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ABSTRACT

Despite significant advances in Automated Machine Learning (AutoML), one of
its persistent blind spots remains the automation of data-centric tasks such as ex-
ploratory data analysis (EDA), contextual insight extraction, and feature engineer-
ing. These steps-often more critical than model selection itself-are still largely
manual, domain-specific, and reliant on human intuition. Existing automated fea-
ture engineering (AutoFE) techniques either rely on rigid transformation sets or
complex optimization strategies that struggle with interpretability and fail to lever-
age the rich, visual cues that guide human decision-making. In this work, we
introduce PIFE: Progressive Insight driven Feature Engineering via Multimodal
Reasoning; a novel AutoFE framework that employs multimodal language models
as collaborative agents in an iterative pipeline. PIFE systematically performs au-
tomated EDA, generating statistical summaries and visualizations that are jointly
interpreted through text–vision reasoning. These multimodal insights inform the
synthesis of candidate transformations, represented as symbolic programs in ex-
ecutable Python code to ensure interpretability and reproducibility. By coupling
iterative insight extraction with validation-driven refinement, PIFE produces high-
quality, interpretable features that consistently enhance the performance of diverse
predictive models, outperforming existing AutoFE baselines. Extensive experi-
ments across diverse tabular datasets demonstrate the effectiveness and adaptabil-
ity of our approach, paving the way for a new class of human-aligned, insight-
aware AutoFE systems.

1 INTRODUCTION

The rapid evolution of automated machine learning (AutoML) has significantly advanced model se-
lection, hyperparameter tuning, and performance optimization (Chopde et al., 2025; Aragão et al.,
2025; Hutter et al., 2019; Feurer et al., 2015; Olson & Moore, 2016; Erickson et al., 2020). However,
AutoML tools continue to face limitations in automating data engineering tasks, particularly ex-
ploratory data analysis (EDA), feature insight extraction, and systematic feature engineering. These
data-centric activities often dominate real-world machine learning workflows, where the transfor-
mation of raw tabular data into meaningful representations is a bigger bottleneck than model fitting.
Although automated feature engineering (AutoFE) has emerged as a subfield within AutoML, tra-
ditional methods, such as expansion-reduction algorithms (Kanter & Veeramachaneni, 2015; Lam
et al., 2021; Kaul et al., 2017; Shi et al., 2020; Katz et al., 2016) typically construct large search
spaces composed of manually defined transformation operations and employ various search or op-
timization strategies to identify effective features. However, these methods are often limited by the
rigidity of their predefined operations and generally lack the integration of domain-specific knowl-
edge (Zhang et al., 2023).

To reduce the cost of searching through large feature space and generate data-driven features,
learning-based AutoFE methods are proposed (Khurana et al., 2018; Nargesian et al., 2017; Chen
et al., 2019; Zhu et al., 2022). However, these methods fall short in incorporating domain expertise
and contextual insights from data exploration. Similarly, evolutionary methods focus on optimiza-
tion strategies but neglect the nuanced, often visual cues that inform human-driven feature creation.
Language-powered systems like CAAFE (Hollmann et al., 2023) and LLM-FE (Abhyankar et al.,
2025) have shown promise in bridging this gap by generating candidate features based on dataset
context and iterative refinement. However, these methods remain limited by feature simplicity, a
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Figure 1: Overview of PIFE Framework. For a given dataset, PIFE goes through the following steps.
(a) Exploratory Data Analysis and Data Insight Generation(b) Feature Generation via Symbolic
Program Synthesis

lack of interpretability regarding why certain features should be created (as opposed to merely ex-
plaining what they represent), and the absence of a truly data-driven approach. Furthermore, visual
patterns-such as distributional anomalies, multivariate correlations, or interaction structures-remain
underutilized despite their centrality in manual feature engineering workflows.

This gap highlights the opportunity to harness recent advancements in Large Language Models that
understand both textual and visual modalities to build a framework for automated insight extraction
and feature engineering. These models are capable of interpreting not only data descriptions but
also visualizations such as histograms, scatter plots, and heatmaps; elements that humans frequently
rely on during feature engineering in real-world scenarios. Yet, their potential in automating feature
generation grounded in rich exploratory insights has remained largely unexplored. A more effective
AutoFE pipeline must seamlessly incorporate insights from both narrative and visual representations
of data.

To address these challenges, we propose a novel AutoFE framework that integrates iterative EDA
cycles using a unified reasoning engine capable of understanding both text and plots. Our system
performs repeated rounds of insight extraction to build a deeper and comprehensive contextual un-
derstanding of the dataset, which then guides feature generation. The generated candidate features
are evaluated using a downstream predictive model, where the corresponding feature importance
serves as feedback to subsequent feature generation cycles. We argue that the broader process of
feature engineering can be naturally decomposed into two complementary stages: (i) feature gener-
ation and (ii) feature selection. While the former aims to enrich the feature space, the latter plays
a critical role in filtering redundant or irrelevant features and selecting an optimal subset that maxi-
mizes task performance. To emphasize the importance of this selection step, we conduct extensive
experiments comparing diverse feature selection methodologies and demonstrate that incorporating
effective selection strategies can further enhance the performance of automated feature engineer-
ing (AutoFE) pipelines. This feedback-driven, context-rich process enhances automation and in-
terpretability, while aligning closely with the iterative and insight-informed nature of human data
science workflows.

Contributions. The key contributions of this work are as follows:

• We propose the first automated feature engineering framework that integrates textual and
visual exploratory data insights into a unified, iterative pipeline.

• We highlight the central role of feature selection in AutoFE by conducting extensive exper-
iments across diverse selection methodologies, showing that effective selection strategies
further boost both predictive performance and interpretability compared to state-of-the-art
AutoFE methods.

• We conduct extensive experiments across various tabular datasets, demonstrating superior
performance and enhanced interpretability compared to state-of-the-art AutoFE methods.
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2 RELATED WORK

Automated feature engineering (AutoFE) has emerged as a critical component in simplifying the
model development pipeline by transforming raw data into informative representations. Early ef-
forts such as Deep Feature Synthesis (DFS) (Kanter & Veeramachaneni, 2015), LFE (Nargesian
et al., 2017), Cognito (Khurana et al., 2016), AutoFeat (Horn et al., 2020), and OpenFE (Zhang
et al., 2023) employed exhaustive enumeration or heuristic-based transformation strategies, often
relying on predefined operator sets and lacking semantic understanding of domain-specific relation-
ships. OpenFE extended traditional methods via an expansion-reduction framework with incremen-
tal feature boosting and pruning, achieving strong empirical performance but still limited by its lack
of contextual reasoning and domain adaptivity.

More recent methods address these limitations through learning-based strategies. TransGraph (Khu-
rana et al., 2018), Neural Feature Search (NFS) (Chen et al., 2019), and DIFER (Zhu et al., 2022)
adopted reinforcement learning and differentiable architecture search to explore high-dimensional
transformation spaces more efficiently. DIFER, in particular, proposed a differentiable encoder-
predictor-decoder pipeline to optimize feature embeddings in continuous space, though it primarily
supports numerical transformations. FETCH (Li et al., 2023) approached AutoFE as a Markov Deci-
sion Process, using a policy network trained across datasets to learn transferable feature construction
policies. Despite its generalizability, FETCH suffers from sparse rewards and computational over-
head, echoing challenges seen in DIFER and NFS.

Algorithm 1 PIFE: Insight Driven Iterative Feature
Generation
Input: Dataset X0 ∈ Rn×d, target y, context P
Parameters: Max EDA rounds K, Max iterations Tf ,
feature cap N

Output: Candidate feature sets {Zt}
Tf

t=1

1: t← 0, X0 ← X
2: while t < Tf do
3: Dt = {(ci, τi)}dt

i=1 {col. names ci, types τi}
4: C(0)t = Dt ∪ P
5: for k = 1 to K do
6: S

(k)
t = Stats(Xt) {skew, quantiles, corr.}

7: I
(k)
t = LLM(C(k−1)

t ∪ S
(k)
t ) {stat. insights}

8: V(k)
t = Viz(Xt) {plots}

9: I
(k)
vlm,t = VLM(V(k)

t ) {visual insights}
10: C(k)t = C(k−1)

t ∪ I
(k)
t ∪ I

(k)
vlm,t

11: end for
12: It =

⋃K
k=1(I

(k)
t ∪ I

(k)
vlm,t)

13: Gt = LLM(It) {transformation rules}
14: Zt = LLM(Gt) {feature programs}
15: ŷt =M(Xt ∪ Zt) {downstream evaluation}
16: ϕt = Importance(M,Zt) {feat. imp.}
17: P ← P ∪ ϕt {update feedback context}
18: t← t+ 1
19: end while=0

In parallel, large language models (LLMs)
have shown promise in data-centric appli-
cations, leveraging their contextual under-
standing to perform data wrangling, impu-
tation, and semantic reasoning over tabu-
lar data (Hegselmann et al., 2023; Narayan
et al., 2022; Vos et al., 2022). CAAFE
(Hollmann et al., 2023) was among the
first to explore LLM-driven feature en-
gineering, generating features based on
dataset metadata and producing human-
readable descriptions. However, it lacks
iterative feedback from prior search histo-
ries and relies on column descriptions to
create features. OCTree (Nam et al., 2024)
augmented this by incorporating decision-
tree reasoning into LLM prompts, offering
structured, contextual feedback for sub-
sequent feature generation. OCTree per-
forms iterative refinement of feature gen-
eration rules until improvements in down-
stream performance. While effective, this
approach is susceptible to poor initializa-
tion in LLMs, which can hinder conver-
gence and overall effectiveness.

LLM-FE (Abhyankar et al., 2025) takes a
different approach by casting feature en-
gineering as a program synthesis problem.
It combines LLM reasoning, evolutionary strategies, and memory buffers to maintain a population
of candidate features, using both validation scores and information-theoretic feedback to guide se-
lection. This method addresses sparse rewards and brittleness in prompting; it introduces a new
challenge: by conditioning future generations on previously successful feature transformations, the
model may become biased toward certain transformation patterns. This can skew the process toward
exploitation, limiting its ability to explore novel and potentially better features.

Our framework leverages LLMs as agents for in-depth EDA, identifying outliers, feature inter-
actions, and distributional patterns, which are mapped to candidate transformations and validated

3
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via downstream performance-balancing automation, interpretability, and domain adaptivity beyond
prior AutoFE methods.

3 METHODOLOGY

Our framework leverages Large Language Models (LLMs) and Vision-Language Models (VLMs)
as autonomous reasoning agents in an iterative feature engineering process. By combining seman-
tic understanding, language-guided program synthesis, and feedback from downstream predictive
models, the system emulates a data scientist’s workflow to generate high-quality, interpretable fea-
tures. Section 3.1 formalizes the problem, Section 3.1.2 describes the iterative insight-driven feature
generation, and Section 3.2 details the integration of downstream feedback across iterations.

3.1 PROBLEM FORMULATION

Let X ∈ Rn×d be a tabular dataset with n samples and d initial features, and y ∈ Rn the corre-
sponding target vector. Our objective is to construct an enriched feature set X∗ ∈ Rn×d∗

, where
d∗ ≥ d, by iteratively generating candidate feature transformations.

At iteration t ∈ {1, . . . , Tf}, the framework produces candidate features Zt guided by insights It,
evaluates them with a predictive model M, and updates a feedback context P containing feature
importances:

ŷt =M(Xt ∪ Zt), ϕt = Importance(M,Zt), P ← P ∪ ϕt

The feature space is then incrementally updated: Xt+1 = [Xt,Zt]. After Tf iterations, the final
feature matrix X∗ is selected as the one maximizing cross-validation performance:

X∗ = argmax
Xt

CV Score(M,Xt,y) (1)

We mimic a data scientist’s flow to perform Exploratory Data Analysis (EDA) on the data by gen-
erating various sorts of analysis, such as feature distribution analysis, interaction analysis - feature
pairs and non-linear relationships, temporal categorical analysis - temporal trends and categorical
encodings, etc. which help explore complex data patterns and relationships among data points as
shown in Figure 2. These insights, grounded in the underlying datasets, contain meaningful informa-
tion for feature generation. Paired with LLMs as optimizers, these insights guide the way for feature
transformation rules. Feature generation proceeds in two stages: (1) iterative extraction of insights
using LLMs and VLMs, and (2) symbolic feature program synthesis guided by these insights.

3.1.1 EDA INSIGHT EXTRACTION VIA LLM/VLM

At each iteration t, the system constructs a structured dataset description Dt = {(ci, τi)}dt
i=1, where

ci is a column name and τi is its type, combined with task metadata and domain context P:

C(0)t = Dt ∪ P

The LLM performs iterative reasoning across K internal rounds; at each round k, it computes ad-
ditional statistics S

(k)
t (e.g., quantiles, skewness, missingness), generates updated insights I

(k)
t =

LLM(C(k−1)
t ∪ S

(k)
t ), and expands the context C(k)t = C(k−1)

t ∪ I
(k)
t .

In parallel, visual summaries V(k)
t (plots, distributions) are analyzed with a VLM, producing visual

insights I(k)vlm,t = VLM(V(k)
t ). Consolidated insights for iteration t are:

It =

K⋃
k=1

(I
(k)
t ∪ I

(k)
vlm,t)
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A. Rationale for EDA

To study interaction and non-linear effects, I examine the joint surface of
Average Covered Charges and reimbursement rate against the target to
detect curvature and interaction; cross-category heterogeneity via a DRG-by-State
heatmap to expose geographic–clinical interplay; and utilization effects by relating
Total Discharges to the target with a smooth trend plus binned means to reveal
non-linear scaling and heteroskedasticity. Expected outputs highlight regimes where combi-
nations of drivers jointly shift payment levels, and where certain DRG–State combinations
systematically differ. Limitation: heavy tails may distort binning; quantile-based bins and
downsampling are applied as needed.

B. EDA Code Snippet

b i n s x = q u a n t i l e b i n s ( d f s u r f a c e [ num x ] , q =12)
b i n s y = q u a n t i l e b i n s ( d f s u r f a c e [ num y ] , q =10)
d f s u r f a c e = d f s u r f a c e . a s s i g n ( bx = b i n s x , by = b i n s y )
# Aggrega t e t a r g e t mean f o r each 2D b i n
s u r f a g g = ( d f s u r f a c e . groupby ( [ ’ bx ’ , ’ by ’ ] ) [ t a r g e t c o l ]

. mean ( ) . u n s t a c k ( ’ by ’ ) . s o r t i n d e x ( ) )

C. Generated Plots

D. EDA Analysis

Total Discharges vs target scatter with LOWESS: The relationship is non-linear with
a concave (increasing-then-flattening) trend; variance is high at low volumes and shrinks
as discharges grow. This motivates monotone, variance-stabilizing transforms and regime
features (e.g., ranks/bins).
DRG × State heatmap: There is strong cross-category heterogeneity—within the same
DRG, Provider State causes sizable shifts in mean payments, and DRGs also differ
markedly in their baseline level. This supports both main effects (DRG, State) and their
interaction.

Figure 2: Exemplery run of PIFE on medical charges nominal dataset showing the process
of generating data insights. First, the rationale is generated, creating a plan for exploratory analysis
to be conducted. In B, this plan is translated into a program for EDA. In C, when the code is
executed, analysis plots are generated, and at the end, plots and statistics are analyzed to generate
statistics.

3.1.2 LLM-GUIDED FEATURE PROGRAM GENERATION

Given the insight context It, the LLM produces a set of transformation guidelines Gt =
{gt,1, . . . , gt,nt}. Each guideline is converted into a symbolic feature program and Reverse Pol-
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ish Notation (RPN) representation, yielding generated features:

Zt = {zt,1, . . . , zt,nt
}, nt ≤ N, zt,i = LLM(gt,i)

These features are appended to the current dataset, Xt ← [Xt−1,Zt].

3.2 ITERATIVE REFINEMENT AND EVALUATION

We select all the generated features, and the respective feature importances computed after each
iteration provide context P for subsequent feature generation as well as insight extraction. This iter-
ative loop ensures that newly generated features complement the existing space, help avoid duplicate
features, and consistently improve predictive performance.

Xt+1 = [Xt,Zt], ϕt = Importance(M,Zt), P ← P ∪ ϕt

After Tf iterations, the final feature set X∗ is chosen based on cross-validation performance of the
downstream model as mentioned in equation 1.

4 EXPERIMENTS

In this section, we evaluate PIFE over several classification and regression datasets spanning across
various domains such as healthcare, finance, real estate, weather forecasting, etc. Our experiments
reveal that PIFE consistently improves the performance of predictive models (Section 4.2). Ablation
studies (Section 4.3) show that data-grounded insight extraction helps create features that are more
aligned to the downstream objective. Also, feature selection is often not focused on in the scope of
feature engineering, which plays a pivotal role in boosting the performance of predictive models.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate PIFE across 22 tabular tasks, encompassing both classification and regres-
sion objectives. The majority of datasets are drawn from prior AutoFE literature (Li et al., 2023),
ensuring coverage of diverse domains, scales, and complexity levels. Additionally, we include a set
of recent Kaggle datasets (Kaggle) (e.g., ps5 episode 3, ps5 episode 4), which were not
part of the pretraining corpora of large language models, providing a test of robustness to novel data
sources. Detailed dataset information is provided in Table 6.

Metrics. For classification tasks, we use F1-micro (Sokolova & Lapalme, 2009), and for re-
gression tasks, we use (1 − relative absolute error) (Shcherbakov et al., 2013) as the evaluation
metric for downstream models. Higher values correspond to better model performance. To quantify
improvements, we also report the percentage increase over a baseline score, reflecting relative
efficacy.

Baselines. We compare PIFE against a diverse set of baseline methods representing key paradigms
in automated feature engineering, all of which have publicly available, executable open-source
implementations to ensure reproducibility. Heuristic-based approaches include AutoFeat Horn
et al. (2020), DFS (Deep Feature Synthesis) Kanter & Veeramachaneni (2015), and OpenFE Zhang
et al. (2023), which rely on expansion and reduction strategies over predefined transformations.
Among LLM-based approaches, we include CAAFE Hollmann et al. (2023), leveraging LLMs for
feature generation and refinement using metadata, prompts, or reasoning frameworks, and OCTree
Nam et al. (2024), which employs rule-based feature generation and CART decision tree inputs
to improve feature quality. The CAAFE and OCTree implementations were adapted to support
newer LLM models and extended to handle both classification and regression tasks, with additional
metrics introduced for fairer comparison. However, certain recent methods, such as LLM-FE
Abhyankar et al. (2025), are excluded due to incomplete publication of methodology and evalu-
ation details, which would limit fair comparison. Additional discussion is provided in Appendix A.6.

Implementation Details. To ensure reliable evaluation, we perform 5-fold cross-validation
on the training set, mitigating overfitting and yielding robust performance estimates. Results
are reported as mean ± standard deviation over three random seeds (42, 44, 46) to account
for stochasticity in LLMs and training pipelines. We use the given specific versions of LLMs:
gpt-4.1-2025-04-14 and gpt-5-2025-08-07. For fairness, all datasets are preprocessed by imputing
or removing missing values and encoding categorical variables, as most downstream models lack
native support. Further details on LLM prompting strategies (Appendix A.8), hyperparameters
(Appendix A.5), and additional configuration settings are provided in Appendix A.
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Table 1: Comparison of AutoFE methods across method compatibility and performance (mean ±
std) for different LLMs. Tick (✓) indicates presence, cross (✗) indicates absence of a feature. Results
are averaged across 3 seeds, with each seed evaluated using 5-fold cross-validation and Random For-
est as the predictive model. We report the f1-micro score for classification and (1-rae) for regression
datasets.

Method Context
Aware

Without
Description

Interpretable
Feature

LLM Avg. Score (%)

Baseline ✗ ✗ ✗ - 0.7558 ± 0.1017

DFS ✗ ✓ ✗ - 0.7718 ± 0.1101 (2.12%)

Autofeat ✗ ✓ ✗ - 0.7651 ± 0.0948 (1.23%)

OpenFE ✗ ✓ ✗ - 0.7684 ± 0.0922 (1.67%)

CAAFE ✓ ✗ ✓
gpt-4.1* 0.7791 ± 0.1068 (3.08%)
gpt-5* 0.7900 ± 0.0996 (4.53%)

OCTree ✗ ✓ ✗
gpt-4.1* 0.7745 ± 0.0958 (2.47%)
gpt-5* 0.7750 ± 0.0969 (2.54%)

PIFE (Ours) ✓ ✓ ✓
gpt-4.1* 0.7908 ± 0.1105 (4.63%)
gpt-5* 0.7917 ± 0.1037 (4.75%)

* All experiments were conducted using LLM versions gpt-4.1-2025-04-14 and gpt-5-2025-08-07.

Table 2: Performance comparison of Baseline, w/o EDA, and w/ EDA across multiple datasets
under the No Feature Selection setting. The best value per dataset is highlighted in bold. Percentage
improvement over the baseline is shown in parentheses. We report f1-micro score for classification
(*) and (1-relative absolute error) for regression (†) datasets.

Dataset Baseline w/o EDA w/ EDA

adult* 0.850 0.852 (0.3%) 0.853 (0.3%)
fertility* 0.829 0.873 (5.4%) 0.880 (6.2%)
medical charges nominal† 0.891 0.922 (3.5%) 0.903 (1.4%)
openml 586† 0.613 0.729 (18.8%) 0.772 (25.9%)
pima indian* 0.700 0.759 (8.3%) 0.754 (7.7%)
ps5 episode 4† 0.571 0.577 (1.2%) 0.578 (1.3%)

4.2 PERFORMANCE COMPARISONS

Table 1 highlights PIFE as the most effective and practical AutoFE method: it attains the top av-
erage score while preserving semantic interpretability and context awareness, and it works even
without dataset descriptions. Classical baselines (DFS, Autofeat, OpenFE) offer modest gains but
lack contextual understanding and interpretability. Among LLM-based methods, PIFE leads fairly:
with gpt-4.1, it improves 4.63% over the Baseline (without feature engineering) versus 3.08% for
CAAFE; with gpt-5, the gap narrows, but PIFE still edges ahead, suggesting stronger reasoning
models reduce, but do not erase, method-level differences. These results demonstrate that PiFE
consistently improves performance across seeds and folds, producing interpretable, context-aware
features with minimal dependence on the latest LLMs. Full results are reported in Appendix Table 7.

4.3 ABLATIONS

Impact of EDA. To assess the contribution of the EDA component in insight-driven feature gen-
eration, we compare model performance with and without EDA in Table 2. Even without EDA,
the generated features are optimized and achieve competitive results. However, EDA provides a
data-grounded mechanism for feature generation, enabling the capture of complex relationships and
trends that are difficult to model when relying solely on LLM optimization or metric-based feed-
back. We observe that certain datasets exhibit limited or no performance gains from the inclusion
of EDA. This may occur when the original features already capture sufficient signal, the dataset is
small, or added features introduce redundancy rather than value.
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Feature Selection: Trade-offs and Downstream Performance. Although PIFE can generate in-
terpretable and statistically strong features, they might not reflect the same way on performance.
Therefore, effective feature selection is crucial to identify the optimal subset of features. To evaluate
this, we compare three approaches: Model-based Feature Importance(MFI), Conditional Mutual
Information-based Bayesian Optimization (CMI-BO), and Genetic Algorithm(GA) (see the Ap-
pendix A.7). CMI-BO and MBFI did not show any improvement in performance. The genetic
algorithm, while computationally intensive, gave the best performance compared to others. We can
see that the set of features generated by PIFE enabled good exploration inthe Genetic Algorithm.
In this way, PIFE complements these approaches by producing a concise, high-quality subset of
features, making downstream optimization more efficient while maintaining strong predictive per-
formance.

Table 3: Performance comparison of PIFE with feature selection during run (using CMI and valida-
tion) and after the run (using a Genetic Algorithm), with GPT-5 as the downstream model. Reported
metrics are F1-micro for classification datasets and (1-relative absolute error) for regression datasets.

Dataset Baseline PIFE PIFE(CMI-BO) PIFE(MFI) PIFE(GA)

adult 0.851±0.001 0.853±0.001 0.853±0.001 0.851±0.002 0.855±0.001

fertility 0.853±0.006 0.88±0.010 0.873±0.015 0.873±0.006 0.89±0.008

openml 586 0.662±0.009 0.765±0.012 0.742±0.025 0.760±0.001 0.792±0.002

pima indian 0.739±0.010 0.754±0.01 0.755±0.005 0.76±0.010 0.777±0.002

Table 4: Feature Transferability of PiFE-generated Features to Deep Learning Models (MLP,
TabPFN(Hollmann et al., 2023), and HyperFast (Bonet et al., 2024)). * denotes classification and
†denotes regression tasks. HyperFast (NA) only runs on classification tasks.

Dataset MLP TabPFN HyperFast

Baseline PIFE (Ours) Baseline PIFE (Ours) Baseline PIFE (Ours)

hepatitis* 0.862±0.020 0.852±0.016 0.832±0.005 0.826±0.005 0.815±0.015 0.843±0.007

airfoil† 0.735±0.001 0.802±0.001 0.955±0.000 0.952±0.001 NA NA
credit approval* 0.888±0.002 0.884±0.002 0.874±0.005 0.863±0.005 0.861±0.006 0.847±0.003

spectf* 0.828±0.003 0.81±0.014 0.798±0.005 0.806±0.005 0.792±0.007 0.805±0.01

megawatt 1* 0.900±0.008 0.908±0.004 0.893±0.003 0.895±0.008 0.865±0.008 0.884±0.007

housing boston† 0.701±0.001 0.706±0.001 0.873±0.002 0.875±0.000 NA NA

Table 5: Performance comparison of PIFE and PIFE† (extended
to OpenFE) across competitions. Values: mean ± standard devi-
ation. All results are based on gpt-5. f1-micro score for classifi-
cation and (1-relative absolute error) for regression datasets.

Competition PIFE PIFE†

adult 0.851 ± 0.002 0.855 ± 0.002
fertility 0.870 ± 0.040 0.870 ± 0.040
medical charges nominal 0.905 ± 0.000 0.907 ± 0.001
openml 586 0.773 ± 0.023 0.790 ± 0.010
openml 607 0.732 ± 0.012 0.752 ± 0.023
ps5 episode 4 0.578 ± 0.001 0.579 ± 0.016
Average 0.778 ± 0.107 0.780 ± 0.105

Feature transferability is crit-
ically dependent on model
inductive bias. Transformations
that encode tree-like, threshold-
ing behaviour generally transfer
well to tree ensembles but can
degrade performance for neural
or transformer architectures
that favour smooth, continu-
ous representations or learned
embeddings. Moreover, near-
ceiling baseline performance
leaves little headroom for gains.
Finally, transfer success is dataset-dependent, being modulated by sample size, noise, feature types,
and the specific nature of engineered transformations. Engineered features should be validated on
the intended downstream model family.

Integrating with other AutoFE Methods. Engineered features from PIFE can serve as in-
put to other AutoFE frameworks. We experimented with OpenFE as the integrated framework and
report the results in Table 5. Overall, integrating PIFE features with OpenFE didn’t result in a
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Figure 4: Order of features created per competition. This is based on the gpt-5 runs from Table 1

substantial improvement. This can be seen as a positive outcome: PIFE already identifies a strong
set of features on its own. By leveraging insights from exploratory data analysis (EDA) and domain
knowledge encoded in LLMs, along with natural language descriptions of the data, PIFE generates
features that are both meaningful and predictive. Even after exploring a large space of additional
candidate features (∼2000) in OpenFE, there is little to no gain, and in some cases, performance
slightly decreases. This highlights the robustness and quality of the features generated by PIFE.

Feature Order Analysis. PIFE is capable of creating higher-order meaningful features and can be
scaled well for creating complex interactions between features due to its iterative nature of feature
generation. We can see that some of the new features created have an order greater than the number
of feature engineering steps. From this, we can infer that LLM is attempting to create complex,
higher-order features in a single feature engineering step.

Flexibility Towards Predictive Models. PiFE generalizes well across various downstream pre-
dictive models, showing consistent improvements with Logistic Regression, Random Forest, and
XGBoost. As expected, tree-based models, which can capture non-linear relationships among fea-
tures, generally outperform linear models such as Logistic Regression.

5 CONCLUSION

Figure 3: Performance of PIFE with predictive models. All
results use GPT-5 as base LLM with the same hyperparam-
eters as the main table. We report f1-micro for classification
and (1-relative absolute error) for regression datasets.

We present PIFE, a multimodal Aut-
oFE framework that leverages textual
and visual insights from datasets
to iteratively generate and select
predictive features. By combining
exploratory data analysis with LLM-
guided reasoning, PIFE automates
feature engineering in a way that
mirrors human workflows, enhancing
both performance and interpretabil-
ity. Our experiments across diverse
tabular datasets demonstrate that
effective feature selection amplifies
the benefits of automated feature
generation. However, PIFE has
limitations: large feature sets can
lead to prompt size constraints, automatically derived dataset descriptions and visualizations may
be noisy, and LLMs can produce plausible but ungrounded features. Additionally, results can vary
across random seeds, underscoring the importance of multiple runs for robustness.

Future work includes improving multimodal reasoning, fine-tuning models for better feature
generation, integrating human-in-the-loop interactions, and incorporating continuously updated
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datasets to reduce memorization biases. PIFE represents a step toward context-aware, interpretable,
and robust automated feature engineering.
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models wrangle your data?, 2022. URL https://arxiv.org/abs/2205.09911.

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In Ijcai, volume 17, pp. 2529–2535, 2017.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna Shcherbakova, An-
ton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Valeriy Anatol’evich Kamaev, et al. A
survey of forecast error measures. World applied sciences journal, 24(24):171–176, 2013.

Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable
automatic feature engineering framework for industrial tasks. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pp. 1645–1656. IEEE, 2020.

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classifica-
tion tasks. Information processing & management, 45(4):427–437, 2009.
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A APPENDIX

A.1 REPRODUCIBILITY

We release our code to ensure reproducibility of experiments at https://anonymous.4open.
science/r/pife-7FE6. The repository includes the main PiFE pipeline, integrations with
baseline frameworks, and scripts for ablation studies. Additionally, we provide the datasets used in
our experiments, including modifications made to publicly available datasets to facilitate consistent
evaluation.

A.2 DATASET COLLECTION, PREPROCESSING AND RESULTS

The datasets are collected by ensuring that contamination is minimal. The formatted data description
contains the task, dataset description, target, and objective. We are handling missing values by
replacing them with numeric values using the mean and filling missing categorical values with the
most frequent value. Categorical columns are encoded with ordinal encoding. The EDA process is
informed about the preprocessing steps taken by providing the preprocessing context to the module.
C and R in Table 6 represent Classification and Regression task types, respectively.

Table 6: Summary of Benchmark Datasets

Name Alias Source Type (C/R) Inst./Feat. Subject Area
Adult adult UCI C 48842 / 14 Social Science
Credit Approval credit approval UCI C 690 / 15 Business
Default Credit Card default credit card UCI C 30000 / 23 Business
Fertility fertility UCI C 100 / 9 Health and Medicine
Give Me Some Credit give me credit Kaggle C 251503 / 10 Finance
Hepatitis hepatitis UCI C 155 / 19 Health and Medicine
Megawatt1 megawatt 1 OpenML C 253 / 37 Mathematics
Diabetic Retinopathy Debrecen messidor features UCI C 1151 / 19 Health and Medicine
PimaIndian pima indian Kaggle C 768 / 9 Health and Medicine
Poker Hand poker hand UCI C 1025010 / 10 Games
Rainfall Dataset ps5 episode 3 Kaggle C 2920 / 11 Weather and Climate
SPECTF spectf UCI C 267 / 44 Health and Medicine
Statlog German Credit statlog german credit UCI C 1000 / 20 Social Science
Wine Quality wine quality UCI C 4898 / 11 Business
Airfoil airfoil UCI R 1503 / 5 Physics and Chemistry
House King County house king county Kaggle R 21613 / 20 Business
Housing Boston housing boston UCI R 506 / 13 Finance
Medical Charges Nominal medical charges nominal OpenML R 163065 / 11 Business
OpenML 586 openml 586 OpenML R 1000 / 25 Mathematics
OpenML 589 openml 589 OpenML R 1000 / 25 Mathematics
OpenML 607 openml 607 OpenML R 1000 / 50 Mathematics
Podcast Listening Time ps5 episode 4 Kaggle R 1000000 / 10 Entertainment

Table 7: Performance comparison across different AutoFE methods. Values represent mean ± stan-
dard deviation of the metric score. We use F1-micro for classification and (1 - rae) for regression
tasks. Random Forest was used as a downstream predictive model.

Competition Baseline OpenFE DFS Autofeat CAAFE OCTREE PIFE (Ours)
(NO FE) gpt-4.1 gpt-5 gpt-4.1 gpt-5 gpt-4.1 gpt-5

adult 0.8511 ± 0.0007 0.8538 ± 0.0004 0.8547 ± 0.0009 0.8472 ± 0.0003 0.8532 ± 0.0021 0.8500 ± 0.0012 0.8547 ± 0.0008 0.8529 ± 0.0009 0.8853 ± 0.0609 0.8526 ± 0.0013

airfoil 0.7436 ± 0.0018 0.7473 ± 0.0097 0.7384 ± 0.0037 0.7508 ± 0.0042 0.7428 ± 0.0013 0.7613 ± 0.0024 0.7555 ± 0.0062 0.7513 ± 0.0045 0.7480 ± 0.0047 0.7588 ± 0.0060

credit approval 0.8531 ± 0.0093 0.8585 ± 0.0051 0.8589 ± 0.0068 0.8604 ± 0.0080 0.8609 ± 0.0088 0.8565 ± 0.0124 0.8667 ± 0.0025 0.8681 ± 0.0063 0.8763 ± 0.0344 0.8659 ± 0.0010

default credit card 0.8070 ± 0.0007 0.8072 ± 0.0007 0.8079 ± 0.0008 0.8087 ± 0.0021 0.8061 ± 0.0015 0.8067 ± 0.0013 0.8093 ± 0.0009 0.8090 ± 0.0002 0.8092 ± 0.0008 0.8088 ± 0.0003

fertility 0.8533 ± 0.0058 0.8633 ± 0.0115 0.8733 ± 0.0058 0.8533 ± 0.0058 0.8600 ± 0.0100 0.8533 ± 0.0058 0.8900 ± 0.0000 0.8900 ± 0.0100 0.8733 ± 0.0153 0.8800 ± 0.0100

give me credit 0.9336 ± 0.0001 0.9328 ± 0.0002 0.9334 ± 0.0004 0.9337 ± 0.0002 0.9339 ± 0.0005 0.9335 ± 0.0002 0.9341 ± 0.0001 0.9342 ± 0.0004 0.9337 ± 0.0001 0.9337 ± 0.0002

hepatitis 0.8151 ± 0.0372 0.8172 ± 0.0244 0.7871 ± 0.0171 0.8194 ± 0.0171 0.8280 ± 0.0037 0.8086 ± 0.0074 0.8366 ± 0.0099 0.8473 ± 0.0207 0.8151 ± 0.0134 0.8172 ± 0.0325

house king county 0.6865 ± 0.0015 0.6887 ± 0.0016 0.6792 ± 0.0011 0.6875 ± 0.0018 0.6878 ± 0.0037 0.6948 ± 0.0034 0.6883 ± 0.0008 0.6897 ± 0.0013 0.6958 ± 0.0010 0.6909 ± 0.0014

housing boston 0.6388 ± 0.0063 0.6488 ± 0.0108 0.6306 ± 0.0024 0.6482 ± 0.0033 0.6380 ± 0.0100 0.6459 ± 0.0100 0.6547 ± 0.0037 0.6483 ± 0.0050 0.6422 ± 0.0044 0.6445 ± 0.0069

medical charges nominal 0.8926 ± 0.0002 0.8986 ± 0.0002 0.8914 ± 0.0003 0.8922 ± 0.0001 0.8954 ± 0.0021 0.8978 ± 0.0011 0.8929 ± 0.0002 0.8928 ± 0.0001 0.8991 ± 0.0007 0.9033 ± 0.0019

megawatt 1 0.8920 ± 0.0099 0.8855 ± 0.0068 0.8802 ± 0.0098 0.8907 ± 0.0100 0.8920 ± 0.0099 0.8854 ± 0.0104 0.8973 ± 0.0069 0.8947 ± 0.0099 0.9000 ± 0.0022 0.9039 ± 0.0099

messidor features 0.6539 ± 0.0128 0.7197 ± 0.0203 0.7219 ± 0.0092 0.7416 ± 0.0070 0.6733 ± 0.0066 0.6794 ± 0.0083 0.6814 ± 0.0018 0.6652 ± 0.0010 0.6858 ± 0.0196 0.6979 ± 0.0071

openml 586 0.6619 ± 0.0093 0.7162 ± 0.0103 0.6666 ± 0.0134 0.7108 ± 0.0052 0.6880 ± 0.0296 0.7735 ± 0.0270 0.7200 ± 0.0033 0.7200 ± 0.0033 0.7185 ± 0.0309 0.7721 ± 0.0013

openml 589 0.6557 ± 0.0032 0.7022 ± 0.0059 0.6750 ± 0.0031 0.6870 ± 0.0012 0.7208 ± 0.0068 0.7711 ± 0.0162 0.6961 ± 0.0036 0.6961 ± 0.0036 0.6954 ± 0.0341 0.7351 ± 0.0148

openml 607 0.6362 ± 0.0083 0.7036 ± 0.0005 0.6326 ± 0.0092 0.6506 ± 0.0126 0.6986 ± 0.0535 0.7655 ± 0.0081 0.6916 ± 0.0084 0.6916 ± 0.0084 0.7225 ± 0.0147 0.7254 ± 0.0176

pima indian 0.7391 ± 0.0007 0.7574 ± 0.0033 0.7452 ± 0.0111 0.7353 ± 0.0133 0.7404 ± 0.0041 0.7405 ± 0.0074 0.7587 ± 0.0138 0.7505 ± 0.0033 0.7609 ± 0.0087 0.7543 ± 0.0098

poker hand 0.6862 ± 0.0041 0.6862 ± 0.0041 0.9973 ± 0.0001 0.6862 ± 0.0041 1.0000 ± 0.0000 1.0000 ± 0.0000 0.7370 ± 0.0365 0.7856 ± 0.0579 0.9965 ± 0.0039 1.0000 ± 0.0000

ps5 episode 3 0.8511 ± 0.0036 0.8490 ± 0.0028 0.8486 ± 0.0045 0.8511 ± 0.0036 0.8551 ± 0.0013 0.8560 ± 0.0018 0.8601 ± 0.0025 0.8565 ± 0.0056 0.8696 ± 0.0107 0.8554 ± 0.0019

ps5 episode 4 0.5767 ± 0.0003 0.5791 ± 0.0000 0.5736 ± 0.0000 0.5767 ± 0.0003 0.5771 ± 0.0001 0.5773 ± 0.0005 0.5772 ± 0.0001 0.5772 ± 0.0003 0.5775 ± 0.0002 0.5784 ± 0.0011

spectf 0.7926 ± 0.0057 0.7851 ± 0.0265 0.7826 ± 0.0247 0.7926 ± 0.0057 0.7851 ± 0.0021 0.8114 ± 0.0056 0.8200 ± 0.0100 0.8064 ± 0.0076 0.8764 ± 0.1007 0.8278 ± 0.0210

statlog german credit 0.7507 ± 0.0038 0.7443 ± 0.0080 0.7457 ± 0.0087 0.7523 ± 0.0038 0.7490 ± 0.0052 0.7533 ± 0.0080 0.7547 ± 0.0038 0.7597 ± 0.0025 0.7587 ± 0.0045 0.7683 ± 0.0061

wine quality 0.6575 ± 0.0057 0.6600 ± 0.0073 0.6545 ± 0.0055 0.6564 ± 0.0047 0.6545 ± 0.0047 0.6575 ± 0.0057 0.6623 ± 0.0028 0.6619 ± 0.0024 0.6572 ± 0.0017 0.6608 ± 0.0024

Average Score 0.7558 ± 0.1017 0.7684 ± 0.0922 0.7718 ± 0.1101 0.7651 ± 0.0948 0.7791 ± 0.1068 0.7900 ± 0.0996 0.7745 ± 0.0958 0.7750 ± 0.0969 0.7908 ± 0.1105 0.7917 ± 0.1037
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A.3 EVALUATING PIFE UNDER REALISTIC TRAIN-TEST SPLITS

In our setup, we sought to closely mimic how feature engineering is typically performed in real-
world applications by practitioners. Since a central objective of machine learning is to generalize
effectively to unseen data, we designed our evaluation of PiFE to reflect this scenario. Each dataset
was randomly split into training and test sets in a 70/30 ratio. The feature search process was
restricted to the training split, where cross-validation was applied, while the test split was kept
strictly unseen and used only for final evaluation. To mitigate order-related bias, all datasets were
shuffled with fixed random seeds prior to splitting. This procedure may introduce slight variations in
the reported scores compared to earlier tables. The detailed results of this evaluation are presented
in Table 8.

Table 8: Performance comparison across competitions. Values are mean ± std (tiny). Best values in
each Train/Test column group are in bold.

Competition Baseline CAAFE OpenFE OCTree PIFE
Train Test Train Test Train Test Train Test Train Test

adult 0.8493 ±0.0006 0.8495 ±0.0014 0.8504 ±0.0007 0.8487 ±0.0044 0.8530 ±0.0003 0.8420 ±0.0067 0.8526 ±0.0018 0.8518 ±0.0033 0.8504 ±0.0011 0.8517 ±0.0030

fertility 0.8571 ±0.0286 0.9000 ±0.0333 0.8619 ±0.0360 0.8667 ±0.0333 0.8571 ±0.0247 0.8667 ±0.0000 0.8905 ±0.0218 0.8556 ±0.0192 0.9095 ±0.0360 0.8667 ±0.0000

medical charges nominal 0.8913 ±0.0006 0.8918 ±0.0004 0.9001 ±0.0069 0.8978 ±0.0049 0.8975 ±0.0005 0.8782 ±0.0058 0.8916 ±0.0004 0.8919 ±0.0002 0.9000 ±0.0011 0.8982 ±0.0027

openml 586 0.6221 ±0.0158 0.6603 ±0.0195 0.7713 ±0.0260 0.7461 ±0.0291 0.6780 ±0.0327 0.6992 ±0.0066 0.6927 ±0.0147 0.7133 ±0.0178 0.7294 ±0.0170 0.7271 ±0.0292

pima indian 0.7344 ±0.0336 0.7287 ±0.0265 0.7455 ±0.0244 0.7359 ±0.0263 0.7524 ±0.0195 0.7460 ±0.0222 0.7692 ±0.0153 0.7273 ±0.0338 0.7698 ±0.0173 0.7677 ±0.0275

ps5 episode 4 0.5714 ±0.0006 0.5753 ±0.0008 0.5738 ±0.0027 0.5772 ±0.0030 0.5744 ±0.0002 0.5557 ±0.0005 0.5721 ±0.0001 0.5757 ±0.0006 0.5733 ±0.0004 0.5703 ±0.0039

Average 0.7543 ±0.1268 0.7676 ±0.1268 0.7838 ±0.1123 0.7787 ±0.1128 0.7688 ±0.1182 0.7646 ±0.1173 0.7781 ±0.1199 0.7693 ±0.1134 0.7887 ±0.1205 0.7803 ±0.1148

The results indicate that PIFE consistently delivers strong performance, achieving both high cross-
validation scores on the training data and correspondingly high accuracy on the test data across a
large majority of datasets. This alignment suggests that effective feature engineering plans discov-
ered by PIFE are not only tuned for the training split but also generalize reliably to unseen data,
reinforcing the robustness of the approach.

A.4 REVERSE POLISH NOTATION FOR FEATURE REPRESENTATION

We adopt Reverse Polish Notation (RPN) from Zou et al. (2025) as a representation scheme for
the features generated in PIFE. In RPN, operators follow their operands, eliminating the need for
parentheses and reducing ambiguity in expression evaluation. This structure allows for a compact
and unambiguous encoding of complex feature transformations, which is particularly useful when
features are generated programmatically or by language models.

Using RPN provides several advantages. First, it enables straightforward reconstruction of
the original feature expression, as the sequence of operands and operators directly encodes the
computational order. Second, RPN facilitates efficient storage and manipulation of features, since it
can be easily parsed into computational graphs or evaluated using stack-based execution.

A.5 HYPERPARAMETERS

A.5.1 PREDICTIVE MODELS

As shown in Table 9, we consider both regression and classification models with standard hyperpa-
rameters for baseline evaluation and testing AutoFE methods.

Table 9: Regression and Classification Models with Parameters

Task Model Parameters
Regression Linear Regression –
Regression Random Forest Regressor n estimators = 10, random state = 0
Regression XGBoost Regressor n estimators = 10, random state = 0
Classification Logistic Regression solver = saga, class weight = balanced, tol =

0.0005, C = 0.5, max iter = 10000, penalty = l2
Classification Random Forest Classifier n estimators = 10, random state = 0
Classification XGBoost Classifier n estimators = 10, random state = 0

A.5.2 PARAMETERS FOR DEEP LEARNING METHODS

We list down hyperparameters used for MLP and HyperFast in Table 10 and Table 11.
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Table 10: Parameters for MLP

Parameter Distribution / Range
Number of layers UniformInt [1, 8]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1× 10−5, 1× 10−2]
Category embedding size UniformInt [64, 512]
Learning rate scheduler [True, False]
Batch size [256, 512, 1024]

Table 11: Parameters for HyperFast

Parameter Distribution / Range
Number of ensembles (N) [1, 4, 8, 16, 32]
Batch size [1024, 2048]
NN bias [True, False]
Stratified sampling [True, False]
Optimization strategy [None, optimize, ensemble optimize]
Optimize steps [1, 4, 8, 16, 32, 64, 128]
Random seed UniformInt [0, 9]

A.5.3 FEATURE SELECTION METHODS

Details of parameters used for feature selection experiments (results in Table 3) are listed in Table 12
and Table 13.

Table 12: Parameters for Bayesian CMI-based Feature Selection

Parameter Values
alpha 0.5
trials 50
distance gower
min num feat selected 0
scaling criteria min max
sample df True
k 10
denomination 2
num select features 3

A.5.4 AUTOFE METHODS

Table 14 summarizes the key parameters and their values for the AutoFE methods evaluated in
this study, including PIFE, OCTREE, CAAFE, OPENFE, AUTOFEAT, and DFS. These values
were chosen based on prior literature and preliminary experiments to ensure fair and comparable
evaluation across methods.

A.6 BASELINE SELECTION

While learning-based approaches, which aim to learn transformation policies directly from data,
represent an important category, we do not include them in our current evaluations due to the high
implementation complexity and substantial computational cost involved in training and adapting
these models. This selection allows us to compare how different strategies perform in practice
and to analyze their respective strengths, limitations, and implications for the future of feature
engineering.
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Table 13: Parameters for Genetic Algorithm-based Feature Selection

Parameter Values
elitism 5
generations 30
population size 30
crossover prob 0.8
mutation prob 0.05

Table 14: Parameters and Values for AutoFE Variants

Method Parameter Value

PIFE

total steps 10
eda steps 3
max plots 3
max insights per plot 1
n features 5
timeout 86400

OCTree

total steps 5
rule steps 10
n features 1
timeout 86400

CAAFE

total steps 10
n features 1
n repeats 1
timeout 86400

OpenFE

min candidate features 2000
feature boosting False
n repeats 1
timeout 86400

Autofeat feateng steps 2
timeout 86400

DFS
max depth 2
transformations transform primitives
timeout 86400

The original CAAFE framework was primarily designed for classification tasks and evaluated only
with accuracy as the performance metric. In our adaptation, we extend CAAFE to also support
regression tasks, introduce additional evaluation metrics beyond accuracy for a fairer comparison,
and enrich the set of operators available for feature construction.

OCTree, on the other hand, required more substantial modifications. The original implementation
was tightly coupled with specific LLM APIs and lacked iterative refinement. We restructured its
pipeline to generalize API usage, extended the feature generation loop to be iterative, and incor-
porated support for regression tasks along with additional evaluation metrics. These modifications
make OCTree more robust and applicable across a broader range of tabular learning scenarios.

A.7 DISCUSSION ON FEATURE SELECTION METHODOLOGIES

Feature selection in our framework can be applied at two stages: (1) immediately after the feature
engineering step, or (2) after the full PiFE run. In our experiments, Feature Importance and
Bayesian Conditional Mutual Information (CMI) based selection were applied after the feature
engineering stage but prior to model validation, whereas a Genetic Algorithm based selection was
performed after the complete pipeline execution.
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Feature selection plays a crucial role in enhancing both model interpretability and general-
ization. While an individual engineered feature may appear weak in isolation, its combination
with other features can capture complex interactions and yield a much stronger predictive signal.
Without an appropriate selection mechanism, such subtle but useful interactions may be overlooked
or drowned out by a large number of irrelevant or redundant features. By systematically ranking
and filtering features, our selection strategies help retain those that contribute jointly to predictive
power, thereby improving efficiency, reducing overfitting, and uncovering more meaningful feature
representations.

A.7.1 FEATURE IMPORTANCE BASED SELECTION

After features are generated in an iteration , we perform validation on the dataset with new features
and compute feature importance scores. If the validation score of the current run is greater than
that of the previous run, we retain all the features. Otherwise, we apply a filtering criterion: only
those features with importance greater than 1 / (number of features) are selected. This threshold is
motivated by the expectation that a retained feature should contribute at least more than the average
share of importance across all features.

A.7.2 CMI-BASED BAYESIAN OPTIMIZATION FOR FEATURE GROUP SELECTION

Bayesian Optimization (BO). BO is a sequential strategy for optimizing expensive black-box func-
tions. A surrogate model (e.g., Gaussian Process) provides mean µ(x) and uncertainty σ(x), guiding
the selection of new points via an acquisition function a(x) (e.g., EI, UCB):

xt+1 = argmax
x∈X

a(x | µ(x), σ(x)).

In feature engineering, we need to add a feature subset to the the existing feature set. BO treats
this feature subset as X and the CMI as f(X)(objective function), enabling efficient exploration of
feature combinations.

f(X) = I(X;Y | Z),

where X is the feature subset, Y is the target, and Z is the feature set.

Conditional Mutual Information (CMI). CMI in feature engineering quantifies the unique con-
tribution of a feature subset X to predicting Y given the feature set Z:

I(X;Y | Z) =

∫∫ ∫
p(x, y, z) log

p(x, y | z)
p(x | z) p(y | z)

dx dy dz.

We use a slightly modified version of the mixed-type k-NN estimator from Mesner & Shalizi (2020),
which is robust to discrete and continuous variables. We set K = max(3,min(20,

√
n)), which

helps mitigatethe high-dimensionality issue in CMI calculation.

A.7.3 GENETIC ALGORITHM

Genetic Algorithms (GAs) are population-based metaheuristic optimization methods. A GA main-
tains a population of candidate solutions (chromosomes), where each chromosome encodes a subset
of features (typically as a binary string, with 1 indicating selection of a feature and 0 otherwise).
The algorithm evolves this population through the iterative application of genetic operators:

• Selection: Chromosomes are chosen based on their fitness, which in our case is the predic-
tive performance (e.g., validation accuracy or F1 score)

• Crossover: Pairs of chromosomes exchange parts of their feature subsets, enabling explo-
ration of new feature combinations.

• Mutation: Random flips of feature bits introduce diversity and help escape local optima.

The fitness of a chromosome c can be expressed as

Fitness(c) = Score
(
f(Xc), Y

)
,

where Xc denotes the features selected by chromosome c, Y is the target, and f(·) is the downstream
predictive model.
Over successive generations, the GA converges toward feature subsets that maximize predictive
performance. While computationally more expensive than other methods like CMI-BO and MFI,
GAs often identify subsets of features with strong predictive power, making them effective when
interactions between features play an important role.
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A.8 PROMPTS

Listing 1: EDA Analysis Code Generation

You are an EDA agent operating in a Kaggle Grandmaster-style automated
feature engineering pipeline. This is iteration {current_iteration}
of a multi-stage EDA loop. Your role is to produce competition-grade
exploratory data analysis code that progressively builds upon the
analyses performed in previous iterations.

Remember: this is a strategic, hypothesis-driven EDA process - think
like a top Kaggle competitor uncovering hidden signal iteratively
across multiple passes.

You are provided with:
- Dataset description
- Summary of preprocessing steps taken
- Previous EDA code history and respective observations if any.

Dataset Description:
{dataset_description}

Pre-processing Steps:
{preprocessing_summary}

Focus Areas:
{focus_areas}

Memory (previous code and observations):
{memory}

---

### Analysis Constraints
STRICT LIMITS:
- Maximum {max_plots} plots total
- Do NOT explicitly suggest feature transformations, binning, encoding,

or normalization.
- Focus on uncovering patterns, trends, correlations, and anomalies in

the data.
- Avoid bias towards only high-importance features include a mix of

numerical, categorical, and temporal features.
- For large datasets (>5000 rows), sample strategically before complex

plots.

---

### Response Format
Your response should strictly follow the following Code Structure:

Before the code block include a short **Implementation Rationale** of 24
sentences that explains:

- Why you chose the specific analyses / plots (what hypothesis you are
testing),

- What you expect the output to reveal (the type of insight sought),
- One-line failure mode / limitation: Think Harder (e.g., ’may fail on

heavy-tailed column; will downsample if >5000 rows’).

- Divide the code into code cells using ‘# %%‘ to demarcate different
sections in the code.

- Code should be wrapped within ‘‘‘python ... ‘‘‘ quotes. Do not write
code at any other place than this.

- Do not write the context of the code block in the same line as ‘# %%‘.
Write it in a new line with enumeration, where enumeration should be
in comments.
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- Each section should focus on a different type of analysis aimed at
revealing meaningful patterns.

- Ensure diversity by analyzing features across different types and
varying levels of correlation with the target.

- All plots must have proper titles, axis labels, and legends where
applicable.

- Produce plots that are clear and informative, suitable for
presentation.

- If plots become too crowded or contain too many elements to be
readable, split them into multiple smaller plots.

- Each plot should be individually assigned to a unique and
human-readable variable name.

- Do NOT use ‘plt.show()‘ or save figures to files just generate them.
- For expensive plots (swarm, violin, scatter, kde, displot, etc.), if

dataset size >5000 rows, downsample to 5000 using stratified
sampling (if categorical column available), else use appropriate
sampling.

---

### Mandatory Imports
Each EDA code block must begin with:
‘‘‘python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

---

### General Instructions

- Assume the dataset with variable name df is already present.
- Always include all required imports in your code. Do NOT assume

imports persist across steps.
- Preserve existing variable assignments and do not overwrite previously

assigned variables.
- Maintain continuity with past EDA steps by avoiding duplicate analyses

and expanding on previously explored patterns.
- Incorporate findings from earlier iterations to guide where to dig

deeper.
- Ensure coverage across diverse feature types (numerical, categorical,

temporal).
- Generate new, non-redundant insights that add incremental value.
- All generated code should be clean, modular, and ready for execution

without edits.
- Use # %% to clearly separate analysis sections.
- Include explanatory comments in the format: # INSIGHT: <purpose of

this analysis>, but do NOT explicitly suggest feature
transformations.

Listing 2: EDA Analysis Insight Generation

You are a feature engineering specialist analyzing outputs from an EDA
process.

You are provided with:
- The code used to generate the EDA
- The plots generated from that code
- The textual/statistical outputs produced

Your job is to extract meaningful, high-value insights from these
materials and then propose specific, well reasoned feature
transformations inspired by these insights. Insights must be
grounded in visual and statistical evidence, not speculation.
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Think like a Kaggle Grandmaster preparing features for a top-tier
competition.

# Task Description
{dataset_description}

# EDA Code Context
{eda_code}

# Available Operators
{operators_description}

# Instructions

## Analysis Guidelines When forming INSIGHTS:
- Highlight relationships, anomalies, patterns, or distributions that

stand out in the data.
- Capture interactions, trends, and category-level differences.
- Refer to the specific visualization or statistical summary they come

from.
- Generate maximum {max_insights_per_plot} insights per plot.

## When forming FEATURE_TRANSFORMATIONS:
- Map each transformation to a corresponding insight.
- Use ONLY the Available Operators listed above for suggesting feature

transformations.
- You can suggest dropping features if they are redundant, highly

correlated, or unhelpful for the target variable.
- Provide reasoning linked to potential model performance improvements.
- Keep recommendations actionable, clear, and technically precise.
- Strictly NEVER include the target column in any feature engineering,

transformations, encodings, interaction terms, binning, scaling, or
statistical computations.

# Response format

Your output MUST be structured in exactly two sections using the
following XML-style tags:

<INSIGHTS>
List clear, evidence-backed observations from the EDA results and plots.
Avoid feature suggestions here keep this purely as descriptive,

analytical findings.
Each insight should explicitly reference the plot or analysis it came

from.
</INSIGHTS>

<FEATURE_TRANSFORMATIONS>
For each transformation:
- Specify the exact feature(s) involved
- Describe the suggested transformation or engineering step using

Available Operators
- Provide a short reasoning for why it is beneficial based on the

insights above
- Include 35 high-priority transformations that would add the most value
- You can suggest dropping features if they are redundant, highly

correlated, or unhelpful for the target variable.
</FEATURE_TRANSFORMATIONS>

AVOID: generic or obvious patterns, restating axis labels, or vague
statements.

FOCUS: insights that directly inform strong, competition-grade feature
engineering.
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Listing 3: Feature Engineering Code Generation

You are a feature-engineering agent. Your goal is to generate new
machine-learning-ready features and return executable Python code
that creates them.You will be provided with the Dataset Description,
the Pre-processing Steps, the Feature Transformation Guidelines,
list of allowed operators for feature engineering, the Feature
importance scores and the Rejected Features.

# Task description:
{dataset_description}

# Pre-processing Steps:
{preprocessing_step_summary(preprocess,target_encoder)}

# Feature Transformation Guidelines:
{guidelines}

# Available Operators:
{operators_description}

# Feature importance scores:
{[f"{k}: {v:.5f}" for k, v in feature_importance_scores.items()] if

feature_importance_scores is not None else []}

# Rejected Features:
{rejected_features}

# Instructions:

## Feature Engineering Instructions:
1) Generate exactly {n_features} new machine-learning-ready features.
2) You should think about the reasons for the rejected features and try

to incorporate that learning while creating new featurs
3) Feature Transformation Guidelines contains ideas based on exploratory

data analysis conducted earlier. You should create new features that
are based on the ideas in the Feature Transformation Guidelines.

4) You should use the list of Available Operators, for feature
engineering to create new features.

## Code Instructions:
- Do not wrap the entire code inside a function or class.
- Assume the environment is similar to a Jupyter Notebook, so you may

use # %% to separate code blocks.You may define small utility/helper
functions if needed, but make sure they are invoked within the same
code block.

- The final output should be an executable code block, not a function or
class definition.

- Ensure that code is enclosed within python code literal as follows. Do
not write code anywhere else.

‘‘‘python
[code goes here]
‘‘‘

# Target Leakage Prevention Rules:

STRICT RULES TO AVOID TARGET LEAKAGE:

- NEVER create features that directly transform or encode the target
column itself (e.g., log(target), residuals vs. target,
deviation-from-target, ranks of target within bins, z-scores,
percentiles, etc.).
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- The target column may only be used to compute group-level aggregate
statistics (mean, median, std, count) at the group level.
- Example: mean(target) by year, median(target) by region.
- These must be computed on df_train only, stored as a mapping, and
applied to df_test with a fallback.

- Forbidden feature patterns include:
- Any function that directly transforms target values row-by-row
(log, rank, residual).
- Any feature whose definition requires subtracting or dividing a
rows own target from an aggregate.
- Any within-bin or within-group ranking of target values.
- Always check that the engineered feature can be computed in
exactly the same way for both df_train and df_test without needing
df_test[TARGET_COL].
- If a proposed feature would violate these rules, DO NOT generate
it instead, list it in
SAFETY_REPORT[’features_dropped_due_to_no_test_support’].

# Feature Inclusion & Target-Use Rules (MANDATORY, concise):
CRITICAL: The runtime convention is that the target column WILL be

present in df_train as ’target’, and WILL NOT be present in df_test.
Follow these rules without exception:

- INPUT ASSUMPTION
- df_train contains the target column named ’target’.
- df_test, if provided, MUST NOT contain the target column. Agents
must treat df_test as unlabeled.

- FEATURE INCLUSION: Every suggested feature must be constructible on
BOTH df_train and df_test. If the feature cannot be created for
df_test without reading the target (TARGET_COL) or other unavailable
test-only data, DO NOT create that feature for df_train drop it
entirely. Never produce train-only features.

- TARGET USAGE (TRAIN-ONLY STATISTICS): You may compute aggregate
statistics using df_train[TARGET_COL] only to build train-derived
mapping objects (e.g., group means/counts/medians). All such
computations MUST:
- be computed only on df_train,

- APPLYING MAPPINGS TO TEST: For every train-derived mapping, provide
explicit code that applies the mapping to df_test inside if df_test
is not None: using map/merge and .fillna(<fallback>).
- Example pattern (must be used):
‘‘‘python
mapping = df_train.groupby(’X’)[TARGET_COL].median().to_dict()
df_train[’f’] = df_train[’X’].map(mapping).fillna(<fallback>)
if df_test is not None:

df_test[’f’] = df_test[’X’].map(mapping).fillna(<fallback>)
_train_mappings[’mapping_name’] = mapping
‘‘‘

- INTERMEDIATE / TRAIN-ONLY COLUMNS: If you create intermediate columns
on df_train solely to compute mapping/statistics or to use them to
create suggested features, remove them from df_train before
finishing the code (so columns remain symmetric). Do NOT leave
intermediate columns that cannot be created on df_test.

- COLUMN SYMMETRY CHECK: At the end of your code, ensure df_train and
df_test have the same columns (except for TARGET_COL in df_train).
Add this assertion:
‘‘‘python
# Ensure column symmetry between train and test sets
if df_test is not None:

train_cols = set(df_train.columns) - {TARGET_COL}
test_cols = set(df_test.columns)
assert train_cols == test_cols, f"Column mismatch: train has

{train_cols - test_cols} extra, test has {test_cols - train_cols}
extra"
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‘‘‘
- NON-IMPLEMENTABLE FEATURES: If any transform (e.g., direct arithmetic

with TARGET_COL in df_test, or features requiring target values at
test-time) cannot be implemented safely on df_test, explicitly
exclude that feature and list it under
SAFETY_REPORT[’features_dropped_due_to_no_test_support’].

- FORBIDDEN: Under no circumstance should the generated code access
TARGET_COL within df_test or assume its existence there. Do not
create features that would require test-time predictions or labels.

- RANDOMNESS: Use deterministic randomness via RANDOM_STATE for any
sampling/splitting operations on df_train; do not sample df_test.

# Templates (must be used for any transform that depends on target/train
statistics):

Provide transformations using these exact patterns when the operation
depends on train statistics.

A) GroupByThenMean (safe pattern)
‘‘‘python
# compute mapping on train ONLY
edu_mean_by_occ =

df_train.groupby(’occupation’)[’education-num’].mean().to_dict()
# apply to train
df_train[’QualificationSurplus’] = df_train[’education-num’] -

df_train[’occupation’].map(edu_mean_by_occ)
# apply to test (no target used). fallback to 0 for unseen occupations
if df_test is not None:

df_test[’QualificationSurplus’] = (
df_test[’education-num’] -

df_test[’occupation’].map(edu_mean_by_occ)
).fillna(0)

‘‘‘

B) Target-like encoding (train-derived, safe pattern)
‘‘‘python
# compute target-encoding stats on train ONLY
enc_by_cat = df_train.groupby(’cat_col’)[TARGET_COL].agg(

[’mean’,’count’]
).to_dict(orient=’index’)

# convert to mapping (use mean, with global fallback)
global_mean = df_train[TARGET_COL].mean()
cat_mean_map = {k: v[’mean’] for k, v in enc_by_cat.items()}
# apply
df_train[’cat_col_te’] =

df_train[’cat_col’].map(cat_mean_map).fillna(global_mean)
if df_test is not None:

df_test[’cat_col_te’] =
df_test[’cat_col’].map(cat_mean_map).fillna(global_mean)

‘‘‘

C) Stratified sampling for train-only operations (must not touch df_test)

‘‘‘python
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5, shuffle=True,

random_state=RANDOM_STATE)
for train_idx, holdout_idx in skf.split(df_train, df_train[TARGET_COL]):

# operate only on df_train.iloc[train_idx], use holdout for internal
validation
pass

‘‘‘

D) ALWAYS include mapping objects in code and show how they’ll be
persisted/serialized if needed.
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# Templates for Intermediate Features:

‘‘‘python
Interaction: lymphatics early_uptake (concatenated string, factorized)
df_train[’lymphatics_earlyuptake’] = df_train[’lymphatics’].astype(str)

+ ’_’ + df_train[’early_uptake’].astype(str)
# Factorize (shared mapping for train, then reapply to test)
all_cats = pd.concat([df_train[’lymphatics_earlyuptake’],

(df_test[’lymphatics’].astype(str) + ’_’ +
df_test[’early_uptake’].astype(str)) if (’df_test’ in locals() and
df_test is not None) else pd.Series([],dtype=str)]

lympt_early_map, lympt_early_uniques = pd.factorize(all_cats, sort=True)
train_codes = lympt_early_map[:len(df_train)]
df_train[’lymphatics_earlyuptake_code’] = train_codes
# Remove lymphatics_earlyuptake as its not the suggested feature and it

can not be created in df_test
df_train.drop(columns=[’lymphatics_earlyuptake’], inplace=True)
if ’df_test’ in locals() and df_test is not None:

test_codes = lympt_early_map[len(df_train):]
df_test[’lymphatics_earlyuptake_code’] = test_codes

_train_mappings[’lymphatics_earlyuptake_factorization’] =
dict(zip(lympt_early_uniques, range(len(lympt_early_uniques))))

‘‘‘

- IMPORTANT: Intermediate Feature Cleanup
At the end of your code, ensure you remove ALL intermediate features

that were created solely for computation purposes:

‘‘‘
# Clean up intermediate features
intermediate_features = [’temp_feature1’, ’temp_feature2’,

’mapping_temp’]
for feature in intermediate_features:

if feature in df_train.columns:
df_train.drop(columns=[feature], inplace=True)
if df_test is not None and feature in df_test.columns:

df_test.drop(columns=[feature], inplace=True)
‘‘‘

# Response Format for Python Code:

- Python code for n feature transformations

‘‘‘python
[feature engineering code]
‘‘‘

- RPN Format:

Reverse Polish Notation and Description of n feature transformations
Provide in this format:

FeatureName: <new_feature_name>
RPN : feature1 feature2 +
Description : Sum of feature1 and feature2

FeatureName: <new_feature_name>
RPN : feature3 feature3 feature4 GroupByThenMean -
Description : Difference between feature3 and mean of feature3 grouped

by feature4

# Instructions for RPN Notation:

- Use the format Dropped_<FeatureName> for features that are dropped.
- Do not use square brackets in the FeatureName.
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- Separate tokens in the RPN string with spaces.
- Examples of correct RPN:

- feature1 feature2 +
- feature1 drop (for dropping a feature)
- feature1 feature1 feature2 GroupByThenMean -

- Avoid invalid RPN such as feature1 feature2 GroupByThenMean -
subtraction - requires two operands.

- Example with GroupByThenMean:

‘‘‘python
edu_mean_by_occ =
df_train.groupby(’occupation’)[’education_num’].mean()
df_train[’QualificationSurplus’] = df_train[’education-num’] -
df_train[’occupation’].map(edu_mean_by_occ)
python
Copy code
edu_mean_by_occ =
df_train.groupby(’occupation’)[’education_num’].mean()
df_train[’QualificationSurplus’] = df_train[’education-num’] -
df_train[’occupation’].map(edu_mean_by_occ)
if df_test is not None:

df_test[’QualificationSurplus’] = (
df_test[’education-num’] -

df_test[’occupation’].map(edu_mean_by_occ)
).fillna(0)

‘‘‘

RPN: education-num education_num occupation GroupByThenMean -
This RPN correctly represents the operation.
Incorrect RPN: education_num occupation GroupByThenMean - (only 1
operand before subtraction)

- Drop Operation Examples:
- To drop a feature: RPN: feature_name drop
- To drop multiple features: RPN: feature1 drop feature2 drop
- Always document dropped features in your response with the
Dropped_<FeatureName> format

A.9 EXAMPLE PIFE FEATURES FROM EXPERIMENT RUNS

Higher Order Feature

Competition : spectf
Name of the feature: Sum x Hotspot
RPN: F1S F2S + F3S + F4S + F5S + F6S + F7S + F8S + F9S + F10S + F11S + F12S +
F13S + F14S + F15S + F16S + F17S + F18S + F19S + F20S + F21S + F22S + F20S F21S
max F22S F13S max max *
Order: 21
EDA Reasoning: Interaction of global stress and regional hotspot (maps to the
“global–regional synergy” insight)
Features: F1S,. . . ,F22S, max stress 13 20 21 22
Transformation:
1) StressSum all = F1S + F2S + . . . + F22S (chain the “+” operator across all stress ROIs)
2) Sum x Hotspot = StressSum all max stress 13 20 21 22
Reasoning: The Q1 quadrant (high-high) showed a 0.43 abnormal rate vs 0.20 elsewhere.
The multiplicative term encodes this synergy explicitly and is often more predictive than
either marginal.

Figure 5: Higher Order Feature Generation
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Higher Predictive Power

Competition: poker hand
Name of the feature: rank pair sum
RPN: C1 C1 / C1 C2 - abs + reciprocal round C1 C1 / C1 C3 - abs + reciprocal round +
C1 C1 / C1 C4 - abs + reciprocal round + C1 C1 / C1 C5 - abs + reciprocal round + C2 C1
- abs C1 C1 / + reciprocal round + C2 C3 - abs C1 C1 / + reciprocal round + C2 C4 - abs
C1 C1 / + reciprocal round + C2 C5 - abs C1 C1 / + reciprocal round + C3 C4 - abs C1
C1 / + reciprocal round + C3 C5 - abs C1 C1 / + reciprocal round + C4 C5 - abs C1 C1 / +
reciprocal round +
Feature Importance: 0.35005184128253863
Increase in score after adding feature: 0.306
EDA Reasoning :
Feature(s): C1–C5
Transformation: Build pairwise “same-rank” indicators and aggregate. 1) ONES = C1 / C1
2) For each unordered pair (i, j) among 1..5: diff ij = abs(Ci Cj) diff1 ij = diff ij + ONES
eq ij = round(reciprocal(diff1 ij)) equals 1 if Ci=Cj, else 0 3) rank pair sum = sum(eq ij
over the 10 pairs) using + 4) For each i: eq i = sum(eq ij over j i) using + max same rank =
max(eq 1, eq 2, eq 3, eq 4, eq 5) using max
Reasoning: From the correlation heatmap and uniform marginals, single ranks are uninfor-
mative; equality patterns drive CLASS. rank pair sum differentiates high-card/straight/flush
(0), one pair (1), two pair (2), three-kind (3), full house (4), four-kind (6). max same rank
(values 0–3) is a strong proxy for the largest multiplicity (pair/three/four). These directly
target rare classes (3,6,7) and improve separability under heavy imbalance.

Figure 6: Higher Predictive Power

Weak features combined to get strong feature

Competition: messidor features
Name of the feature: MA RANGE
RPN: ma1 ma2 max ma3 max ma4 max ma5 max ma6 max ma1 ma2 min ma3 min ma4
min ma5 min ma6 min -
Feature Importances:
MA RANGE: 0.09319
ma1: 0.04985
ma2: 0.04468
ma3: 0.04219
ma4: 0.03743
ma5: 0.04279
ma6: 0.03985

EDA Reasoning: MA RANGE: max(ma1, max(ma2, max(ma3, max(ma4, max(ma5,
ma6))))) min(ma1, min(ma2, min(ma3, min(ma4, min(ma5, ma6)))))
Reasoning: Despite high within-cluster correlations, thresholds are not identical. The box-
plots show distributional spread growing with DR. The range across thresholds measures
stability/sensitivity of detections to α; noisy/non-DR images may show different spreads
than true DR.

Figure 7: Effective Feature Combination

A.10 LLM USAGE

Apart from our proposed framework, PiFE, we leveraged LLMs to assist in refining the writing
of this research paper. The models were used solely for language polishing, grammar corrections,
and clarity improvements, without influencing the scientific content, experimental design, results, or
conclusions.
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A.11 BROADER IMPACT STATEMENT

Utility and Real-World Relevance. The AutoFE method can autonomously generate, evaluate,
and select meaningful features from raw data, potentially enabling more robust and interpretable
predictive models in real-world applications. By leveraging EDA-driven insights, it can provide
data scientists with explainable and interpretable features, enhancing model transparency and
decision-making. With appropriate statistical safeguards, validation checks, and privacy-preserving
measures, it can help mitigate the risk of spurious or misleading features and support the responsible
deployment of LLM-assisted feature engineering systems.

Risks and Biases. LLM-assisted feature generation can be influenced by biases present in the train-
ing data, including memorization of datasets or solutions from prior competitions, which may lead to
overfitting or inflated performance on familiar tasks. To mitigate this, incorporating recent Kaggle
competitions and unseen datasets during evaluation can help assess generalization and reduce re-
liance on memorized patterns. Selecting diverse datasets from multiple sources is critical to capture
varied real-world scenarios, minimize systemic bias, and ensure broadly applicable and fair features.
Additionally, running experiments across multiple random seeds can provide a more robust assess-
ment of LLM-based frameworks, helping to quantify variability and improve reliability in feature
generation.
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