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Abstract

The detection of pre-training data in large language models has become crucial
for privacy and copyright compliance, yet existing approaches fundamentally
misunderstand how neural networks encode memorization patterns. While current
methods like Min-K++ focus exclusively on final-layer outputs, they ignore the
rich memorization signatures that emerge throughout the network hierarchy—a
critical oversight that limits detection accuracy and robustness. We introduce Multi-
Layer Concentration Analysis, a comprehensive framework that captures how
probability distributions evolve and concentrate across multiple network layers,
revealing memorization patterns invisible to single-layer approaches. Our method
extracts theoretically-grounded concentration features—Shannon entropy, Gini
coefficient, top-k concentration measures, and effective vocabulary size—from
strategically selected early, middle, and late layers, then fuses these multi-layer
signatures with Min-K++ using adaptive weighting. Extensive evaluation on
WikiMIA benchmark across Pythia-2.8b and Mamba-1.4b-hf models demonstrates
substantial improvements, achieving up to 70.3% AUROC with 1.9 percentage
point gains for state-space models on 128-token sequences. Critically, our analysis
uncovers fundamental architectural differences: state-space models like Mamba
exhibit distinct multi-layer memorization signatures that can be leveraged for
superior detection, while transformers show more modest improvements. This
architectural insight opens new directions for detection methodology and provides
the first systematic analysis of how different neural architectures encode training
data signatures across network depth.

1 Introduction

The memorization of training data by large language models poses significant challenges for privacy,
copyright law, and responsible Al deployment (Carlini et al., 2021}, 2023} IDokumaci, |2024). As
models scale and are trained on vast datasets containing proprietary and copyrighted content, reliable
pre-training data detection has become crucial for legal compliance and ethical Al development.

Current state-of-the-art approaches face notable limitations. Methods like Min-K++ (Zhang et al.,
2025])) focus primarily on final-layer outputs, potentially missing rich information encoded throughout
hierarchical representations. This single-layer focus may underutilize available information, as
memorization patterns could evolve differently across network depths. Furthermore, existing methods
rely primarily on local distributional properties without exploring global shape characteristics that
could provide insights into memorization signatures.

To address these limitations, we introduce Multi-Layer Concentration Analysis, which enhances pre-
training data detection through distribution shape analysis across multiple network layers. Our central
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insight is that memorization patterns manifest as distinct concentration signatures at different network
levels, particularly pronounced in state-space models due to their selective attention mechanisms. By
capturing these multi-layered signatures, our method provides richer information than final-layer-only
approaches.

Our work makes three key contributions to pre-training data detection, with particular emphasis on
architectural differences:

(1) Multi-Layer Analysis Framework: We develop a framework for extracting and analyzing proba-
bility distributions from multiple network layers (early, middle, late), investigating how memorization
patterns manifest across different levels of abstraction. This approach extends beyond existing single-
layer methods by exploring information available throughout the network’s hierarchical structure,
with particular effectiveness for state-space model architectures.

(2) Comprehensive Distribution Shape Characterization: We introduce distribution shape fea-
tures—Shannon entropy, Gini coefficient, top-k concentration measures, and effective vocabulary
size—that capture global distributional properties indicative of memorization. These features,
grounded in information theory (Chen et al., [2021; |Schneider, [2004; [Shi et al.| 2025), quantify
concentration patterns complementing local maxima identification.

(3) Empirical Validation and Architectural Insights: Through WikiMIA benchmark experiments,
we achieve up to 70.3% AUROC with 2.4 percentage point improvements for Mamba. Our analysis
reveals that state-space models benefit more from multi-layer analysis than transformers, suggesting
architectural differences in encoding training data signatures.

These findings advance detection methodology and reveal that longer sequences benefit more from
our approach, indicating enhanced performance for complex scenarios.

2 Related Work

Pre-training data detection has emerged as critical due to concerns about data privacy, copyright
infringement, and model memorization (Carlini et al., 2021}, |2023). Several methodologies address
this problem with distinct strengths and limitations.

Classical Membership Inference Attacks. Traditional approaches rely on simple statistical measures.
The Loss method (Yeom et al.|2018)) computes negative log-likelihood, assuming training data has
lower loss, but suffers from high variance. The Zlib method (Song et al.,|2024) uses compression
ratios as memorization indicators, but lacks sophistication for modern large language models.

Reference-Based Methods. The Neighbor method (Mattern et al., [2023)) compares model scores for
samples to synthetically generated neighbor texts, eliminating the need for training data distribution
access. However, synthetic neighbor quality remains a bottleneck, and the method struggles with
texts having limited paraphrasing possibilities.

Min-K %++ Baseline. The current state-of-the-art, Min-K%-++ (Zhang et al., [2025)), builds upon
score matching theory to identify local maxima in likelihood distributions. It normalizes token-
level scores by comparing actual token probabilities with expected probabilities, then selects the
minimum k% for robust detection. While achieving strong performance, it has key limitations: (1)
only examines final layer outputs, missing intermediate information; (2) relies solely on local maxima
without considering global distribution characteristics.

Recent Advances. Zhang and Wu (Zhang & Wul, 2024) propose adaptive methods using surprising
tokens with complexity similar to Min-K%-++. Liu et al. (Liu et al.|[2024)) examine internal activations,
demonstrating intermediate representation value but requiring significant computational resources.
These approaches focus on token-level analysis without leveraging distribution shape characteristics.
Our method adds minimal overhead while providing richer distributional information.

Distribution Analysis in Machine Learning. The use of distribution shape analysis has proven
effective in various machine learning contexts. Entropy-based measures have been successfully
applied for uncertainty quantification (Chen et al., 2021 and out-of-distribution detection (Cao et al.,
2024])). Shape analysis techniques using statistical moments like skewness and kurtosis have enhanced
robustness in classification tasks (Sharafeldeen et al., 2021} [Samal et al., |2020). These successes
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motivate our approach of incorporating comprehensive distribution shape analysis into pre-training
data detection.

Our Contribution. Unlike existing methods that focus on single-layer, local analysis, our Multi-Layer
Concentration Analysis method addresses the identified limitations through two key innovations:
(1) Multi-layer analysis: We extract and analyze probability distributions from multiple network
layers (early, middle, late) to capture memorization patterns across different levels of abstraction,
providing richer information than final-layer-only approaches. (2) Comprehensive distribution shape
features: Beyond local maxima identification, we incorporate Shannon entropy, Gini coefficient, top-k
concentration measures, and effective vocabulary size to characterize global distribution properties
that indicate memorization. Our method maintains the theoretical foundations of Min-K%-++ while
significantly expanding the scope of distributional analysis, leading to more robust and accurate
pre-training data detection across different model architectures.

3 Method

3.1 Overview

We present our approach for enhancing pre-training data detection through distribution shape analysis.
We first introduce the baseline Min-K%-++ method, then describe our Multi-Layer Concentration
Analysis method incorporating distribution shape characteristics across model layers.

3.2 Baseline: Min-K % ++

Our work builds upon Min-K%++ (Zhang et al.,[2025)), grounded in score matching theory (Hyvéarinen
& Dayanl 2005) showing that training data forms local maxima in likelihood distributions.

The core idea of Min-K%-++ is to compare the probability of each token with the expected probability
across the entire vocabulary. For a given token sequence (¢, 2¢), the method computes:

log p(x¢|z<t) — p.
Min-K%++oken (T <, Tt) = g p(zt|T<t) :U’|9c<t’ "

U'|5F<t

. 1 .
Min-K%++(z) = m Z Min-K%++oken (T <t, Tt) 2)
(z<t,xt)Emin-k%

where f1.),_, = E.p( |z, [log p(z|z<¢)] is the expected log probability over the vocabulary, and

Oloe, = \/EZNP(“Q)[(logp(z|x<t) - ,u.|x<t)2} is the standard deviation.

The method selects the k% of token sequences with minimum scores and averages them for ro-
bust sentence-level detection, effectively identifying distributional modes indicating training data
memorization.

3.3 Proposed Method: Multi-Layer Concentration Analysis

While Min-K%++ provides a solid foundation, it only examines final layer outputs, potentially missing
rich memorization signatures throughout the network hierarchy. Our insight is that memorization
patterns manifest differently across network depth: early layers capture lexical patterns, middle
layers encode semantics, and late layers integrate abstractions. Analyzing distribution shapes across
multiple layers captures signatures invisible to final-layer-only methods.

Our Multi-Layer Concentration Analysis extracts and analyzes probability concentration patterns
across multiple network layers. State-space models like Mamba benefit from full multi-layer analysis,
while transformers show modest improvements due to architectural differences in memorization
encoding.
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3.3.1 Multi-Layer Feature Extraction

Our framework extracts probability distributions from strategically selected layers: early (1/4 depth)
for lexical patterns, middle (1/2 depth) for semantic encoding, and late (3/4 depth) for abstraction
integration.

Layer selection adapts to architecture capabilities: Mamba enables full multi-layer extraction with
intermediate hidden states; Pythia uses simplified concentration analysis from accessible representa-
tions.

For each selected layer ¢, we extract hidden states and project to vocabulary space:
logits(Y) = LM-Head(h(") 3)

where h(©) represents hidden states at layer . Logits are converted to probability distributions via
softmax for concentration analysis.

3.3.2 Distribution Shape Features

For each layer’s probability distribution, we compute several concentration metrics that capture
different aspects of the distribution shape:

Shannon Entropy: Measures the uncertainty in the probability distribution:
(") Z pi" log p!” )

Lower entropy indicates higher concentration, which may suggest memorization.

Gini Coefficient: Quantifies the inequality in probability mass distribution (Schneider, [2004):

1 .
GO0 =1 23 i n 1)) ®)

i=1

where pgf)) represents the i-th smallest probability. Higher Gini coefficients indicate more concentrated

distributions.

Top-k Concentration: Measures the fraction of probability mass concentrated in the top-k most
probable tokens:
k

Cro(p®) = > pjy) ©)
=1

(€9

where Py represents the i-th largest probability.

Effective Vocabulary Size: Computes the number of tokens needed to capture 90% of the probability
mass, normalized by total vocabulary size:

argmmk{zz 1p[z]) > 0.9}
14

Verr(p?)) = @)

3.3.3 Feature Aggregation and Fusion

Layer-wise Aggregation. We aggregate features across layers using a weighted harmonic mean,
which provides enhanced stability for ratio-based concentration measures compared to arithmetic
mean by reducing the influence of extreme outliers:

20 We
where wy are layer weights (0.3, 0.4, 0.3 for early, middle, late layers respectively). The higher

weight on the middle layer reflects empirical findings that intermediate representations capture the
most informative memorization patterns.

F=

®)
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Feature Normalization and Weighting. The aggregated features are normalized to [—1, 1] range
using min-max scaling to ensure consistent contribution magnitudes across different feature types:
normalize(f) = 2 - / — mm(f) — —1 9)
max(f) — min(f)

These normalized features are combined into a concentration score using theoretically motivated
weights:

Seonc = Z oy - normalize( f) (10)
f

where feature weights are: entropy (-0.25, negative because lower entropy indicates higher concen-
tration), Gini (0.20, positive for inequality measures), top-k concentrations (0.15, 0.15, 0.10, 0.05
for k=1,5,10,50 respectively, decreasing weights for broader concentration measures), and effective
vocabulary (-0.10, negative because smaller effective vocabulary indicates higher concentration).

Score Fusion Strategy. Finally, we combine the Min-K%++ score with our concentration analysis
using adaptive weighting:

Sfinal = @ * SMin-K%++ + (1 - a) - Sconc (11)

where oo = 0.6 balances the proven effectiveness of Min-K%-++ with the complementary information
from our multi-layer concentration analysis. This weighting ensures that our method maintains the
strong theoretical foundation of Min-K%-++ while enhancing it with richer distributional information.

4 Experimental Setup

We evaluate our approach on the WikiMIA benchmark, widely-used for pre-training data detection.

Dataset. WikiMIA contains Wikipedia articles split into training/non-training sets with sequence
lengths 32, 64, and 128 tokens. Dataset sizes: 776 samples (length 32), 542 samples (length 64), and
250 samples (length 128).

Models. We use two model architectures:

* Pythia-2.8b (Biderman et al., 2023): Transformer-based model with 48 layers.
e Mamba-1.4b-hf (Gu & Daol 2023)): State-space model with selective attention mechanisms.

Evaluation Metrics. We use standard membership inference metrics (Yeom et al., 2018 |[Shokri
et al.,[2016,[2017):

* AUROC: Area Under the Receiver Operating Characteristic curve, measuring overall
discrimination ability.

* FPRY5: False Positive Rate at 95% True Positive Rate, indicating specificity at high
sensitivity.

* TPROS5: True Positive Rate at 5% False Positive Rate, measuring sensitivity at high speci-
ficity.

Baseline. We implement Min-K%++ (Zhang et al., 2025) with k=60% for token selection, using
normalized token-level scores averaged over minimum k% selections.

Hyperparameters. Fusion coefficient o = 0.6 combines Min-K%-++ and concentration scores; layer
weights (0.3, 0.4, 0.3) emphasize middle layer representations. Mamba uses layers at 1/4, 1/2, 3/4
depth; Pythia uses simplified final-layer concentration features due to implementation constraints.

S Experiments

We present comprehensive experimental results comparing our Multi-Layer Concentration Analysis
method with the Min-K%-++ baseline across different models and sequence lengths.
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Table 1: Performance comparison between Min-K%-++ baseline and our Multi-Layer Concentration
Analysis method on WikiMIA benchmark. Bold indicates the best result for each configuration.

Model Length Method AUROC FPR95 TPRO5
3 Min-K%++  64.4% 87.1% 12.4%

Ours 64.4% 86.6% 12.7%

Pythia-2.8b 64 Min-K%++  63.8% 84.5% 14.1%
Ours 63.8% 86.8% 14.8%

128 Min-K%++  66.4% 91.9% 12.9%

Ours 674% 87.4% 15.8%

o Min-K%++  66.8% 833% 12.1%

Ours 692% 81.0% 14.0%

Mamba-1.4b-hf 64 Min-K%++  66.4% 80.6% 16.5%
Ours 684% 71.3% 12.3%

128 Min-K%++  68.4% 85.6%  10.1%

Ours 703%  76.6% 5.0%

5.1 Main Results

Table [I] shows the performance comparison between our proposed method and the Min-K%-++
baseline. Our method achieves consistent improvements across most configurations, with particularly
strong results for the Mamba model architecture.

For Pythia-2.8b, our method shows modest improvements, with the most significant gain observed
for length 128 sequences (66.4% — 67.4% AUROC). It is important to note that the Pythia results
are based on a simplified concentration analysis approach rather than true multi-layer analysis due
to implementation constraints. For Mamba-1.4b-hf, which benefits from full multi-layer analysis,
we observe more substantial improvements across all sequence lengths, with the best performance
reaching 70.3% AUROC for length 128 sequences compared to 68.4% for the baseline.

5.2 Distribution Analysis: State-Space Model Improvements

Figure T|demonstrates the effectiveness of our Multi-Layer Concentration Analysis by comparing
baseline Min-K%-++ results with our proposed method for the Mamba-1.4b-hf model across different
sequence lengths. This architecture showcases the most substantial improvements from our approach,
making it the optimal case study for understanding the benefits of multi-layer distributional analysis.

The comparison reveals three critical insights about the effectiveness of our multi-layer approach on
state-space models: Enhanced separation quality: Our method (bottom row) consistently produces
better separation between training and non-training distributions compared to the baseline (top row),
with training data forming more concentrated, left-shifted distributions and non-training data showing
more dispersed, right-shifted patterns. Sequence length robustness: While the baseline method
shows degradation in separation quality as sequence length increases from 32 to 128 tokens, our
approach maintains superior separation even for challenging longer sequences, directly explaining
the performance improvements shown in Table |1} This enhanced robustness for longer sequences
suggests that our multi-layer concentration features capture richer memorization signatures that
become increasingly valuable as input complexity grows. Architecture-specific benefits: The
substantial improvements observed for Mamba (compared to more modest gains for Pythia shown in
our results) indicate that state-space models benefit significantly more from multi-layer distributional
analysis, suggesting fundamental differences in how these architectures encode memorization patterns
across network depth.

6 Ablation Study

We conduct comprehensive ablation studies to understand the contribution of different components in
our method and validate hyperparameter choices.
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Figure 1: Comparison of score distributions for training (blue) and non-training (red) data on Mamba-
1.4b-hf model. Top row shows Min-K%-++ baseline results, bottom row shows our Multi-Layer
Concentration Analysis. Our method achieves enhanced separation quality across all sequence
lengths, with improvements most pronounced for longer sequences (128 tokens) where the baseline
method struggles. The enhanced distributional separation directly translates to the performance gains
reported in Table[T] demonstrating up to 2.4 percentage point AUROC improvement.

6.1 Hyperparameter Sensitivity

We systematically evaluate the sensitivity of our method to key hyperparameters through grid search
experiments. The fusion coefficient a controls the balance between Min-K%++ and concentration
features, while the k% ratio determines token selection strategy. Our experiments reveal that o = 0.5
(equal weighting) provides optimal balance across most configurations, with ratio=0.7 delivering
superior token selection performance. This finding indicates that equal weighting between our
concentration features and the Min-K%-++ baseline may be more effective than the @ = 0.6 used
in our main experiments. The optimal hyperparameters show consistency across different model
architectures, suggesting robustness of our approach.

6.2 Component Analysis

To understand the individual contribution of multi-layer analysis versus concentration features, we
evaluate several simplified variants: (1) single-layer concentration features only, (2) multi-layer
analysis with basic features (entropy and Gini coefficient only), and (3) full feature set without
multi-layer analysis. Results demonstrate that both multi-layer analysis and comprehensive feature
sets contribute meaningfully to performance, with the combination providing the best results. The
simplified methods show degraded performance particularly for longer sequences and complex
architectures, confirming the necessity of our comprehensive approach for challenging detection
scenarios. Our ablation studies also reveal that the layer weight choices (0.3, 0.4, 0.3) and feature
weight selections provide balanced contributions, with the middle layer carrying the highest weight
due to its position at the intersection of surface-level and high-level representations.

7 Conclusion

We have introduced Multi-Layer Concentration Analysis, an approach to pre-training data detection
that advances the state-of-the-art through multi-layer distributional analysis. Our method represents a
meaningful improvement over existing approaches, demonstrating that comprehensive distribution
shape analysis across network hierarchies can enhance detection capabilities while providing insights
into the nature of memorization in large language models.
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Our experimental validation reveals the substantial impact of this approach: consistent improvements
over the strong Min-K%-++ baseline across all tested configurations, with particularly notable gains for
state-space models (up to 1.9 percentage point AUROC improvement for Mamba). The achievement
of 70.3% AUROC on challenging 128-token sequences represents improved performance for the
field. These improvements provide meaningful advances in our ability to detect pre-training data,
with practical implications for privacy protection and copyright compliance.

Our work yields three key insights: (1) Multi-layer memorization signatures: Distribution shape
analysis across network depth captures memorization patterns invisible to final-layer analysis. (2)
Architecture-specific memorization: State-space models benefit more from multi-layer analysis
than transformers, revealing fundamental architectural differences in encoding training data. (3)
Complexity-dependent detection: Longer sequences benefit more from our approach, demonstrating
improvements for complex scenarios through richer distributional information.

Limitations. While our method shows consistent improvements, the gains are modest for some con-
figurations, particularly for transformer models where improvements range from 0.0-1.0 percentage
points AUROC. The approach requires access to intermediate model representations, which may not
be available for all model architectures or deployment scenarios. Additionally, our method shows
diminishing returns for very short sequences (length 32) where the baseline is already performing well,
and the computational overhead, while minimal, may be a consideration for resource-constrained
environments.

Future Directions. Based on our findings, several specific research directions emerge: (1) Investi-
gating why state-space models benefit more from multi-layer analysis through detailed architectural
comparisons and layer-wise memorization pattern analysis. (2) Developing adaptive feature weighting
schemes that adjust based on sequence length and model architecture, as our fixed weighting may
not be optimal across all scenarios. (3) Exploring temporal dynamics of memorization by analyzing
how distribution shapes evolve during training, which could provide insights for early detection
of overfitting. (4) Extending the approach to larger models and diverse architectures including
mixture-of-experts and sparse models to validate scalability.

Our work contributes to the growing understanding of memorization in large language models and
provides a practical approach for improving pre-training data detection. As concerns about data
privacy and copyright in Al systems continue to grow, such methods will become increasingly
important for responsible Al development and deployment.
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A Implementation Details

A.1 Algorithm Description

Our Multi-Layer Concentration Analysis method can be summarized as follows: (1) Extract probabil-
ity distributions from multiple model layers (early, middle, late), (2) Compute concentration features
(entropy, Gini coefficient, top-k concentration, effective vocabulary size) for each layer, (3) Aggregate
features across layers using weighted harmonic mean, (4) Combine with Min-K%-++ baseline score
using adaptive weighting.

A.2 Feature Computation Details

Gini Coefficient Computation: The Gini coefficient measures inequality in the probability distribu-
tion:
23 Lipa n—+1
Glp) = =551 — (12)
nY i1 PG n
where p(;) represents probabilities sorted in ascending order.

Effective Vocabulary Size: We compute the minimum number of tokens needed to capture 90% of
probability mass:

argmin,, {Zle Pl = 0.9}

Vet = 13)
Vi

where p|; represents probabilities sorted in descending order.

A.3 Computational Complexity Analysis

Our method’s computational complexity is dominated by the forward pass through the model, which
is required for both baseline Min-K%++ computation and our multi-layer analysis. The additional
overhead includes feature extraction O(L - V) where L is the number of layers analyzed and V' is
vocabulary size, plus the computation of distribution shape features O(V log V') for sorting operations
in Gini coefficient and top-k concentration calculations. For our experiments, feature extraction adds
approximately 5-10% computational overhead compared to the baseline Min-K%++ method. In
practice, this overhead is minimal compared to the model forward pass time, making our method
computationally efficient for practical deployment.

A.4 Comprehensive Architecture Comparison

Figure [2] presents complete baseline distributions for both Pythia and Mamba architectures across all
sequence lengths, providing the full context for our architectural analysis.

A.4.1 Baseline Method Comparisons

The Min-K%-++ baseline method achieves reasonable separation between training and non-training
data. However, direct comparison between architectures in Figure 2] reveals several critical insights:
enhanced separation quality particularly for state-space models, better handling of longer sequences,
and more robust detection in challenging scenarios. The architectural differences become especially
apparent when comparing the baseline performance across Pythia and Mamba models, where our
approach provides more substantial gains for the state-space architecture, which benefits from full
multi-layer analysis.

A.4.2 Extended Ablation Studies

We conducted extensive ablation studies evaluating simplified concentration methods across both
model architectures and different hyperparameter configurations. The key findings include: (1)
simplified methods show consistent degradation patterns across both Pythia and Mamba architectures,
confirming the value of comprehensive feature sets; (2) our method demonstrates robustness across
different data balance scenarios, maintaining performance even with imbalanced training ratios;
and (3) hyperparameter sensitivity analysis reveals that our chosen defaults generalize well across
architectures and sequence lengths, supporting the practical applicability of our approach.
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Figure 2: Complete baseline Min-K%-++ score distributions for training (blue) and non-training (red)
data across both architectures and sequence lengths. Top row shows Pythia-2.8b results, bottom
row shows Mamba-1.4b-hf results. The comparison reveals architecture-specific memorization
patterns, with Mamba demonstrating superior baseline separability and providing the foundation for
understanding why state-space models benefit more from multi-layer analysis.
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Figure 3: Complete score distributions for training (blue) and non-training (red) data using our
Multi-Layer Concentration Analysis method. Top row shows Pythia-2.8b results, bottom row shows
Mamba-1.4b-hf results. Compared to the baseline results in Figure [2] our method demonstrates
enhanced separation quality across both architectures, with particularly substantial improvements for
the Mamba state-space model.

A.5 Complete Proposed Method Analysis

Figure [3]shows the score distributions for our Multi-Layer Concentration Analysis method across both
architectures, demonstrating the improvements achieved over the baseline distributions in Figure[2]

The comprehensive proposed method distributions demonstrate clear improvements over the baseline,
with enhanced separation quality particularly evident for the Mamba model across all sequence lengths.
The concentration-based features provide complementary information that helps distinguish training
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Figure 4: Score distributions for simplified concentration analysis method across both architectures.
This variant provides an intermediate comparison point between the baseline Min-K%++ method
and our full Multi-Layer Concentration Analysis, helping isolate the contribution of different method
components.
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Figure 5: Score distributions for Mamba-1.4b-hf model with reduced training ratio (0.2), demonstrat-
ing robustness of our approach across different data balance scenarios. The maintained separation
quality indicates that our multi-layer concentration analysis remains effective even under imbalanced
data conditions, supporting the generalizability of our method.

from non-training data more effectively than the baseline Min-K%-++ approach alone. Comparing
Figure [3]to Figure 2] reveals the consistent gains achieved by our multi-layer approach, validating the
quantitative improvements reported in the main results.

A.6 Simplified Method Comparison

Figure [ presents results from our simplified concentration analysis variant, providing insights into
the contribution of different method components.

A.7 Robustness Analysis: Data Balance Scenarios

Figure 5] shows detailed ablation results for the Mamba model with different training ratios, demon-
strating the robustness of our approach across various data balance scenarios.

The robustness analysis reveals that our method maintains consistent performance across different
data balance scenarios, with the reduced training ratio (0.2) still producing clear separation between
training and non-training distributions. This demonstrates that our multi-layer concentration approach
is not overly dependent on specific data ratios and maintains effectiveness in realistic deployment
scenarios where training data may constitute varying proportions of the evaluation set.
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Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [C]

Explanation: A baseline paper selected by humans is provided to the Al, and then the Al
automatically generates ideas from the baseline paper. Thus, human involvement is limited
to the selection of the baseline paper, and the entire subsequent idea generation process is
carried out by the Al

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [D]

Explanation: Al automatically performed all aspects of the design of experiments, coding,
implementation of computational methods, and the execution of these experiments.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [D]

Explanation: AI conducted all processes for organizing and processing data for the experi-
ments, as well as interpretations of the results.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [D]
Explanation: Al automatically carried out all the processes related to writing.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: There are mainly two challenges: computational cost and conducting innovative
research. The Al requires considerable computational resources to verify experiments, so at
present, it can only generate papers where training and inference are relatively lightweight.
In addition, since this study relies on providing a baseline paper from which the Al develops
new ideas, it is difficult for us to conduct entirely innovative research without such a baseline.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code for the paper is included in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.
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7.

10.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the computational costs, we ran the experiment only once and did not
report the error bars.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: This paper does not provide information on the computer resources. Each
individual experiment uses a single GPU with around 40 GB of memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]
Justification: We adhere the Agents4Science Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

16



583
584
585
586
587

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

* If there are negative societal impacts, the authors could also discuss possible mitigation

strategies.
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