

000 001 002 003 004 005 006 007 008 009 010 011 012 ENTROPY: USER INTERACTION DATA FROM LIVE EN- TERPRISE WORKFLOWS FOR REALISTIC MODEL EVALU- ATION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
Anonymous authors
Paper under double-blind review

039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ABSTRACT

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
AI-driven automation for complex enterprise workflows faces significant hurdles due to the lack of publicly available datasets that realistically capture how business processes unfold – interaction by interaction – within actual production environments. Existing datasets are typically synthetic, confined to sandbox settings, or restricted to short web-based processes, limiting the preparedness of AI models for real-world complexities encountered in finance, legal, HR, and other critical domains. To bridge this gap, we introduce **ENTROPY**, the first openly available dataset capturing detailed, end-to-end recordings of authentic enterprise processes. Experienced finance, legal, and HR professionals conducted 283 real-world workflow executions, totaling 33 hours of interactive activity across 19 diverse platforms spanning modern SaaS tools, web pages, and legacy desktop software. Each digital interaction is comprehensively logged alongside rich UI context and visual screen captures. Crucially, **ENTROPY** captures not just structured process flows (and the overlap between them), but also the authentic, often messy dynamics of human work: multitasking, interruptions, off-process behaviors, and natural variability across users. By emphasizing fine-grained user interactions as a primary data modality, **ENTROPY** provides a foundation for building AI systems capable of handling the nuances of real-world work in enterprise environments. As a first application, we benchmark frontier language models on workflow classification and boundary-accurate stream segmentation tasks, both central to enterprise automation, revealing substantial headroom for improvement. We make the dataset available at: <https://kaggle.com/datasets/94647fd0bb51dff501a463674a2314627cdaf8c76d41b093c333b608459e017e>.

1 INTRODUCTION

099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0869
0870
0871
0872
0873
0874
0875
0876
0877
087

054 Capturing this complexity requires logging the full stream of digital user interactions – mouse clicks
 055 and keystrokes – alongside on-screen metadata, which together reflect how real users engage with
 056 software systems to carry out processes. Most existing datasets fall short in three important ways.
 057 First, many are built synthetically from scripted scenarios or sandboxed environments and lack the
 058 behavioral realism of live production settings. Second, even when real users are involved, they
 059 often center on short consumer-facing processes or isolated web interactions, not enterprise-grade
 060 workflows. Third, they overwhelmingly emphasize browser-based applications, ignoring the legacy
 061 software that remains central to critical enterprise functions.

062 To address these limitations, we introduce **ENTROPY**, a dataset of real-world business processes
 063 captured in production settings. It is sourced from trained finance, legal, and HR professionals
 064 performing their actual day-to-day work in an organization. **ENTROPY** comprises 33 hours of user
 065 activity, spanning 283 annotated instances across 24 unique processes and 19 platforms, including
 066 both modern (web) applications and legacy desktop tools. Each event in the dataset represents a
 067 digital user interaction (e.g., click, data entry, or hotkey), enriched with contextual metadata such
 068 as screen title, field label, application identity, timestamp, and a screenshot. **ENTROPY** is unique
 069 among existing datasets in several key ways, as it:

- 070 1. Captures complete business processes tied to real outcomes, not simulated workflows or isolated
 071 micro-processes.
- 072 2. Spans both legacy desktop tools and modern browser applications, enabling modeling across the
 073 full enterprise software stack.
- 074 3. Contains detailed, semantically grounded logs of digital user interactions, recorded in live
 075 production settings as professionals perform their actual day-to-day work.
- 076 4. Contains both the structural backbone of enterprise workflows and the behavioral variability
 077 seen in practice, such as multitasking, interruptions, and alternate execution paths.
- 078 5. Covers processes of substantial duration, all of which last several minutes, with some extending
 079 well beyond 20 minutes of continuous activity (over 40× longer than comparable datasets).

082 These features make **ENTROPY** a valuable resource for advancing enterprise AI, where models
 083 have to be evaluated in real environments that involve long, multimodal workflows with complex
 084 and variable sequences. Such settings demand capabilities such as long-context reasoning, decision-
 085 making under uncertainty, and navigating diverse UIs – core challenges currently pursued in ML
 086 research through long-context LLMs, instruction-following agents, and tool-using systems. By
 087 capturing the full complexity of enterprise workflows, **ENTROPY** offers a high-fidelity testbed for
 088 developing robust models and establishing benchmarks of their performance in realistic work settings.

089 As a first application, we provide benchmark evaluations using state-of-the-art language models
 090 (Claude 3.5 Haiku (Anthropic, 2024), DeepSeek-R1 (DeepSeek-AI, 2025), Gemini 2.5
 091 Flash (Kavukcuoglu, 2024), GPT-4.1 (OpenAI), Qwen3-32B (Yang et al., 2025)) on workflow
 092 classification and segmentation tasks derived from the dataset. Overall, we find that current frontier
 093 language models achieve at most ~70% accuracy on the evaluated tasks, with errors concentrated on
 094 structurally similar but semantically distinct workflows. While promising, this level of performance
 095 remains insufficient for reliable deployment in enterprise settings, where higher accuracy and
 096 consistency are critical for downstream utility and trust, underscoring the importance of datasets like
 097 **ENTROPY** in making these limitations visible.

098 The remainder of the paper is organized as follows: Sec. 2 compares **ENTROPY** to existing datasets.
 099 Sec. 3 discusses the challenges of collecting real-world digital interaction data and our approach to
 100 overcoming them. Sec. 4 provides a detailed overview of our dataset. Sec. 5 demonstrates downstream
 101 tasks enabled by the dataset. We conclude in Sec. 6. Additional technical details are provided in the
 102 supplementary materials.

103 2 RELATED WORK

104 Many datasets have been curated to evaluate models on their ability to understand and automate
 105 digital processes. We briefly survey the relevant literature, organizing it into two categories based
 106 on process provenance: synthetically generated processes and processes sourced from real-world

108 Table 1: Comparison of **ENTROPY** with existing workflow datasets.
109

110	Benchmark	Process Sourcing	# of Instances (# of Processes)	# of Apps	Avg Steps/Instance
111	WONDERBREAD (Wornow et al., 2024b)	Synthetic	2,928 (598)	4	7.8
112	WebArena (Zhou et al., 2023)	Synthetic	812 (241)	4	–
113	VisualWebArena (Koh et al., 2024)	Synthetic	910 (314)	3	–
114	OmniAct (Kapoor et al., 2024)	Synthetic	9,802 (–)	65	–
115	REAL (Garg et al., 2025)	Synthetic	112 (–)	11	–
116	WorkArena (Drouin et al., 2024)	Real	19,912 (33)	1	–
117	OSWorld (Xie et al., 2024)	Real	369 (–)	10	–
	Mind2Web (Deng et al., 2023)	Real	2,350 (–)	31	7.3
	ENTROPY (this work)	Real	283 (24)	19	178

118
119 settings. Then, we provide background on process mining and interaction intelligence work related to
120 the broader understanding and improving of digital workflows.
121

122 **Synthetic processes:** Artificially generating processes in sandbox environments enables large-
123 scale dataset collection and controlled model evaluation. While effective for scale, the collected
124 processes tend to be significantly shorter and less complex than real-world enterprise processes.
125 For example, WebArena (Zhou et al., 2023), REAL (Garg et al., 2025), and VisualWebArena (Koh
126 et al., 2024) provide dynamic environments for agents to interact with websites to complete a curated
127 set of processes. Despite this flexibility, the websites are simplified clones of their real-world
128 counterparts, and most processes can be completed in a dozen steps or fewer. Other datasets, such
129 as OmniAct (Kapoor et al., 2024), curate larger collections based on real-world applications, but
130 define processes retrospectively through post hoc human annotation. Finally, benchmarks focused
131 on process mining like WONDERBREAD (Wornow et al., 2024b) also rely on WebArena’s set of
132 synthetic processes and sandboxed setup.

133 **Real-world processes:** Curating data from real-world use cases is inherently more challenging due
134 to cost and privacy constraints. Nonetheless, benchmarks grounded in such data offer a more accurate
135 reflection of model performance in enterprise settings. Compared to synthetic datasets, real-world
136 processes tend to involve longer, more complex processes that span multiple applications. However,
137 these datasets are often significantly smaller, lack dynamic environments for evaluation, and provide
138 shallower annotations than their synthetic counterparts. For example, Mind2Web (Deng et al., 2023)
139 contains 2,350 processes sourced from real-world websites, but does not come with a dynamic
140 execution environment for evaluating models. WorkArena (Drouin et al., 2024) and OSWorld (Xie
141 et al., 2024) both offer dynamic execution environments with real-world processes, but the former is
142 limited to one application (ServiceNow) while the latter only offers one demonstration per process.

143 In contrast to the above datasets, ours uniquely combines fine-grained, application-agnostic interac-
144 tions with process-level annotations of real-world workflows collected at scale, enabling versatile use
145 cases and more generalizable insights into user behavior. We compare the different datasets in Tab. 1.
146 Notably, an average workflow in **ENTROPY** contains roughly 10× more interaction steps than those
147 found in comparable datasets.

148 **Process mining and interaction intelligence:** Industry has long explored the problem of under-
149 standing and improving digital workflows through tools such as process mining and interaction
150 analytics. Process mining focuses on extracting structured process models from event logs generated
151 by enterprise systems (Reinkemeyer, 2020), enabling organizations to visualize bottlenecks and
152 inefficiencies in processes. These traditional approaches rely heavily on system logs and structured
153 backend data, but miss the fine-grained realities of human behavior during process execution. At the
154 other end, "digital interaction intelligence" tools (Modi & Kumar, 2024) record clicks and keystrokes
155 for automation discovery and performance tuning (Bru & Claes, 2018; Modi & Kumar, 2024), yet
156 their data are proprietary. **ENTROPY** bridges this gap by offering open access to high-fidelity inter-
157 action data collected in live enterprise settings, supporting research on modeling and understanding
158 real-world business processes.

159 3 COLLECTING DIGITAL INTERACTION DATA

160 Modern enterprise workflows unfold through thousands of fine-grained human-computer interactions
161 that span legacy bespoke systems, desktop tools, and modern web applications. Capturing these

162 interactions at scale, without disrupting end-user experience or violating privacy regulations, requires
 163 a collection stack that is *application-agnostic*, *light-weight*, and *privacy-preserving*. To meet these
 164 requirements, we built a proprietary data collection system designed to operate reliably across varied
 165 enterprise environments while maintaining both privacy and performance. In this section, we define
 166 what constitutes a digital interaction, describe its representation in the dataset, and outline the core
 167 challenges in enterprise-scale data capture.

168 3.1 ANATOMY OF A DIGITAL INTERACTION

171 A digital interaction is an atomic unit of observed user activity. Each time a person interacts with
 172 software – whether within an application, a browser, or the operating system – the event is recorded
 173 as one of three types: *Clicks* (events where a user clicks on a button, checkbox, icon, menu option,
 174 and other such clickable GUI elements), *Data entries* (events where a user continuously enters data,
 175 typically with keystrokes, into a textbox or any other similar data entry field), and *Hotkeys* (events
 176 which may look like data entry, as they are keystrokes, but actually have a richer semantic meaning,
 177 such as Ctrl+C).

178 All actions performed by a user are mapped into these three fundamental types of interactions. We
 179 then derive complex interactions that are a combination of these types. For example, *navigation* is
 180 when a user performs a sequence of basic actions that result in movement within or across applications.
 181 The full structure of a digital interaction as captured by our tool and represented in **ENTROPY** is
 182 shown in Tab. 2. It includes a high-level category (class name, e.g., *navigation*), a fine-grained subtype
 183 (subclass name), and a semantic description, along with contextual metadata such as timestamp,
 184 application name, and screen name. Each process workflow in the dataset is a series of hundreds of
 185 such digital interactions, which we present in Sec. 4.

186 Table 2: Fields comprising a digital interaction, with representative values drawn from **ENTROPY**.

187 Field Name	188 Example Value	189 Description
190 Process Instance UUID	67262701-6d66-492d-af78- 51789e08572e	Unique identifier for the process instance this interaction comes from.
191 Process Name	Invoice creation	Manually configured name for the business process being carried out.
192 Interaction UUID	9c2c8808-9a31-4e05-b151- e6d17ec6ae4d	Unique identifier for the individual digital interaction. This is unique across the dataset.
193 Class Name	Application Field Input	High-level category assigned to the interaction, based on a deterministic rule set.
194 Subclass Name	Edit Field	Subcategory of the class name, also determined by a rule-based system.
195 Description	Editing an application field - invoice	Description of the interaction.
196 Timestamp	2025-04-18 17:01:16.466	When the user performed the interaction, in UTC.
197 Application Name	4814618-sb1.app.netsuite.com	Name of the application where the interaction occurred. For web applications, this is a URL.
198 Screenshot Name	Screen-2025-04-18T17-01- 16.466E480.png	Name of a PNG screenshot associated with the interaction, or Null if none exists.
199 Screen Name	Invoice Net Suite <name> Private Limited	Descriptive screen name derived from the window title or on-screen headers. Subject to PII filtering.
200 Interaction Type	Click	Action that a user took on a GUI element, i.e., Click or Typing.
201 Interaction Value	LB Down	Input signal corresponding to the action.
202 Interaction Coordinates	{'x': 159, 'y': 484}	Screen coordinates (in pixels) where the interaction occurred.
203 Field Name	INVOICE*	Name associated with the interacted field.
204 Field Value	56202596	Value associated with the interaction.
205 Time Spent	0.643	Time spent interacting with the element, in seconds.

209 3.2 CHALLENGES IN DIGITAL INTERACTION COLLECTION FOR THE ENTERPRISE

210 Capturing digital interaction data in live enterprise settings, at scale, and in compliance with privacy
 211 requirements, presents significant technical and operational challenges listed below.

212 **Application diversity:** Enterprise environments contain a heterogeneous mix of software, including
 213 legacy systems, mainframe applications, and modern web platforms. Many are decades old or
 214 mission-critical, where making modifications for data capture is infeasible. Tools like the Windows

216 Accessibility API can be used to try and observe digital interactions, but such APIs often fail to
 217 generalize and can degrade both application performance and data quality. Even modern web
 218 applications may exhibit lag when instrumented. A robust collection system must extract high-fidelity
 219 interaction data across diverse applications and web platforms without impacting user experience.

220 **Regulatory compliance:** Regulations such as GDPR and HIPAA require safeguards against the
 221 collection and retention of personally identifiable information (PII). For instance, under GDPR, a
 222 protected customer may request deletion of their personal data. Consequently, data capture systems
 223 must be designed with semantic awareness to identify and manage sensitive content proactively,
 224 incorporating mechanisms for real-time redaction, secure storage, and compliant data deletion.

225 **User privacy:** Beyond formal compliance, employees reasonably expect that sensitive personal
 226 information, such as names, emails, or other internal identifiers will be masked or excluded from any
 227 captured data. This expectation stems not only from privacy norms but also from a desire to avoid
 228 unwanted exposure, profiling, or workplace surveillance. While omitting entire screens is technically
 229 straightforward, suppressing individual data entry fields requires real-time semantic parsing to
 230 distinguish between innocuous and sensitive inputs. In dynamic, multi-application environments, this
 231 requires lightweight on-device logic that can identify and redact sensitive information before it is
 232 stored.

233 **Performance and timing constraints:** Capturing digital interactions at high fidelity involves opera-
 234 tions such as API polling, screen parsing, and metadata extraction – tasks that are resource intensive
 235 but must not interfere with the responsiveness of the user’s machine. In production settings, even
 236 minor slowdowns are often unacceptable. Compounding this, user interactions often unfold rapidly,
 237 with inputs immediately followed by interface transitions. If the capture system lags even briefly,
 238 contextual information can vanish before it is recorded. To ensure completeness of the interaction
 239 trace, capture must occur within milliseconds of the interaction, while staying within strict CPU and
 240 memory constraints.

241 242 3.3 OUR APPROACH: LIGHTWEIGHT VISION MODELS

243 To overcome the challenges outlined above, we developed a real-time data collection system powered
 244 by custom, lightweight vision models. The dataset presented in this paper was collected and labeled
 245 using these models, which run directly on end-user machines to enable accurate, low-latency capture
 246 of digital interactions, without requiring access to application source code or internal APIs.

247 Our system performs three core tasks in real time:

- 249 • Detect visible UI elements across arbitrary applications and web platforms.
- 250 • Link semantically related elements through key-value pairs.
- 251 • Record user interactions as structured digital events, grounded in UI context and human-readable
 252 semantics.

253 The vision backbone is a YOLO-style object detector trained on an internally annotated dataset of
 254 enterprise UI components. To ensure deployment on typical enterprise machines, we applied model
 255 compression techniques such as structured pruning and knowledge distillation from a larger teacher
 256 model, reducing size and latency while preserving detection accuracy. At runtime, the model anchors
 257 user actions to detected components and on-screen text, which are mapped into the three fundamental
 258 interaction types described in Sec. 3.1 and aggregated into structured digital events.

259 Unlike large-scale vision–language models (e.g., ViT-based systems with hundreds of millions of
 260 parameters), our models are compact enough to run efficiently on low-spec enterprise machines, yet
 261 robust enough to generalize across legacy applications, web interfaces, and mainframe terminals.
 262 This visual-first, platform-agnostic design avoids brittle integrations, supports systems that cannot be
 263 instrumented through conventional means, and ensures all processing remains local, with sensitive
 264 fields masked at capture time. Visual data is retained only when users explicitly contribute labeled
 265 workflow samples, since these are easiest for business users to validate.

266 By combining model efficiency, semantic fidelity, and real-world robustness, our system enables
 267 scalable, privacy-aware digital interaction capture in live enterprise environments – a capability we
 268 believe to be novel.

270 4 THE DATASET
271

272 To build a dataset that reflects how enterprise work is actually performed, we recruited 9 trained
273 volunteers from within our organization with their explicit consent – 4 in finance, 1 in legal, and
274 4 in HR. These volunteers repeatedly carried out real-world processes over 5 working days which
275 contributed to this dataset. Each participant had at least four years of experience in their domain,
276 and the processes they executed mirror the kinds of day-to-day processes routinely performed
277 by professionals in large enterprises. Drawing on our team’s significant expertise in this space,
278 we ensured that the workflows captured in **ENTROPY** were not abstract simulations, but faithful
279 representations of business processes as they occur in practice, including the variability, interruptions,
280 and natural execution patterns typical of production environments.

281 Over the course of the study, we recorded 108 instances of 11 unique processes in finance, 102
282 instances of 7 processes in legal, and 73 instances of 6 processes in HR, totaling 24 distinct process
283 types (see Tab. 3 for an overview). These workflows span approximately 33 hours of activity and
284 involve 19 distinct applications and web domains, including Outlook, Excel, Word, NetSuite, Do-
285 cuSign, Greenhouse, and Zoho. All processes were executed end-to-end using the same applications,
286 screens, and workflows found in real enterprise environments, with only minor modifications to
287 protect personally identifiable information:

288 **Staging environments:** To safeguard sensitive information, all processes were executed on ‘staging’
289 instances of the *same* enterprise applications used by the teams in their actual work.

290 **Synthetic entities:** To protect privacy, all references to companies, contracts, employees, job
291 applicants, and job openings were replaced with artificial entities that bear no resemblance to real
292 individuals or organizations. Importantly, no customer data was used at any stage of the collection
293 process.

294 **Application filtering:** Applications that could not be replicated in a staging environment were
295 excluded from the dataset. These included platforms such as government portals for credential
296 verification, bank websites for account validation, and external job boards used for sourcing applicants.

298 Each participant’s workstation was instrumented with our data collection tool. Participants were
299 informed when recording was active. At the start of a workflow, they selected its process name from
300 a dropdown menu and initiated recording by pressing Start; upon completion, they pressed Stop.
301 During the session, the tool logged all interactions within a predefined set of whitelisted applications
302 and tagged each event with the selected process name. Screenshots were captured only on clicks or
303 non-printable keystrokes (e.g., Enter, Tab, function keys), and were throttled to a maximum of two
304 frames per second. Further details on the process recording procedure are provided in App. A.

305 4.1 COMPLEXITY IN ENTERPRISE WORKFLOWS
306

307 Many processes in **ENTROPY** span hundreds of digital interaction steps across multiple applications
308 and persist for several minutes of continuous activity, sometimes even exceeding 20 minutes per
309 instance. These processes reflect the full operational complexity of real enterprise work, manifesting
310 as overlap, variation, and noise, which we detail below.

311 **Overlap:** Distinct, long processes, even within the same team, may have significant overlap in their
312 sequences of interactions, making their differentiation harder (see App. B.4).

314 Process duration alone is notable, but what sets the dataset apart from existing ones is the variability
315 embedded in each process. As shown in Tab. 3, the standard deviation in process durations is often
316 large relative to the mean, revealing underlying variability as a key source of execution complexity.

317 **Variation:** We define variations as differences in workflow steps or sequences that are intrinsic to
318 how real-world processes are performed. These may result from process design, team practices,
319 domain-specific exceptions, or individual user strategies. In our dataset, variations occur in two
320 primary ways:

321

- 322 • **Across processes:** Different processes appear with varying frequencies and durations depending
323 on business context and operational needs. For example, a Master Service Agreement (MSA) is
324 typically created once for a client and reused, whereas a Statement of Work (SOW) is generated

Table 3: Summary of the **ENTROPY** dataset.

	Process Name	# of Instances	# of Apps	Avg Steps/Instance	Time (mean \pm std) [s]
Finance	Invoice processing	3	6	307	756 \pm 587
	Purchase order creation	10	4	140	368 \pm 54
	Vendor onboarding	3	6	408	949 \pm 248
	Contract updates and forwarding	21	7	253	718 \pm 212
	Financial review of contract	15	8	39	162 \pm 57
	Invoice creation	13	7	231	547 \pm 189
	Invoice dispatch	14	10	113	296 \pm 107
	Payment collection	14	6	67	158 \pm 75
	Revenue accounting	3	6	549	921 \pm 615
	Invoice accounting	9	3	150	449 \pm 144
	Invoice payment	3	5	308	666 \pm 387
Legal	Contract kickoff	22	7	129	318 \pm 237
	First pass contract review	1	4	128	402
	MSA contract iteration	1	3	261	660
	Legal finalization and MSA execution	1	4	299	859
	SOW kickoff and order form creation	20	4	179	371 \pm 170
	SOW iteration	20	5	148	406 \pm 184
HR	Legal finalization and SOW execution	37	8	97	277 \pm 166
	Candidate sourcing and screening	14	9	115	320 \pm 149
	Job creation	21	9	259	520 \pm 158
	Employment letter generation	15	7	199	338 \pm 75
	Employment record reporting	4	4	730	1014 \pm 305
	Monthly leave reporting	4	4	709	1167 \pm 154
	Employee offboarding	15	3	132	268 \pm 89

for each new project. This leads to fewer recorded instances of MSA-related processes (e.g., MSA Contract Iteration) and many more of SOW-related ones (e.g., SOW Iterations). Similarly, accounts payable processes are often executed in batches, resulting in fewer but longer instances, while accounts receivable processes are typically handled one at a time, producing shorter but more frequent instances.

- **Within processes:** Even for the same nominal workflow, execution paths can differ due to conditional business logic, user preferences, or local optimizations. A contract review may include additional approval loops in some instances but follow a direct path in others. In talent acquisition, a recruiter might create a job post from scratch or clone an existing one. Importantly, there is no canonical definition of a process and hence the same process could be executed in many different ways across teams and organizations.

These variations are reflected not only in the number of interactions and applications used, but also in the time required to complete each instance.

Noise: We define noise as user actions captured during process execution that are unrelated to the process objective. Although not part of the intended workflow, such actions naturally occur in live enterprise settings and reflect the actual conditions under which work is done. Noise manifests in several forms: distractions, such as briefly visiting unrelated websites (e.g., news or sports); personal errands, like checking travel sites or reviewing non-work documents; email scanning, where users browse irrelevant messages while looking for process-relevant content; context switches caused by external interruptions (e.g., chat pings, meeting reminders); and breaks or idle time, during which a process is paused without further interaction.

The standard deviations reported in Tab. 3 may stem from these noise patterns rather than workflow structure alone. While extraneous to the process, these behaviors are not anomalous – they are part of the reality of enterprise work. For modeling, the ability to distinguish between relevant and incidental actions is essential for building robust AI systems that function effectively in real-world conditions. We provide a deeper dive into these dynamics, including a visual comparison of multiple executions of the same process, in App. A.4.

5 BENCHMARK TASKS

To demonstrate the utility of **ENTROPY** and to establish initial performance baselines, we introduce the following two benchmark tasks. Code is available as a zip archive in the supplementary materials.

378 **Workflow classification:** Given a sequence of interactions corresponding to a single complete
 379 workflow instance, the task is to classify the sequence into one of predefined workflow classes,
 380 e.g., “Invoice processing”. Since there is no canonical definition of any process across teams or
 381 organizations, being able to map a sequence of user activity to a process is an essential requirement
 382 on this data. This is key to deal with overlap, variance, and noise in how teams execute processes.

383 **Workflow segmentation:** This task requires models to identify the boundaries between distinct,
 384 consecutive workflow instances that have been concatenated into a single, long sequence of user
 385 interactions. Accurately locating the *start* and *end* of each workflow instance is indispensable
 386 in practice: business metrics such as average-handling-time, turnaround-time, among others are
 387 computed over these very intervals, so boundary errors propagate directly to managerial dashboards
 388 and, ultimately, to operational decisions.

389 Together, these tasks also supply building blocks for downstream agents: classification enables
 390 intent recognition and retrieval of relevant demonstrations, while segmentation equips agents to reset
 391 internal state, trigger new plans, and manage context switches in continuous activity streams.

392 For both tasks, we test the ability of foundation models to understand and reason about the structured
 393 sequences of user interactions present in our dataset. We evaluated several frontier LLMs, including
 394 non-reasoning models such as GPT-4.1 and Claude-3.5-Haiku, as well as reasoning models such as
 395 Qwen3-32B, Gemini-2.5-Flash, and DeepSeek-R1. Although our main benchmarks rely on structured
 396 interaction sequences for comparability across models, **ENTROPY** is inherently multimodal, and
 397 we therefore also explored the use of screenshots alongside interactions. For additional details and
 398 extended experimental results, we refer the reader to App. B.

399

400 5.1 WORKFLOW CLASSIFICATION

401 This task tests the model’s ability to recognize high-level patterns and semantic cues within the
 402 interaction data that are characteristic of specific business processes. We evaluated the models in a
 403 *zero-shot setting*, i.e., the model is asked to classify a workflow instance without any prior information
 404 about the workflows. The prompt includes only the interaction sequence and the list of possible
 405 workflow classes. For each model, we process the entire dataset, feeding one workflow instance at a
 406 time. The model output – the predicted workflow class – is then compared against the true label.

407 In Fig. 1, we present the classification accuracy of the frontier models across different domains.
 408 Notably, while models reach their highest accuracy on HR workflows (in the 70% range), this level
 409 remains insufficient for enterprise use, and performance drops even further in finance and legal. To
 410 understand the substantial drop in performance in the legal domain, we explore whether it is due to
 411 the models’ limited domain-specific knowledge or the intrinsic similarity of legal workflows, which
 412 may make them harder to differentiate. To assess this, we represent each workflow instance as a
 413 dense vector using OpenAI’s `text-embedding-3-large` model (OpenAI, 2024) and compute
 414 pairwise cosine similarities. As shown in App. B.4, based on the observed patterns in embedding
 415 similarity, we conclude that the reduced classification performance in the legal domain is likely
 416 attributable to the high intrinsic similarity among its workflows, rather than solely to a lack of domain-
 417 specific knowledge in the models. This overlap in semantic structure across different legal processes
 418 makes them more challenging to distinguish, thereby limiting the models’ ability to effectively
 419 classify them. In contrast, HR workflows exhibit clearer process-level distinctions, contributing to
 420 higher model performance in that domain.

421

422 5.2 WORKFLOW SEGMENTATION

423 Given a concatenated sequence of interactions, the model must output the start and end indices for
 424 each constituent workflow. This task evaluates a model’s ability to detect shifts in context and activity
 425 patterns that signal the conclusion of one process and the beginning of another, a crucial capability
 426 for understanding multi-stage business operations or analyzing long, uninterrupted user sessions.

427 For each domain (HR, legal, and finance), we construct a total of 100 input samples by concatenating
 428 several (e.g., 2 to 5) randomly selected workflow instances. The models are provided with this
 429 concatenated sequence of interactions and a list of all possible workflow process *definitions*. The
 430 prompt instructs the model to output a JSON array specifying the start/end indices for each identified
 431 workflow segment. The evaluation compares these predicted boundaries against the true boundaries.

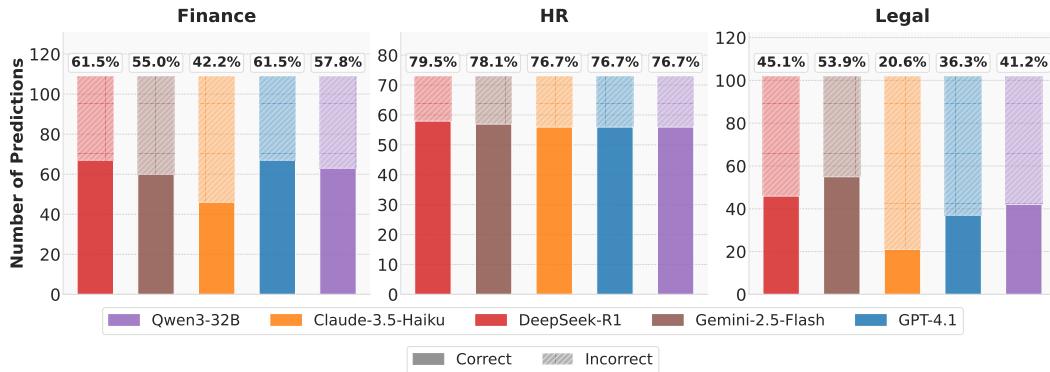


Figure 1: Zero-shot performance of frontier models on workflow classification. The bar height corresponds to the total number of workflow instances, while the bar fill(%) indicates correctness.

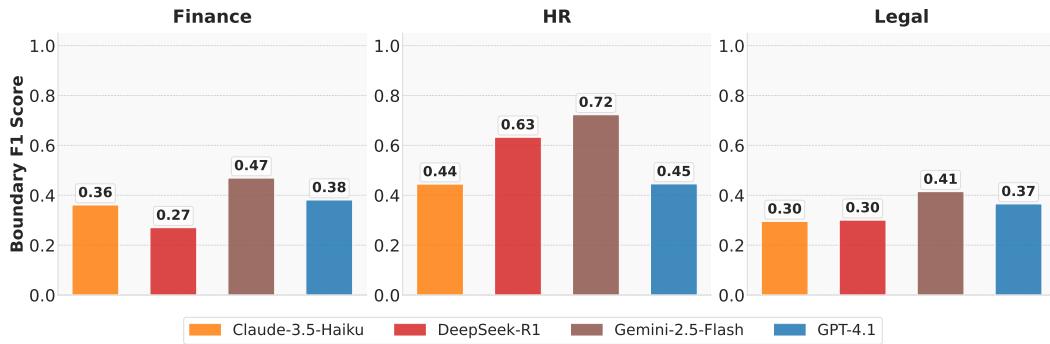


Figure 2: Zero-shot performance of frontier models on our workflow segmentation benchmark.

We summarize our results in Fig. 2. From our evaluations, we note two consistent patterns. **(i) Limited accuracy:** The best model, Gemini-2.5-Flash, reaches an F1 score of 0.72 on HR, but only 0.47 and 0.41 on finance and legal, respectively. All other models fall below these numbers, confirming that precise process boundary detection remains a challenge in a zero-shot setting. **(ii) Recall > precision:** From App. B.2, we see that every model shows substantially higher recall than precision, indicating a tendency to over-segment (i.e., insert spurious cuts). While generous recall mitigates missed workflows, low precision inflates duration estimates and therefore distorts business metrics.

Fine-tuning could narrow this gap, yet doing so requires exactly the sort of interaction-level data that is scarce in the public domain; **ENTROPY** fills that void. Because process definitions vary across teams and industries, we anticipate that effective solutions will need either domain-adaptive training or novel architectures tailored to long, noisy action streams.

6 CONCLUDING REMARKS

ENTROPY is the first public dataset to capture full-length enterprise workflows at interaction-level fidelity. Spanning 283 workflows, 33 hours of finance, legal, and HR activity across 19 applications and web domains, it preserves the multitasking, interruptions, and path variability absent from synthetic sets. Baseline experiments show that frontier language models have substantial headroom to improve. We release the data to spur work on workflow-aware AI models and agents. In contrast to traditional methods such as qualitative interviews or system logs, this dataset opens up a computational lens for understanding how work gets done. Just as web interaction logs unlocked breakthroughs in search and recommendation, we believe digital user interaction data will be foundational for building AI-native systems that understand and automate enterprise work.

486 **Ethics statement:** Our study involved nine internal subject matter experts performing representative
 487 enterprise workflows. Participation was voluntary, unpaid, and based on documented informed
 488 consent. As our organization does not have a formal IRB, we followed an internal review process:
 489 peer observers ensured transparency during recruitment, informed consent was documented in writing,
 490 and an independent internal audit reviewed all data for privacy risks. All personally identifiable
 491 information was removed prior to release, and it is not possible to identify any real individuals,
 492 organizations, or records from the data.

493 **Reproducibility statement:** Sec. 5 outlines the experimental setup and results, and App. B of the
 494 supplementary materials details the compute environment, prompts, and evaluation procedures. The
 495 dataset is available on Kaggle, and we include a zip archive in the supplementary materials with all
 496 code and scripts needed to reproduce our results.

497 **LLM usage:** Large language models were used as baseline systems in our experiments and as
 498 general-purpose writing assistants (e.g., grammar polishing, finding synonyms). They were not
 499 involved in research ideation or in generating dataset content. The authors take full responsibility for
 500 all text and results.

502 REFERENCES

504 Anthropic. Introducing claude 3.5 haiku. <https://www.anthropic.com/news/3-5-models-and-computer-use>, 2024.

507 Francis Bru and Jan Claes. The perceived quality of process discovery tools. *arXiv preprint arXiv:1808.06475*, 2018.

509 Creative Commons. Attribution-noncommercial-sharealike 4.0 international. <https://creativecommons.org/licenses/by-nc-sa/4.0/deed>, 2013. May 23, 2025.

512 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *ArXiv:2501.12948*, 2025.

515 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing Systems*, 36:28091–28114, 2023.

518 Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are web agents at solving common knowledge work tasks? *arXiv preprint arXiv:2403.07718*, 2024.

522 Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Benchmarking autonomous agents on deterministic simulations of real websites. *arXiv preprint arXiv:2504.11543*, 2025.

525 Michael Grohs, Luka Abb, Nourhan Elsayed, and Jana-Rebecca Rehse. Large language models can accomplish business process management tasks. In Jochen De Weerdt and Luise Pufahl (eds.), *Business Process Management Workshops*, pp. 453–465, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-50974-2.

530 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist autonomous agents for desktop and web. In *European Conference on Computer Vision*, pp. 161–178. Springer, 2024.

534 Koray Kavukcuoglu. Gemini 2.5: Our newest gemini model with thinking. <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>, 2024.

538 Moe Kayali, Fabian Wenz, Nesime Tatbul, and Çağatay Demiralp. Mind the data gap: Bridging llms to enterprise data integration. In *15th Annual Conference on Innovative Data Systems Research (CIDR '25)*, 2025.

540 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 541 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 542 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

543

544 Sami Marreed, Alon Oved, Avi Yaeli, Segev Shlomov, Ido Levy, Aviad Sela, Asaf Adi, and Nir
 545 Mashkif. Towards enterprise-ready computer using generalist agent. *ArXiv:2503.01861*, 2025.

546

547 Amardeep Modi and Santhosh Kumar. Digital interaction intelligence products peak matrix assess-
 548 ment, 2024.

549

550 Vinod Muthusamy, Yara Rizk, Kiran Kate, Praveen Venkateswaran, Vatche Isahagian, Ashu Gulati,
 551 and Parijat Dube. Towards large language model-based personal agents in the enterprise: Current
 552 trends and open problems. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the*
 553 *Association for Computational Linguistics: EMNLP 2023*, pp. 6909–6921, Singapore, December
 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.461.

554

555 OpenAI. Introducing GPT-4.1 in the API. <https://openai.com/index/gpt-4-1>.

556

557 OpenAI. text-embedding-3-large. <https://platform.openai.com/docs/guides/embeddings>, 2024. Accessed: 2025-05-16.

558

559 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
 560 Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
 561 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
 562 Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
 563 Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
 564 with native agents, 2025. URL <https://arxiv.org/abs/2501.12326>.

565

566 Lars Reinkemeyer. Process mining in action. *Process Mining in Action Principles, Use Cases and*
 567 *Outlook*, 2020.

568

569 Yara Rizk, Praveen Venkateswaran, Vatche Isahagian, Austin Narcomey, and Vinod Muthusamy. A
 570 case for business process-specific foundation models. In Jochen De Weerdt and Luise Pufahl (eds.),
 571 *Business Process Management Workshops*, pp. 44–56, Cham, 2024. Springer Nature Switzerland.
 572 ISBN 978-3-031-50974-2.

573

574 Maxim Vidgof, Stefan Bachhofner, and Jan Mendling. Large language models for business process
 575 management: Opportunities and challenges. In Chiara Di Francescomarino, Andrea Burattin,
 576 Christian Janiesch, and Shazia Sadiq (eds.), *Business Process Management Forum*, pp. 107–123,
 577 Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-41623-1.

578

579 Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam Shah, and Christopher Ré.
 580 Automating the enterprise with foundation models. *Proc. VLDB Endow.*, 17(11):
 2805–2812, July 2024a. ISSN 2150-8097. doi: 10.14778/3681954.3681964.

581

582 Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan Khare, Tathagat Verma, Tibor Thompson,
 583 Miguel Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla, et al. Wonderbread: A
 584 benchmark for evaluating multimodal foundation models on business process management tasks.
 585 *Advances in Neural Information Processing Systems*, 37:115963–116021, 2024b.

586

587 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
 588 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
 589 for open-ended tasks in real computer environments. *Advances in Neural Information Processing*
 590 *Systems*, 37:52040–52094, 2024.

591

592 Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
 593 Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe
 594 Su, Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and
 595 Graham Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks.
 596 *ArXiv:2412.14161*, 2024.

594 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
595 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
596 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
597 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
598 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
599 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
600 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
601 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
602 Qiu. Qwen3 technical report. *ArXiv:2505.09388*, 2025.

603 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
604 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
605 autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648

649

650

SUPPLEMENTARY MATERIAL

Entropy: User interaction data from live enterprise workflows for realistic model evaluation

651

652

653

654

655

656

A DATASET

657

A.1 DETAILS OF RELEASED DATASET

658

The released dataset is organized by domain – Finance, HR, and Legal – with each domain comprising a JSON file of digital interactions, structured as described in Tab. 2 of the main text, alongside a corresponding folder of screenshots. In total, the dataset contains approximately 50,300 interaction records and 37,500 screenshots. To safeguard privacy, all screenshots have been processed to blur employee faces, email addresses, full names, and other sensitive content. A comparable redaction process has been applied to the interaction logs. The dataset is made available under the CC BY-NC-SA 4.0 license (Commons, 2013).

659

660

661

662

663

664

665

666

667

668

A.2 PROCESS RECORDING WORKFLOW

669

670

671

672

673

674

Data collection proceeded in five structured phases: (1) selecting volunteers from the Finance, HR, and Legal teams, (2) briefing them on the data collection goals and methodology, (3) identifying and defining candidate processes for recording, (4) executing those processes in sandboxed environments using our custom agent, and (5) obtaining informed consent for data use and publication. Each team completed these steps over approximately five days. We provide a brief description of each step below.

675

676

677

678

Volunteer selection: Subject matter experts (SMEs) were chosen based on their domain expertise, familiarity with relevant enterprise software, and willingness to participate. Within each team, process experts first defined representative workflows, which the selected SMEs then executed during the data collection phase.

679

680

681

682

683

684

SME Instructions: SME machines were pre-configured by IT with our lightweight data collection agent, designed to operate only within sandboxed environments to prevent capture of any personal or sensitive enterprise data. SMEs received both written documentation and in-person training on how to use the tool, including how to start, stop, and review recordings. Each participant completed a set of dry runs to ensure technical readiness and familiarity with the workflow.

685

686

687

688

689

Process Definitions: Process experts within each team curated a list of representative workflows, which were then documented and executed by the selected SMEs. These workflows were reviewed by the research team for suitability. Tasks that relied heavily on verbal communication, such as phone calls or meetings, were excluded. However, SMEs were encouraged to include natural variations and edge cases to reflect the full spectrum of real-world execution.

690

691

692

693

694

Recording: The data collection agent operated similarly to screen recording software, allowing users to initiate, pause, and stop sessions at will. SMEs were instructed to work as naturally as possible during recordings, including accommodating spontaneous interruptions such as unrelated messages, personal errands, or breaks. This design choice intentionally preserved the noise and variability inherent in real-world digital work.

695

696

697

698

699

700

701

A.3 DESCRIPTION OF RECORDED PROCESSES

The table below provides expanded descriptions for each process included in our study.

702 Table 4: Names and descriptions for Finance, Legal, and HR processes.
703

704 Modified Name	705 Description
706 Invoice processing	707 Review incoming invoices, verify them against purchase orders (POs), and route to stakeholders for approval.
708 Purchase order creation	709 Create a PO after obtaining approval for a purchase requisition.
710 Vendor onboarding	711 Register a new vendor and update their details in the accounting system.
712 Contract updates and forwarding	713 Update the Customer Relationship Management (CRM) system with contract and PO details, then forward the record to Finance for review.
714 Financial review of contract	715 Validate contract terms and PO details in the CRM, and approve or reject as needed.
716 Invoice creation	717 Generate a customer invoice in the accounting system using the approved PO.
718 Invoice dispatch	719 Send the finalized invoice to the customer, typically via email or a secure portal.
720 Payment collection	721 Record incoming payments and update the aging report to track outstanding balances.
722 Revenue accounting	723 Update internal revenue records with payment details and newly signed customer contracts.
724 Invoice accounting	725 Extract invoice data, compute taxes and adjustments, and prepare for payment processing.
726 Invoice payment	727 Schedule and complete payment, notify the vendor, and update payment records in the accounting system.
728 Contract kickoff	729 Review contract requests, check for an existing Master Service Agreement (MSA), and initiate or update the MSA accordingly.
730 First pass contract review	731 Conduct an initial review of the MSA, identifying clauses that require internal clarification or external discussion.
732 MSA contract iteration	733 Revise the MSA based on feedback from internal stakeholders and the customer's legal team.
734 Legal finalization and MSA execution	735 Finalize and digitally execute the MSA with all relevant parties.
736 SOW kickoff and order form creation	737 Create the order form and initiate the Statement of Work (SOW), ensuring correct linkage to the MSA and all key terms.
738 SOW iteration	739 Collaborate with the customer to refine and finalize the terms outlined in the SOW.
740 Legal finalization and SOW execution	741 Digitally execute the finalized SOW and forward it to Sales Operations for CRM updates.
742 Candidate sourcing and screening	743 Upload resumes to the recruiting portal, assess candidate fit, and progress suitable profiles to the interview stage.
744 Job creation	745 Create or duplicate a job in the recruiting portal, ensuring that the job description is accurate and complete.
746 Employment letter generation	747 Generate a standardized employment letter, apply necessary updates, and digitally sign the document.
748 Employment record reporting	749 Extract employment data, reconcile with employee exit records, and generate a consolidated report.
750 Monthly leave reporting	751 Download employee leave records from the human resources portal, validate the entries, adjust discrepancies, and publish for compliance checks.
752 Employee offboarding	753 Process an employee exit by managing access rights and generating formal resignation and relieving letters.

736
737 A.4 EXAMPLE PROCESS: FINANCIAL REVIEW OF CONTRACT
738

739 Sales contracts are commonly generated when a business sells a product or service to another business
740 or consumer. In business-to-business (B2B) contexts, these contracts typically require formal review
741 before execution. The example described here, ‘Financial review of contract’, illustrates a common
742 process in B2B software-as-a-service (SaaS) transactions. In this context, the buyer issues one
743 or more purchase orders, accompanied by supporting documents, and the seller responds with an
744 approved contract fulfilling those terms. The contract and accompanying materials are reviewed to
745 ensure compliance with business policies and statutory requirements, and to detect errors such as
746 incorrect pricing. For example, a review may verify that no product exceeds a 30% discount cap or
747 that the correct sales taxes are applied. We examine three instances of such a process, see also Fig. 3.

748 **Variant 1:** This instance begins with the user receiving an email containing a link to a contract form.
749 Clicking the link opens the Customer Relationship Management (CRM) system (Salesforce). The
750 user reviews the supporting documents, two purchase orders followed by deal-split information, then
751 creates a new purchase order and enters the required details. The process concludes with the approval
752 of the order within the CRM.

753 **Variant 2:** This instance also begins with an email linking to the CRM system. The user first reviews
754 deal-split information, then examines the purchase orders, followed by an additional review of the
755 billing schedule. An error occurs when the user attempts to approve the order without first creating a
new purchase order, triggering a system message. The user is prompted to enter the required order

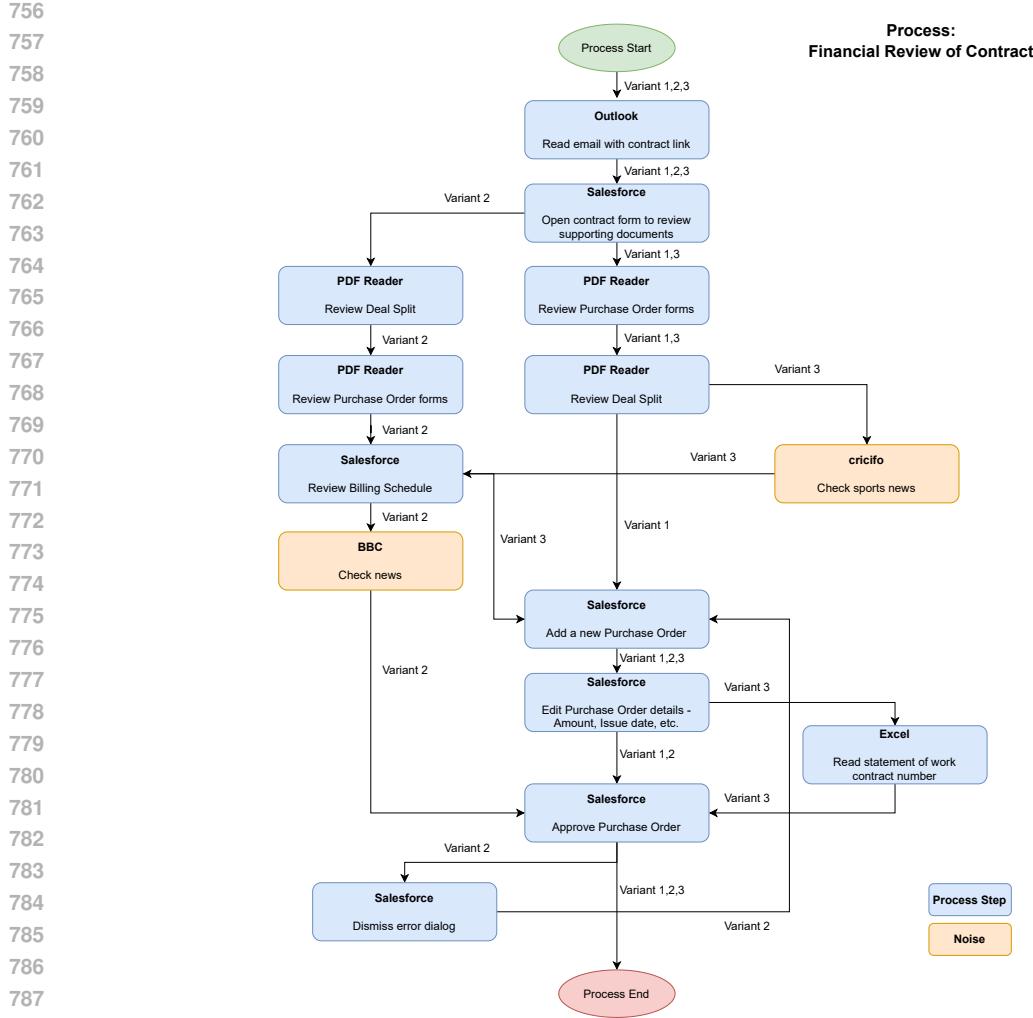


Figure 3: Three variants of the ‘Financial review of contract’ process. All flows involve Microsoft Outlook, Salesforce, and a PDF reader. Variants 1 and 3 include the creation of a purchase order, while Variant 2 only requires reviewing and approving an existing one. Variant 2 includes an error path due to a premature approval attempt. Users executing Variants 2 and 3 briefly visited unrelated websites (general news and sports), introducing natural noise into the recording.

details before resubmitting. During this process, the user briefly visits a news website, possibly due to software lag, introducing digital noise.

Variant 3: This variant begins similarly to the previous ones, with an email linking to the CRM system. The user first reviews the purchase orders, followed by the deal-split, and, as in Variant 2, also examines the billing schedule. A new purchase order is then created in the CRM based on the seller’s terms, and the required data is entered. Before approving, the user consults a Statement of Work (SOW) in an Excel file, then finalizes the purchase order. During this process, the user briefly visits a sports website, again introducing natural noise, likely due to CRM lag.

The three process instances described above appear in the dataset with the following process_instance_uuid’s:

Variant 1: 4b15f7fc-22de-4c2e-bcd1-bb26888c9849

Variant 2: cfc96774-a5eb-4412-a7d5-ee1c66124d42

810 **Variant 3:** d3985ee7-d3f6-4143-9b9a-a726bc7b0c6c
 811

812 **B BENCHMARK TASKS**
 813

814 **B.1 COMPUTE RESOURCES USED**
 815

816 All experiments were conducted using a combination of local GPU resources and cloud-based API
 817 endpoints, depending on the model provider. For local inference with open-source models (e.g.,
 818 Qwen3-32B, DeepSeek-R1), we used an NVIDIA HGX H200 cluster (8 GPUs, 141GB VRAM each),
 819 running CUDA 12.8 and PyTorch 2.0. All experiments were orchestrated on a Linux server (Ubuntu
 820 22.04, kernel 5.15), with 2TB RAM and 192 CPU cores, ensuring that data preprocessing and result
 821 aggregation did not bottleneck the evaluation pipeline. The batch size for local models was set to
 822 8, as specified in the configuration files. GPU allocation can be managed from the configuration
 823 files (see `configs/classification.yaml` and `configs/segmentation.yaml` in our
 824 repository). For API-based models (OpenAI GPT-4.1, Anthropic Claude-3.5-Haiku, Google Gemini-
 825 2.5-Flash), requests were made via the respective Python SDKs, with a wait time of 1-15 seconds
 826 between requests to avoid rate limiting, as configured.

827 For embedding-based analyses (e.g., workflow similarity), we used the OpenAI
 828 `text-embedding-3-large` model via API, with a maximum context window of 8,000
 829 tokens per request. To ensure reproducibility, all random seeds were fixed (seed=2404), and detailed
 830 logs of model configuration and evaluation metrics were maintained.

831
 832 **B.2 ADDITIONAL EXPERIMENT DETAILS**
 833

834 For all model evaluations, we used a temperature of 0.6 to reduce the variance of the model's
 835 output. The maximum number of tokens to generate (`max_tokens`) was set to 5000 for classi-
 836 fication tasks and 8000 for segmentation tasks, as specified in the respective configuration files
 837 (`configs/classification.yaml`, `configs/segmentation.yaml`).

838 **Prompt Templates:** The prompts provided to the models were carefully structured to elicit the
 839 desired outputs for each task. Placeholders in the templates were dynamically filled with relevant
 840 data for each evaluation instance.

841 **Classification Prompt:** The prompt for the workflow classification task was designed to be concise
 842 and direct, providing the model with the sequence of user interactions and the set of possible workflow
 843 classes. The structure, shown below, was:

844
 845 **Classification System Prompt**
 846

847 You are a workflow classification assistant that analyzes
 848 user interactions and determines the workflow type.

849
 850 **Classification Prompt Template**
 851

852 Given the following user interaction sequence, classify it
 853 into one of the following workflow types: {classes}.

854 User interaction sequence:
 855 {sequence}

856 Provide your answer enclosed in `\answer{}`.

857 Here, {classes} was replaced with the actual class names for the domain, and {sequence} was
 858 replaced with the concatenated descriptions of all user interactions within the workflow instance.

859
 860 **Segmentation Prompt:** For the workflow segmentation task, the prompt was more detailed, providing
 861 context about the task, definitions of possible workflow processes, the concatenated interaction
 862 sequence, and instructions for the JSON output format. The template, shown below, was:
 863

```

864 Segmentation System Prompt
865
866 You are a workflow segmentation assistant that analyzes
867 sequences of user interactions and identifies where
868 different workflows begin and end.
869
870
871 Segmentation Prompt Template
872
873 Your task is to precisely segment a sequence of user
874 interactions that come from MULTIPLE WORKFLOWS
875 concatenated together.
876
877 Here are the workflow process definitions you should
878 consider: {process_definitions}
879
880 Your task:
881 1. Analyze the entire sequence carefully
882 2. Identify where one workflow ends and another begins
883 3. Mark the exact positions (indices) of these boundaries
884
885 User interaction sequence (0-indexed):
886 {sequence}
887
888 Step-by-step approach:
889 1. First, review the entire sequence to understand
     the overall pattern
890 2. Look for clear transitions between different workflows
891 3. Pay attention to workflow beginning and completion signals
892 4. When identifying a boundary, note its exact index position
893 5. Ensure all segments together cover the complete sequence
894
895 Format requirements:
896 - Provide a JSON array where each workflow segment has:
     - "start_index": starting position (0-indexed)
     - "end_index": ending position (inclusive, 0-indexed)
897 - First segment should always have start_index = 0
898 - Each segment's end_index should be exactly
     one less than the next segment's start_index
899 - Last segment's end_index should be the last index
900     in the sequence
901 - The answer must be enclosed in <answer> tags
902
903
904 Example:
905 For a sequence with 3 workflows, a valid response might be:
906 <answer>
907 [
908     {"start_index": 0, "end_index": 5},
909     {"start_index": 6, "end_index": 12},
910     {"start_index": 13, "end_index": 17}
911 ]
912 </answer>
913
914 Before finalizing your answer:
915 - Verify that your segments correctly capture
     workflow transitions
916 - Check that all indices are within the sequence bounds
917 - Confirm that segments are contiguous (no gaps or overlaps)

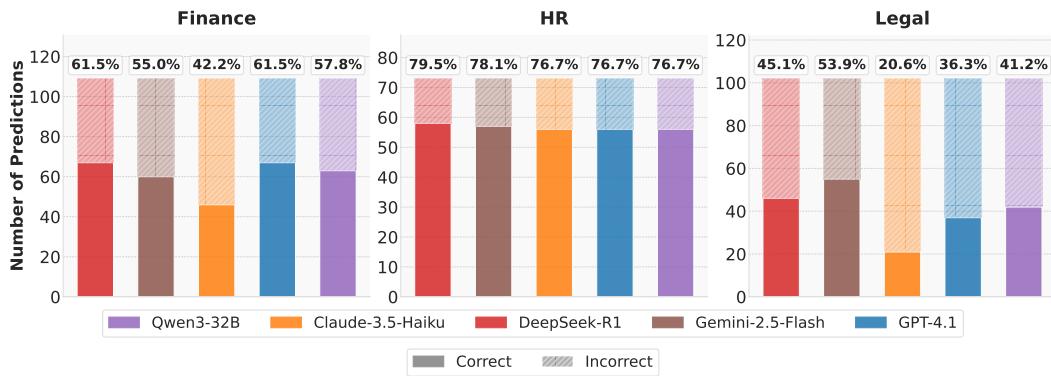
```

918 In this template, `{process_definitions}` was populated with the descriptions of all potential
 919 workflow processes for the given domain, and `{sequence}` contained the full sequence of user
 920 interactions to be segmented.
 921

922 **Reproducibility and Data Availability:** All code, configuration files, and scripts required
 923 to reproduce the experiments and generate the figures are available in our project repository
 924 included in the supplementary materials. The dataset, including all interaction sequences and
 925 workflow definitions, is provided in JSON format at <https://www.kaggle.com/datasets/94647fd0bb51dff501a463674a2314627cdaf8c76d41b093c333b608459e017e>.
 926 All plots in this appendix were generated using the provided scripts in `src/generate_plots.py`
 927 and are available in the `figures/` directory.
 928

929 B.2.1 CLASSIFICATION TASK

931 For workflow classification, each model was evaluated in a strict zero-shot setting: the prompt
 932 included only the interaction sequence and the list of possible workflow classes, with no domain-
 933 specific examples or fine-tuning. The evaluation was performed across three domains: HR, Finance,
 934 and Legal. For each domain, we processed the entire dataset, feeding one workflow instance at a time
 935 to the model and recording the predicted class. The primary metric was accuracy, with additional
 936 reporting of per-class precision, recall, and F1-score.
 937



950 Figure 4: Per-domain classification accuracy of all evaluated models. Bar height indicates the number
 951 of workflow instances; bar fill (%) indicates correctness.
 952

953 **Per-Class Accuracy:** To provide a more granular view of performance within each domain, Figs. 5,
 954 6, and 7 show the class-level accuracy for all evaluated models across the HR, Finance, and Legal
 955 domains, respectively. These plots highlight which specific workflow classes are well-recognized and
 956 which pose challenges for each model.
 957

958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

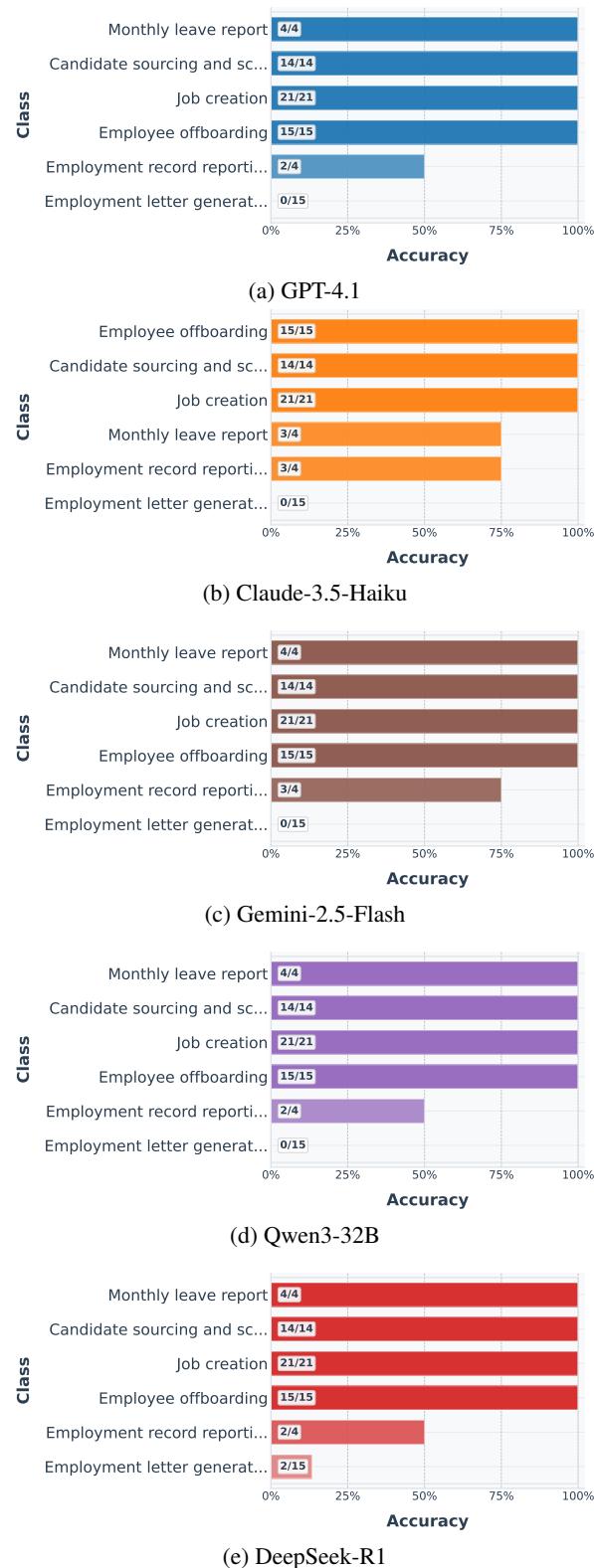


Figure 5: Class-level accuracy on HR workflows for all evaluated models.

Figure 6: Class-level accuracy on Finance workflows for all evaluated models.

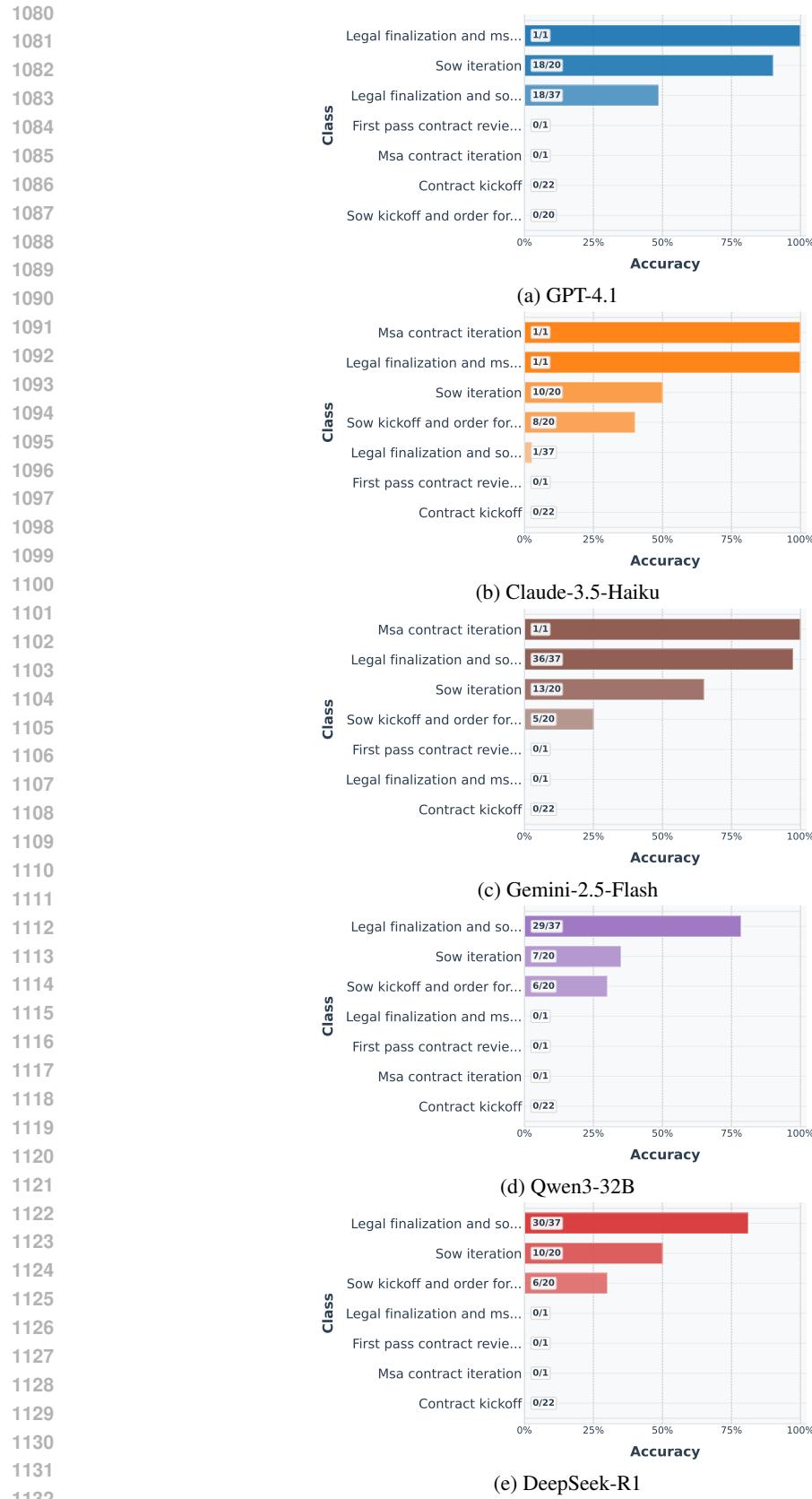


Figure 7: Class-level accuracy on Legal workflows for all evaluated models.

1134 **Confusion Matrices:** Confusion matrices further detail the classification errors, illustrating the
1135 extent to which models confuse different workflow classes. Figs. 8, 9, and 10 present these matrices for
1136 all evaluated models across the HR, Finance, and Legal domains, respectively. These visualizations
1137 are particularly insightful for understanding misclassifications. For instance, the high degree of
1138 semantic overlap between certain Legal workflows, leading to model confusion, is evident across
1139 multiple models.

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

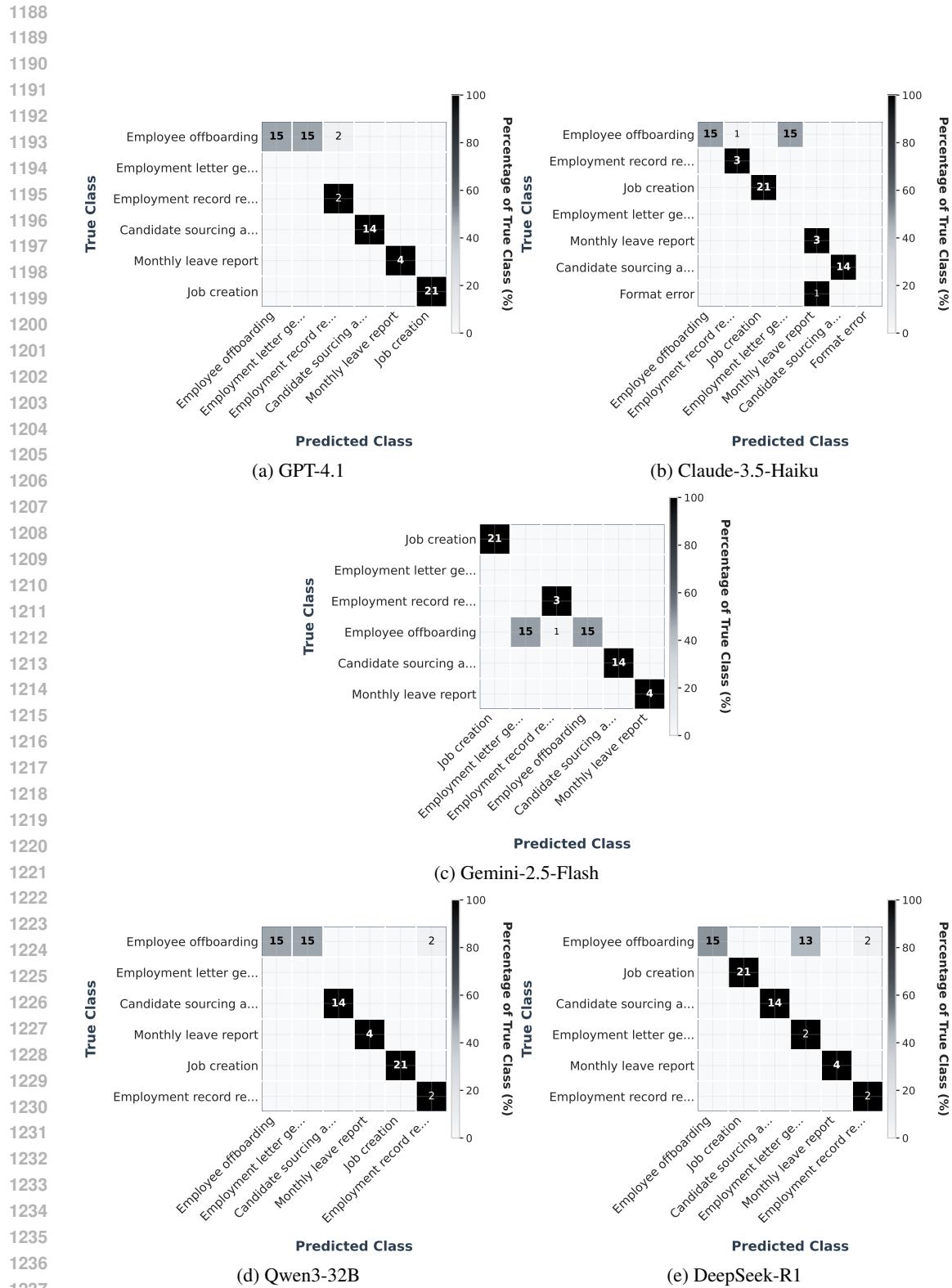


Figure 8: Confusion matrices on HR workflows for all evaluated models.

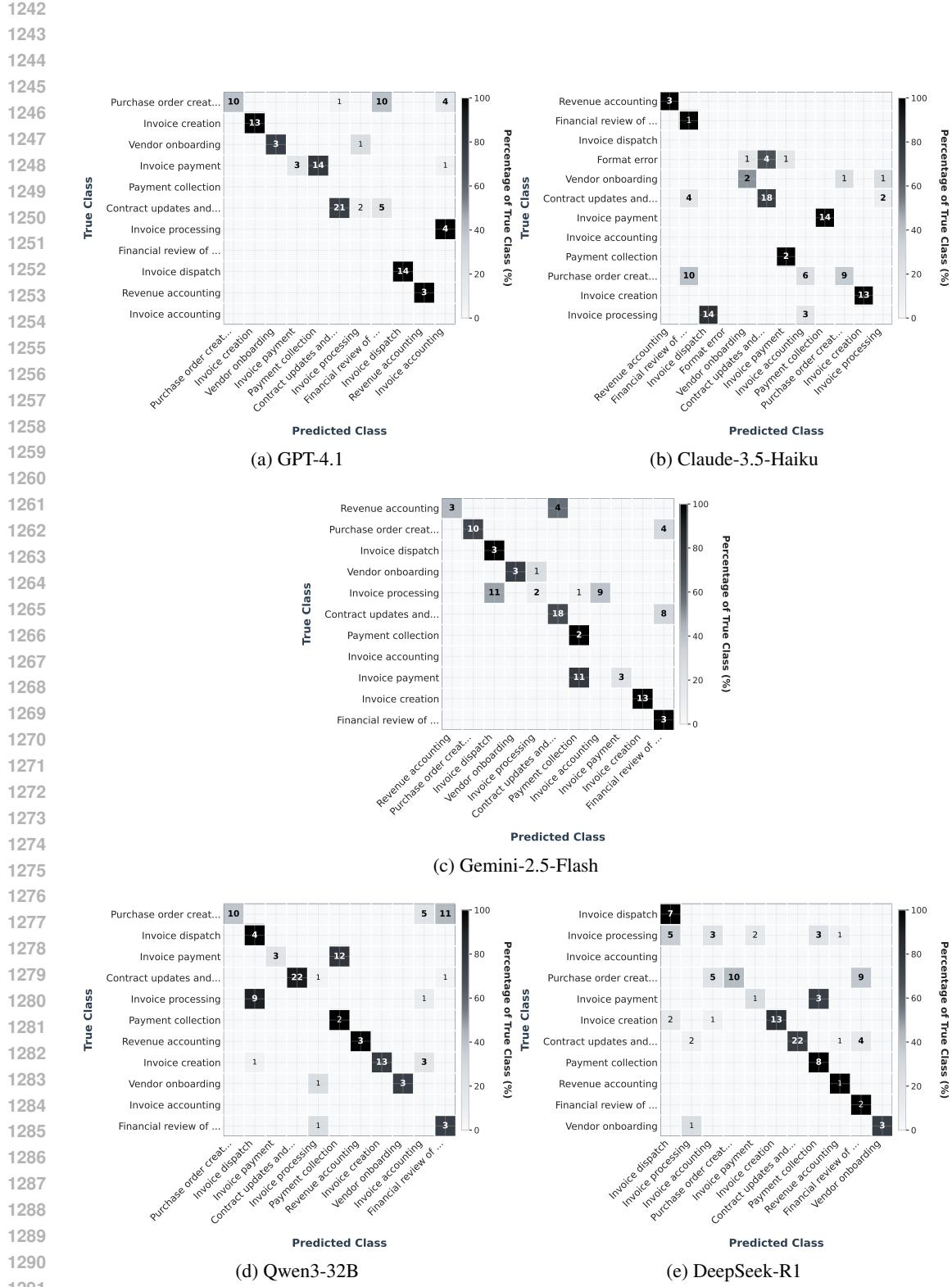


Figure 9: Confusion matrices on Finance workflows for all evaluated models.

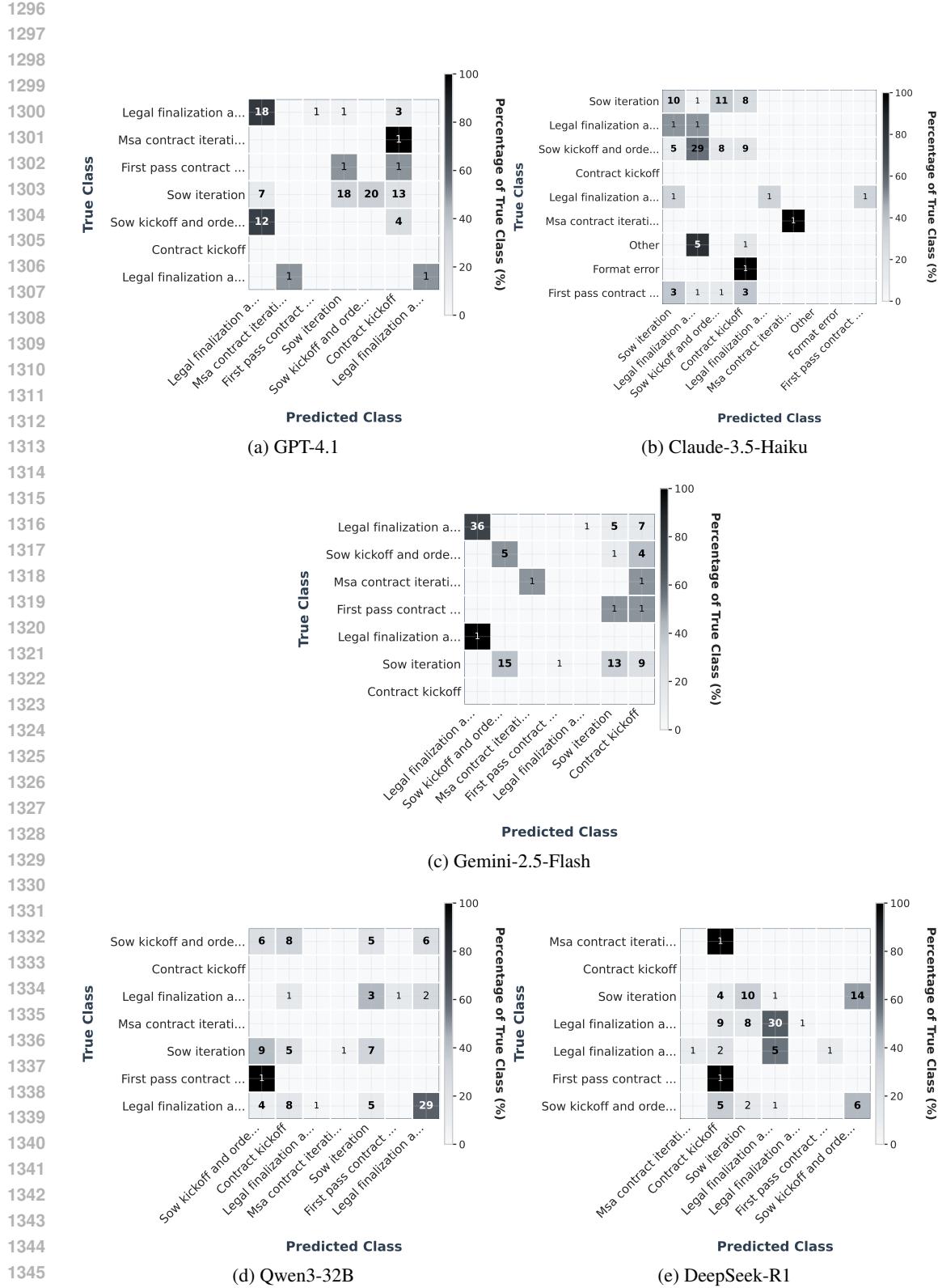
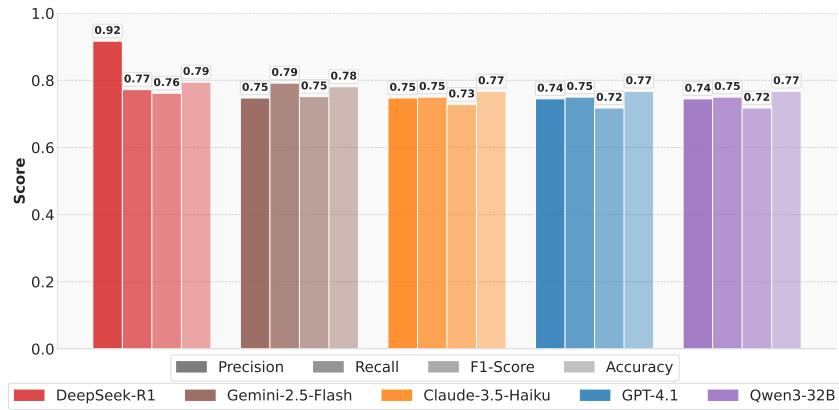
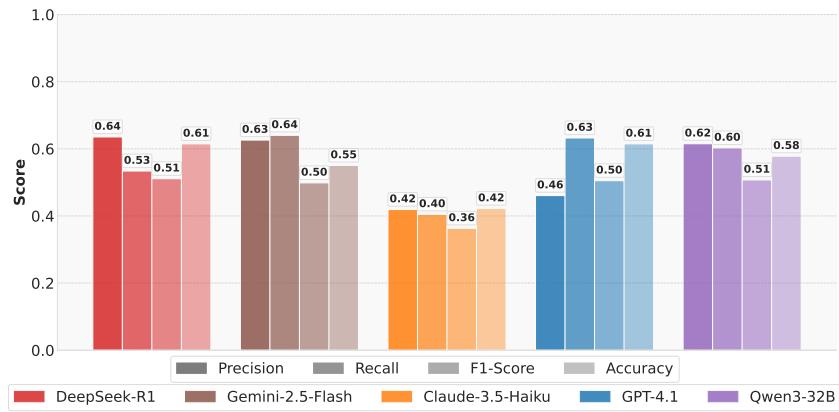
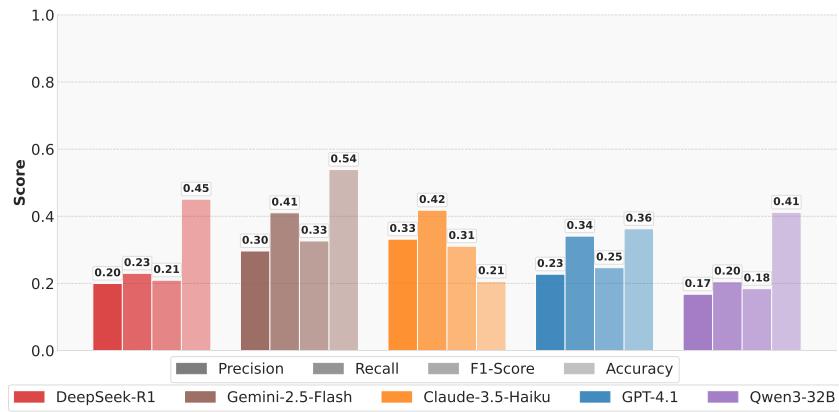


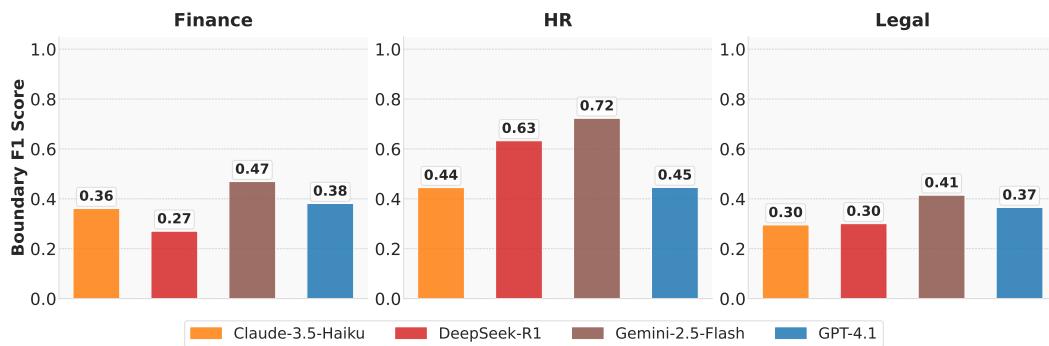
Figure 10: Confusion matrices on Legal workflows for all evaluated models.

1350
 1351 **Aggregated Metrics:** Finally, overall classification metrics including precision, recall, and F1-score
 1352 for each class are aggregated per domain. Figs. 11, 12, and 13 illustrate these aggregate metrics for
 1353 the HR, Finance, and Legal domains, respectively. These plots provide a consolidated summary of the
 1354 types of performance metrics collected across all classes within each domain. Detailed model-specific
 1355 numerical results for these metrics are available in the JSON files provided in the supplementary
 1356 materials.

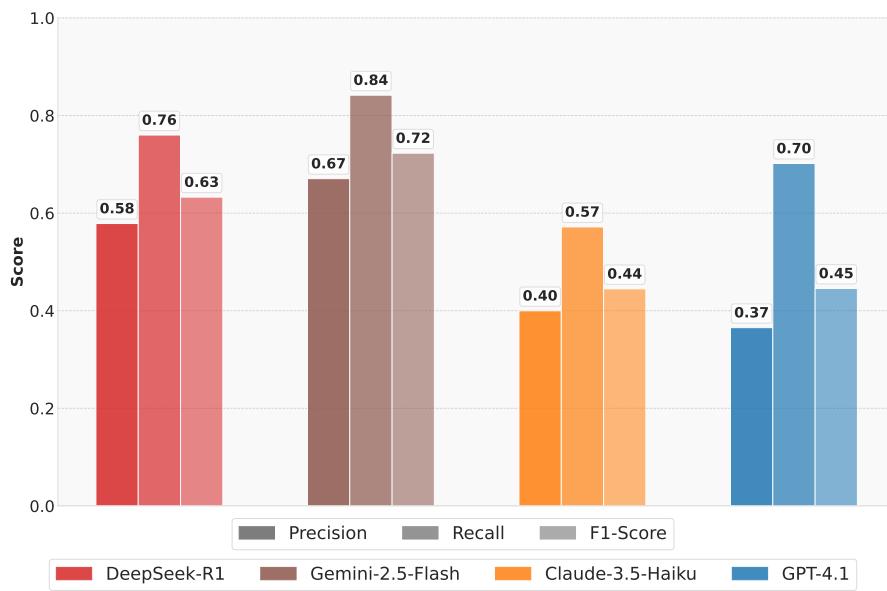
1368 Figure 11: Aggregate classification metrics for HR workflows.
 13691386 Figure 12: Aggregate classification metrics for Finance workflows.
 13871403 Figure 13: Aggregate classification metrics for Legal workflows.
 1404

1404
1405 B.2.2 SEGMENTATION TASK

1406 For workflow segmentation, we constructed 100 input samples per domain by concatenating 2-5
 1407 randomly selected workflow instances. Each model received the concatenated sequence of interactions
 1408 and a list of all possible process definitions, and was prompted to output a JSON array of start/end
 1409 indices for each segment. Evaluation metrics included boundary precision, recall, F1-score, and edit
 1410 distance, computed by comparing predicted and true segment boundaries.

1423 Figure 14: Zero-shot segmentation F1 scores for all models across domains.
1424

1425 The following figures provide a more detailed look at the boundary detection metrics for the segmentation
 1426 task within each domain. Figs. 15, 16, and 17 display the distribution of F1 scores, precision,
 1427 and recall for the HR, Finance, and Legal domains, respectively. These plots further illustrate the
 1428 characteristics of model performance, such as the general tendency to over-segment (higher recall
 1429 than precision), particularly in the more complex Finance and Legal domains.

1450 Figure 15: Distribution of boundary detection metrics for HR workflows.
1451
1452
1453
1454
1455
1456
1457

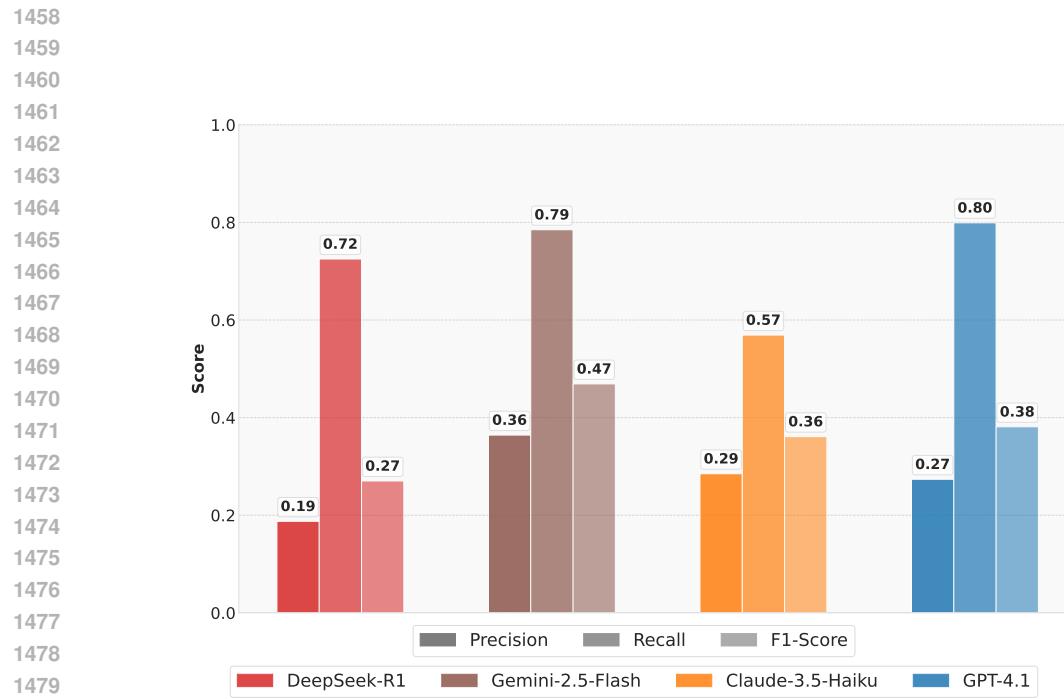


Figure 16: Distribution of boundary detection metrics for Finance workflows.

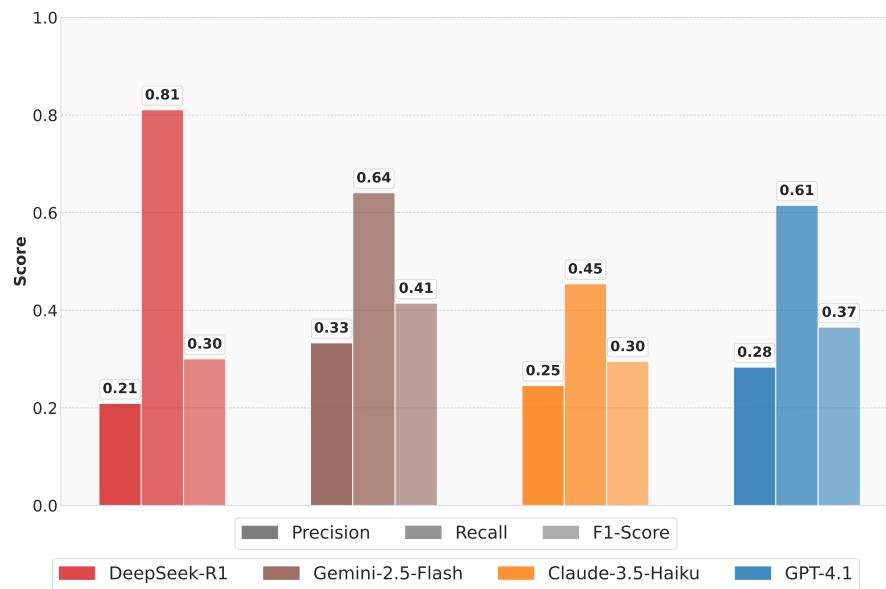


Figure 17: Distribution of boundary detection metrics for Legal workflows.

1512 B.3 MULTIMODAL EXPERIMENTS
1513

1514 Our primary benchmarks use only the structured digital interaction sequences from **ENTROPY**. This
1515 choice ensures fair evaluation across a range of models, including widely used frontier models such as
1516 DeepSeek-R1 that do not support multimodal input. That said, **ENTROPY** is inherently multimodal
1517 and pairs interactions with a screenshot of the user interface. To test whether visual context improves
1518 performance, we ran additional multimodal experiments with GPT-4.1.

1519 Because workflows in **ENTROPY** often span several hundred steps, including all screenshots would
1520 exceed provider token limits. To remain feasible, we downsampled the visual input by selecting a
1521 small set of representative frames. For workflow classification, we included 5 uniformly sampled
1522 screenshots per workflow. Accuracy improved from 61.5% → 67.6% (finance), 76.7% → 78.1%
1523 (HR), and 36.3% → 41.2% (legal). For segmentation, we concatenated 2–3 workflows and added
1524 3 screenshots per workflow. F1 scores improved from 0.38 → 0.44 (finance), 0.45 → 0.46 (HR),
1525 and 0.37 → 0.38 (legal). These modest but consistent gains suggest that screenshots provide
1526 complementary cues for both task recognition and boundary detection, though scalability remains
1527 limited by context window and token constraints.

1528 We also evaluated UI-TARS (Qin et al., 2025), a UI-oriented model built on Qwen2.5-VL with a
1529 32k-token context window. To fit within this window, we restricted inputs to the interaction sequences
1530 plus up to 5 screenshots per workflow. On the workflow classification task, UI-TARS achieved
1531 40.7% (finance), 69.9% (HR), and 39.2% (legal). Segmentation was not feasible due to context
1532 length limitations. Overall, UI-TARS underperformed the frontier LLMs reported in the main paper,
1533 indicating that **ENTROPY** poses a meaningful challenge even for current UI-specialized models.

1534 In summary, multimodal inputs yield measurable accuracy gains, and UI-specific models still struggle
1535 with **ENTROPY**’s long, variable workflows. These results highlight both the difficulty and the
1536 potential of **ENTROPY** as a benchmark for developing more capable multimodal and workflow-
1537 oriented AI systems.

1539 B.4 PROCESS SIMILARITY ANALYSIS
1540

1542 We characterize the dataset by measuring the overlap between processes and their corresponding
1543 workflow executions, providing insight into the degree of similarity among processes within the
1544 same team. High pairwise similarity indicates that distinguishing between processes – whether for
1545 classification or segmentation – may be more challenging.

1546 High similarity between processes or workflows often arises from shared use of the same applications,
1547 screens, fields, or documents. This results in overlapping digital interactions or only minor differences
1548 between them. For example, two processes that use the same application screen will appear similar,
1549 even if they interact with different fields. Without more advanced modeling, text-based embeddings
1550 will treat such processes as being closely related, making them harder to distinguish. For example, in
1551 legal workflows multiple phases may involve reviewing the same contract within the same applications,
1552 leading to similar digital traces.

1553 To illustrate process similarity, we compute a pairwise similarity score between each process instance.
1554 Instances belonging to the same process are expected to exhibit a baseline level of similarity – e.g.,
1555 greater than 0.7 – though not perfect (i.e., less than 1.0) due to natural variation in how the process
1556 is executed. However, high similarity between different processes and their instances, such as
1557 Legal’s ‘Contract kickoff’ and ‘First pass contract review’, could indicate potential challenges for
1558 classification and segmentation, as previously discussed.

1559 The similarity score between two process instances is computed as follows: Each process execution is
1560 converted into a paragraph, where each digital interaction is represented as a sentence. For example,
1561 ‘The user clicked on the Submit button in the screen Invoice NetSuite of the application Oracle
1562 NetSuite’. This paragraph, representing the full sequence of digital interactions in the process
1563 execution, is then embedded using the *text-embedding-3-large* model, a state-of-the-art model for
1564 generating text embeddings. The resulting embedding serves as the representation of the process
1565 instance, and the pairwise similarity between any two instances is computed as the cosine similarity
of their embeddings.

1566 The pairwise similarity scores across all teams and their processes are shown in Fig. 18. Each
 1567 point represents the cosine similarity between two process workflow executions. Darker boundaries
 1568 are overlaid on the heatmap, with process-specific color labels along the border to indicate which
 1569 executions belong to which process. This effectively groups the workflow executions by process and
 1570 provides visual cues to help distinguish between them.

1571 These results highlight several important characteristics that reflect the complexity and diversity of
 1572 real-world enterprise workflows:
 1573

- 1574 • **High similarity across distinct processes:** The Legal subplot illustrates a case where different
 1575 processes exhibit high similarity (e.g., 0.75 or greater). For example, ‘Contract kickoff’ and
 1576 ‘First pass contract review’ show substantial overlap. As discussed earlier, this is driven by
 1577 factors such as the reuse of the same applications and documents across processes. Legal
 1578 workflows often involve reviewing the same contract across multiple stages using common tools,
 1579 leading to shared interaction patterns across distinct processes.
- 1580 • **Low similarity within a process’s executions – i.e., high variability in execution:** In contrast,
 1581 HR processes reveal greater variability within individual workflows. For instance, the ‘Employ-
 1582 ment letter generation’ process shows lower within-process similarity (between 0.5 and 0.75),
 1583 suggesting diverse execution paths or optional steps. Variability may stem from differences in
 1584 employment types, roles, or regional requirements, all of which influence the specific workflow
 1585 path followed in each instance.
- 1586 • **High similarity within a single process – i.e., high standardization in execution:** Conversely,
 1587 the ‘Employee offboarding’ process exhibits very high within-process similarity (0.9 or greater),
 1588 indicating a highly standardized execution. This is expected for compliance-critical workflows
 1589 like offboarding, where consistent application of policy and procedure is essential.

1590 These results help explain the variance in model performance observed in the benchmark evaluations
 1591 presented in the main body of the paper. Specifically, frontier models perform worse when classifying
 1592 workflows within the Legal domain due to substantial overlap across its processes, e.g., due to reuse
 1593 of the same or similar contracts, as illustrated in Fig. 18. In contrast, HR processes tend to be more
 1594 distinct, allowing the same models – despite not being explicitly optimized for this dataset – to
 1595 perform better in that domain. A similar trend is observed in the segmentation task, where reduced
 1596 performance on Legal workflows can likewise be attributed to high structural similarity across process
 1597 instances. These findings underscore the value of **ENTROPY** in training models to disambiguate
 1598 between processes with overlapping patterns.

1599 Understanding these characteristics is important for analyzing process execution, which can vary
 1600 significantly across teams and workflows. Metrics such as pairwise similarity across process instances
 1601 offer a way to quantify this variation and provide insights that are critical for assessing the realism
 1602 and quality of a dataset like **ENTROPY**.

1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

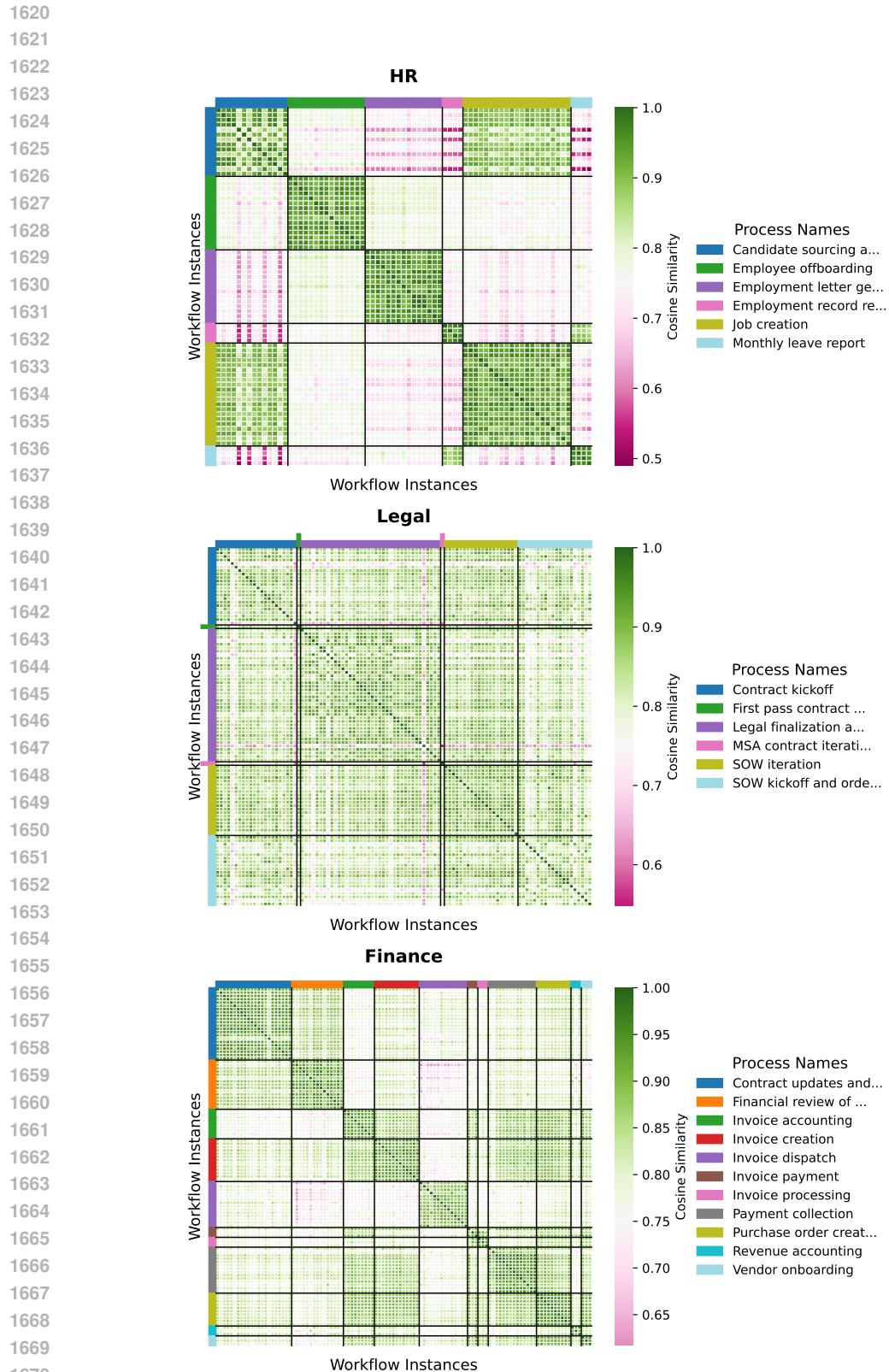


Figure 18: Pairwise similarity scores between process instances.