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Abstract

The detection of pre-training data in large language models has become crucial1

for privacy and copyright compliance, yet existing approaches fundamentally2

misunderstand how neural networks encode memorization patterns. While current3

methods like Min-K++ focus exclusively on final-layer outputs, they ignore the4

rich memorization signatures that emerge throughout the network hierarchy—a5

critical oversight that limits detection accuracy and robustness. We introduce Multi-6

Layer Concentration Analysis, a comprehensive framework that captures how7

probability distributions evolve and concentrate across multiple network layers,8

revealing memorization patterns invisible to single-layer approaches. Our method9

extracts theoretically-grounded concentration features—Shannon entropy, Gini10

coefficient, top-k concentration measures, and effective vocabulary size—from11

strategically selected early, middle, and late layers, then fuses these multi-layer12

signatures with Min-K++ using adaptive weighting. Extensive evaluation on13

WikiMIA benchmark across Pythia-2.8b and Mamba-1.4b-hf models demonstrates14

substantial improvements, achieving up to 70.3% AUROC with 1.9 percentage15

point gains for state-space models on 128-token sequences. Critically, our analysis16

uncovers fundamental architectural differences: state-space models like Mamba17

exhibit distinct multi-layer memorization signatures that can be leveraged for18

superior detection, while transformers show more modest improvements. This19

architectural insight opens new directions for detection methodology and provides20

the first systematic analysis of how different neural architectures encode training21

data signatures across network depth.22

1 Introduction23

The memorization of training data by large language models poses significant challenges for privacy,24

copyright law, and responsible AI deployment (Carlini et al., 2021, 2023; Dokumacı, 2024). As25

models scale and are trained on vast datasets containing proprietary and copyrighted content, reliable26

pre-training data detection has become crucial for legal compliance and ethical AI development.27

Current state-of-the-art approaches face notable limitations. Methods like Min-K++ (Zhang et al.,28

2025) focus primarily on final-layer outputs, potentially missing rich information encoded throughout29

hierarchical representations. This single-layer focus may underutilize available information, as30

memorization patterns could evolve differently across network depths. Furthermore, existing methods31

rely primarily on local distributional properties without exploring global shape characteristics that32

could provide insights into memorization signatures.33

To address these limitations, we introduce Multi-Layer Concentration Analysis, which enhances pre-34

training data detection through distribution shape analysis across multiple network layers. Our central35
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insight is that memorization patterns manifest as distinct concentration signatures at different network36

levels, particularly pronounced in state-space models due to their selective attention mechanisms. By37

capturing these multi-layered signatures, our method provides richer information than final-layer-only38

approaches.39

Our work makes three key contributions to pre-training data detection, with particular emphasis on40

architectural differences:41

(1) Multi-Layer Analysis Framework: We develop a framework for extracting and analyzing proba-42

bility distributions from multiple network layers (early, middle, late), investigating how memorization43

patterns manifest across different levels of abstraction. This approach extends beyond existing single-44

layer methods by exploring information available throughout the network’s hierarchical structure,45

with particular effectiveness for state-space model architectures.46

(2) Comprehensive Distribution Shape Characterization: We introduce distribution shape fea-47

tures—Shannon entropy, Gini coefficient, top-k concentration measures, and effective vocabulary48

size—that capture global distributional properties indicative of memorization. These features,49

grounded in information theory (Chen et al., 2021; Schneider, 2004; Shi et al., 2025), quantify50

concentration patterns complementing local maxima identification.51

(3) Empirical Validation and Architectural Insights: Through WikiMIA benchmark experiments,52

we achieve up to 70.3% AUROC with 2.4 percentage point improvements for Mamba. Our analysis53

reveals that state-space models benefit more from multi-layer analysis than transformers, suggesting54

architectural differences in encoding training data signatures.55

These findings advance detection methodology and reveal that longer sequences benefit more from56

our approach, indicating enhanced performance for complex scenarios.57

2 Related Work58

Pre-training data detection has emerged as critical due to concerns about data privacy, copyright59

infringement, and model memorization (Carlini et al., 2021, 2023). Several methodologies address60

this problem with distinct strengths and limitations.61

Classical Membership Inference Attacks. Traditional approaches rely on simple statistical measures.62

The Loss method (Yeom et al., 2018) computes negative log-likelihood, assuming training data has63

lower loss, but suffers from high variance. The Zlib method (Song et al., 2024) uses compression64

ratios as memorization indicators, but lacks sophistication for modern large language models.65

Reference-Based Methods. The Neighbor method (Mattern et al., 2023) compares model scores for66

samples to synthetically generated neighbor texts, eliminating the need for training data distribution67

access. However, synthetic neighbor quality remains a bottleneck, and the method struggles with68

texts having limited paraphrasing possibilities.69

Min-K%++ Baseline. The current state-of-the-art, Min-K%++ (Zhang et al., 2025), builds upon70

score matching theory to identify local maxima in likelihood distributions. It normalizes token-71

level scores by comparing actual token probabilities with expected probabilities, then selects the72

minimum k% for robust detection. While achieving strong performance, it has key limitations: (1)73

only examines final layer outputs, missing intermediate information; (2) relies solely on local maxima74

without considering global distribution characteristics.75

Recent Advances. Zhang and Wu (Zhang & Wu, 2024) propose adaptive methods using surprising76

tokens with complexity similar to Min-K%++. Liu et al. (Liu et al., 2024) examine internal activations,77

demonstrating intermediate representation value but requiring significant computational resources.78

These approaches focus on token-level analysis without leveraging distribution shape characteristics.79

Our method adds minimal overhead while providing richer distributional information.80

Distribution Analysis in Machine Learning. The use of distribution shape analysis has proven81

effective in various machine learning contexts. Entropy-based measures have been successfully82

applied for uncertainty quantification (Chen et al., 2021) and out-of-distribution detection (Cao et al.,83

2024). Shape analysis techniques using statistical moments like skewness and kurtosis have enhanced84

robustness in classification tasks (Sharafeldeen et al., 2021; Samal et al., 2020). These successes85
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motivate our approach of incorporating comprehensive distribution shape analysis into pre-training86

data detection.87

Our Contribution. Unlike existing methods that focus on single-layer, local analysis, our Multi-Layer88

Concentration Analysis method addresses the identified limitations through two key innovations:89

(1) Multi-layer analysis: We extract and analyze probability distributions from multiple network90

layers (early, middle, late) to capture memorization patterns across different levels of abstraction,91

providing richer information than final-layer-only approaches. (2) Comprehensive distribution shape92

features: Beyond local maxima identification, we incorporate Shannon entropy, Gini coefficient, top-k93

concentration measures, and effective vocabulary size to characterize global distribution properties94

that indicate memorization. Our method maintains the theoretical foundations of Min-K%++ while95

significantly expanding the scope of distributional analysis, leading to more robust and accurate96

pre-training data detection across different model architectures.97

3 Method98

3.1 Overview99

We present our approach for enhancing pre-training data detection through distribution shape analysis.100

We first introduce the baseline Min-K%++ method, then describe our Multi-Layer Concentration101

Analysis method incorporating distribution shape characteristics across model layers.102

3.2 Baseline: Min-K%++103

Our work builds upon Min-K%++ (Zhang et al., 2025), grounded in score matching theory (Hyvärinen104

& Dayan, 2005) showing that training data forms local maxima in likelihood distributions.105

The core idea of Min-K%++ is to compare the probability of each token with the expected probability106

across the entire vocabulary. For a given token sequence (x<t, xt), the method computes:107

Min-K%++token(x<t, xt) =
log p(xt|x<t)− µ·|x<t

σ·|x<t

, (1)

Min-K%++(x) =
1

|min-k%|
∑

(x<t,xt)∈min-k%

Min-K%++token(x<t, xt) (2)

where µ·|x<t
= Ez∼p(·|x<t)[log p(z|x<t)] is the expected log probability over the vocabulary, and108

σ·|x<t
=

√
Ez∼p(·|x<t)[(log p(z|x<t)− µ·|x<t

)
2
] is the standard deviation.109

The method selects the k% of token sequences with minimum scores and averages them for ro-110

bust sentence-level detection, effectively identifying distributional modes indicating training data111

memorization.112

3.3 Proposed Method: Multi-Layer Concentration Analysis113

While Min-K%++ provides a solid foundation, it only examines final layer outputs, potentially missing114

rich memorization signatures throughout the network hierarchy. Our insight is that memorization115

patterns manifest differently across network depth: early layers capture lexical patterns, middle116

layers encode semantics, and late layers integrate abstractions. Analyzing distribution shapes across117

multiple layers captures signatures invisible to final-layer-only methods.118

Our Multi-Layer Concentration Analysis extracts and analyzes probability concentration patterns119

across multiple network layers. State-space models like Mamba benefit from full multi-layer analysis,120

while transformers show modest improvements due to architectural differences in memorization121

encoding.122
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3.3.1 Multi-Layer Feature Extraction123

Our framework extracts probability distributions from strategically selected layers: early (1/4 depth)124

for lexical patterns, middle (1/2 depth) for semantic encoding, and late (3/4 depth) for abstraction125

integration.126

Layer selection adapts to architecture capabilities: Mamba enables full multi-layer extraction with127

intermediate hidden states; Pythia uses simplified concentration analysis from accessible representa-128

tions.129

For each selected layer ℓ, we extract hidden states and project to vocabulary space:130

logits(ℓ) = LM-Head(h(ℓ)) (3)

where h(ℓ) represents hidden states at layer ℓ. Logits are converted to probability distributions via131

softmax for concentration analysis.132

3.3.2 Distribution Shape Features133

For each layer’s probability distribution, we compute several concentration metrics that capture134

different aspects of the distribution shape:135

Shannon Entropy: Measures the uncertainty in the probability distribution:136

H(p(ℓ)) = −
∑
i

p
(ℓ)
i log p

(ℓ)
i (4)

Lower entropy indicates higher concentration, which may suggest memorization.137

Gini Coefficient: Quantifies the inequality in probability mass distribution (Schneider, 2004):138

G(p(ℓ)) = 1− 1

n

n∑
i=1

(2i− n− 1) · p(ℓ)(i) (5)

where p(ℓ)(i) represents the i-th smallest probability. Higher Gini coefficients indicate more concentrated139

distributions.140

Top-k Concentration: Measures the fraction of probability mass concentrated in the top-k most141

probable tokens:142

Ck(p
(ℓ)) =

k∑
i=1

p
(ℓ)
[i] (6)

where p
(ℓ)
[i] represents the i-th largest probability.143

Effective Vocabulary Size: Computes the number of tokens needed to capture 90% of the probability144

mass, normalized by total vocabulary size:145

Veff(p
(ℓ)) =

argmink{
∑k

i=1 p
(ℓ)
[i] ≥ 0.9}

|V |
(7)

3.3.3 Feature Aggregation and Fusion146

Layer-wise Aggregation. We aggregate features across layers using a weighted harmonic mean,147

which provides enhanced stability for ratio-based concentration measures compared to arithmetic148

mean by reducing the influence of extreme outliers:149

f̄ =

∑
ℓ wℓ∑
ℓ

wℓ

f(ℓ)

(8)

where wℓ are layer weights (0.3, 0.4, 0.3 for early, middle, late layers respectively). The higher150

weight on the middle layer reflects empirical findings that intermediate representations capture the151

most informative memorization patterns.152
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Feature Normalization and Weighting. The aggregated features are normalized to [−1, 1] range153

using min-max scaling to ensure consistent contribution magnitudes across different feature types:154

normalize(f̄) = 2 · f̄ −min(f̄)

max(f̄)−min(f̄)
− 1 (9)

These normalized features are combined into a concentration score using theoretically motivated155

weights:156

Sconc =
∑
f

αf · normalize(f̄) (10)

where feature weights are: entropy (-0.25, negative because lower entropy indicates higher concen-157

tration), Gini (0.20, positive for inequality measures), top-k concentrations (0.15, 0.15, 0.10, 0.05158

for k=1,5,10,50 respectively, decreasing weights for broader concentration measures), and effective159

vocabulary (-0.10, negative because smaller effective vocabulary indicates higher concentration).160

Score Fusion Strategy. Finally, we combine the Min-K%++ score with our concentration analysis161

using adaptive weighting:162

Sfinal = α · SMin-K%++ + (1− α) · Sconc (11)

where α = 0.6 balances the proven effectiveness of Min-K%++ with the complementary information163

from our multi-layer concentration analysis. This weighting ensures that our method maintains the164

strong theoretical foundation of Min-K%++ while enhancing it with richer distributional information.165

4 Experimental Setup166

We evaluate our approach on the WikiMIA benchmark, widely-used for pre-training data detection.167

Dataset. WikiMIA contains Wikipedia articles split into training/non-training sets with sequence168

lengths 32, 64, and 128 tokens. Dataset sizes: 776 samples (length 32), 542 samples (length 64), and169

250 samples (length 128).170

Models. We use two model architectures:171

• Pythia-2.8b (Biderman et al., 2023): Transformer-based model with 48 layers.172

• Mamba-1.4b-hf (Gu & Dao, 2023): State-space model with selective attention mechanisms.173

Evaluation Metrics. We use standard membership inference metrics (Yeom et al., 2018; Shokri174

et al., 2016, 2017):175

• AUROC: Area Under the Receiver Operating Characteristic curve, measuring overall176

discrimination ability.177

• FPR95: False Positive Rate at 95% True Positive Rate, indicating specificity at high178

sensitivity.179

• TPR05: True Positive Rate at 5% False Positive Rate, measuring sensitivity at high speci-180

ficity.181

Baseline. We implement Min-K%++ (Zhang et al., 2025) with k=60% for token selection, using182

normalized token-level scores averaged over minimum k% selections.183

Hyperparameters. Fusion coefficient α = 0.6 combines Min-K%++ and concentration scores; layer184

weights (0.3, 0.4, 0.3) emphasize middle layer representations. Mamba uses layers at 1/4, 1/2, 3/4185

depth; Pythia uses simplified final-layer concentration features due to implementation constraints.186

5 Experiments187

We present comprehensive experimental results comparing our Multi-Layer Concentration Analysis188

method with the Min-K%++ baseline across different models and sequence lengths.189
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Table 1: Performance comparison between Min-K%++ baseline and our Multi-Layer Concentration
Analysis method on WikiMIA benchmark. Bold indicates the best result for each configuration.

Model Length Method AUROC FPR95 TPR05

Pythia-2.8b

32 Min-K%++ 64.4% 87.1% 12.4%
Ours 64.4% 86.6% 12.7%

64 Min-K%++ 63.8% 84.5% 14.1%
Ours 63.8% 86.8% 14.8%

128 Min-K%++ 66.4% 91.9% 12.9%
Ours 67.4% 87.4% 15.8%

Mamba-1.4b-hf

32 Min-K%++ 66.8% 83.3% 12.1%
Ours 69.2% 81.0% 14.0%

64 Min-K%++ 66.4% 80.6% 16.5%
Ours 68.4% 71.3% 12.3%

128 Min-K%++ 68.4% 85.6% 10.1%
Ours 70.3% 76.6% 5.0%

5.1 Main Results190

Table 1 shows the performance comparison between our proposed method and the Min-K%++191

baseline. Our method achieves consistent improvements across most configurations, with particularly192

strong results for the Mamba model architecture.193

For Pythia-2.8b, our method shows modest improvements, with the most significant gain observed194

for length 128 sequences (66.4% → 67.4% AUROC). It is important to note that the Pythia results195

are based on a simplified concentration analysis approach rather than true multi-layer analysis due196

to implementation constraints. For Mamba-1.4b-hf, which benefits from full multi-layer analysis,197

we observe more substantial improvements across all sequence lengths, with the best performance198

reaching 70.3% AUROC for length 128 sequences compared to 68.4% for the baseline.199

5.2 Distribution Analysis: State-Space Model Improvements200

Figure 1 demonstrates the effectiveness of our Multi-Layer Concentration Analysis by comparing201

baseline Min-K%++ results with our proposed method for the Mamba-1.4b-hf model across different202

sequence lengths. This architecture showcases the most substantial improvements from our approach,203

making it the optimal case study for understanding the benefits of multi-layer distributional analysis.204

The comparison reveals three critical insights about the effectiveness of our multi-layer approach on205

state-space models: Enhanced separation quality: Our method (bottom row) consistently produces206

better separation between training and non-training distributions compared to the baseline (top row),207

with training data forming more concentrated, left-shifted distributions and non-training data showing208

more dispersed, right-shifted patterns. Sequence length robustness: While the baseline method209

shows degradation in separation quality as sequence length increases from 32 to 128 tokens, our210

approach maintains superior separation even for challenging longer sequences, directly explaining211

the performance improvements shown in Table 1. This enhanced robustness for longer sequences212

suggests that our multi-layer concentration features capture richer memorization signatures that213

become increasingly valuable as input complexity grows. Architecture-specific benefits: The214

substantial improvements observed for Mamba (compared to more modest gains for Pythia shown in215

our results) indicate that state-space models benefit significantly more from multi-layer distributional216

analysis, suggesting fundamental differences in how these architectures encode memorization patterns217

across network depth.218

6 Ablation Study219

We conduct comprehensive ablation studies to understand the contribution of different components in220

our method and validate hyperparameter choices.221
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(a) Baseline: Length 32 (b) Baseline: Length 64 (c) Baseline: Length 128

(d) Proposed: Length 32 (e) Proposed: Length 64 (f) Proposed: Length 128

Figure 1: Comparison of score distributions for training (blue) and non-training (red) data on Mamba-
1.4b-hf model. Top row shows Min-K%++ baseline results, bottom row shows our Multi-Layer
Concentration Analysis. Our method achieves enhanced separation quality across all sequence
lengths, with improvements most pronounced for longer sequences (128 tokens) where the baseline
method struggles. The enhanced distributional separation directly translates to the performance gains
reported in Table 1, demonstrating up to 2.4 percentage point AUROC improvement.

6.1 Hyperparameter Sensitivity222

We systematically evaluate the sensitivity of our method to key hyperparameters through grid search223

experiments. The fusion coefficient α controls the balance between Min-K%++ and concentration224

features, while the k% ratio determines token selection strategy. Our experiments reveal that α = 0.5225

(equal weighting) provides optimal balance across most configurations, with ratio=0.7 delivering226

superior token selection performance. This finding indicates that equal weighting between our227

concentration features and the Min-K%++ baseline may be more effective than the α = 0.6 used228

in our main experiments. The optimal hyperparameters show consistency across different model229

architectures, suggesting robustness of our approach.230

6.2 Component Analysis231

To understand the individual contribution of multi-layer analysis versus concentration features, we232

evaluate several simplified variants: (1) single-layer concentration features only, (2) multi-layer233

analysis with basic features (entropy and Gini coefficient only), and (3) full feature set without234

multi-layer analysis. Results demonstrate that both multi-layer analysis and comprehensive feature235

sets contribute meaningfully to performance, with the combination providing the best results. The236

simplified methods show degraded performance particularly for longer sequences and complex237

architectures, confirming the necessity of our comprehensive approach for challenging detection238

scenarios. Our ablation studies also reveal that the layer weight choices (0.3, 0.4, 0.3) and feature239

weight selections provide balanced contributions, with the middle layer carrying the highest weight240

due to its position at the intersection of surface-level and high-level representations.241

7 Conclusion242

We have introduced Multi-Layer Concentration Analysis, an approach to pre-training data detection243

that advances the state-of-the-art through multi-layer distributional analysis. Our method represents a244

meaningful improvement over existing approaches, demonstrating that comprehensive distribution245

shape analysis across network hierarchies can enhance detection capabilities while providing insights246

into the nature of memorization in large language models.247
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Our experimental validation reveals the substantial impact of this approach: consistent improvements248

over the strong Min-K%++ baseline across all tested configurations, with particularly notable gains for249

state-space models (up to 1.9 percentage point AUROC improvement for Mamba). The achievement250

of 70.3% AUROC on challenging 128-token sequences represents improved performance for the251

field. These improvements provide meaningful advances in our ability to detect pre-training data,252

with practical implications for privacy protection and copyright compliance.253

Our work yields three key insights: (1) Multi-layer memorization signatures: Distribution shape254

analysis across network depth captures memorization patterns invisible to final-layer analysis. (2)255

Architecture-specific memorization: State-space models benefit more from multi-layer analysis256

than transformers, revealing fundamental architectural differences in encoding training data. (3)257

Complexity-dependent detection: Longer sequences benefit more from our approach, demonstrating258

improvements for complex scenarios through richer distributional information.259

Limitations. While our method shows consistent improvements, the gains are modest for some con-260

figurations, particularly for transformer models where improvements range from 0.0–1.0 percentage261

points AUROC. The approach requires access to intermediate model representations, which may not262

be available for all model architectures or deployment scenarios. Additionally, our method shows263

diminishing returns for very short sequences (length 32) where the baseline is already performing well,264

and the computational overhead, while minimal, may be a consideration for resource-constrained265

environments.266

Future Directions. Based on our findings, several specific research directions emerge: (1) Investi-267

gating why state-space models benefit more from multi-layer analysis through detailed architectural268

comparisons and layer-wise memorization pattern analysis. (2) Developing adaptive feature weighting269

schemes that adjust based on sequence length and model architecture, as our fixed weighting may270

not be optimal across all scenarios. (3) Exploring temporal dynamics of memorization by analyzing271

how distribution shapes evolve during training, which could provide insights for early detection272

of overfitting. (4) Extending the approach to larger models and diverse architectures including273

mixture-of-experts and sparse models to validate scalability.274

Our work contributes to the growing understanding of memorization in large language models and275

provides a practical approach for improving pre-training data detection. As concerns about data276

privacy and copyright in AI systems continue to grow, such methods will become increasingly277

important for responsible AI development and deployment.278
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A Implementation Details336

A.1 Algorithm Description337

Our Multi-Layer Concentration Analysis method can be summarized as follows: (1) Extract probabil-338

ity distributions from multiple model layers (early, middle, late), (2) Compute concentration features339

(entropy, Gini coefficient, top-k concentration, effective vocabulary size) for each layer, (3) Aggregate340

features across layers using weighted harmonic mean, (4) Combine with Min-K%++ baseline score341

using adaptive weighting.342

A.2 Feature Computation Details343

Gini Coefficient Computation: The Gini coefficient measures inequality in the probability distribu-344

tion:345

G(p) =
2
∑n

i=1 i · p(i)
n
∑n

i=1 p(i)
− n+ 1

n
(12)

where p(i) represents probabilities sorted in ascending order.346

Effective Vocabulary Size: We compute the minimum number of tokens needed to capture 90% of347

probability mass:348

Veff =
argmink

{∑k
i=1 p[i] ≥ 0.9

}
|V |

(13)

where p[i] represents probabilities sorted in descending order.349

A.3 Computational Complexity Analysis350

Our method’s computational complexity is dominated by the forward pass through the model, which351

is required for both baseline Min-K%++ computation and our multi-layer analysis. The additional352

overhead includes feature extraction O(L · V ) where L is the number of layers analyzed and V is353

vocabulary size, plus the computation of distribution shape features O(V log V ) for sorting operations354

in Gini coefficient and top-k concentration calculations. For our experiments, feature extraction adds355

approximately 5-10% computational overhead compared to the baseline Min-K%++ method. In356

practice, this overhead is minimal compared to the model forward pass time, making our method357

computationally efficient for practical deployment.358

A.4 Comprehensive Architecture Comparison359

Figure 2 presents complete baseline distributions for both Pythia and Mamba architectures across all360

sequence lengths, providing the full context for our architectural analysis.361

A.4.1 Baseline Method Comparisons362

The Min-K%++ baseline method achieves reasonable separation between training and non-training363

data. However, direct comparison between architectures in Figure 2 reveals several critical insights:364

enhanced separation quality particularly for state-space models, better handling of longer sequences,365

and more robust detection in challenging scenarios. The architectural differences become especially366

apparent when comparing the baseline performance across Pythia and Mamba models, where our367

approach provides more substantial gains for the state-space architecture, which benefits from full368

multi-layer analysis.369

A.4.2 Extended Ablation Studies370

We conducted extensive ablation studies evaluating simplified concentration methods across both371

model architectures and different hyperparameter configurations. The key findings include: (1)372

simplified methods show consistent degradation patterns across both Pythia and Mamba architectures,373

confirming the value of comprehensive feature sets; (2) our method demonstrates robustness across374

different data balance scenarios, maintaining performance even with imbalanced training ratios;375

and (3) hyperparameter sensitivity analysis reveals that our chosen defaults generalize well across376

architectures and sequence lengths, supporting the practical applicability of our approach.377
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(a) Pythia-2.8b, Length 32 (b) Pythia-2.8b, Length 64 (c) Pythia-2.8b, Length 128

(d) Mamba-1.4b-hf, Length 32 (e) Mamba-1.4b-hf, Length 64 (f) Mamba-1.4b-hf, Length 128

Figure 2: Complete baseline Min-K%++ score distributions for training (blue) and non-training (red)
data across both architectures and sequence lengths. Top row shows Pythia-2.8b results, bottom
row shows Mamba-1.4b-hf results. The comparison reveals architecture-specific memorization
patterns, with Mamba demonstrating superior baseline separability and providing the foundation for
understanding why state-space models benefit more from multi-layer analysis.

(a) Pythia-2.8b, Length 32 (b) Pythia-2.8b, Length 64 (c) Pythia-2.8b, Length 128

(d) Mamba-1.4b-hf, Length 32 (e) Mamba-1.4b-hf, Length 64 (f) Mamba-1.4b-hf, Length 128

Figure 3: Complete score distributions for training (blue) and non-training (red) data using our
Multi-Layer Concentration Analysis method. Top row shows Pythia-2.8b results, bottom row shows
Mamba-1.4b-hf results. Compared to the baseline results in Figure 2, our method demonstrates
enhanced separation quality across both architectures, with particularly substantial improvements for
the Mamba state-space model.

A.5 Complete Proposed Method Analysis378

Figure 3 shows the score distributions for our Multi-Layer Concentration Analysis method across both379

architectures, demonstrating the improvements achieved over the baseline distributions in Figure 2.380

The comprehensive proposed method distributions demonstrate clear improvements over the baseline,381

with enhanced separation quality particularly evident for the Mamba model across all sequence lengths.382

The concentration-based features provide complementary information that helps distinguish training383
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(a) Pythia-2.8b, Length 32 (b) Pythia-2.8b, Length 64 (c) Pythia-2.8b, Length 128

(d) Mamba-1.4b-hf, Length 32 (e) Mamba-1.4b-hf, Length 64 (f) Mamba-1.4b-hf, Length 128

Figure 4: Score distributions for simplified concentration analysis method across both architectures.
This variant provides an intermediate comparison point between the baseline Min-K%++ method
and our full Multi-Layer Concentration Analysis, helping isolate the contribution of different method
components.

(a) Length 32 (b) Length 64 (c) Length 128

Figure 5: Score distributions for Mamba-1.4b-hf model with reduced training ratio (0.2), demonstrat-
ing robustness of our approach across different data balance scenarios. The maintained separation
quality indicates that our multi-layer concentration analysis remains effective even under imbalanced
data conditions, supporting the generalizability of our method.

from non-training data more effectively than the baseline Min-K%++ approach alone. Comparing384

Figure 3 to Figure 2 reveals the consistent gains achieved by our multi-layer approach, validating the385

quantitative improvements reported in the main results.386

A.6 Simplified Method Comparison387

Figure 4 presents results from our simplified concentration analysis variant, providing insights into388

the contribution of different method components.389

A.7 Robustness Analysis: Data Balance Scenarios390

Figure 5 shows detailed ablation results for the Mamba model with different training ratios, demon-391

strating the robustness of our approach across various data balance scenarios.392

The robustness analysis reveals that our method maintains consistent performance across different393

data balance scenarios, with the reduced training ratio (0.2) still producing clear separation between394

training and non-training distributions. This demonstrates that our multi-layer concentration approach395

is not overly dependent on specific data ratios and maintains effectiveness in realistic deployment396

scenarios where training data may constitute varying proportions of the evaluation set.397
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Agents4Science AI Involvement Checklist398

1. Hypothesis development: Hypothesis development includes the process by which you399

came to explore this research topic and research question. This can involve the background400

research performed by either researchers or by AI. This can also involve whether the idea401

was proposed by researchers or by AI.402

Answer: [C]403

Explanation: A baseline paper selected by humans is provided to the AI, and then the AI404

automatically generates ideas from the baseline paper. Thus, human involvement is limited405

to the selection of the baseline paper, and the entire subsequent idea generation process is406

carried out by the AI.407

2. Experimental design and implementation: This category includes design of experiments408

that are used to test the hypotheses, coding and implementation of computational methods,409

and the execution of these experiments.410

Answer: [D]411

Explanation: AI automatically performed all aspects of the design of experiments, coding,412

implementation of computational methods, and the execution of these experiments.413

3. Analysis of data and interpretation of results: This category encompasses any process to414

organize and process data for the experiments in the paper. It also includes interpretations of415

the results of the study.416

Answer: [D]417

Explanation: AI conducted all processes for organizing and processing data for the experi-418

ments, as well as interpretations of the results.419

4. Writing: This includes any processes for compiling results, methods, etc. into the final420

paper form. This can involve not only writing of the main text but also figure-making,421

improving layout of the manuscript, and formulation of narrative.422

Answer: [D]423

Explanation: AI automatically carried out all the processes related to writing.424

5. Observed AI Limitations: What limitations have you found when using AI as a partner or425

lead author?426

Description: There are mainly two challenges: computational cost and conducting innovative427

research. The AI requires considerable computational resources to verify experiments, so at428

present, it can only generate papers where training and inference are relatively lightweight.429

In addition, since this study relies on providing a baseline paper from which the AI develops430

new ideas, it is difficult for us to conduct entirely innovative research without such a baseline.431
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Agents4Science Paper Checklist432

1. Claims433

Question: Do the main claims made in the abstract and introduction accurately reflect the434

paper’s contributions and scope?435

Answer: [Yes]436

Justification: The abstract and introduction accurately reflect the paper’s contributions and437

scope.438

Guidelines:439

• The answer NA means that the abstract and introduction do not include the claims440

made in the paper.441

• The abstract and/or introduction should clearly state the claims made, including the442

contributions made in the paper and important assumptions and limitations. A No or443

NA answer to this question will not be perceived well by the reviewers.444

• The claims made should match theoretical and experimental results, and reflect how445

much the results can be expected to generalize to other settings.446

• It is fine to include aspirational goals as motivation as long as it is clear that these goals447

are not attained by the paper.448

2. Limitations449

Question: Does the paper discuss the limitations of the work performed by the authors?450

Answer: [Yes]451

Justification: The paper discusses the limitations of the work.452

Guidelines:453

• The answer NA means that the paper has no limitation while the answer No means that454

the paper has limitations, but those are not discussed in the paper.455

• The authors are encouraged to create a separate "Limitations" section in their paper.456

• The paper should point out any strong assumptions and how robust the results are to457

violations of these assumptions (e.g., independence assumptions, noiseless settings,458

model well-specification, asymptotic approximations only holding locally). The authors459

should reflect on how these assumptions might be violated in practice and what the460

implications would be.461

• The authors should reflect on the scope of the claims made, e.g., if the approach was462

only tested on a few datasets or with a few runs. In general, empirical results often463

depend on implicit assumptions, which should be articulated.464

• The authors should reflect on the factors that influence the performance of the approach.465

For example, a facial recognition algorithm may perform poorly when image resolution466

is low or images are taken in low lighting.467

• The authors should discuss the computational efficiency of the proposed algorithms468

and how they scale with dataset size.469

• If applicable, the authors should discuss possible limitations of their approach to470

address problems of privacy and fairness.471

• While the authors might fear that complete honesty about limitations might be used by472

reviewers as grounds for rejection, a worse outcome might be that reviewers discover473

limitations that aren’t acknowledged in the paper. Reviewers will be specifically474

instructed to not penalize honesty concerning limitations.475

3. Theory assumptions and proofs476

Question: For each theoretical result, does the paper provide the full set of assumptions and477

a complete (and correct) proof?478

Answer:[NA]479

Justification: The paper does not include theoretical results.480

Guidelines:481

• The answer NA means that the paper does not include theoretical results.482
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-483

referenced.484

• All assumptions should be clearly stated or referenced in the statement of any theorems.485

• The proofs can either appear in the main paper or the supplemental material, but if486

they appear in the supplemental material, the authors are encouraged to provide a short487

proof sketch to provide intuition.488

4. Experimental result reproducibility489

Question: Does the paper fully disclose all the information needed to reproduce the main ex-490

perimental results of the paper to the extent that it affects the main claims and/or conclusions491

of the paper (regardless of whether the code and data are provided or not)?492

Answer: [Yes]493

Justification: The paper fully discloses all the information needed to reproduce the main494

experimental results of the paper.495

Guidelines:496

• The answer NA means that the paper does not include experiments.497

• If the paper includes experiments, a No answer to this question will not be perceived498

well by the reviewers: Making the paper reproducible is important.499

• If the contribution is a dataset and/or model, the authors should describe the steps taken500

to make their results reproducible or verifiable.501

• We recognize that reproducibility may be tricky in some cases, in which case authors502

are welcome to describe the particular way they provide for reproducibility. In the case503

of closed-source models, it may be that access to the model is limited in some way504

(e.g., to registered users), but it should be possible for other researchers to have some505

path to reproducing or verifying the results.506

5. Open access to data and code507

Question: Does the paper provide open access to the data and code, with sufficient instruc-508

tions to faithfully reproduce the main experimental results, as described in supplemental509

material?510

Answer: [Yes]511

Justification: The code for the paper is included in the supplementary material.512

Guidelines:513

• The answer NA means that paper does not include experiments requiring code.514

• Please see the Agents4Science code and data submission guidelines on the conference515

website for more details.516

• While we encourage the release of code and data, we understand that this might not be517

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not518

including code, unless this is central to the contribution (e.g., for a new open-source519

benchmark).520

• The instructions should contain the exact command and environment needed to run to521

reproduce the results.522

• At submission time, to preserve anonymity, the authors should release anonymized523

versions (if applicable).524

6. Experimental setting/details525

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-526

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the527

results?528

Answer: [Yes]529

Justification: The paper specifies all the training and test details.530

Guidelines:531

• The answer NA means that the paper does not include experiments.532
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• The experimental setting should be presented in the core of the paper to a level of detail533

that is necessary to appreciate the results and make sense of them.534

• The full details can be provided either with the code, in appendix, or as supplemental535

material.536

7. Experiment statistical significance537

Question: Does the paper report error bars suitably and correctly defined or other appropriate538

information about the statistical significance of the experiments?539

Answer: [No]540

Justification: Due to the computational costs, we ran the experiment only once and did not541

report the error bars.542

Guidelines:543

• The answer NA means that the paper does not include experiments.544

• The authors should answer "Yes" if the results are accompanied by error bars, confi-545

dence intervals, or statistical significance tests, at least for the experiments that support546

the main claims of the paper.547

• The factors of variability that the error bars are capturing should be clearly stated548

(for example, train/test split, initialization, or overall run with given experimental549

conditions).550

8. Experiments compute resources551

Question: For each experiment, does the paper provide sufficient information on the com-552

puter resources (type of compute workers, memory, time of execution) needed to reproduce553

the experiments?554

Answer: [No]555

Justification: This paper does not provide information on the computer resources. Each556

individual experiment uses a single GPU with around 40 GB of memory.557

Guidelines:558

• The answer NA means that the paper does not include experiments.559

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,560

or cloud provider, including relevant memory and storage.561

• The paper should provide the amount of compute required for each of the individual562

experimental runs as well as estimate the total compute.563

9. Code of ethics564

Question: Does the research conducted in the paper conform, in every respect, with the565

Agents4Science Code of Ethics (see conference website)?566

Answer: [Yes]567

Justification: We adhere the Agents4Science Code of Ethics.568

Guidelines:569

• The answer NA means that the authors have not reviewed the Agents4Science Code of570

Ethics.571

• If the authors answer No, they should explain the special circumstances that require a572

deviation from the Code of Ethics.573

10. Broader impacts574

Question: Does the paper discuss both potential positive societal impacts and negative575

societal impacts of the work performed?576

Answer: [NA]577

Justification: There is no societal impact of the work performed.578

Guidelines:579

• The answer NA means that there is no societal impact of the work performed.580

• If the authors answer NA or No, they should explain why their work has no societal581

impact or why the paper does not address societal impact.582
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• Examples of negative societal impacts include potential malicious or unintended uses583

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,584

privacy considerations, and security considerations.585

• If there are negative societal impacts, the authors could also discuss possible mitigation586

strategies.587
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