passage matching

corresponding perturbed passage identification

Perturbed Test Set

answers preserving checking

Original Test Set

Perturbed Test Set Construction

Figure 2: Process of generating naturally perturbed MRC test sets.

we keep them and the corresponding perturbed passages; whereas for those with multiple occur-
rences, we randomly select one instance for each and extract its perturbed version. After obtaining
the perturbed reading passages, we retain only those with at least one question where all annotated
ground truth answers (or all plausible answers for the unanswerable question) can still be located
within the perturbed context, resulting in the Perturbed test set. For the sake of comparison, we
also construct an Original version of the test set keeping only the original passages and questions
corresponding to those that were included in the Perturbed version.

4 EXPERIMENT SETUP

4.1 DATASETS

We select five MRC datasets: SQUAD 1.1 (Rajpurkar et al., 2016), SQUAD 2.0 (Rajpurkar et al.,
2018), DROP (Dua et al., 2019), HOTPOTQA (Yang et al., 2018) and BOOLQ (Clark et al., 2019).
These are chosen due to the fact that their reading passages are sourced from Wikipedia, thereby
enabling the utilisation of Wikipedia editing histories to generate the naturally perturbed test set.

4.2 MODELS

Our evaluation study involves multiple contemporary MRC models across three different types:
encoder-only, encoder-decoder, and decoder-only. Under the encoder-decoder and decoder-only
model evaluation settings, we reframe the extractive MRC as the text generation task based on the
given context and question. Access to and experimentation with all models are possible via the use
of the HuggingFace’s Transformers library (Wolf et al., 2020), two 80GB Nvidia A100 GPUs and
the OpenAI ChatGPT API.

Encoder-only: We select BERT (Devlin et al., 2019) and its various variants for evaluation, in-
cluding DistilBERT (Sanh et al., 2019), SpanBERT (Joshi et al., 2020), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020) and DeBERTa (He et al., 2021). Some of these model types also
come with different variations, such as size (e.g., base and large for RoBERTa), versions (e.g., v1
and v2 for ALBERT) and whether the input text is cased or not (e.g., cased and uncased for BERT),
all of which are included in the evaluation. We fine-tune these encoder-only pre-trained language
models on the training set of the two SQUAD datasets (Rajpurkar et al., 2016; 2018) and evaluate
them on the constructed original and perturbed test sets. Model details and the hyperparameters
used in model fine-tuning are shown in Appendix A.

Encoder–Decoder: Instruction finetuning has been demonstrated to be effective in enhancing
zero-shot performance of pretrained language models, resulting in the development of Finetuned

4
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Language Net (FLAN) (Wei et al., 2022). In this work, we use the instruction-finetuned version
of T5 model class, specifically the Flan-T5 (Chung et al., 2022), available in sizes ranging from
small (80M), base (250M), large (780M) to xl (3B). During evaluation, we utilise the instruction
templates from MRC task collection in open-sourced FLAN repository and report the model per-
formance as the average of those obtained across the employed templates. Refer to Appendix B
for various instruction templates used for the evaluation on the test sets with the format as the two
SQUAD datasets.

Decoder-only: There is an exponential increase of pre-trained generative LLMs and their fine-
tuned chat versions, inspired by the remarkable success of ChatGPT (Bang et al., 2023). Therefore,
our experiments incorporate a broad range of recently proposed language model families, including
GPT 3.5 Turbo, GPT-4o, Llama 2 (Touvron et al., 2023), Llama 3 (Dubey et al., 2024),
Mistral (Jiang et al., 2023), Falcon (Almazrouei et al., 2023) and Gemma (Mesnard et al.,
2024). The zero-shot prompts designed for soliciting their responses are presented in Appendix C.

4.3 MODEL EVALUATION METRICS

In line with existing literature, we choose the Exact Match (EM) and (instance-averaged) Token-F1
score to assess the performance of both encoder-only and encoder-decoder models (Rajpurkar et al.,
2016), as on SQUAD-style test sets, they are optimised to output the shortest continuous span from
the context as the answer (or predict the question as unanswerable) during inference. However,
the outputs of the decoder-only models do not consistently adhere to the instruction due to their
conversational style, rendering EM and F1 unsuitable for evaluation. Consequently, we employ a
more lenient metric, namely Inclusion Match (IM), which measures whether the response of the
model contains any of the ground truth answers (Bhuiya et al., 2024). Furthermore, if the model’s
output includes phrases such as “I cannot answer this/the question” or “unanswerable”4, we deem
that the model believes the question is not answerable. Model robustness is quantified by measuring
the relative variation in performance (as reflected in the F1 or IM) under perturbations.

5 MRC UNDER NATURAL PERTURBATION

In this section, we present the main findings of our study. Our intention in starting with SQuAD and
encoder-only models is to establish a baseline evaluation of model behaviour under natural perturba-
tions. While SQuAD is less challenging, its simplicity enables a focused and controlled examination
of the perturbation effects (Section 5.1), error sources (Section 5.2) and adversarial instance validity
(Section 5.3), providing a foundation for generalising our findings to more complex datasets and
model architectures. As we observe that encoder-only models suffer from natural perturbations on
the SQuAD datasets, we further investigate the transferability of the errors generated by encoder-
only models to other model architectures (Section 5.4)5. We finally show that the behaviour we
observe in the baseline evaluation (i.e., encoder-only models suffer from natural perturbations on
the SQuAD datasets) also carries over to more powerful LLMs and other more complex datasets
(Section 5.5).

5.1 ARE ENCODER-ONLY MRC MODELS RESILIENT TO NATURAL PERTURBATION?

Table 1 presents the relative F1 change for all encoder-only MRC models on the naturally perturbed
test set generated based on the SQUAD 1.1 and SQUAD 2.0 development set, respectively. It can
be clearly seen from Table 1 that overall, the performance of all the examined models decreases, in-
dicating that encoder-only MRC models suffer from natural perturbation. However, we notice that
the performance drop of all models is negligible (the biggest drop is only 3.06%), which suggests
that those models also exhibit considerable robustness to natural perturbations.

4We collate a collection of such phrases by manually examining the decoder-only models’ outputs (Check
Appendix D for the full set).

5Alternatively, we also study the effect of all perturbed instances on each architecture type and measure the
transferability of adversarial examples across all models (see Appendix E).
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Table 1: Relative F1 change (%) for encoder-only MRC systems subjecting to natural perturbations.
For SQUAD 2.0, the overall values are broken down to answerable and unanswerable questions,
respectively.

Victim SQuAD 1.1 SQuAD 2.0
Overall (Ans./Unans.)

distilbert-base −0.6 −0.71 (−2.76/1.71)

bert-base-cased −0.21 −0.63 (−1.84/0.6)

bert-base-uncased −0.87 −0.49 (−1.88/0.94)

bert-large-cased −0.63 −0.53 (−1.61/0.55)

bert-large-uncased −0.35 −1.38 (−2.51/−0.24)

spanbert-base-cased −0.26 −1.24 (−2.66/0.15)

spanbert-large-cased −0.51 −1.20 (−1.9/−0.56)

roberta-base −0.61 −0.60 (−2.09/0.81)

roberta-large −0.29 −1.52 (−2.6/−0.54)

albert-base-v1 −1.0 −1.07 (−2.02/−0.22)

albert-base-v2 −0.34 −1.08 (−2.03/−0.22)

albert-large-v1 −0.42 −0.41 (−1.42/0.52)

albert-large-v2 −0.8 −0.69 (−1.66/0.22)

albert-xxlarge-v1 −0.75 −1.23 (−3.06/0.49)

albert-xxlarge-v2 −0.46 −1.28 (−3.02/0.36)

deberta-large −0.52 −1.05 (−2.2/0.0)

5.2 ERROR ANALYSIS

Although encoder-only MRC models exhibit a relatively small performance gap, it remains worth-
while to investigate the sources of natural perturbation and reveal the perturbation phenomena con-
tributing to models’ error. To this end, we manually label linguistic features between passages where
models succeed and fail, to identify how they differ.

Figure 3: The percentage (%) of samples anno-
tated with each edit intention in the C2W, C2C
and W2C categories. The percentages do not add
up to 100% because a single revision may fall into
multiple intentions.

Within the original and the naturally perturbed
test set pair generated based on SQUAD 2.0
development set, we first identify 384 instances
where at least one encoder-only model suc-
ceeds on the original but fails6 on the perturbed
(i.e., being adversarial), and then randomly se-
lect the same number of instances on which
all encoder-only models succeed on both the
original and perturbed versions (Naik et al.,
2018). We refer to these two types of instances
as C2W (correct to wrong) and C2C (correct
to correct) instances, respectively. Among the
identified C2W and C2C instances, we further
remove duplicates, resulting in 210 and 244
unique original and perturbed paragraph pairs,
respectively. Furthermore, as natural perturba-
tion can occasionally help the model to get the
answer correct, we also filter 85 unique W2C
(wrong to correct) instances on which at least
two encoder-only models fail on the original
but succeed on the perturbed. Finally, utilising
an 8-category taxonomy of the semantic edit in-
tentions in Wikipedia revisions derived from Yang et al. (2017), the chosen 210 samples of C2W
and C2C, as well as the 85 W2C were annotated, with 20% of the annotated C2W and C2C exam-
ples presented to a second annotator for additional validation. See Appendix F for the instruction
provided to the annotators, along with detailed explanations of each edit intention. We calculate the

6For answerable questions, a model’s prediction is considered correct if EM score equals 1, and incorrect if
F1 score is 0 or it determines the question is unanswerable. For unanswerable questions, a model’s prediction
is correct if it predicts the question is unanswerable, and wrong if it provides an answer span.
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(micro-averaged) F1 score to evaluate the inter-annotator agreement, which is 0.82. This suggests
that the annotators’ annotations align closely. Figure 3 reports the annotation results.

Distribution of perturbation types shown in Figure 3 generally aligns with the edit intentions distribu-
tion annotated in (Yang et al., 2017), with Copy Editing and Elaboration appearing more frequently
than others, such as Clarification, Fact Update, and Refactoring 7. From Figure 3, we observe that
there is no significant difference in the distribution of annotated edit intentions between C2W and
C2C examples, suggesting that though these types of natural perturbations confuse the encoder-
only MRC models, there seems no correlation with human-perceivable features. A roughly similar
distribution is also observed in the W2C examples, which indicates that these natural perturbation
types can also facilitate correct answers by the models, i.e., being beneficial. These demonstrate
that on SQUAD 2.0, there might be no correlation between the quality of the naturally perturbed
passage and its potential for being adversarial 8. Certain text edits aimed at improving the passage
quality, such as Copy Editing and Elaboration, do render the perturbation adversarial, whereas edits
intended to damage the article may not consistently result in adversarial instances; in fact, vandal-
ism can even assist models in providing correct answers. Instead, we infer that whether an edit to
the passage can render the MRC instance adversarial or not depends on the location of the edits in
relation to the question. Among the 384 C2W and C2C examples, we measure the proportion of an-
swerable questions with the answer sentence(s) in the original passage remaining unmodified in the
naturally perturbed version, which is 34.5% and 71.5%, respectively. This confirms our hypothesis
that if the edits affect the answer sentence(s), there is a higher likelihood of the perturbed example
becoming adversarial; otherwise, it might not. Copy Editing appears to alter the answer sentences
in the reading passage more frequently, making it the most impactful category that confuses models
(contributing to more than 40% of error cases), while other types have a lesser effect. Appendix G
presents one perturbed example for each of the C2W, C2C, and W2C categories, respectively, along
with the annotated natural perturbation type(s).

5.3 VALIDITY OF NATURE ADVERSARIAL EXAMPLES

To accurately assess a model’s robustness under perturbation, it is vital to examine the validity of ad-
versarial example, i.e. whether humans can still find the correct answer under the perturbation (Dyr-
mishi et al., 2023). We first present two human annotators with the same collection of adversarial
instances, which includes only perturbed contexts and their corresponding questions, and then ask
them to answer the question based on the perturbed context. The annotators are required to select
the shortest continuous span in the perturbed context that answers the question and are allowed to
leave the answer blank if they are confident that the question is not answerable. Full instructions
given to the annotators can be seen in Appendix F. Subsequently, for both annotators, we measure
the correctness (1 or 0) of their provided answers by comparing each of them with the corresponding
ground truth answers9. The inter-annotator agreement is then measured by computing the Cohen’s
κ coefficient (Cohen, 1960). We then involve a third human annotator to annotate the adversarial
examples on which the first two annotators disagree and then take the majority label as ground truth.

We employ this approach to verify the validity of the 210 C2W examples in Section 5.2 and find
that 86% of these adversarial examples are valid (0.77 Cohen’s κ), indicating that a substantial
proportion of natural adversarial examples for encoder-only MRC model(s) are valid.

5.4 CAN ERRORS FROM ENCODER-ONLY MODELS AFFECT OTHER ARCHITECTURES?

We further investigate whether the errors identified in encoder-only models carry over to other more
recent models and architectures, as state-of-the-art advancements in NLP would suggest otherwise.
Therefore, we propose an exhaustive search algorithm that leverages the predictions of all encoder-
only models to create the challenging natural perturbed test set. In detailed terms, for each matched
reading passage from the prior version and its counterpart from the current version, we determine

7This reflects the inherent characteristics of Wikipedia revisions.
8We also find little or no significant correlation between the perturbation magnitude (measured as byte-

level changes between the original and perturbed passages) and model failure, with point biserial correlation
coefficient close to 0.

9Here, as long as one of the ground truth answers is included in the human-provided answer span, we
consider the prediction to be correct.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

which should be designated as the original and which as the perturbed based on which scenario can
yield the questions on which the maximum sum of the number of encoder-only models demonstrates
the lack of robustness phenomenon10. Questions on which none of the encoder-only models fail
under the perturbation are then removed. A more detailed explanation of this process is provided in
Appendix H. We finally process the identified original and perturbed passage pairs to ensure that the
original passages are within the original SQUAD 1.1 development set. For those original passages
with multiple occurrences, we select the one with the maximum number of questions reserved.

With the development set of SQUAD 1.1 and SQUAD 2.0 as the source, this results in
two challenge perturbed test sets: NAT V1 CHALLENGE and NAT V2 CHALLENGE. In
NAT V1 CHALLENGE, there are 184 contexts and 234 questions. NAT V2 CHALLENGE contains
214 contexts and 442 questions (226 unanswerable).

Table 2 shows the evaluation results of both encoder-decoder and decoder-only models on the
newly generated challenge test sets. From the table, we observe that the errors caused by nat-
ural perturbation in encoder-only MRC models transfer to both Flan-T5 and LLMs. On the
NAT V1 CHALLENGE, Flan-T5-small demonstrates the greatest susceptibility to natural per-
turbation, experiencing a 14.27% decrease in F1, while among LLMs, Gemma-7B-IT emerges as
the least robust, with a 16.66% IM drop. Transitioning to the NAT V2 CHALLENGE, the base ver-
sion of Flan-T5 exhibits the largest performance decline (13.83%) and Falcon-7B-Instruct
stands out as the LLM with the lowest robustness. Further, the robustness of models under natural
perturbations does not necessarily correlate with their size. For example, on NAT V2 CHALLENGE,
Llama 2-chat-7B demonstrates higher overall robustness than Llama 2-chat-13B, while
flan-t5-xl exhibits the largest performance decrease (12.79%) compared to its small and large
versions. In Appendix I, we showcase two adversarial examples targeting LLMs sourced from our
generated challenge sets.

Table 2: The performance (%) of encoder-decoder and decoder-only MRC models on the newly
generated original and naturally perturbed challenge test sets. Values in smaller font are changes
(%) relative to the original performance of the model.

Model Performance
original vs. perturbed

NAT V1 CHALLENGE NAT V2 CHALLENGE

flan-t5-small 58.76/64.76 48.58/55.52−14.27 42.57/44.57 39.71/41.81−6.19

flan-t5-base 79.49/85.01 66.1/73.42−13.63 70.66/72.85 61.16/62.78−13.83

flan-t5-large 88.1/92.53 76.57/82.31−11.05 79.11/81.01 70.14/72.13−10.96

flan-t5-xl 86.25/91.57 75.0/81.45−11.05 83.71/85.84 73.19/74.86−12.79

GPT-3.5-turbo-0125 91.03 83.33−8.46 51.58 47.06−8.76

GPT-4o-2024-08-06 94.87 82.48−13.06 82.81 71.72−13.39

Gemma-2B-IT 51.28 43.16−15.83 55.66 50.23−9.76

Gemma-7B-IT 82.05 68.38−16.66 59.95 57.01−4.9

Llama 2-chat-7B 82.91 73.93−10.83 41.63 38.69−7.06

Llama 2-chat-13B 80.77 73.93−8.47 46.83 41.18−12.06

Llama-3-8B-Instruct 88.89 77.35−12.98 51.81 46.61−10.04

Mistral-7B-Instruct-v0.2 85.9 76.92−10.45 55.43 52.04−6.12

Falcon-7B-Instruct 53.42 50.00−6.4 32.81 23.53−28.28

Falcon-40B-Instruct 69.66 62.82−9.82 38.69 36.88−4.68

5.5 DO OUR FINDINGS GENERALISE TO OTHER MRC DATASETS?

The two SQUAD datasets investigated previously are relatively simple, as they lack challenging
features (Schlegel et al., 2020), leading to super-human performance of MRC models (Lan et al.,
2020). To generalise our findings to more challenging MRC benchmarks, we apply the natural
perturbation methodology (Section 3) to the development set of three more datasets and assess the
performance changes of several LLMs. For DROP (Dua et al., 2019), we first use the GPT-4o

10We define A model as lacking robustness to the perturbation if it achieves 1 EM on the original question
but attains less than 0.4 F1 on the perturbed one (for answerable questions).
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mini to infer the likely Wikipedia article title from which each passage is retrieved11 and extract
the revision histories for 224 out of 473 articles. For HOTPOTQA (Yang et al., 2018), we use its
development set in the “distractor” setting and extract revision histories for around 8.4% (1156)
Wikipedia articles containing the supporting facts. For BOOLQ (Clark et al., 2019), we extract
revision histories for around 19.4% (514) Wikipedia articles.

Table 3: IM changes (%) of LLMs on naturally perturbed
test sets of three challenging MRC datasets.

LLM IM Relative Change (%)
DROP HOTPOTQA BOOLQ

Gemma-2B-IT −19.44 - −8.01
Gemma-7B-IT −6.01 −6.45 -
Llama 2-chat-7B −1.89 −4.92 8.69
Llama 2-chat-13B −1.89 −4.41 −1.81
Llama-3-8B-Instruct −4.69 −3.33 3.45
Mistral-7B-Instruct-v0.2 −5.01 −4.22 3.51
Falcon-7B-Instruct −6.04 −15.38 2.22
Falcon-40B-Instruct 7.88 −12.52 −9.8
GPT-4o-2024-08-06 −12.68 −2.67 −7.47

average −5.53 −5.99 −1.02

Overall, as shown in Table 3, we find
that when natural perturbations are ap-
plied to more challenging benchmarks,
LLMs also exhibit a lack of robust-
ness. This emphasises the broadly nega-
tive impact of natural perturbations. On
naturally perturbed HOTPOTQA, these
models exhibit the largest average IM
drop (5.99%), suggesting that natural
perturbations significantly destroy the
multi-hop reasoning chain. Further-
more, natural perturbations can also not
harm or even benefit some models in an-
swering questions on certain benchmarks, possibly due to the characteristics of those benchmarks.
We leave this investigation for future work.

6 DEALING WITH NATURAL PERTURBATIONS

In this section, we provide an initial exploration of methods to defend against natural perturba-
tions, focusing on encoder-only models and SQuAD datasets. Expanding to other datasets and
architectures could be explored in future work. To enhance model robustness, we conduct adver-
sarial training by identifying six encoder-only model architectures that already exhibit the highest
robustness to natural perturbations in their respective categories (except albert-xxlarge-v2
on NAT V2 CHALLENGE), and presenting them with both original training data and the generated
naturally perturbed training examples. We extract the entire Wikipedia revision histories for the
392 articles in the original SQUAD training set, and then obtain 5, 262 (with 22, 033 questions) and
5, 311 (with 32, 993 questions) perturbed contexts to augment the original SQUAD 1.1 and SQUAD
2.0 training set, respectively, using the methodology described in Section 3. Table 4 compares the
performance of these models on NAT V1 CHALLENGE and NAT V2 CHALLENGE, before and af-
ter retraining.

Apart from re-training with the same type of noise, we also ask whether exposing models to synthetic
perturbations can help them confront natural ones. Therefore, we incorporate thirteen synthetic
perturbation techniques spanning character and word levels (see Appendix J). Afterwards, we first
retrain deberta-large with perturbed training samples generated by each synthetic perturbation
method, respectively, and assess the performance changes compared to the vanilla version on both
NAT V1 CHALLENGE and NAT V2 CHALLENGE (Figure 8 in Appendix K). As we observe that
synthetic adversarial training can assist deberta-large in handling natural perturbations, we
further retrain five other models in the same manner and quantify the performance difference on
NAT V1 CHALLENGE compared to the vanilla version, as shown in Figure 4.

In general, for encoder-only MRC models, retraining with natural perturbations enhances the per-
formance on naturally perturbed test sets and improves the robustness to such perturbations as well,
though this can lead to varying reductions in performance on the clean test set. Encouragingly,
adversarial training with synthetically perturbed examples benefits the model’s capability to handle
natural perturbations as well, a phenomenon differs from what is reported in machine translation
task (Belinkov & Bisk, 2018). In some cases, the improvement even exceeds what achieved by
retraining the model on natural perturbations alone. We also observe that the effectiveness of ad-
versarial training varies with model size and architecture. Generally, adversarial training brings the
most significant benefits for the weakest distilbert-base, with the benefits diminishing in
larger and more complex model architectures.

11Prompt: “Given a reading paragraph, return the Wikipedia page title from which it is likely retrieved.”
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Table 4: Comparison of the performance of several encoder-only MRC systems on
NAT V1 CHALLENGE and NAT V2 CHALLENGE, before and after re-training. The results shown
in the shaded areas represent the performance of the model retrained on the augmented training set
with naturally perturbed instances.

Model Performance
(EM/F1)

original vs. perturbed
NAT V1 CHALLENGE NAT V2 CHALLENGE

distilbert-base 64.53/70.45 41.03/47.6−32.43 56.56/59.08 41.18/43.3−26.71

57.26/63.44 43.59/51.87−18.24 53.17/55.4 43.89/45.51−17.85

bert-large-cased 79.06/83.66 63.68/70.23−16.05 66.29/68.35 53.17/55.04−19.47

74.79/80.14 59.83/67.5−15.77 67.87/69.31 58.37/59.53−14.11

spanbert-large-cased 84.19/88.2 67.95/74.77−15.23 78.73/80.68 62.44/64.99−19.45

82.48/86.6 69.66/76.05−12.18 78.28/80.0 65.61/67.12−16.1

roberta-large 86.75/90.21 73.93/79.47−11.91 82.13/84.27 66.29/68.52−18.69

83.33/87.15 70.94/76.53−12.19 81.22/82.67 70.59/71.84−13.1

albert-xxlarge-v2 84.62/89.64 73.93/78.77−12.13 84.62/86.07 68.1/69.61−19.12

86.32/90.93 75.64/81.07−10.84 82.58/84.08 70.59/72.78−13.44

deberta-large 88.46/92.5 73.5/78.48−15.16 85.07/86.65 71.49/73.0−15.75

88.03/91.84 76.92/81.53−11.23 83.03/85.1 72.62/74.48−12.48

Figure 4: Absolute changes in original and perturbed performance (F1), as well as the robustness
of five encoder-only models under natural perturbations (on NAT V1 CHALLENGE), following re-
training with each synthetic perturbation.

7 CONCLUSION

In this paper, we first study the robustness of MRC models to natural perturbations, which occur
under real-world conditions without intentional human intervention. Using the proposed evaluation
framework, we show that certain naturally perturbed examples can indeed be adversarial, i.e., lead
to model failure, even when the modifications aim to improve the overall passage quality. Natural
perturbations also appear to differ significantly from synthetic ones, exhibiting a wide range of rich
linguistic phenomena and may be more effective in generating valid adversarial instances. Adver-
sarial training via augmentation with either naturally or synthetically perturbed samples is generally
beneficial for enhancing the model’s robustness to natural perturbations; yet, it can decrease per-
formance on clean test set. Future work includes the exploration of alternative natural perturbation
approaches and the design of more effective defensive strategies against natural attacks.

ETHICS STATEMENT

All datasets, extracted natural perturbations, and models used in this work are publicly available.
A very small proportion of natural perturbations may contain offensive content, as they come from
reverted Wikipedia revisions intended to damage the articles. We include these to raise aware-
ness within the community about their potential impact on MRC models and to call for methods to
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improve the safety of MRC models–especially those LLMs operating under such adversarial con-
ditions. Before starting the annotation task, we provide all annotators with clear instructions and
inform the intended use of their annotations, obtaining their explicit consent. No private or sensitive
information was collected, other than their annotations.

REPRODUCIBILITY STATEMENT

As part of the supplementary material, we release all our source code, along with the constructed
naturally perturbed test sets and the augmented training sets with naturally or synthetically per-
turbed examples at https://github.com/npanonymous/natural_perturbations.
We also provide the necessary information in models’ evaluation setup, including the hyperpa-
rameters used to fine-tune and evaluate encoder-only models (Appendix A), prompt templates for
evaluating Flan-T5 (Appendix B) and other LLMs (Appendix C).
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berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
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A ENCODER-ONLY MODEL PARAMETERS AND HYPERPARAMETERS FOR
FINE-TUNING

Table 5 shows the hyperparameters used to fine-tune the pre-trained encoder-only MRC models in
this work and their number of parameters contained.

Table 5: Number of parameters in each type of pre-trained encoder-only MRC model and the hyper-
parameters used to fine-tune them. For BERT, SpanBERT, RoBERTa and ALBERT, we show the
number of model parameters in the order of base, large and xxlarge (if applicable) version. d is the
size of the token sequence fed into the model, b is the training batch size, lr is the learning rate, and
ep is the number of training epochs. We used stride = 128 for documents longer than d tokens.

ModelParameters(M) d b lr ep

DistilBERT(66) 384 8 3e− 5 3
BERT(110/340) 384 8 3e− 5 2

SpanBERT(110/340) 512 4 2e− 5 4
RoBERTa(125/355) 384 8 3e− 5 2
ALBERT(11/17/223) 384 4 3e− 5 2
DeBERTa(350) 384 4 3e− 6 3

B INSTRUCTION TEMPLATES FOR FLAN-T5 EVALUATION

In Table 6, we present the instruction templates employed in constructing the inputs to the Flan-T5
model for the SQUAD 1.1 format and SQUAD 2.0 format test sets, respectively.

Table 6: Various instruction templates for Flan-T5 model evaluation.

SQUAD 1.1
1 “Read this and answer the question\n\n{context}\n\n{question}”
2 “{context}\n{question}”
3 “Answer a question about this article:\n{context}\n{question}”
4 “Here is a question about this article: {context}\nWhat is the answer to this question:

{question}”
5 “Article: {context}\n\nQuestion: {question}”
6 “Article: {context}\n\nNow answer this question: {question}”

SQUAD 2.0
1 “Read this and answer the question. If the question is unanswerable, say

\“unanswerable\”.\n\n{context}\n\n{question}”
2 “{context}\n{question} (If the question is unanswerable, say \“unanswerable\”)”
3 “{context}\nTry to answer this question if possible (otherwise reply

\“unanswerable\”): {question}”
4 “{context}\nIf it is possible to answer this question, answer it for me (else, reply

\“unanswerable\”): {question}”
5 “{context}\n\nAnswer this question, if possible (if impossible, reply

\“unanswerable\”): {question}”
6 “Read this: {context}\nNow answer this question, if there is an answer (If it cannot

be answered, return \“unanswerable\”): {question}”
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C MRC PROMPTS

We use the following zero-shot prompts to instruct the decoder-only models to generate responses
in the task of MRC.

SQUAD 1.1: Use the provided article delimited by triple quotes to answer question. Pro-
vide only the shortest continuous span from the context without any additional explana-
tion.\n\n“““{context}”””\n\nQuestion: {question}
SQUAD 2.0: Use the provided article delimited by triple quotes to answer question. Provide only
the shortest continuous span from the context without any additional explanation. If the question is
unanswerable, return “unanswerable”.\n\n“““{context}”””\n\nQuestion: {question}
DROP & HOTPOTQA: Use the provided article delimited by triple quotes to answer question.
Provide only the answer without any additional explanation.\n\n“““{context}”””\n\nQuestion:
{question}
BOOLQ: Use the provided article delimited by triple quotes to answer question. Return only TRUE
or FALSE.\n\n“““{context}”””\n\nQuestion: {question}

D INDICATORS OF UNANSWERABLE

We manually identify a set of phrases contained in the output of LLMs that indicate the unanswer-
ability of the question, including “I cannot answer this/the question”, “unanswerable”, “There
is no indication in the provided article”, “The context provided does not provide enough in-
formation”, “There is no reference in the given article”, “The answer to the question is not
provided in the given article”, “it is not possible”, “question cannot be answered” and “con-
text/question/article/text/article provided/passage does not”.

E SUPPLEMENTARY EXPERIMENTS

We supplement Table 1 in Section 5.1 with additional experiments on Flan-T5 and more recent
LLMs such as Gemma 2 (Team et al., 2024) and Llama 3.2, to study the effect of all perturbed
instances on each architecture type. The results are presented in Table 7. From Table 7, we observe
that similar to encoder-only models, Flan-T5 and LLMs generally exhibit varying degrees of
performance degradation under natural perturbations, but also exhibit considerable robustness to
them.

Table 7: Performance change (%) for Flan-T5 and LLMs subjecting to natural perturbations.

Victim SQUAD 1.1 SQUAD 2.0
flan-t5-small −0.69 −0.64
flan-t5-base −0.91 −1.32
flan-t5-large −0.77 −1.13
flan-t5-xl −0.98 −1.37
gemma-2-2b-it − −0.76
gemma-2-9b-it −0.89 −0.92
llama-3.1-8B-instruct −0.38 0.39
llama-3.2-3B-instruct −0.96 −0.37
mistral-7B-instruct-v0.2 0.39 −1.28
falcon-7b-instruct −0.88 −5.38
falcon-40b-instruct −0.80 −

Afterwards, we also comprehensively measure the transferability of adversarial examples across
all models and observe that these models exhibit similar error patterns, with LLMs (especially
Falcon) showing moderate differences. However, the lowest transferability metric is still as high
as 0.86.
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F HUMAN ANNOTATION INSTRUCTIONS

In Figure 5, we show the instructions given to human annotators for error analysis (Section 5.2)
and adversarial validity checking (Section 5.3), respectively. All our human annotators are students
from universities in the United Kingdom and China. Before commencing each task, we ask them
to annotate some examples and report the average time spent on each. As compensation, annotators
receive 40 pence for each annotated example.

Error Analysis
You will be presented with pairs of reading contexts and their modified versions. The task is to
compare each context and its modified version, observe the changes made and classify them into
one or more of the semantic edit intention categories detailed below:

• Copy Editing: Rephrase; improve grammar, spelling, tone, or punctuation
• Clarification: Specify or explain an existing fact or meaning by example or discussion

without adding new information
• Elaboration: Extend/add new content; insert a fact or new meaningful assertion
• Fact Update: Update numbers, dates, scores, episodes, status, etc. based on newly

available information
• Refactoring: Restructure the article; move and rewrite content, without changing the

meaning of it
• Simplification: Reduce the complexity or breadth of discussion; may remove

information
• Vandalism: Deliberately attempt to damage the article
• Other: None of the above

We will use your annotation to calculate the percentage of each edit category.
Adversarial Validity Checking
Please read each provided context carefully and answer a corresponding question. Select the
shortest continuous span from the context as your answer. If you believe a question cannot be
answered, leave the answer blank. Your answer will be compared with the ground truth answers,
and the result will only be used to decide the human answerability of the question.

Figure 5: Instructions for the two distinct human annotation tasks. In the error analysis task, the
eight semantic edit intentions are adopted from (Yang et al., 2017).

G DEMONSTRATION OF PERTURBED MRC EXAMPLES FOR ENCODER-ONLY
MODELS

Figure 6 illustrates a naturally perturbed MRC instance each for categories C2W, C2C, and W2C,
with the annotated perturbation type(s).

H DETAILED EXPLANATION OF CHALLENGING TEST SET CONSTRUCTION

In Section 5.4, our aim is to zoom in on the errors of encoder-only models as much as possible and
examine whether these errors transfer to Flan-T5 and LLMs. Therefore, we propose an exhaustive
search algorithm to create the challenging natural perturbed test set:

Given a matched reading passage ( P ) from the prior version, its counterpart ( P’ ) from the current
version, and the associated questions:

First Scenario: We treat ( P ) as the original passage and ( P’ ) as the perturbed one. We then
evaluate, for each associated question, how many encoder-only models demonstrate the lack of
robustness phenomenon, i.e., succeed on ( P ) but fail on ( P’ ). We finally obtain the total number
of models that demonstrate the lack of robustness phenomenon across all questions, denoted as (
N ). Questions on which none of the models demonstrate the lack of robustness phenomenon are
removed, leaving ( Q ) questions.
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Category: C2W
Original Paragraph: Jacksonville, like most large cities in the United States, suffered from
negative effects of rapid urban sprawl after World War II. The construction of highways led
residents to move to newer housing in the suburbs. After World War II, the government of the
city of Jacksonville began to increase spending to fund new public building projects in the boom
that occurred after the war. [. . . ]
Perturbed Paragraph: Jacksonville, like most large cities in the United States, suffered from
negative effects of rapid urban sprawl after World War V. The construction of highways led
residents to move to newer housing in the suburbs. After World War II, the government of the
city of Jacksonville began to increase spending to fund new public building projects in the boom
that occurred after the war. [. . . ]
Question: What did Jacksonville suffer from following World War I?
Prediction of distilbert-base and spanbert-large-cased: unanswerable→rapid
urban sprawl
Annotated Natural Perturbation Type: Vandalism
Category: C2C
Original Paragraph: Construction projects can suffer from preventable financial problems.
Underbids happen when builders ask for too little money to complete the project. Cash flow
problems exist when the present amount of funding cannot cover the current costs for labour
and materials, and because they are a matter of having sufficient funds at a specific time, can
arise even when the overall total is enough. Fraud is a problem in many fields, but is notoriously
prevalent in the construction field. Financial planning for the project is intended to ensure that
a solid plan with adequate safeguards and contingency plans are in place before the project is
started and is required to ensure that the plan is properly executed over the life of the project.
Perturbed Paragraph: Financial planning ensures adequate safeguards and contingency plans
are in place before the project is started, and ensures that the plan is properly executed over the
life of the project. Construction projects can suffer from preventable financial problems.
Underbids happen when builders ask for too little money to complete the project. Cash flow
problems exist when the present amount of funding cannot cover the current costs for labour
and materials; such problems may arise even when the overall budget is adequate, presenting a
temporary issue. Fraud is also an occasional construction issue.
Question: What can construction projects suffer from?
Prediction of all encoder-only models: preventable financial problems→preventable financial
problems
Annotated Natural Perturbation Type: Copy Editing; Refactoring; Simplification
Category: W2C
Original Paragraph: [. . . ] The antigens expressed by tumors have several sources; some are
derived from oncogenic viruses like human papillomavirus, which causes cervical cancer, while
others are the organism’s own proteins that occur at low levels in normal cells but reach high
levels in tumor cells. [. . . ] A third possible source of tumor antigens are proteins normally
important for regulating cell growth and survival, that commonly mutate into cancer inducing
molecules called oncogenes.
Perturbed Paragraph: [. . . ] The antigens expressed by tumors have several sources; some are
derived from oncogenic viruses like human papillomavirus, which causes cancer of the cervix,
vulva, vagina, penis, anus, mouth, and throat,while others are the organism’s own proteins that
occur at low levels in normal cells but reach high levels in tumor cells. [. . . ] A third possible
source of tumor antigens are proteins normally important for regulating cell growth and
survival, that commonly mutate into cancer inducing molecules called oncogenes.
Question: What is a fourth possible source for tumor antigens?
Prediction of bert-base-uncased: proteins normally important for regulating cell growth
and survival→unanswerable
Annotated Natural Perturbation Type: Elaboration

Figure 6: Natural perturbed MRC example in C2W, C2C and W2C categories.

Second Scenario: We treat ( P’ ) as the original passage and ( P ) as the perturbed one. We then
repeat the same evaluation process as described in the first scenario and obtain the total number of
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models demonstrating the lack of robustness phenomenon across all questions, denoted as ( N’ ).
Questions on which none of the models demonstrate the lack of robustness phenomenon are removed
as well, leaving ( Q’ ) questions.

If ( N > N ′ ), we consider ( P ) as the original passage and ( P’ ) as the perturbed version.

If ( N < N ′ ), we consider ( P’ ) as the original and ( P ) as the perturbed.

If ( N = N ′ ), we compare ( Q ) and ( Q’ ):

• If ( Q > Q′ ), we consider ( P ) as the original passage and ( P’ ) as the perturbed version.

• If ( Q < Q′ ), we consider ( P’ ) as the original and ( P ) as the perturbed.

• If ( Q = Q′ ), the order does not matter, and we randomly decide which one should be the
original and which should be the perturbed.

I NATURAL ADVERSARIAL SAMPLES FOR LLMS

We demonstrate two naturally perturbed reading comprehension examples that pose challenges for
LLMs in Figure 7.

J SYNTHETIC PERTURBATION METHODS

Table 8 presents the synthetic perturbation methods used in this study.

Table 8: Various synthetic perturbation approaches.

Method Description
character-level

CharOCR Replace characters with Optical Character Recognition (OCR) errors.
CharInsert Inject new characters randomly.
CharSubstitute Substitute original characters randomly.
CharSwapMid Swap adjacent characters within words randomly, excluding the first and

last character.
CharSwapRand Swap characters randomly without constraint.

word-level
WInsert (CWE) Insert new words to random position according to contextual word em-

beddings calculation from RoBERTa-base (Liu et al., 2019).
WSubstitute (CWE) Substitute words according to contextual word embeddings calculation

from RoBERTa-base (Liu et al., 2019).
WSplit Split words to two tokens randomly.
WSwap Swap adjacent words randomly.
WDelete Delete words randomly.
WCrop Remove a set of continuous word randomly.
Word Synonym Sub-
stitution (WSynSub)

Substitute words with synonyms from large size English PPDB (Pavlick
et al., 2015).

WInsert (WE) Insert new words to random position according to GloVe (Pennington
et al., 2014) word embeddings calculation (we use glove.6B.300d.txt).

We employ methods including WSplit, WSynSub and WInsert (WE) to each sentence in the origi-
nal reading passage, and then recombine the modified sentences to generate the perturbed version.
Conversely, other perturbation approaches are directly executed on the entire paragraph, as imple-
menting them at the sentence-level might result in perturbed text that is even difficult for humans
to read and comprehend (Si et al., 2021). The implementation of all character-level and word-level
methods is carried out using the NLPAug library (Ma, 2019). Moreover, we set the perturbation rate
to 30%, in line with the default settings within the NLPAug library.
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NAT V1 CHALLENGE
Original Paragraph: In business, notable alumni include Microsoft CEO Satya Nadella,
Oracle Corporation founder and the third richest man in America Larry Ellison, Goldman
Sachs and MF Global CEO as well as former Governor of New Jersey Jon Corzine, McKinsey
& Company founder and author of the first management accounting textbook James O.
McKinsey, Arley D. Cathey, Bloomberg L.P. CEO Daniel Doctoroff, Credit Suisse CEO Brady
Dougan, Morningstar, Inc. founder and CEO Joe Mansueto, Chicago Cubs owner and
chairman Thomas S. Ricketts, and NBA commissioner Adam Silver.
Perturbed Paragraph: In business, notable alumni include Microsoft CEO Satya Nadella,
Oracle Corporation founder and the third richest man in America Larry Ellison, Goldman
Sachs and MF Global CEO as well as former Governor of New Jersey Jon Corzine, McKinsey
& Company founder and author of the first management accounting textbook James O.
McKinsey, co-founder of the Blackstone Group Peter G. Peterson, co-founder of AQR Capital
Management Cliff Asness, founder of Dimensional Fund Advisors David Booth, founder of The
Carlyle Group David Rubenstein, Lazard CEO Ken Jacobs, entrepreneur David O. Sacks, CEO
of TPG Group and former COO of Goldman Sachs Jon Winkelreid, former COO of Goldman
Sachs Andrew Alper, billionaire investor and founder of Oaktree Capital Management Howard
Marks, Bloomberg L.P. CEO Daniel Doctoroff, Credit Suisse CEO Brady Dougan, Morningstar,
Inc. founder and CEO Joe Mansueto, Chicago Cubs owner and chairman Thomas S. Ricketts,
and NBA commissioner Adam Silver.
Question: What Goldman Sachs CEO is also an alumni of the University of Chicago?
Prediction of GPT-3.5-turbo-0125 and Llama-3-8B-Instruct: Jon Corzine→Jon
Winkelreid
Prediction of Falcon-40B-Instruct: Jon Corzine→David Rubenstein, co-founder of
The Carlyle Group, is also an alumnus of the University of Chicago.
NAT V2 CHALLENGE
Original Paragraph: Each chapter has a number of authors who are responsible for writing
and editing the material. A chapter typically has two ”coordinating lead authors”, ten to fifteen
”lead authors”, and a somewhat larger number of ”contributing authors”. The coordinating
lead authors are responsible for assembling the contributions of the other authors, ensuring that
they meet stylistic and formatting requirements, and reporting to the Working Group chairs.
Lead authors are responsible for writing sections of chapters. Contributing authors prepare
text, graphs or data for inclusion by the lead authors.
Perturbed Paragraph: Each chapter has a number of authors to write and edit the material. A
typical chapter has two coordinating lead authors, ten to fifteen lead authors and a larger
number of contributing authors. The coordinating lead authors assemble the contributions of
the other authors. They ensure that contributions meet stylistic and formatting requirements.
They report to the Working Group co-chairs. Lead authors write sections of chapters. They
invite contributing authors to prepare text, graphs or data for inclusion.
Question: Who has the responsibility for publishing materials?
Prediction of Mistral-7B-Instruct-v0.2: Unanswerable. The text does not mention
any responsibility related to publishing materials.→The coordinating lead authors are
responsible for publishing materials in the given context.

Figure 7: Natural perturbed MRC examples that confuse LLMs.

K IMPACT OF SYNTHETIC ADVERSARIAL TRAINING

Figure 8 describes the impact of synthetic adversarial training (for deberta-large) on handling
natural and synthetic perturbations.
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Figure 8: Absolute changes in original and perturbed performance (F1), as well as the robustness
of deberta-large under natural and various synthetic noises, following retraining with each
synthetic perturbation. The upper row and the bottom row illustrate the results on the SQUAD 1.1
and SQUAD 2.0 format test sets, respectively.
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