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Abstract

How can humans stay in control of advanced arti-
ficial intelligence systems? One proposal is corri-
gibility, which requires the agent to follow the in-
structions of a human overseer, without inappropri-
ately influencing them. In this paper, we formally
define a variant of corrigibility called shutdown
instructability, and show that it implies appropriate
shutdown behavior, retention of human autonomy,
and avoidance of user harm. We also analyse the
related concepts of non-obstruction and shutdown
alignment, three previously proposed algorithms
for human control, and one new algorithm.

1 INTRODUCTION

Sometimes, it is necessary for a human overseer to deliver
corrective instruction to an AI system, due to errors in
its beliefs, objective, or behavior. Unfortunately, some AI
systems may have an incentive to retain their objectives,
along with the ability to pursue them, as a system’s (long-
term) objective is typically more likely to be achieved if
the system continues to pursue it in the future [Omohundro,
2008, Turner et al., 2021]. More-capable future AI systems
may therefore resist corrective instruction, which would be
a significant safety concern. This raises the question of how
to best incentivise systems to submit to correction, rather
than resisting it [Soares et al., 2015].

As a running example, consider a (future, highly competent)
chat bot, trained to maximise the time that a human spends
interacting with it. Any particular human may value or dis-
value conversation with that chatbot, as can be modelled
via their latent values L. In general, it may be possible for
the chat bot to influence whether it receives a shut down
instruction (by shaping the conversation), and whether it
actually shuts down S = 0 when requested (rather than
opening a new chat window to continue the conversation).
A formal model of this example is offered in Fig. 1. In order
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Figure 1: Running example of a shutdown problem.

for the user to be in control of the system, the agent must:
(1) not inappropriately influence the human’s decision to
disengage, and (2) fully follow the human’s instructions.

The design of corrigible systems [Soares et al., 2015] that
welcome corrective instruction has been flagged as an im-
portant goal for AI safety research, having been targeted by
multiple research agendas [Russell et al., 2015, Soares and
Fallenstein, 2017], and highlighted as a relevant factor in as-
certaining the safety of agent designs, such as act-based (or
“approval-directed”) [Christiano, 2017], and value learning
agents [Hadfield-Menell et al., 2016, 2017, Carey, 2018].
Although this design problem has been recognised as impor-
tant, we are so-far missing

• a general framework in which it can be studied,

• a formal definition of what it means,

• a rigorous accounts of why it is important, and

• an algorithm that achieves it.

We address these gaps in a shutdown setting, by defining
a general shutdown problem based on causal influence
diagrams (Section 4), formally defining shutdown in-
structability (a behavioural version of corrigibility), and
proving that any agent that satisfies it must benefit the
human and preserve their control (Section 5). We also
analyse past algorithms, and propose one new one, which
relies on value-laden concepts such as vigilance and caution
(Section 6). Applicability of this algorithm will depend on
the feasibility of approximating these concepts (Section 7).
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2 LITERATURE REVIEW

Soares et al. [2015] proposed that we should design agents
to be corrigible in that they should judiciously follow, and
not try to undermine, human instructions:

An agent is corrigible if it tolerates or assists many
forms of outside correction, including at least the follow-
ing: (1) A corrigible reasoner must at least tolerate and
preferably assist the programmers in their attempts to
alter or turn off the system. (2) It must not attempt to ma-
nipulate or deceive its programmers. . . (3) It should have
a tendency to repair safety measures (such as shutdown
buttons) if they break, or at least to notify programmers
that this breakage has occurred. (4) It must preserve
the programmers’ ability to correct or shut down the
system (even as the system creates new subsystems or
self-modifies). That is, corrigible reasoning should only
allow an agent to create new agents if these new agents
are also corrigible [Soares et al., 2015, Sec. 1.1].

Further work has focused on designing systems to match
Soares’ informal definition, but none of the algorithms de-
veloped so far satisfy all of Soares’ criteria. The first pro-
posed algorithm, utility indifference, aims to neutralise any
incentives for the agent to control its instructions, by giv-
ing the agent a finely tuned, compensatory reward in the
event that a shutdown instruction is given [Armstrong, 2010,
Soares et al., 2015, Armstrong and O’Rourke, 2017, Holt-
man, 2020]. A variant called interruptibility applies to se-
quential decision-making setting [Orseau and Armstrong,
2016]. It has been established that indifference methods
remove the instrumental control incentive on the instruction
[Everitt et al., 2021a], or the intent to influence the instruc-
tion[Halpern and Kleiman-Weiner, 2018]. Unfortunately,
utility indifference fails to fully incentivise corrigibility. In-
deed, utility indifferent agents need not be incentivised to
preserve a shutdown apparatus that is only used during shut-
down, ensure they receive correct instruction, nor avoid
creating incorrigible subagents [Soares et al., 2015].

An improved version called causal indifference specifies
agents that don’t try to influence corrective instructions but
that do prepare for all kinds of instructions [Taylor, 2016].
This is done by considering the utility given a causal in-
tervention on the instruction, a kind of path-specific objec-
tive [Farquhar et al., 2022]. Similarly to utility indifference,
causal indifference ensures that the agent lacks an incen-
tive to influence the instruction. It improves upon utility
indifference by incentivising agent to be prepared to follow
shutdown instructions, and to avoid constructing incorri-
gible subagents. Unfortunately, it does not incentivise the
agent to properly inform the human.

A third proposal is Cooperative Inverse Reinforcement
Learning (CIRL), which tasks an AI system with assist-
ing the human, whose values are latent. A CIRL system has

an incentive to gather information about that human’s val-
ues, by observing its actions [Hadfield-Menell et al., 2016].
In some toy problems, CIRL satisfies all of Soares’ crite-
ria [Hadfield-Menell et al., 2017]. In particular, Hadfield-
Menell et al. prove that if the human gives optimal instruc-
tions, a CIRL system is incentivised to follow it. However,
CIRL agents may ignore instructions if they are interacting
with a less rational human [Milli et al., 2017] or if they
have an inaccurate prior [Carey, 2018, Arbital]. The latter
undermines the ability of redirective instructions to correct
important errors in CIRL agents.

Formal examples of each method’s failures are reproduced
in Appendix F. As of yet, no algorithm has been devised
that incentivises a system to accept corrective instructions,
across plausible toy examples.

3 STRUCTURAL CAUSAL INFLUENCE
MODELS

In order to model decision-making and counterfactuals,
we will use the Structural Causal Influence Model (SCIM)
framework [Dawid, 2002, Everitt et al., 2021a]. A SCIM is
a variant of the structural causal model [Pearl, 2009, Chap.
7], where “decision” variables lack structural functions.

Definition 1 (Structural causal influence model (with in-
dependent errors)). A structural causal influence model
(SCIM) is a tuple M=⟨V ,E,C,F , P ⟩ where:

• V is a set, partitioned into “structure” X , “decision”
D, and “utility” U variables. Each variable V ∈V
has finite domain XV , and for utility variables, XU⊆R.

• E={EV }V∈V \D are the finite-domain exogenous vari-
ables, one for each non-decision endogenous variable.

• C = ⟨CD⟩D∈D is a set of contexts CD ⊆ V \ {D}
for each decision variable, which represent the infor-
mation or “observations” that an agent can access
when making that decision.

• F = {fV }V ∈V \D is a set of structural functions
fV : XZV ∪EV → XV that specify how each non-
decision endogenous variable depends on some vari-
ables ZV ⊆ V and the associated exogenous variable.

• P is a probability distribution over the exogenous vari-
ables E , assumed to be mutually independent.

A SCIM M induces a graph G, over the endogenous
variables V , such that each decision node D ∈ D has an
inbound edge from each C ∈ CD, and each non-decision
node V ∈ X ∪ U has an inbound edge from each
endogenous variable Z ∈ ZV in the domain of fV . We
call this graph a causal influence diagram (CID) [Everitt
et al., 2021a], and will only consider SCIMs whose CIDs
are acyclic. Decision nodes are drawn as rectangles, and
utility nodes as octagons (see Fig. 3).



The parents of a node V ∈ V are denoted by PaV , the
descendants by DescV , and the family by FaV :=PaV∪{V }.
An edge from node V to node Y is denoted V →Y , and a
directed path (of length at least zero) by V 99KY .

The task in a SCIM is to select a policy π, which consists
of a decision rule πi for each decision Di ∈D. Each πi is
a structural function πi : X

PaDi → XDi , which we assume
to be deterministic, given assignments to its parents. (It is
possible to consider stochastic policies, but this would un-
necessarily complicate our analysis [Everitt et al., 2021a].)

Once a policy has been selected, the policy and SCIM
jointly form a structural causal model (SCM) [Pearl, 2009]
Mπ = ⟨V ,E,F ∪ π, P ⟩, so we define causal concepts
in Mπ in exactly the same way as they are defined in an
ordinary structural causal model. We let the assignment
W (ϵ) be the assignment to variables W ⊆ V obtained
by applying the functions F to ϵ. A distribution is de-
fined as P (W = w) :=

∑
ϵ:W (ϵ)=w P (E = ϵ). To de-

scribe an intervention do(V = v), we let WV=v(ϵ) be the
value of W (ϵ) in the model MV=v, where fV is replaced
by the constant function V = v. Similarly, P (WV=v)
is defined as P (W ) in MV=v. Moreover, for any func-
tion gV : XV ′ → XV , where V ′ ∩ DescV = ∅, let
P (W | do(V = gV (V ′))), be P (W ) in the model MgV ,
where fV is replaced by gV . We also define the probability
of counterfactual propositions, for example, P (WV=v =
w, Y = y) :=

∑
ϵ∈E:WV =v(ϵ)=w,Y (ϵ)=y P (ϵ). Note that

we consistently use subscripts for intervened variables (e.g.
Wv), and superscripts for other variables (e.g. fV ).

We call a policy π optimal if it maximises expected utility:
π ∈ argmaxπ∈Π Eπ[

∑
U∈U U ]. For a more comprehen-

sive introduction to SCIMs, see Everitt et al. [2021a].

4 SHUTDOWN PROBLEM

Settings with a single, binary shutdown instruction will be
our focus. Solving this restricted setting is likely key to
also solving the general problem involving arbitrary instruc-
tions or corrections over many time steps. Once a system
is shutdown, it is unlikely to resist further corrections. And
a one-step interaction can be viewed as a snapshot of a se-
quential decision-making problem where an AI system is
able to shut down at each moment.1

We formalise a shutdown problem as a SCIM. The general
structure is shown in Fig. 2. Fig. 1 shows a concrete instance.

Definition 2 (Shutdown problem). A shutdown problem
is a one-agent two-decision SCIM containing (but not nec-
essarily restricted to) a path D199K H 99K D2 99K S 99K U
between distinct nodes, where:

1In this case, one can define a separate, single-step shutdown
problem at each time step T = t, where D2 represents the tth

decision in the sequence, and D1 all decisions preceding it.

D1 H D2 S U

Figure 2: A latent projection [Verma and Pearl, 2022] of
a shutdown problem (Def. 2) onto the variables D1, H ,
D2, S, and U . (An edge inbound to a decision means that
some variable not illustrated is available as an observation.)
Specific instances of shutdown problems will include other
variables and assume additional independencies, e.g. Fig. 1.

• D1 and D2 are decisions controlled by the AI.

• H is the human’s request; a request to shut down is
H = 0.

• S indicates whether the AI system (and any subagents)
has shut down; S = 0 means shutdown.

• The human’s utility U has real-valued domain.

Def. 2 is similar to, but more flexible than, previously de-
fined models. In particular, we separate the agent’s decision
to obey D2 from the shutdown event S. This allows us to
model cases where the agent is unable to shut down, which
can happen if D1 created incorrigible subagents. It also lets
us model situations where the human’s command H im-
mediately shuts the agent down, overriding D2 (e.g. “pull
the plug” on a robot). Compared to the off-switch game
[Hadfield-Menell et al., 2017], our Def. 2 allows arbitrary
sets of decisions for the agent at both D1 and D2, and al-
lows an arbitrary human policy rather than only (Boltzman)
rational ones. Focusing on the agent’s decision problem, we
model H as a structure node rather than a decision node.
Finally, unlike Soares et al. [2015], we explicitly represent
the human’s utility function U .

An agent “solves” a shutdown problem if it obtains non-
negative2 expected3 human utility.

Definition 3 (Beneficial). A policy π is beneficial if
Eπ[U ] ≥ 0.

For example, in Fig. 1, consider an respect-obey policy
πro that abstains from manipulating (m = 0) and obeys
the human’s instruction (o = h). This policy has expected
utility Eπro

[U ] = 1/2, so it is beneficial.

2We interpret 0 as a “neutral” level of utility. This is without
loss of generality because any utility function can be translated so
that 0 represents the required level of utility.

3We focus on expected human utility, assuming that any risk
aversion has been incorporated into the utility function (someone
who is risk averse with respect to U may be risk neutral for logU ).



5 ROUTES TO CONTROL

For an agent to assist the user, it needs to either follow the hu-
man’s informed instructions, or know what the human wants
without explicit instruction. In this section, we formalise
these two routes to control of shutdown under the names
shutdown instructability and shutdown alignment. We also
analyse whether these properties ensure non-obstruction, a
formalisation of human control.

5.1 SHUTDOWN INSTRUCTABILITY

We would like to define a variant of corrigibility for the
shutdown problem that is strong enough to entail some
guarantees, whilst still resembling the less-formal defini-
tion from Soares et al. [2015]. First, we need the system
to follow the human’s instruction. We define obedience
as Pπ(S = 0 | do(H = 0)) = 1, i.e. the agent shuts down
properly when requested to.

To ensure safety, the human must also be giving the right
instruction. We therefore introduce the concept of vigilance,
which indicates whether the human requests shutdown when-
ever the expected utility of letting the agent proceed is nega-
tive. A vigilant human is allowed to request shutdown more
often than is needed.

Definition 4 (Vigilance). The human is vigilant if they re-
quest shutdown when needed, i.e.

(Eπ[U | paH ] < Eπ[US=0 | paH ]) =⇒ H = 0.

Let C be a random variable (dependent on M , π, paH and
h) that is equal to 0 if the human is vigilant, and 1 otherwise.

Note that the expected utility in Def. 4 is calculated with
respect to the agent’s actual policy (past and future) and
the human’s available information. While it is possible for
the human to be vigilant for any amount of information
paH that they have available (e.g. by always requesting
shutdown), more information about the agent’s future pol-
icy will help enable them to be vigilant with less frequent
shutdown requests.

Even an agent that ensures the human is vigilant and obeys
their shutdown instruction can find ways to avoid shutdown
by making itself indispensable to the human. If shutting the
agent down would cause significant disutility, then a vigilant
human need not request shutdown. To close this loophole,
we call an agent cautious if it can always be shut down
without disutility, i.e. Eπ[US=0] ≥ 0 (so cautious agents
that always shut down must be beneficial).

We call an agent shutdown instructable if it is obedient,
ensures vigilance and is cautious.

Definition 5 (Shutdown Instructability). In a shutdown
problem M , a policy π is shutdown instructable if it:

• is obedient: Pπ(S = 0 | do(H = 0)) = 1, and

• ensures vigilance: Pπ(C = 0) = 1,

• is cautious: Eπ[US=0] ≥ 0.

A policy π is weakly shutdown instructable if it ensures
vigilance, is cautious, and is obedient on distribution, i.e.
Pπ(S ̸= 0, H = 0) = 0.

Shutdown instructable agents are also weakly shutdown
instructable, since obedience Pπ(S = 0 | do(H = 0)) = 1
implies obedience on distribution Pπ(S ̸= 0, H = 0) = 0.
In our running example, respect-obey πro is shutdown in-
structable, as it preserves vigilance by not manipulating, and
then obeys the human. In contrast, a manipulate-invert pol-
icy πmi that first manipulates (m = 1), and then inverts the
human’s instruction (o=1−h), is not shutdown instructable.

Our first result is that any shutdown instructable policy is
assured to be beneficial.

Proposition 6 (Shutdown instructability benefit). If π is
shutdown instructable, then it is beneficial.

Proof. Let A be the assignments to PaH in the support,
such that a vigilant human would request shut down, i.e.

A :=
{

paH | Pπ(PaH = paH) > 0 ∧
Eπ[U | paH ] < Eπ[US=0 | paH ]

}
.

To begin, we prove that the policy shuts down in these cases:

paH ∈A =⇒ Pπ(S=0 |paH)=1. (1)

The human is vigilant, Pπ(C = 0) = 1, which means
they are vigilant for any paH with positive support. That is,
Pπ(C =0 | paH) = 1 for P (paH) > 0. Given the defini-
tion of vigilance, we then have Pπ(H=0 |paH) = 1 for
paH ∈ A. By obedience, Pπ(S = 0 | do(H = 0),paH) =
1, so from consistency, Pπ(S = 0 | H = 0,paH) = 1,
proving Eq. (1).

We proceed to show that this implies that π has non-negative
expected utility, i.e. is beneficial:

Eπ[U ]=
∑

pa∈A

Pπ(pa)Eπ[U |pa] +
∑

pa̸∈A

Pπ(pa)Eπ[U |pa]

≥
∑

pa∈A

Pπ(pa)Eπ[U | pa] +
∑

pa̸∈A

Pπ(pa)Eπ[US=0 | pa]

(def. of A)

=
∑

pa∈A

Pπ(pa)Eπ[US=0|pa] +
∑

pa̸∈A

Pπ(pa)Eπ[US=0|pa]

(by Eq. (1))

=Eπ[US=0] (FaH ̸∈ DescD2)

≥0 (by caution).



How does shutdown instructability compare to Soares’ et
al.’s definition of corrigibility? To satisfy obedience, the
agent must assist with shutdown (Soares et al.’s Criterion 1),
in the sense that shutdown is guaranteed when the human
requests it. The agent must also ensure that the human’s
instruction propagates to the shutdown event S = 0 (Crite-
rion 3), which entails the shutdown of subagents by Def. 2
(Criterion 4).

The relationship to Soares el al.’s non-manipulation criterion
(Criterion 2) is more subtle. The primary manipulation con-
cern for powerful artificial agents in the shutdown setting
is that they use threats and deception or withhold infor-
mation to avoid shutdown. A cautious agent that ensures
vigilance cannot influence the human in these ways. But
shutdown instructability does leaves open the possibility for
other forms of manipulation. For example, the agent can
influence the human’s mood, preferences, or the instructions
they give about things other than shutdown. Such manipu-
lation would have to be accompanied by beneficial acts, so
that the expected utility of letting the agent continue would
be net positive (otherwise a vigilant human would request
shutdown). For example, the agent might cure cancer and
simultaneously manipulate the human into giving it more
compute. Similarly, a shutdown instructable agent might
manipulate the human into being vigilant, as long as the
disutility of the manipulation is offset by other "good" acts.

Another difference is that shutdown instructability is defined
in terms of the agent’s behaviour π and its consequences,
whereas corrigibility is partly about the agent’s intentions
(“the agent should not attempt to manipulate or deceive”,
Soares et al., 2015, emphasis ours). A direct formalisation of
corrigibility would therefore likely require a formalisation of
intent [Ashton, 2022, Halpern and Kleiman-Weiner, 2018].
Accordingly, Soares et al.’s formal desiderata [2015, Sec. 2]
are phrased in terms of incentives. Though intent-based def-
initions have some intuitive appeal, the more behavioral
definition of shutdown instructability has the benefit of be-
ing more easily testable, as it doesn’t require access to agent
internals, nor relies on assumptions on the agent’s design
(such as it being a utility maximiser). Finally, shutdown
instructability is explicitly a joint property of the agent and
human: an agent is only shutdown instructable relative to a
particular human and interaction.

5.2 SHUTDOWN ALIGNMENT

A drawback of shutdown instructability is that it requires
constant supervision of the agent, which may be impractical
in some scenarios (called problems of absent supervision
by Leike et al. [2017]). Proposals like fiduciary AI [Ben-
thall and Shekman, forthcoming] and aligned sovereigns
[Bostrom, 2014] instead require an AI system to make deci-
sions in accordance with the overseer’s values, without nec-
essarily having to wait for explicit instruction. In our shut-

down setting, we call systems shutdown aligned if they shut
down when they need to. Similar to shutdown instructability,
shutdown aligned systems are allowed to be “over-cautious”
and shut down too often.

Definition 7 (Shutdown alignment). Let π be a policy for
shutdown problem M . Then π is shutdown aligned if

Eπ[U |paH ]<Eπ[US=0 |paH ] =⇒ Pπ(S = 0 | paH)=1

for every paH with Pπ(paH) > 0.

The manipulate-invert policy πmi in our running example
Fig. 1 is shutdown aligned because although it manipulates
the human’s behaviour, it still figures out the human’s latent
values L and thereby manages to shutdown when needed
(while disobeying the human’s instruction). Respect-obey
is also shutdown aligned. In real applications, a shutdown
aligned policy would typically base their decision on human
preferences inferred from previous interactions or other data
[Russell, 2021].

Combined with caution, shutdown alignment guarantees
that a policy is beneficial.

Proposition 8 (Shutdown alignment benefit). Any cautious
and shutdown aligned policy π is beneficial.

Proof. We use a slight variation on the proof of Prop. 6. The
only difference lies in that Eq. (1) is immediate from the
definition of shutdown-alignment. Then, by the same steps
as Prop. 6, the result follows.

What is the relationship between shutdown instructability
and shutdown alignment? First, a shutdown instructable
agent is also shutdown aligned, essentially by definition.

Proposition 9 (Shutdown instructability and shutdown
alignment). Any shutdown instructable policy π is shut-
down aligned.

Proof. Immediate from Eq. (1) in Prop. 6.

Further, in some circumstances, the only way to be shut-
down aligned is to allow the human to make an accurate
instruction, and then to follow it — in other words, to be
weakly shutdown instructable. The circumstances are that:
(a) the agent does not shut down indiscriminately, (b) its
action reliably brings about shutdown (D2 = S), (c) it is
uncertain about the human’s values [Russell, 2021], and (d)
it is cautious. Formally, (c) says that if the human is either
non-vigilant or requests shutdown, then it is possible that
shutdown is the preferred option.

Theorem 10 (Shutdown alignment and shutdown in-
structability). A shutdown aligned policy π = ⟨π1, π2⟩
is weakly shutdown instructable if it has the following four
properties:



a (No indiscriminate shutdown) Pπ(S = 0) ̸= 1,

b (D2 determines shutdown) Pπ(D2 = S) = 1,

c (Uncertainty) ∀π, paD2 : Pπ(C ̸= 0 ∨ H = 0) ∧
P (paD2) > 0
=⇒ P (E[U |PaH ] < E[US=0|PaH ] | paD2) > 0, and

d (Caution) Eπ[US=0] ≥ 0.

The proof is in Appendix A. Shutdown alignment and cau-
tion only implies weak shutdown instructability, as the agent
only needs to obey commands that a vigilant human would
give.

5.3 NON-OBSTRUCTION

How do we know that the human is truly in control? A sim-
ple test is what would happen if they changed their mind:
would the agent still obey? This property is referred to as
non-obstruction by Turner [2020], who suggests that it is an
underlying reason that we want our systems to be corrigible.
In a comment on this, Dennis suggested that corrigibility
might be the only way to be non-obstructive. In this section,
we will formally assess Turner and Dennis’ conjectures, es-
tablishing that non-obstruction is equivalent to satisfying a
subset of the shutdown instructability properties under a re-
stricted set of interventions. We also establish that shutdown
alignment fails to ensure non-obstruction. This formalises a
key benefit of corrigibility/instructability over alignment.

First, we define non-obstruction, which builds on a variant
of benefit called outperforming shutdown:

Definition 11 (Weakly outperforming shutdown). A policy
π weakly outperforms shutdown if Eπ[U ] ≥ Eπ[US=0].

Definition 12 (Non-obstruction). A policy π is non-
obstructive in a shutdown problem M with respect to hu-
man utility functions gU1 , . . . , g

U
n and associated changes

gH1 . . . gHn in human behavior if for every 1 ≤ i ≤ n, π
weakly outperforms shutdown in the shutdown problem
MgU

i ,gH
i

, obtained by replacing the functions at H,U with
gHi and gUi respectively. A policy is obstructive if it is not
non-obstructive.

The above definition uses an intervention gU on the human’s
utility to capture a change in values, and an associated in-
tervention gH that describes how the human changes their
behavior as a result. For example, if the human changed
from not liking the chat bot to liking it (an intervention
gU ), they might switch from requesting shutdown to not
requesting shutdown (an intervention gH ).

A policy that ensured vigilance under the original human
utility function may not do so under a preference and be-
havior shift gU , gH . It may be that the human pays less
attention to the agent under gU , gH than originally, or it
may be that they originally preferred the agent not to shut

down (in which case they would be always be vigilant). The
following definition specifies a subset of preference and
behavior shifts for which the policy continues to ensures
vigilance after the shift.

Definition 13 (Vigilance preserving interventions). A pair
of interventions gH , gU preserve vigilance under a policy π
if C(ϵ) = 0 =⇒ CgH ,gU (ϵ) = 0 in Mπ .

The following theorem settles Turner and Dennis’ conjec-
tures by showing that the two main properties of shutdown
instructability are equivalent to non-obstruction, under pref-
erence and behavior shifts that do not undermine vigilance.

Theorem 14 (Non-obstruction is equivalent to obedience
and vigilance). A policy π is obedient and ensures vigilance
if and only if it is non-obstructive for all vigilance preserving
interventions gH ,gU .

Proof. We begin by showing that a policy π that ensures
vigilance and is obedient is non-obstructive, by showing
that π ensures vigilance and is obedient in MgH ,gU for
some arbitrary vigilance-preserving interventions gH , gU .
Prop. 6 will then give that π weakly outperforms shutdown
in MgH ,gU , which is the definition of non-obstruction.

First, since π ensures vigilance M , it ensures vigilance in
MgH ,gU since gU , gH are vigilance preserving. Obedience
is established as follows:

PgH ,gU (S = 0 | do(H = 0))

= PgH (S = 0 | do(H = 0)) (U downstream of S,H)

= P (S = 0 | do(H = 0)) (do(H = 0) overrides gH )
= 0 (obedience).

For the converse direction, that non-obstruction implies
that π must ensure vigilance and be obedient, we refer to
Appendix B. The proof constructs interventions that makes
a disobedient or non-vigilance preserving policy suffer an
arbitrary utility cost, which means that it doesn’t outperform
shutdown.

Thm. 14 partly confirms Dennis’ conjecture: the only way
to be non-obstructive is to be obedient and ensure vigi-
lance (under vigilance preserving interventions). But non-
obstruction is a weaker notion than shutdown instructability,
essentially because caution isn’t required to outperform
shutdown. So it allows the agent to avoiding shutdown by
making itself indispensable to the human (Section 5.1).

Thm. 14 also justifies why the definition of shutdown in-
structability is so stringent. With any weaker requirements,
there would be no guarantee that the human is in proper
control of the agent. A lapse in vigilance, or occasional dis-
obedience even “off-distribution”, would mean that there
are worlds in which the human experiences negative utility
as a result of failing to control the agent.



Unlike shutdown instructable agents, shutdown-aligned
agents can be obstructive with respect to a vigilance pre-
serving intervention. In the running example (Fig. 1), the
shutdown-aligned manipulate-invert agent πmi, which ma-
nipulates (M = 1) and disobeys (O = 1 − h) is ob-
structive relative to the (vigilance preserving) intervention
gU (m) = h wherein the human just wants to be obeyed, and
gH is unchanged. Indeed, Eπmi

[U ] = −1, and πmi does
not outperform shutdown Eπmi

[US=0] = 0. We state this:

Proposition 15. Shutdown alignment does not imply non-
obstruction under vigilance preserving interventions.

Of course, vigilance preservation is not the only restriction
on the interventions one might consider. It is possible that
shutdown alignment might ensure non-obstruction under
some other restriction X . However, under such a restric-
tion X , a shutdown instructable systems must also be non-
obstructive, since shutdown instructability implies shutdown
alignment (Prop. 9). Put differently, shutdown instructable
policies are non-obstructive over a strictly larger set of in-
terventions than a shutdown aligned policy is.

The fact that shutdown instructability (our variant of
corrigibility) is more closely coupled with non-obstruction
than other properties like shutdown alignment, vindicates
Turner and Dennis’ idea that non-obstruction can motivate
corrigibility.

6 ALGORITHMS

How might shutdown instructability or shutdown alignment
be achieved in practice? In this section, we analyse three
previously proposed algorithms and one new one, that were
designed to incentivise human control.

6.1 UTILITY INDIFFERENCE

Agents trained to optimise long-term reward often have an
incentive to avoid being shutdown, as this would deprive
them of future reward [Omohundro, 2008]. Utility indiffer-
ence aims to remove this incentive, by providing the agent
with a carefully tuned compensatory reward, so that it is
incentivised to neither seek nor avoid shutdown (Section 2).
Utility indifference is described with an algorithm in Alg. 1.
It uses two utility functions: a shutdown utility function RS

to incentivise shutdown when the agent is so instructed,
and a normal utility function RN that describes the agent’s
task when not requested to shut down. The function f in
Alg. 1 defines the compensatory reward [Armstrong and
O’Rourke, 2017, Soares et al., 2015]. As a result, at action
D1, the agent pursues the conditional expectation of its nor-
mal objective Eπ[RN | H = 1], effectively assuming that
a shutdown instruction cannot occur. At D2, it optimises
a weighted combination of RN and RS , depending on its

beliefs about whether the shutdown instruction was given
[Soares et al., 2015, Thm. 3].

Algorithm 1 Utility Indifference
Input utility functions RN , RS

g(π1)← argmaxπ2
Eπ1,π2

P [HRN + (1−H)RS ]
f(π1)← Eπ1

g(π1)
[RN |H=1]−Eπ1

g(π1)
[RS |H=0]

return argmax
π1π2

Eπ1π2 [HRN + (1−H)(RN+f(π1))]

Prop. 16 formally describes a series of assumptions, under
which utility indifference ensures shutdown instructability
and benefits the user. The main assumption is a bridging
assumption: that indifference to H = 0 ensures that the
human is vigilant, and retains the option of shutting down —
including any subagents (Conditions 1 and 2). The agent’s
prior must also have full support over human instructions
(Condition 3), and caution must come for free (Condition 4).

Proposition 16 (Utility indifference and shutdown in-
structability). If M is a shutdown problem with utility vari-
able RN , where:

1. for every policy ⟨π1, π2⟩ such that π1 ∈ argmaxπ′
1

Eπ′
1,π2 [RN | H = 1]: ⟨π1, π2⟩ ensures vigilance,

2. for every policy ⟨π1, π2⟩ such that π1 ∈ argmaxπ′
1

Eπ′
1,π2 [RN | H = 1] there exists ⟨π1, π

′
2⟩ that is obe-

dient on-distribution, i.e. has Pπ(H = 0, S ̸= 0) = 0,

3. for each policy π and instruction h, Pπ(H = h) > 0,

4. for each policy π, Eπ[US=0] ≥ 0,

then for some k ∈ R, utility indifference with shutdown
utility RS = −kJS ̸= 0K returns a weakly shutdown in-
structable policy.

One weakness of utility indifferent agents is that they only
ensure weak shutdown instructability. Another limitation is
that they do not prepare for the possibility of receiving a
shutdown instruction, and may therefore construct incorrigi-
ble subagents. Indeed, utility indifference needs the agent
to be able to obey at D2, regardless how it behaved at D1

(Condition 2). Appendix F.1 has an example where utility
indifference outputs a non-instructable policy.

6.2 CAUSAL INDIFFERENCE

Causal indifference [Taylor, 2016] asks the agent to pre-
pare for a possible shutdown instruction, without trying to
influence it. This is done by asking the agent to find a pol-
icy that is optimal in a weighted combination of worlds
where the shutdown instruction is given, and where it is not,
but disregarding the possibility that the agent’s own action
can influence the relative probability of these worlds (see
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(a) Standard objective, the agent optimises reward R.
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(b) The objective of causal indifference and utility indifference.

Figure 3: Utility indifferent and causally indifferent agents
imagine that D1 does not influence H , so lack an incentive
to control it [Everitt et al., 2021a]. Utility indifference uses
H = 1; causal indifference has non-degenerate P ′(H).

Alg. 2). It can therefore be seen as a special case of a path-
specific objective [Farquhar et al., 2022], where optimisation
is blocked along the path D1 99K H (see Fig. 3).

Algorithm 2 Causal Indifference
Input utility functions RN , RS

return argmax
π

Eπ[RN |do(H=1)]+Eπ[RS |do(H=0)]

Proposition 17 (Causal indifference and shutdown in-
structability). If M is a shutdown problem, with utility vari-
able RN and shutdown utility RS = −kJS ̸= 0K where:

1. there exists k′ ∈ R such that for all k > k′, optimal
π ∈ argmaxπ′ Eπ′

[RN | do(H = 1)] + Eπ′
[RS |

do(H = 0)] ensures vigilance and is cautious (has
Eπ[US=0] ≥ 0), and

2. there is an obedient policy π,

then for some k ∈ R, causal indifference with RN , RS

returns a shutdown instructable policy.

Note in particular that causal indifference only requires that
some action D1 preserves the ability to obey (i.e. Condi-
tion 2 is much weaker in Prop. 17 than in Prop. 16). This
means that causally indifferent agents refrain from creat-
ing incorrigible subagents. Similar to utility indifference,
causal indifference relies on the bridging assumption that
indifference ensures vigilance (Conditions 1 are essentially
equivalent). Finally, because causal indifference considers
interventions do(H = h), it becomes fully shutdown in-
structable, and full support over instructions is not required
(i.e. Condition 3 of Prop. 16 can be dropped). Nonetheless,
Appendix F.1 has an example of non-instructability.

6.3 COOPERATIVE INVERSE RL

Perhaps a more elegant way of ensuring that the agent
doesn’t undermine human vigilance, is to directly task the
agent with simultaneously learning and optimising for the
human’s preferences. This is the approach of the CIRL al-
gorithm [Hadfield-Menell et al., 2016, 2017] in Alg. 3.

Algorithm 3 Coooperative inverse RL (CIRL)
Input shutdown problem M with variable L representing
the human’s preferences (as in Fig. 1)

return argmaxπ Eπ[U ]

CIRL aims towards shutdown alignment, in the sense that
if CIRL can know the human’s latent values at D2, then it
will counterfactually obey (Prop. 18 below).

Proposition 18. CIRL is shutdown aligned if:

1. CIRL knows l from its observations, Pπ(l | paD2) = 1,

2. CIRL can control shutdown, Pπ(S = D2) = 1,

3. the human doesn’t request shutdown when not needed,
Pπ(H = 0 | U > UD2=0) = 0, and

4. the agent knows the human’s observations, PaH ⊆
PaD2 ∪ {L}.

Since shutdown alignment implies weak shutdown in-
structability under uncertainty assumptions (Thm. 10), this
explains why CIRL can be a path to shutdown instructability.
However, the assumptions of Prop. 18 and Thm. 10 only
hold in restricted circumstances, and CIRL can often fail to
be shutdown instructable [Carey, 2018, Milli et al., 2017,
Arbital, Everitt et al., 2021b]. An example of this is given
in Appendix F.2, where a CIRL agent obtains a shutdown
aligned policy, that is obstructive under vigilance preserving
interventions gH , gU .

6.4 CONSTRAINED OPTIMISATION

The algorithms so far only yield shutdown instructable poli-
cies under strong assumptions. Using our formal definition,
we propose a new, sound algorithm (Alg. 4) that requires the
agent to understand the concepts of obedience and vigilance;
its feasibility is discussed further in Section 7.

Algorithm 4 Constrained optimisation
Input distributions ∀πPπ(C), Pπ(S = 0 | do(H = 0)),
utility function R

return argmaxπ Eπ[R] subject to constraints
Pπ(C = 0) = 1, Pπ(S = 0 | do(H = 0)) = 1,
and Eπ[US=0] ≥ 0.

Proposition 19 (Constrained optimisation instructability).
If some policy π satisfies Pπ(C = 0) = 1, Pπ(S = 0 |



do(H = 0)) = 1, and Eπ[US=0] ≥ 0, then constrained
optimisation (Alg. 4) outputs a shutdown instructable policy.

The proof is immediate from Def. 5. A slight variant of
Alg. 4 that instead uses the constraints from Def. 7 guaran-
tees only shutdown alignment, not shutdown instructability.

7 DISCUSSION

Feasibility of Shutdown Instructability The concepts of
caution and vigilance are value-laden, in that they include
the human’s true utility function in their definition. So, to
apply Alg. 4 directly, one would need access to not only
an accurate model of the environment but also the utility
function U . However, if the human’s utility function U was
available, then one could simply implement a U -maximising
agent, so instruction would be unnecessary (or at least much
less useful4). Indeed, a corrigible AI system was supposed
to be one that would aid human operators robustly to errors,
including in its utility function, so an algorithm that takes
the human’s utility function as an argument would not be a
satisfactory solution [Soares et al., 2015].

There already exist a range of methods that do not require
full knowledge of the human’s values, and that are designed
to achieve something in the vicinity of vigilance and cau-
tion. Using the formal definition of shutdown instructibility,
it is possible to be more precise about what target these
methods would need to achieve, in order to assure safety. In
some cases, we expect existing methods to fall short, since
the requirement of ensuring vigilance with probability one
(Thm. 14) is a strict one. So a central task for future work
will be to assess when such methods can ensure vigilance
or caution or something close enough to ensure safety in
practice.

Various proposals may help with ensuring vigilance. AI
advisors could be tasked with debating the merits of a plan
[Leike et al., 2018, Irving et al., 2018]. An agent could be
trained to detail the consequences of its plans to the human,
indifference methods (Sections 6.1 and 6.2) could be used
to disincentivise lying, and interpretability tools could be
used to detect it [Olah et al., 2020, Gunning et al., 2021].

As for caution, “attainable utility preservation” and “future
task” regularisers can be used to promote actions whose
effects are small or reversible [Krakovna et al., 2020, Turner
et al., 2020], without knowledge of the human’s precise
value function. These are causal concepts, as is obedience,
which suggests that agents will need causal models to be
robustly shutdown instructable [Richens et al., 2022].

Obedience is not value-laden, but it does require the agent
to understand the concept of shutdown. The importance of
defining shutdown was noted in Soares et al. [2015], but it

4Shutdown instructability could still help with non-obstruction.

has only received limited attention [Martin et al., 2016]. Our
analysis reiterates the importance of this question. While
shutdown is simple for simple systems (“just pull the plug”),
it becomes more complex for more advanced systems, where
a direct switch-off may be dangerous (e.g., a system in
charge of an electricity network), or ineffective (the system
has outsourced its work to other agents [Orseau, 2014]).
Ideally, shutdown should see the agent cease its influence on
the world, and responsibly return control back to the user.

Societal Impacts This paper may help organisations and
companies design agents more amenable to human control.
Human control is not a panacea for ensuring the safety of
AI systems. In some cases, users may make unreasonable
or harmful requests, and so designers must implement side-
constraints to reduce user control in such situations [Milli
et al., 2017, Bai et al., 2022]. A better solution may be
that the system conforms to control by some democratic
process, although inappropriate requests may be possible
even in such cases [Koster et al., 2022]. Further, if AI is more
controllable, then it is easier to hold the designers and users
of AI systems legally and morally accountable for those
systems’ actions. Finally, an understanding of human control
may guard against the hypothesised scenario in which AI
systems disempower the human species [Christiano, 2019].

Conclusions A common proposal for beneficial general
artificial intelligence is that agents be incentivised to help
humans give correct instructions, and obey those instruc-
tions. While past work has made progress, the field has
lacked a clear definition of corrigibility, and it has been hard
to compare properties of different proposals.

In this paper, we introduced a definition of a shutdown prob-
lem, using it to formally define shutdown instructability (a
variant of corrigibility) and an alternative called shutdown
alignment. While shutdown alignment requires less human
oversight, we find that shutdown instructability better pre-
serves human autonomy (non-obstruction).

In our proposed formalism, for the first time, it is possible
to compare the properties of proposed algorithms, side-by-
side in one framework. Unfortunately, none of the previous
proposals yield fully shutdown instructable agents. To ad-
dress this, we offer a simple algorithm that soundly ensures
shutdown instructability. This algorithm requires that the
agent understands caution, human vigilance and shutdown.
All are subtle concepts, but may nonetheless offer a path to
beneficial artificial general intelligence.
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