Under review as a conference paper at ICLR 2026

PIFE: PROGRESSIVE INSIGHT DRIVEN FEATURE EN-
GINEERING VIA MULTIMODAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite significant advances in Automated Machine Learning (AutoML), one of
its persistent blind spots remains the automation of data-centric tasks such as ex-
ploratory data analysis (EDA), contextual insight extraction, and feature engineer-
ing. These steps-often more critical than model selection itself-are still largely
manual, domain-specific, and reliant on human intuition. Existing automated fea-
ture engineering (AutoFE) techniques either rely on rigid transformation sets or
complex optimization strategies that struggle with interpretability and fail to lever-
age the rich, visual cues that guide human decision-making. In this work, we
introduce PIFE: Progressive Insight driven Feature Engineering via Multimodal
Reasoning; a novel AutoFE framework that employs multimodal language models
as collaborative agents in an iterative pipeline. PIFE systematically performs au-
tomated EDA, generating statistical summaries and visualizations that are jointly
interpreted through text—vision reasoning. These multimodal insights inform the
synthesis of candidate transformations, represented as symbolic programs in ex-
ecutable Python code to ensure interpretability and reproducibility. By coupling
iterative insight extraction with validation-driven refinement, PIFE produces high-
quality, interpretable features that consistently enhance the performance of diverse
predictive models, outperforming existing AutoFE baselines. Extensive experi-
ments across diverse tabular datasets demonstrate the effectiveness and adaptabil-
ity of our approach, paving the way for a new class of human-aligned, insight-
aware AutoFE systems.

1 INTRODUCTION

The rapid evolution of automated machine learning (AutoML) has significantly advanced model se-
lection, hyperparameter tuning, and performance optimization (Chopde et al.l [2025; |Aragao et al.,
2025; Hutter et al.|[2019; [Feurer et al., [2015};|Olson & Moore, [2016; Erickson et al.|[2020). However,
AutoML tools continue to face limitations in automating data engineering tasks, particularly ex-
ploratory data analysis (EDA), feature insight extraction, and systematic feature engineering. These
data-centric activities often dominate real-world machine learning workflows, where the transfor-
mation of raw tabular data into meaningful representations is a bigger bottleneck than model fitting.
Although automated feature engineering (AutoFE) has emerged as a subfield within AutoML, tra-
ditional methods, such as expansion-reduction algorithms (Kanter & Veeramachaneni, 2015} Lam
et al., 20215 Kaul et al. 2017; Shi et al., 2020; Katz et al., |2016)) typically construct large search
spaces composed of manually defined transformation operations and employ various search or op-
timization strategies to identify effective features. However, these methods are often limited by the
rigidity of their predefined operations and generally lack the integration of domain-specific knowl-
edge (Zhang et al.l 2023).

To reduce the cost of searching through large feature space and generate data-driven features,
learning-based AutoFE methods are proposed (Khurana et al., 2018; [Nargesian et al., 2017} (Chen
et al.| 2019} |Zhu et al.| |2022). However, these methods fall short in incorporating domain expertise
and contextual insights from data exploration. Similarly, evolutionary methods focus on optimiza-
tion strategies but neglect the nuanced, often visual cues that inform human-driven feature creation.
Language-powered systems like CAAFE (Hollmann et al., 2023)) and LLM-FE (Abhyankar et al.,
2025) have shown promise in bridging this gap by generating candidate features based on dataset
context and iterative refinement. However, these methods remain limited by feature simplicity, a

Under review as a conference paper at ICLR 2026

‘
J

[B] Insight guided (*
Feature Generation

/ [A] Exploratory Data
Analysis

LCMVEM EDA Code

A
~
\2

<
A

~
Vv

-I\
~ ‘
v
<D
_Jask Context

A
~
\

— \

Bug Fix

Bug Fix

)

I "

Va

Observation Debugger
Original Dataset and Debugger

) - -
Metadata N LLm FE Guidelines
X Rnxd
< EDA Refinement

—_ </>
Plots - Features 7|
Loop
\) EDA Observations Feature Importances | (Z:)
1, Feedback X1 = (X4, Zd

Updated Dataset \

B

Figure 1: Overview of PIFE Framework. For a given dataset, PIFE goes through the following steps.
(a) Exploratory Data Analysis and Data Insight Generation(b) Feature Generation via Symbolic
Program Synthesis

lack of interpretability regarding why certain features should be created (as opposed to merely ex-
plaining what they represent), and the absence of a truly data-driven approach. Furthermore, visual
patterns-such as distributional anomalies, multivariate correlations, or interaction structures-remain
underutilized despite their centrality in manual feature engineering workflows.

This gap highlights the opportunity to harness recent advancements in Large Language Models that
understand both textual and visual modalities to build a framework for automated insight extraction
and feature engineering. These models are capable of interpreting not only data descriptions but
also visualizations such as histograms, scatter plots, and heatmaps; elements that humans frequently
rely on during feature engineering in real-world scenarios. Yet, their potential in automating feature
generation grounded in rich exploratory insights has remained largely unexplored. A more effective
AutoFE pipeline must seamlessly incorporate insights from both narrative and visual representations
of data.

To address these challenges, we propose a novel AutoFE framework that integrates iterative EDA
cycles using a unified reasoning engine capable of understanding both text and plots. Our system
performs repeated rounds of insight extraction to build a deeper and comprehensive contextual un-
derstanding of the dataset, which then guides feature generation. The generated candidate features
are evaluated using a downstream predictive model, where the corresponding feature importance
serves as feedback to subsequent feature generation cycles. We argue that the broader process of
feature engineering can be naturally decomposed into two complementary stages: (i) feature gener-
ation and (ii) feature selection. While the former aims to enrich the feature space, the latter plays
a critical role in filtering redundant or irrelevant features and selecting an optimal subset that maxi-
mizes task performance. To emphasize the importance of this selection step, we conduct extensive
experiments comparing diverse feature selection methodologies and demonstrate that incorporating
effective selection strategies can further enhance the performance of automated feature engineer-
ing (AutoFE) pipelines. This feedback-driven, context-rich process enhances automation and in-
terpretability, while aligning closely with the iterative and insight-informed nature of human data
science workflows.

Contributions. The key contributions of this work are as follows:

* We propose the first automated feature engineering framework that integrates textual and
visual exploratory data insights into a unified, iterative pipeline.

* We highlight the central role of feature selection in AutoFE by conducting extensive exper-
iments across diverse selection methodologies, showing that effective selection strategies
further boost both predictive performance and interpretability compared to state-of-the-art
AutoFE methods.

* We conduct extensive experiments across various tabular datasets, demonstrating superior
performance and enhanced interpretability compared to state-of-the-art AutoFE methods.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Automated feature engineering (AutoFE) has emerged as a critical component in simplifying the
model development pipeline by transforming raw data into informative representations. Early ef-
forts such as Deep Feature Synthesis (DFS) (Kanter & Veeramachaneni, 2015), LFE (Nargesian
et al.l 2017), Cognito (Khurana et al., |2016), AutoFeat (Horn et al.l 2020), and OpenFE (Zhang
et al., [2023) employed exhaustive enumeration or heuristic-based transformation strategies, often
relying on predefined operator sets and lacking semantic understanding of domain-specific relation-
ships. OpenFE extended traditional methods via an expansion-reduction framework with incremen-
tal feature boosting and pruning, achieving strong empirical performance but still limited by its lack
of contextual reasoning and domain adaptivity.

More recent methods address these limitations through learning-based strategies. TransGraph (Khu-
rana et al., |2018)), Neural Feature Search (NFS) (Chen et al., 2019), and DIFER (Zhu et al., 2022)
adopted reinforcement learning and differentiable architecture search to explore high-dimensional
transformation spaces more efficiently. DIFER, in particular, proposed a differentiable encoder-
predictor-decoder pipeline to optimize feature embeddings in continuous space, though it primarily
supports numerical transformations. FETCH (Li et al.;,|2023) approached AutoFE as a Markov Deci-
sion Process, using a policy network trained across datasets to learn transferable feature construction
policies. Despite its generalizability, FETCH suffers from sparse rewards and computational over-
head, echoing challenges seen in DIFER and NFS.

In parallel, large language models (LLMs) have shown promise in data-centric applications, lever-
aging their contextual understanding to perform data wrangling, imputation, and semantic reason-
ing over tabular data (Hegselmann et al 2023} |[Narayan et al.| 2022; [Vos et al.| |2022). CAAFE
(Hollmann et al., [2023) was among the first to explore LLM-driven feature engineering, generat-
ing features based on dataset metadata and producing human-readable descriptions. However, it
lacks iterative feedback from prior search histories and relies on column descriptions to create fea-
tures. OCTree (Nam et al., |2024) augmented this by incorporating decision-tree reasoning into
LLM prompts, offering structured, contextual feedback for subsequent feature generation. OCTree
performs iterative refinement of feature generation rules until improvements in downstream perfor-
mance. While effective, this approach is susceptible to poor initialization in LLMs, which can hinder
convergence and overall effectiveness.

LLM-FE (Abhyankar et al,, 2025)) takes a different approach by casting feature engineering as
a program synthesis problem. It combines LLM reasoning, evolutionary strategies, and memory
buffers to maintain a population of candidate features, using both validation scores and information-
theoretic feedback to guide selection. This method addresses sparse rewards and brittleness in
prompting; it introduces a new challenge: by conditioning future generations on previously success-
ful feature transformations, the model may become biased toward certain transformation patterns.
This can skew the process toward exploitation, limiting its ability to explore novel and potentially
better features.

Our framework leverages LLMs as agents for in-depth EDA, identifying outliers, feature inter-
actions, and distributional patterns, which are mapped to candidate transformations and validated
via downstream performance-balancing automation, interpretability, and domain adaptivity beyond
prior AutoFE methods.

A. Rationale for EDA

To study interaction and non-linear effects, I examine the joint surface of
Average_Covered_Charges and reimbursement_rate against the target to
detect curvature and interaction; cross-category heterogeneity via a DRG-by-State
heatmap to expose geographic—clinical interplay; and utilization effects by relating
Total Discharges to the target with a smooth trend plus binned means to reveal
non-linear scaling and heteroskedasticity. Expected outputs highlight regimes where combi-
nations of drivers jointly shift payment levels, and where certain DRG—State combinations
systematically differ. Limitation: heavy tails may distort binning; quantile-based bins and
downsampling are applied as needed.

Under review as a conference paper at ICLR 2026

B. EDA Code Snippet

bins_x = quantile_bins (df_surface[num_x], g=12)

bins_y = quantile_bins (df_surface[num_y], g=10)

df_surface = df_surface.assign (_bx=bins_x, _by=bins_y)

Aggregate target mean for each 2D bin

surf_agg = (df_surface.groupby ([’'_bx’, ’"_by’]) [target_col]
.mean () .unstack (' _by’) .sort_index())

C. Generated Plots

Total_Discharges vs Average_Total_Payments: Non-linear trend and binned means

80000 — LOWESS trend

—- eans

70000

2 60000
g

3 50000

8 w0000

30000

Average,

20000

10000

D. EDA Analysis

Total Discharges vs target scatter with LOWESS: The relationship is non-linear with
a concave (increasing-then-flattening) trend; variance is high at low volumes and shrinks
as discharges grow. This motivates monotone, variance-stabilizing transforms and regime
features (e.g., ranks/bins).

DRG x State heatmap: There is strong cross-category heterogeneity—within the same
DRG, Provider_State causes sizable shifts in mean payments, and DRGs also differ
markedly in their baseline level. This supports both main effects (DRG, State) and their
interaction.

\. J

Figure 2: Exemplery run of PIFE on medical_charges_nominal dataset showing the process
of generating data insights. First, the rationale is generated, creating a plan for exploratory analysis
to be conducted. In B, this plan is translated into a program for EDA. In C, when the code is
executed, analysis plots are generated, and at the end, plots and statistics are analyzed to generate
statistics.

3 METHODOLOGY

PIFE is an iterative, insight-driven feature engineering framework that employs Large Language
Models (LLMs) and Vision-Language Models (VLMs) to emulate the reasoning workflow of a data
scientist. Instead of generating transformations directly from raw data, PIFE first constructs a multi-
stage hierarchy of EDA insights-statistical and visual—and then synthesizes symbolic transforma-
tion programs guided by these insights. Each iteration integrates downstream feedback, allowing
the system to refine subsequent EDA and transformation strategies. Figure ?? provides an overview
of the complete pipeline.

We divide our methodology into three parts: (1) problem definition and iterative objective, (2) hier-
archical EDA insight extraction using LLMs and VLMs, and (3) transformation rule synthesis and
downstream refinement. This provides additional explanation before introducing Algorithm [I]

3.1 PROBLEM FORMULATION

Let X € R™*? denote an input tabular dataset with n samples and d features, and let y € R™
represent the target variable. The goal of PIFE is to produce an enriched feature set X* € R"*4",

Under review as a conference paper at ICLR 2026

Algorithm 1 PIFE: Insight-Driven Iterative Feature Engineering

Input: Dataset X, target y, prior context P
Parameters: EDA rounds K, iterations 7'y, max features N
Output: Feature sets {Z;},~,

Initialize t + 0, Xy < X

1:

2: while t < T} do

3: Construct dataset description D; {column names, types}
4: Ct(o) «~D,UP {initial LLM context}
5: for kk: 1to K do

6: St() ComputeStats(X;) {quantiles, skewness, correlations}
7 ng) — LLM(CLSk_l) U St(k)) {statistical insights}
80 VM« Visualize(X,) {plots and distributions}
o 1P vLm™®) {visual insights}
10: Ct(k) — Ct(kfl) U ng) U Igfn)l {expand reasoning context}
11: end for

122 I Uf:l (ng) U Igﬁi) {consolidated insights}
13: G + LLM(I) {transformation guidelines}
14: Z; + GenerateFeatures(Gy, N) {symbolic programs — features}
15: 31+ M(X:UZy) {evaluate features}
16: ¢, + Importance(M, Z;) {feature importances }

17: Update feedback: P < P U ¢
18: Update dataset: X;11 < [X¢, Z¢]

19: t<—t+1
20: end while
=0

where d* > d, by repeatedly generating candidate transformations and incorporating only those that
improve predictive performance.

At each iteration ¢, the framework generates a set of candidate features Z; via a two-stage process:
hierarchical EDA insight extraction and symbolic transformation synthesis. These features are ap-
pended to the current dataset and evaluated using a downstream model M. Model predictions, along
with feature importances ¢;, form a feedback context P that guides subsequent EDA rounds:

Vi = M(X;UZy), ¢ =Importance(M,Z;), P + PU ;.

The dataset is updated as X411 = [Xy, Z;]. After T iterations, the best-performing feature set is
selected:
X* = arg max CV _Score(M, Xy, y).

3.2 HIERARCHICAL EDA INSIGHT EXTRACTION

A central aspect of PIFE is its hierarchical EDA structure, which mitigates randomness by guiding
the LLM through increasingly sophisticated analyses. This structure ensures that early iterations
capture coarse patterns, while later ones explore deeper interactions.

At iteration ¢, PIFE constructs the dataset description:

Dt = {(Cia Ti)}?él)
where c; is the feature name and 7; its type (numerical, categorical, temporal). This is merged with
accumulated feedback context P to initialize reasoning.
For k =1,..., K, PIFE performs structured EDA:

» Stage 0: univariate distributions, summary statistics, skewness, missingness.
* Stage 1: correlations, pairwise relationships, non-linear dependencies.
* Stage 2: temporal effects, categorical interactions, and outlier structure.

At each stage, the LLM receives statistical summaries, while the VLM analyzes visualizations—e.g.,
density plots, bivariate scatter plots, grouped temporal charts. Consolidating statistical and visual
signals produces the insight set I, upon which transformation rules are constructed.

Under review as a conference paper at ICLR 2026

3.3 SYMBOLIC TRANSFORMATION PROGRAM GENERATION

Given the consolidated insight set I;, an LLM produces a collection of transformation guidelines
G, each describing a candidate operation. These guidelines are synthesized into executable Python
programs which are run to produce the actual feature columns. Concretely, the system generates a
set of Python feature-generation scripts, executes them, and collects the resulting candidate trans-
formations:

Zt:{zt713'~'7zt7nt}a ntSNa

where each z; ; is materialized by executing the corresponding Python program.

We use Reverse Polish Notation (RPN) only as an auxiliary representation for analysis and
validation: RPN helps inspect operator ordering, detect redundant or ill-formed expressions,
and perform lightweight static checks on transformation pipelines before execution. This dual
strategy-readable, executable Python for generation and RPN for program-order analysis-preserves
interpretability, facilitates debugging, and avoids opaque, black-box feature construction.

3.4 ITERATIVE REFINEMENT AND DOWNSTREAM FEEDBACK

Finally, each iteration evaluates the generated features using a downstream model M. Feature
importances ¢; provide a compact summary of which transformations contributed meaningfully.
These importances are reintegrated into the feedback context P, enabling the next iteration to focus
on relevant transformations, avoid redundant patterns, and maintain diversity of features.
This closed-loop design-EDA — synthesis — evaluation; ensures that PIFE incrementally refines
the search space and maintains interpretability while improving predictive performance.

4 EXPERIMENTS

In this section, we evaluate PIFE over several classification and regression datasets spanning across
various domains such as healthcare, finance, real estate, weather forecasting, etc. Our experiments
reveal that PIFE consistently improves the performance of predictive models (Section[.2). Ablation
studies (Section show that data-grounded insight extraction helps create features that are more
aligned to the downstream objective. Also, feature selection is often not focused on in the scope of
feature engineering, which plays a pivotal role in boosting the performance of predictive models.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate PIFE across 22 tabular tasks, encompassing both classification and regres-
sion objectives. The majority of datasets are drawn from prior AutoFE literature (Li et al.| |2023)),
ensuring coverage of diverse domains, scales, and complexity levels. Additionally, we include a set
of recent Kaggle datasets (Kaggle) (e.g., ps5_episode_3, ps5_episode_4), which were not
part of the pretraining corpora of large language models, providing a test of robustness to novel data
sources. Detailed dataset information is provided in Table 6]

Metrics. For classification tasks, we use Fl-micro (Sokolova & Lapalme, [2009), and for re-
gression tasks, we use (1 — relative absolute error) (Shcherbakov et al., 2013) as the evaluation
metric for downstream models. Higher values correspond to better model performance. To quantify
improvements, we also report the percentage increase over a baseline score, reflecting relative
efficacy.

Baselines. We compare PIFE against a diverse set of baseline methods representing key
paradigms in automated feature engineering, all of which have publicly available, executable
open-source implementations to ensure reproducibility. Heuristic-based approaches include
AutoFeat|Horn et al.| (2020), DFS (Deep Feature Synthesis) |Kanter & Veeramachaneni| (2015)), and
OpenFE [Zhang et al| (2023), which rely on expansion and reduction strategies over predefined
transformations. Among LLM-based approaches, we include CAAFE |Hollmann et al.| (2023),
leveraging LL.Ms for feature generation and refinement using metadata, prompts, or reasoning
frameworks, and OCTree Nam et al.| (2024), which employs rule-based feature generation and
CART decision tree inputs to improve feature quality. The CAAFE and OCTree implementations
were adapted to support newer LLM models and extended to handle both classification and
regression tasks, with additional metrics introduced for fairer comparison. However, certain recent
methods, such as LLM-FE |Abhyankar et al.| (2025)), are excluded due to incomplete publication of

Under review as a conference paper at ICLR 2026

methodology and evaluation details, which would limit fair comparison. Additional discussion is
provided in Appendix

Implementation Details. To ensure reliable evaluation, we perform 5-fold cross-validation
on the training set, mitigating overfitting and yielding robust performance estimates. Results
are reported as mean =+ standard deviation over three random seeds (42, 44, 46) to account
for stochasticity in LLMs and training pipelines. We use the given specific versions of LLMs
and VLMs: gpt-4.1-2025-04-14 and gpt-5-2025-08-07. Given that gpt-4.1 and gpt-5 include
built-in vision capabilities, we adopt them as our core VLM components for all experimental
evaluations. For fairness, all datasets are preprocessed by imputing or removing missing values and
encoding categorical variables, as most downstream models lack native support. Further details
on LLM prompting strategies (Appendix [A.13)), hyperparameters (Appendix [A.10), and additional
configuration settings are provided in Appendix [A]

Table 1: Comparison of AutoFE methods across method compatibility and performance (mean +
std) for different LLMs. Tick (/) indicates presence, cross (X) indicates absence of a feature. Results
are averaged across 3 seeds, with each seed evaluated using 5-fold cross-validation and Random For-
est as the predictive model. We report the f1-micro score for classification and (1-rae) for regression
datasets.

Method Context Without Interpretable LLM Avg. Score (%)
Aware Description Feature
Baseline X X X - 0.7558 £ 0.1017
DFS X X - 0.7718 £ 0.1101 (2.12%)
Autofeat X X - 0.7651 £ 0.0948 (1.23%)
OpenFE X X - 0.7684 + 0.0922 (1.67%)
ept-4.1" 0.7791 =+ 0.1068 (3.08%)
CAAFE x opt-5° 0.7900 == 0.0996 (4.53%)
gpt-4.l* 0.7745 + 0.0958 (2.47%)
OCTree X X opt-5" 0.7750 + 0.0969 (2.54%)
ept-4.1" 0.7908 + 0.1105 (4.63%)
PIFE (Ours) opt-5° 0.7917 + 0.1037 (4.75%)

* All experiments were conducted using LLM versions gpt-4.1-2025-04-14 and gpt-5-2025-08-07.

4.2 PERFORMANCE COMPARISONS

Table [1| highlights PIFE as the most effective and practical AutoFE method: it attains the top av-
erage score while preserving semantic interpretability and context awareness, and it works even
without dataset descriptions. Classical baselines (DFS, Autofeat, OpenFE) offer modest gains but
lack contextual understanding and interpretability. Among LL.M-based methods, PIFE leads fairly:
with gpt-4.1, it improves 4.63% over the Baseline (without feature engineering) versus 3.08% for
CAAFE; with gpt-5, the gap narrows, but PIFE still edges ahead, suggesting stronger reasoning
models reduce, but do not erase, method-level differences. These results demonstrate that PiFE
consistently improves performance across seeds and folds, producing interpretable, context-aware
features with minimal dependence on the latest LLMs. Full results are reported in Appendix Table[7]

4.3 ABLATIONS

Impact of EDA. To assess the contribution of the EDA component in insight-driven feature
generation, we compare model performance with and without EDA in Table 2] Even without EDA,
the generated features are optimized and achieve competitive results. However, EDA provides a
data-grounded mechanism for feature generation, enabling the capture of complex relationships
and trends that are difficult to model when relying solely on LLM optimization or metric-based
feedback. We observe that certain datasets exhibit limited performance gains from inclusion of
EDA.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of Baseline, w/o EDA, and w/ EDA across multiple datasets
under the No Feature Selection setting. The best value per dataset is highlighted in bold. Percentage
improvement over the baseline is shown in parentheses. We report f1-micro score for classification
(*) and (1-relative absolute error) for regression (1) datasets.

Dataset Baseline w/o EDA w/ EDA

adult” 0.850 0.852 (0.3%) 0.853 (0.3%)
fertility” 0.829 0.873 (5.4%) 0.880 (6.2%)
medicall,charges,nominalT 0.891 0.922 (3.5%) 0.903 (1.4%)
openml_586" 0.613 0.729 (18.8%) 0.772 (25.9%)
pima_indian” 0.700 0.759 (8.3%) 0.754 (7.7%)
ps5_episode_4" 0.571 0.577 (1.2%) 0.578 (1.3%)

Interpretability of Features from EDA. From our observations above, across a wide range of
datasets spanning diverse domains, the overall performance improvements remain modest, a closer
examination of what our framework actually achieves is essential for understanding the value of
incorporating visual cues from EDA into the feature engineering process.

Our experimentation runs reveals interesting insights on how EDA-driven visual insights lead
to more grounded, interpretable, and context-aware feature construction, in contrast to older ap-
proaches that rely heavily on randomness or brute-force search. By examining a few representative
examples (Appendix [A.6), we can better illustrate the specific benefits, the interpretability gains,
and the underlying reasoning behind each feature generated. These examples highlight how visual
patterns-often invisible to purely statistical or automated methods-guide the system toward features
that meaningfully capture complex relationships within the data.

Feature Selection: Trade-offs and Downstream Performance. Although PIFE can generate
interpretable and statistically strong features, they might not reflect the same way on performance.
Therefore, effective feature selection is crucial to identify the optimal subset of features. To
evaluate this, we compare three approaches: Model-based Feature Importance(MFI), Conditional
Mutual Information-based Bayesian Optimization (CMI-BO), and Genetic Algorithm(GA) (see the
Appendix [A.12). CMI-BO and MBFI did not show any improvement in performance. The genetic
algorithm, while computationally intensive, gave the best performance compared to others. We can
see that the set of features generated by PIFE enabled good exploration inthe Genetic Algorithm.
In this way, PIFE complements these approaches by producing a concise, high-quality subset
of features, making downstream optimization more efficient while maintaining strong predictive
performance.

Table 3: Performance comparison of PIFE with feature selection during run (using CMI and valida-
tion) and after the run (using a Genetic Algorithm), with GPT-5 as the downstream model. Reported
metrics are F1-micro for classification datasets and (1-relative absolute error) for regression datasets.

Dataset Baseline PIFE PIFE(CMI-BO) PIFE(MFI) PIFE(GA)
adult 0.85140.001 0.85340.001 0.853+0.001 0.851+0.002 0.85540.001
fertility 0.853+0.006 0.88+0.010 0.873=+0.015 0.87340.006 0.89-0.008

openml_586 0.662+0.009 0.765+0.012 0.742+0.025 0.76040.001 0.792+0.002
pima_indian 0.73940.010 0.75440.01 0.7554+0.005 0.76+0.010 0.777+0.002

Feature transferability is critically dependent on model inductive bias. Transformations that
encode tree-like, thresholding behaviour generally transfer well to tree ensembles but can degrade
performance for neural or transformer architectures that favour smooth, continuous representations
or learned embeddings. Moreover, near-ceiling baseline performance leaves little headroom for
gains. Finally, transfer success is dataset-dependent, being modulated by sample size, noise,
feature types, and the specific nature of engineered transformations. Engineered features should be
validated on the intended downstream model family.

Under review as a conference paper at ICLR 2026

Table 4: Feature Transferability of PiFE-generated Features to Deep Learning Models (MLP,
TabPFN(Hollmann et al.| 2023), and HyperFast (Bonet et al., |2024)). * denotes classification and
Tdenotes regression tasks. HyperFast (NA) only runs on classification tasks.

MLP TabPFN HyperFast

Dataset

Baseline PIFE (Ours) Baseline PIFE (Ours) Baseline PIFE (Ours)
hepatitis” 0.862+0.020 0.85240.016 0.8324+0.005 0.8264-0.005 0.815+0.015 0.843+0.007
airfoil 0.735+0.001 0.802+0.001 0.886+0.002 0.884+0.001 NA NA
credit_approval” 0.888::0.002 0.884::0.002 0.874::0.005 0.863:£0.005 0.861::0.006 0.847-:0.003
spectf” 0.828+0.003 0.81+0.014 0.798+0.005 0.8064-0.005 0.792+0.007 0.805+0.01
megawatt_1" 0.900+0.008 0.908+0.004 0.893+0.003 0.89540.008 0.865+0.008 0.884+0.007
housing_boston” 0.7010.001 0.706::0.001 0.735£0.001 0.735-:0.001 NA NA

Integrating with other AutoFE Methods. Engineered features from PIFE can serve as in-
put to other AutoFE frameworks. We experimented with OpenFE as the integrated framework and
report the results in Table 5] Overall, integrating PIFE features with OpenFE didn’t result in a
substantial improvement. This can be seen as a positive outcome: PIFE already identifies a strong
set of features on its own. By leveraging insights from exploratory data analysis (EDA) and domain
knowledge encoded in LLMs, along with natural language descriptions of the data, PIFE generates
features that are both meaningful and predictive. Even after exploring a large space of additional
candidate features (~2000) in OpenFE, there is little to no gain, and in some cases, performance
slightly decreases. This highlights the robustness and quality of the features generated by PIFE.

Feature Order Analysis. PIFE Table 5: Performance comparison of PIFE and PIFE" (extended
is capable Pf creating higher- to OpenFE) across competitions. Values: mean + standard devi-
order meaningful features and ation. All results are based on gpt-5. f1-micro score for classifi-

can be scgled We!l for creating cation and (1-relative absolute error) for regression datasets.
complex interactions between

features due to its iterative Competition PIFE PIFE'
nature of feature generation. adult 0.851£0.002 0.855 £ 0.002
We can see that some of the fertility 0.870 £ 0.040 0.870 £ 0.040
new features created have an medical_charges_ nominal 0.905 + 0.000 0.907 + 0.001
order greater than the number of openml_586 0.773 £ 0.023 0.790 £ 0.010
feature engineering steps. From openm.1,607 0.732 £ 0.012 0.752 + 0.023
this, we can infer that LLM is psS_episode_4 0.578 & 0.001 0.579 + 0.016
Average 0.778 +0.107 0.780 £ 0.105

attempting to create complex,
higher-order features in a single feature engineering step.

Flexibility Towards Predictive Models. PIFE generalizes well across various downstream pre-
dictive models, showing consistent improvements with Logistic Regression, Random Forest, and
XGBoost. As expected, tree-based models, which can capture non-linear relationships among fea-
tures, generally outperform linear models such as Logistic Regression.

5 CONCLUSION

We present PIFE, a multimodal AutoFE framework that leverages textual and visual insights from
datasets to iteratively generate and select predictive features. By combining exploratory data
analysis with LLM-guided reasoning, PIFE automates feature engineering in a way that mirrors
human workflows, enhancing both performance and interpretability.

Our experiments across diverse tabular datasets demonstrate that effective feature selection ampli-
fies the benefits of automated feature generation. However, PIFE has limitations: large feature sets
can lead to prompt size constraints, automatically derived dataset descriptions and visualizations
may be noisy, and LLMs can produce plausible but ungrounded features. Additionally, results can
vary across random seeds, underscoring the importance of multiple runs for robustness.

Future work includes improving multimodal reasoning, fine-tuning models for better feature

Under review as a conference paper at ICLR 2026

Proportion of Different Order Features

order
. order=1
order=2
we order=3
order=4
mmm order=5
order=6
mmm order=7
order=8
mmm order=9
order=10
mmm order=11
order=12
m order=13
order=20
mmm order=21
order=22
order=23
order=24
mm order=25
order=26

8 5

Number of Features
N
S

Dataset

Figure 3: Order of features created per competition. This is based on the gpt-5 runs from Table

1
M Baseline
0.9

u PIFE

0 II II II

(a) Random Forest (b) Logistic Regression (c) XGBoost

Avergae Validation Score
o o © o o o o
N oL s o o N ®

o
o

Figure 4: Performance of PIFE with predictive models. All results use GPT-5 as base LLM with
the same hyperparameters as the main table. We report fl-micro for classification and (1-relative
absolute error) for regression datasets.

generation, integrating human-in-the-loop interactions, and incorporating continuously updated
datasets to reduce memorization biases. PIFE represents a step toward context-aware, interpretable,
and robust automated feature engineering.

REFERENCES

Nikhil Abhyankar, Parshin Shojaee, and Chandan K Reddy. Llm-fe: Automated feature engineering
for tabular data with llms as evolutionary optimizers. arXiv preprint arXiv:2503.14434, 2025.

Marcelo VC Aragdo, Augusto G Afonso, Rafaela C Ferraz, Rairon G Ferreira, Savio G Leite, Fe-
lipe AP de Figueiredo, and Samuel B Mafra. A practical evaluation of automl tools for binary,
multiclass, and multilabel classification. Scientific Reports, 15(1):17682, 2025.

David Bonet, Daniel Mas Montserrat, Xavier Gir6-i Nieto, and Alexander G Ioannidis. Hyper-
fast: Instant classification for tabular data. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11114-11123, 2024.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71-80.
IEEE, 2019.

Abhishek Chopde, Fardeen Pettiwala, Sankar Kirubananth, Sai Kiran Botla, and Pachipu-
lusu Ayyappa Kethan. PiML: Automated machine learning workflow optimization using LLM
agents. In AutoML 2025 Methods Track, 2025. URL https://openreview.net/forum?
1id=NwlgBpsjZz.

10

https://openreview.net/forum?id=Nw1qBpsjZz
https://openreview.net/forum?id=Nw1qBpsjZz

Under review as a conference paper at ICLR 2026

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models, 2023. URL
https://arxiv.org/abs/2210.10723.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Noah Hollmann, Samuel Miiller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36:44753—-44775, 2023.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection, 2020. URL https://arxiv.org/abs/1901.07329,

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

Kaggle. Kaggle: Your machine learning and data science community. https://www.kaggle.
com. Accessed: 2025-09-24.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1-10. IEEE, 2015.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. In 2016 IEEE 16th international conference on data mining (ICDM), pp. 979-984.
IEEE, 2016.

Ambika Kaul, Saket Maheshwary, and Vikram Pudi. Autolearn—automated feature generation and
selection. In 2017 IEEE International Conference on data mining (ICDM), pp. 217-226. IEEE,
2017.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th international conference
on data mining workshops (ICDMW), pp. 1304—1307. IEEE, 2016.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba, Udayan Khurana,
Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and Horst Samulowitz. Automated data
science for relational data. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 2689-2692. IEEE, 2021.

Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning
a data-driven policy network for pre-training automated feature engineering. In The Eleventh
International Conference on Learning Representations, 2023.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
association for computational linguistics: ACL 2022, pp. 2263-2279, 2022.

11

https://arxiv.org/abs/2210.10723
https://arxiv.org/abs/1901.07329
https://www.kaggle.com
https://www.kaggle.com

Under review as a conference paper at ICLR 2026

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmo-
hammadi, Megh Thakkar, Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty. Chartqapro:
A more diverse and challenging benchmark for chart question answering, 2025. URL https:
//arxiv.orqg/abs/2504.05506.

Octavio César Mesner and Cosma Rohilla Shalizi. Conditional mutual information estimation for
mixed, discrete and continuous data. IEEE Transactions on Information Theory, 67(1):464-484,
2020.

Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jachyung Kim, and Jinwoo Shin. Op-
timized feature generation for tabular data via llms with decision tree reasoning. Advances in
Neural Information Processing Systems, 37:92352-92380, 2024.

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré. Can foundation
models wrangle your data?, 2022. URL https://arxiv.org/abs/2205.09911,

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In jcai, volume 17, pp. 2529-2535, 2017.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66—74. PMLR, 2016.

Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna Shcherbakova, An-
ton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Valeriy Anatol’evich Kamaev, et al. A
survey of forecast error measures. World applied sciences journal, 24(24):171-176, 2013.

Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable
automatic feature engineering framework for industrial tasks. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pp. 1645-1656. IEEE, 2020.

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classifica-
tion tasks. Information processing & management, 45(4):427-437, 2009.

David Vos, Till Déhmen, and Sebastian Schelter. Towards parameter-efficient automation of data
wrangling tasks with prefix-tuning. In NeurlPS 2022 First Table Representation Workshop, pp.
1-9, 2022.

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao,
and Li Jian. Openfe: Automated feature generation with expert-level performance. In Interna-
tional Conference on Machine Learning, pp. 41880-41901. PMLR, 2023.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pp. 17-1.
PMLR, 2022.

Yufeng Zou, Jean Utke, Diego Klabjan, and Han Liu. Automated feature engineering by prompting,
2025. URL https://openreview.net/forum?id=2X071URZfW.

12

https://arxiv.org/abs/2504.05506
https://arxiv.org/abs/2504.05506
https://arxiv.org/abs/2205.09911
https://openreview.net/forum?id=ZXO7iURZfW

Under review as a conference paper at ICLR 2026

A APPENDIX
A.l

We release our code to ensure reproducibility of experiments at ht tps://anonymous.4open.
science/r/pife-T7FES5, The repository includes the main PiFE pipeline, integrations with
baseline frameworks, and scripts for ablation studies. Additionally, we provide the datasets used in
our experiments, including modifications made to publicly available datasets to facilitate consistent
evaluation.

REPRODUCIBILITY

A.2 DATASET COLLECTION, PREPROCESSING AND RESULTS

The datasets are collected by ensuring that contamination is minimal. The formatted data description
contains the task, dataset description, target, and objective. We are handling missing values by
replacing them with numeric values using the mean and filling missing categorical values with the
most frequent value. Categorical columns are encoded with ordinal encoding. The EDA process is
informed about the preprocessing steps taken by providing the preprocessing context to the module.
C and R in Table[6]represent Classification and Regression task types, respectively.

Table 6: Summary of Benchmark Datasets

Name Alias Source Type (C/R) Inst./Feat. Subject Area

Adult adult UCI C 48842/ 14 Social Science
Credit Approval credit_approval UCI C 690/ 15 Business

Default Credit Card default_credit_card UCI C 30000/ 23 Business

Fertility fertility ucCI C 100/9 Health and Medicine
Give Me Some Credit give_me_credit Kaggle C 251503/10 Finance

Hepatitis hepatitis UcCl C 155719 Health and Medicine
Megawatt] megawatt_1 OpenML C 253/37 Mathematics
Diabetic Retinopathy Debrecen messidor_features UCI C 1151719 Health and Medicine
Pimalndian pima_indian Kaggle C 768 /9 Health and Medicine
Poker Hand poker_hand UCI C 1025010/10 Games

Rainfall Dataset ps5_episode_3 Kaggle C 2920/ 11 Weather and Climate
SPECTF spectf UCl C 267 /44 Health and Medicine
Statlog German Credit statlog_german_credit UCI C 1000/ 20 Social Science

Wine Quality wine_quality UCI C 4898 /11 Business

Airfoil airfoil UCI R 1503/5 Physics and Chemistry
House King County house_king_county Kaggle R 21613/20 Business

Housing Boston housing_boston UCI R 506/ 13 Finance

Medical Charges Nominal medical_charges_nominal OpenML R 163065/ 11 Business

OpenML 586 openml_586 OpenML R 1000 /25 Mathematics
OpenML 589 openml_589 OpenML R 1000/ 25 Mathematics
OpenML 607 openml_607 OpenML R 1000/ 50 Mathematics
Podcast Listening Time psS5_episode_4 Kaggle R 1000000/ 10 Entertainment

Table 7: Performance comparison across different AutoFE methods. Values represent mean + stan-
dard deviation of the metric score. We use F1-micro for classification and (1 - rae) for regression

tasks. Random Forest was used as a downstream predictive model.

Competition | Baseline | OpenFE | DFS | Autofeat | CAAFE | OCTREE | PIFE (Ours)

| (NOFE) | | | | ept41 | pt-5 | gpt4l | ept-5 | gpt-4.1 | ept-5
adult 0.8511 +o0007 | 0.8538 +o00004 | 0.8547 00009 | 0.8472 +00003 | 0.8532 +00021 | 0.8500 +00012 | 0.8547 +o0000s | 0.8529 00000 | 0.8853 = 00609 | 0.8526 00013
airfoil 0.7436 +o0ms | 0.7473 00007 | 0.7384 +o00037 | 0.7508 +o000s2 | 0.7428 +o00013 | 0.7613 +00024 | 0.7555 +o000e2 | 0.7513 +000ss | 0.7480 00047 | 0.7588 +0.0060
credit_approval 0.8531 = 00093 | 0.8585 00051 | 0.8589 =o00ss | 0.8604 +oooso | 0.8609 +o0oss | 0.8565 00124 | 0.8667 00025 | 0.8681 00063 | 0.8763 = 00344 | 0.8659 = o0.0010
default_credit_card 0.8070 = 00007 | 0.8072 00007 | 0.8079 00008 | 0.8087 00021 | 0.8061 +o0015 | 0.8067 o003 | 0.8093 00009 | 0.8090 00002 | 0.8092 00008 | 0.8088 = 0.0003
fertility 0.8533 +o00ss | 0.8633 o015 | 0.8733 +o00ss | 0.8533 +o000ss | 0.8600 +o00100 | 0.8533 +o000ss | 0.8900 + 00000 | 0.8900 + 00100 | 0.8733 £ 00153 | 0.8800 = 00100
give_me_credit 0.9336 + 00001 | 0.9328 00002 | 0.9334 +0000¢ | 0.9337 +00002 | 0.9339 +00005 | 0.9335 00002 | 0.9341 + 00001 | 0.9342 + 00004 | 0.9337 200001 | 0.9337 + 00002
hepatitis 0.8151 00372 | 0.8172 00244 | 0.7871 xo0m | 0.8194 +omm | 0.8280 +o00037 | 0.8086 +0007s | 0.8366 +0009 | 0.8473 + 00207 | 0.8151 +0013¢ | 0.8172 00325
house_king_county 0.6865 = 00015 | 0.6887 o006 | 0.6792 =o0on | 0.6875 +ooos | 0.6878 +o0037 | 0.6948 +o00s4 | 0.6883 +oooos | 0.6897 o003 | 0.6958 = 00010 | 0.6909 00014
housing_boston 0.6388 00063 | 0.6488 00108 | 0.6306 + 0004 | 0.6482 +0003 | 0.6380 +o0000 | 0.6459 +o0100 | 0.6547 +00037 | 0.6483 +o00s0 | 0.6422 0004 | 0.6445 = 00060
medical_charges_nominal | 0.8926 +o0002 | 0.8986 00002 | 0.8914 00003 | 0.8922 o000 | 0.8954 00021 | 0.8978 o000t | 0.8929 +oom2 | 0.8928 +o0001 | 0.8991 +00007 | 0.9033 + 00019
megawatt_1 0.8920 = 0009 | 0.8855 o008 | 0.8802 =o0000s | 0.8907 +o0100 | 0.8920 +o00009 | 0.8854 o014 | 0.8973 £oo0ss | 0.8947 o009 | 0.9000 = 00022
messidor_features 0.6539 o0z | 0.7197 £ 00205 | 0.7219 200002 | 0.7416 00070 | 0.6733 00066 | 0.6794 o003 | 0.6814 ooois | 0.6652 = o0010 | 0.6858 = 0019
openml_586 0.6619 + 00003 | 0.7162 00103 | 0.6666 + 00134 | 0.7108 +000s2 | 0.6880 +00206 | 0.7735 +00270 | 0.7200 + 00033 | 0.7200 + 00033 | 0.7185 +00300 | 0.7721 00013
openml_589 0.6557 00032 | 0.7022 + 00059 | 0.6750 +00031 | 0.6870 +o00012 | 0.7208 +o0006s | 07711 +o00162 | 0.6961 +o0036 | 0.6961 +o00036 | 0.6954 + 0031 | 0.7351 00148
openml_607 0.6362 + 00083 | 0.7036 +0000s | 0.6326 + 00002 | 0.6506 +00126 | 0.6986 +00s3s | 0.7655 +o000s1 | 0.6916 +o000s4 | 0.6916 +o00ss | 0.7225 + 00147 | 0.7254 00176
pima_indian 0.7391 = o00007 | 0.7574 00033 | 0.7452 oo | 0.7353 o033 | 0.7404 o004 | 0.7405 £ooors | 0.7587 £oowss | 0.7505 +o00s3 | 0.7609 = 00087 | 0.7543 00098
poker_hand 0.6862 + 00041 | 0.6862 00041 | 0.9973 00001 | 0.6862 +00041 | 1.0000 00000 | 1.0000 00000 | 0.7370 00365 | 0.7856 + 00579 1.0000 - 0.0000
psS5_episode_3 0.8511 + 00036 | 0.8490 +o000s | 0.8486 +o000ss | 0.8511 +o00036 | 0.8551 +o00013 | 0.8560 +o001s | 0.8601 + 00025 | 0.8565 + 0056
psS_episode_4 0.5767 = o000s | 0.5791 00000 | 0.5736 =o0000 | 0.5767 +o0003 | 0.5771 o000 | 0.5773 00005 | 0.5772 o001 | 0.5772 + 00003
spectf 0.7926 = 00057 | 0.7851 0025 | 0.7826 x00247 | 0.7926 00057 | 0.7851 ooz | 0.8114 £ooose | 0.8200 = o000 | 0.8064 00076
statlog_german_credit 0.7507 00038 | 0.7443 o00s0 | 0.7457 00087 | 0.7523 o003 | 0.7490 +o000s2 | 0.7533 +o000s0 | 0.7547 +o003s | 0.7597 + 00025
wine_quality 0.6575 + 00057 | 0.6600 + 00073 | 0.6545 +o000ss | 0.6564 +00017 | 0.6545 +00047 | 0.6575 +00057 | 0.6623 +00028 | 0.6619 00024 | 0.6572 00017 | 0.6608 = 0.004
Average Score | 0.7558 <0101 | 0.7684 =00 | 0.7718 =otr0r | 0.7651 +oowss | 0.7791 =or0as | 0.7900 =096 | 0.7745 +o0sss | 0.7750 +o0mo | 0.7908 = o105 | 07917 =013

13

https://anonymous.4open.science/r/pife-7FE5
https://anonymous.4open.science/r/pife-7FE5
https://www.kaggle.com/competitions/GiveMeSomeCredit
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/competitions/playground-series-s5e3
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.kaggle.com/competitions/playground-series-s5e4

Under review as a conference paper at ICLR 2026

A.3 EVALUATING PIFE UNDER REALISTIC TRAIN-TEST SPLITS

In our setup, we sought to closely mimic how feature engineering is typically performed in real-
world applications by practitioners. Since a central objective of machine learning is to generalize
effectively to unseen data, we designed our evaluation of PiFE to reflect this scenario. Each dataset
was randomly split into training and test sets in a 70/30 ratio. The feature search process was
restricted to the training split, where cross-validation was applied, while the test split was kept
strictly unseen and used only for final evaluation. To mitigate order-related bias, all datasets were
shuffled with fixed random seeds prior to splitting. This procedure may introduce slight variations in
the reported scores compared to earlier tables. The detailed results of this evaluation are presented
in Table 8]

Table 8: Performance comparison across competitions. Values are mean =+ std (tiny). Best values in
each Train/Test column group are in bold.

C . \ Baseline CAAFE OpenFE OCTree PIFE
‘ompetition
| Train Test | Train Test | Train Test | Train Test | Train Test

adult 0.8493 00006 0.8495 o014 | 0.8504 +o0007 0.8487 00044 | 0.8530 00003 0.8420 +ooos7 | 0.8526 +ooois 0.8518 +o0033 | 0.8504 oo 0.8517 +ooos0
fertility 0.8571 +002s6 09000 00333 | 0.8619 00360 0.8667 00333 | 0.8571 200247 0.8667 00000 | 0.8905 00215 0.8556 00192 | 0.9095 00360 0.8667 00000
medical_charges_nominal | 0.8913 +ooms 0.8918 00004 | 0.9001 o060 0.8978 00049 | 0.8975 00005 0.8782 oo0ss | 0.8916 o000+ 0.8919 x00002 | 0.9000 o001 0.8982 +o.0027
openml_586 0.6221 +ooiss~ 0.6603 +o00195 | 0.7713 +o0260 0.7461 00201 | 0.6780 +0.0327 0.6992 00066 | 0.6927 00147 0.7133 o017 | 0.7294 zo0i70 0.7271 +00292
pima_indian 0.7344 +o0336 0.7287 +o026s | 0.7455 +o024s 0.7359 200263 | 0.7524 00105 0.7460 00222 | 0.7692 00153 0.7273 +o033s | 0.7698 o013 0.7677 o275
psS5_episode_4 0.5714 +o0006 0.5753 +o000s | 0.5738 +00027 0.5772 00030 | 0.5744 +o0002 0.5557 +oo00s | 0.5721 o001 0.5757 +o0006 | 0.5733 o000+ 0.5703 o030
Average ‘ 0.7543 +0126s 0.7676 +o.1268 ‘ 0.7838 +on2s 0.7787 01128 ‘ 0.7688 +o11s2 0.7646 +onm ‘ 0.7781 +one 0.7693 01134 ‘ 0.7887 +0a20s 0.7803 so.1148

The results indicate that PIFE consistently delivers strong performance, achieving both high cross-
validation scores on the training data and correspondingly high accuracy on the test data across a
large majority of datasets. This alignment suggests that effective feature engineering plans discov-
ered by PIFE are not only tuned for the training split but also generalize reliably to unseen data,
reinforcing the robustness of the approach.

A.4 ADDITIONAL EXPERIMENTS AND EDA-GUIDED FEATURE EXAMPLES FOR TIME
SERIES DATA

This appendix provides (i) extended time-series benchmarks, (ii) illustrative EDA visualizations
used by PIFE during feature synthesis, and (iii) detailed examples of derived features and their
evaluation metadata. These additions complement the main paper and shows the robustness across
modalities and the grounding of generated features in data-driven diagnostics.

A4l

To assess generalization beyond tabular data, we evaluated PIFE on five datasets from the UCR
Time Series Archive. Using gpt-5 as both LLM and VLM, PIFE consistently improves over
strong baselines, demonstrating that EDA-driven feature synthesis transfers effectively to temporal
domains. Table Q|reports accuracy and relative improvements.

TIME-SERIES CLASSIFICATION RESULTS

Table 9: PIFE performance on UCR time-series classification datasets.

Dataset Baseline PIFE % Improvement
ItalyPowerDemand 0.67 £0.06 0.70 £ 0.05 4.48
GunPoint 0.99 £0.01 1.00+£0.00 1.01
Coftee 0.83£0.02 0.87+£0.02 4.82
ECG200 0.96 +0.01 0.99+ 0.00 3.13
Beef 0.82+0.01 0.93+0.02 13.41

These results show that PIFE’s EDA routines; including autocorrelation profiling, summary lag
statistics, seasonality checks, and rolling-window diagnostics; enable meaningful temporal feature
construction without requiring modality-specific prompts or architectural changes.

A.4.2 ILLUSTRATIVE EDA VISUALIZATIONS AND DERIVED FEATURES

We present representative examples from two datasets (coffee, ECG200), demonstrating how
PIFE leverages VLM-based interpretation of plots to guide feature design.

14

Under review as a conference paper at ICLR 2026

Case Study: coffee Figure [5|shows a VLM-interpreted 2D KDE scatter of (¢231,t160). Listing
shows the interpretation of VLM, Listing [2] demonstrates the generated Python code for the inter-
preted feature, and Listing 3] shows evaluation metadata for the same feature.

Listing 1: VLM Interpretation for 2D KDE plot from coffee dataset

The global Pearson correlation is moderately negative (-0.593), while
within-class correlations are weakly positive or near zero. This
suggests that cross-band contrasts; particularly normalized
differences; may highlight discriminative spectral shifts.

2D Separation (Raw Timesteps): £ 231 vs t_160
1.2 Class 0
Class 1
11
1.0

0.9

t 160

0.7
0.6
0.5

1.0 1.2 14 1.6 1.8 2.0
t 231

Figure 5: 2D KDE scatter for cof fee (channels 231 vs. t160).

Listing 2: Cross-band normalized contrast feature (ASCII minus) from coffee dataset

Transformation 3: Cross-band normalized contrast on strongest late/mid

pair -> 1 final feature
crossband_normdiff_231_160 = (t_231 - t_160) / (t_231 + t_160)
den_train = df_train[’t_231"] + df_train[’t_160"]
df_train[’crossband normdiff 231 _160"] = np.where (

np.abs(den_train) > EPS,

(df_train([’t_231"] - df_train([’t_160"]) / den_train,

0.0

Listing 3: Evaluation metadata for crossband_normdiff_231_160 from coffee dataset

"name": "crossband_normdiff_231_160",
"description": "Cross-band normalized difference contrasting late
intensity at 231 against mid trough at 160.",
"RPN": "t_231 t_160 - t_231 t_160 + /",
"simplified_RPN": "t_231 t_160 - t_231 t_160 + /",
"feature_order": 2,
"transformation_order": 2,
"order_feature_set": [
"t_231",
"t_1le60"
]I
"feature_importance_score": [0.1],
"derived": true,

15

Under review as a conference paper at ICLR 2026

"status": "accepted",
"data_type": "floatoe4d",
"nature": "continuous",
"stats": {
"n_missing": O,
"n_unique": 56,
"mean": 0.32354085842005037,
"std": 0.11405837153659522

}

Case Study: ECG200

Figure 6] visualizes class-specific trough and rebound timing. Listings] [5and [f] shows VLM inter-
pretation of Figure[6] python code for proposed feature and evaluation metadata for the feature.

Listing 4: VLM Interpretation of Temporal Events from ECG200 dataset

Trough timing is tightly localized (t_{26}--t_{30}) across classes,
whereas rebound timing exhibits a clear class shift (early: t_{45}
—=t_{47}; late: t_{51}--St_{52}).The inter-event spacing $ (\text
{rebound} - \text{trough})$ shows stable IQR with near-zero outliers,

making window-based aggregation highly robust.

Trough Timing (Index) by Class Rebound Timing (Index) by Class
Trough window (26-30) Rebound window (45-52)

30
51

N N
3 B

N
&
Rebound index (timestep)

Trough index (timestep)

26

Arebound—trough) IQR: [17.0, 22.0] | Outlier rate: 0.0%

-1 1 -1 1
Target Target

Figure 6: Trough and rebound timing patterns in ECG200.

Listing 5: Feature Proposition: Phase-Weighted Contrast from ECG200 dataset

phase_weighted_contrast = (rebound_window_max trough_min_26_30) =
sigmoid(late early)

trough_min_26_30 = df[['t_26", "t_27’, ’"t_28’, "t_29", "t _30"]1].min(axis
=1)

rebound_window_max = pd.concat ([early_reb_max_45_47, late_reb_max_50_52],
axis=1) .max (axis=1)

df [’ phase_weighted_contrast’] = (rebound_window_max - trough_min_26_30) =
_sigmoid(reb_timing_bias)

Listing 6: Feature Evaluation: Phase-Weighted Contrast from ECG200 dataset

"name": "phase_weighted_contrast",
"description": "Core contrast (window max rebound minus trough min 26
30) weighted by the sigmoid of lateearly bias to focus on
class—dependent phase differences.",

"RPN": "t_50 t_51 max t_52 max t_45 t_46 max t_47 max max t_26 t_27
min t_28 min t_29 t_30 min min t_50 t_51 max t_52 max t_45
t_46 max t_47 max sigmoid ",

16

Under review as a conference paper at ICLR 2026

"simplified_RPN": "t_50 t_51 max t_52 max t_45 t_46 max t_47 max max
t_26 t_27 min t_28 min t_29 t_30 min min t_50 t_51 max t_52
max t_45 t_46 max t_47 max sigmoid ",

"feature_order": 11,

"transformation_order": 3,

"order_feature_set": [

llt745ll, "t752H, "t730", llt75lll, "t726",
"t_47", "t_50", "t_4e6", "t_27", "t_29", "t_28"
1,
"feature_importance_score": [0.06421524765915851],
"derived": true,
"status": "accepted",
"data_type": "floate4d",
"nature": "continuous",
"stats": {
"n_missing": 0,
"n_unique": 200,
"mean": 1.1571704660492668,
"std": 0.4176547980018742

A.4.3 DISCUSSION: DEPENDENCE ON EDA DIVERSITY

PIFE is intentionally modular: extending to time-series involved editing only a small number of
functions while keeping prompts unchanged. However, fully unstructured domains such as graphs
require fundamentally different transformations and inductive biases, and thus fall outside the scope
of this work. We note that datasets with limited structure or strong existing features may show
smaller gains, whereas the provided time-series experiments highlight cases with more substantial
improvement.

A.5 HALLUCINATION MITIGATION IN PIFE

A potential concern when using Large Language Models (LLMs) and Vision Language Models
(VLMs) for automated feature engineering is the risk of hallucinated or ungrounded features. PIFE
incorporates several mechanisms to ensure generated features are grounded to underlying data.

A.5.1 GROUNDING FEATURE GENERATION IN EDA

PIFE constrains the LLM to operate primarily on insights derived from Exploratory Data Analysis
(EDA), while also leveraging its broader domain knowledge where relevant. Rather than producing
features based purely on memorized patterns or unsupported priors, the system requires the LLM to
justify every proposed transformation using:

* statistical summaries (distributional differences, correlations, heterogeneity), and
* visual evidence (scatter patterns, KDE structure, phase shifts, temporal signatures).

This grounding ensures that features reflect actual data-dependent structure, reducing the likelihood
of hallucinations that conflict with observed statistics or visual trends.

A.5.2 RELIABILITY OF VLM INTERPRETATIONS

Although VLMs can occasionally misinterpret plots, we can quantify and improve their reliability
by benchmarking them on chart-understanding datasets such as ChartQA Masry et al.| (2022) and
ChartQA-Pro Masry et al.| (2025). These benchmarks evaluate whether a model correctly extracts
semantics, trends, and quantitative information from charts, offering a principled way to assess and
compare VLM robustness.

Incorporating periodic evaluations on such benchmarks allows future extensions of PIFE to monitor
VLM reliability across plot types, identify systematic failure modes (e.g., reading scales, interpreting
trends), and select or fine-tune VLMs better suited for EDA-driven tasks.

A.5.3 DOWNSTREAM VALIDATION AS A SAFETY LAYER

To further reduce the impact of potential hallucinations, PIFE performs downstream checks includ-
ing:

* cross-validation on generated features,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

* feature-importance pruning,
e comparison against baseline models,

* rejection of unstable or degenerately correlated features.

These mechanisms collectively form a practical defense against spurious or ungrounded features,
ensuring that only empirically validated features are carried forward.

Overall, while hallucination remains a challenge for LLM-VLM systems, PIFE’s design grounding
in EDA, VLM benchmarking, and downstream validation; provides a robust and empirically
supported mitigation strategy.

A.6 EDA-DRIVEN INTERPRETABILITY: DATASET-SPECIFIC AGENT TRAJECTORIES
EXAMPLES

This section presents qualitative trajectories generated by PIFE during EDA-Feature Engineering
cycles. For each example dataset, we visualize key patterns, summarize LLM/VLM-derived in-
sights, and list the corresponding feature transformations proposed by the agent.

Example 1: credit_approval

Seed: 44

Baseline: 0.86377

PIFE (GPT-4.1): 0.915942
Other Frameworks:

¢ OCTree (GPT-5): 0.87536
» CAAFE (GPT-5): 0.86812

EDA 1: Distribution of A2

Distribution of A2 by Credit Approval Outcome

Approval
I + (Approved)
[- (Not Approved)

0.008 +

0.007 +

0.006 -

0.005 4

Density

0.004 -

0.003 +

0.002 -

0.001 4

0.000 -

150 200
A2 Value

Insight: The distribution of A2 across the target classes shows a clear shift: Not Approved
applicants tend to have higher A2 values, while Approved applicants are concentrated at
lower values. Although the classes overlap, very high A2 values are more frequent among
the negative class, suggesting non-linear or threshold effects.

18

Under review as a conference paper at ICLR 2026

Feature Suggestion.
e Feature: A2

¢ Transformations: 1o0g, sqrt_abs

» Rationale: The right-skewed distribution and visible class separation indicate that
compressing outliers (via log/sqrt) improves model sensitivity to threshold behav-
iors.

EDA 2: Behavior of A2 _div_A8 minmax

le—5 A2 div_A8 minmax by Credit Approval Outcome

~
L

A2_div_A8_minmax (Min-Max Normalized)

=
L

| ——

+ (Apﬁmved) - {Not A[;pmvedl
Approval Status

Insight: A boxplot of the normalized ratio A2 _div_A8_minmax reveals that Not Approved
applicants show a higher median and increased spread. The interquartile range and upper
whisker are substantially larger for the negative class, indicating that extreme/high values
are discriminative.

Feature Suggestion.
e Features: A2, A8

* Transformations:
— Ratio: A2 / A8
— min_max normalization
— Decile or quintile binning

» Rationale: The ratio is strongly discriminative; binning emphasizes non-linear and

tail behaviors correlated with rejection risk.
Outlier-Aware Feature.
e Feature: A2 div_A8 minmax

* Transformation: Outlier binning (bottom 5%, middle, top 5%) to generate a cate-
gorical indicator.

* Rationale: The presence of extreme values has high predictive value; explicit out-
lier signaling helps the model capture rare high-risk profiles.

19

Under review as a conference paper at ICLR 2026

Example 2: spectf

Seed: 44

Baseline: 0.79378
PIFE (GPT-5): 0.84647
Other Frameworks:

« CAAFE (GPT-5): 0.81621
« OCTree (GPT-5): 0.81251

EDA 1: Pairwise Synergy (MI-based)

Top Pairwise Interaction Synergy with Diagnosis
MI(Xi,Xj;y) — max(MI(Xi;y), MI(Xj;y)

rstRelDef _top4
_deficit x F21S
_deficit x F13S
MinShare_top3
MinShare_top3
MinShare_top3
n_sum x F13S
n_sum x F13S

F20S x F13S

% worst_deficit

n_sum x F21S
n_sum x F215 |

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Synergy (Higher = Stronger Joint Effect Beyond Singles)

=3
o
=3
o
o
=3

Insight: The mutual-information synergy plot highlights several strong nonlinear joint ef-
fects:

* The strongest interaction is between F21S and WorstRelDef_top4, indicating
that stress in ROI-21 interacts with maximal relative deficits across key ROIs.

* High synergy is observed for worst_deficit paired with F21S or F13S, sug-
gesting that regional deficits amplify discriminative stress signals.

* Global burden features (e.g., ischemic burden_sum and its sqrt variant)
combined with MinShare_top3 capture profiles exhibiting both high global is-
chemia and local weaknesses.

* Interactions among ROI stress features (e.g., F20S x F13S) provide information
beyond individual ROIs.

Feature Suggestion.
* Feature: min_max (F21S) X min_max (WorstRelDef _top4)

» Rationale: Normalized multiplication captures the strongest observed synergy
while mitigating scale effects.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

EDA 2: Plots

YT DM I G IO D S S i 1

Diagnosis Class Balance Ischemic Burden Sum by Diagnosis Worst Deficit by Diagnosis

N
5
8

8

8

60
175
£ 50
150 EI 300 cw
w125 3 5
5 3 20 VE]
8 100 o @
E €20
» 2100
S
50 -2 10
° - ’ ’
0
1 0 1 0 1 0
Diagnosis (as string) Diagnosis (as string) Diagnosis (as string)
Violin Plots

EDA 2: Plots

Top Spearman Correlations with Diagnosis
weak_triprod_top3-0.47
F20s 041
MinShare_top3 039

F215 037
WorstStress_top3 037
F3s 35
) F22R .35
= F135 034
©
o
= WorstRelDef_top4 034
sqrt_abs_ischemic_burden_sum 035
ischemic_burden_sum 033
worst_deficit 036
worst_deficit_sqrt 036
worst_deficit_over_WorstStress_top3 040
burden_over_weakstress 041
-0.4 —-0.2 0.0 0.2 0.4

Spearman Carrelation

Spearman Correlation

EDA 2: Plots

SUE3 V3 NEL WY NUI (LUIUL. Liayiiuaia)

100 Stress vs Rest: ROI 20 Stress vs Rest: ROI 21 Stress vs Rest: ROI 13

80

60

F20S (Stress)

o8
Ko
P e
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
F20R (Rest) Diagnosis F13R (Rest)
a1 an

Stress vs Rest Scatter Plots

21

Under review as a conference paper at ICLR 2026

EDA 2: Insights

 Target balance (countplot in “Diagnosis Class Balance”): The dataset is imbal-
anced (210 of class “1” vs 55 of class “0”). This matters for feature choices that
empbhasize recall/precision tradeoffs and motivates variance-stabilizing transforms.

* Global ischemia separates classes (violin plots “Ischemic Burden Sum by Di-
agnosis” and “Worst Deficit by Diagnosis”): Both ischemic_burden_sum and
worst_deficit are markedly higher and more rightskewed for class “1”, with long
heavy tails. The sqrt version reduces skew while preserving ordering.

* Top monotonic signals (Spearman barplot “Top Spearman Correlations with Diag-
nosis”):

— Strong negatives: weak_triprod_top3 (0.47), F20S (0.41), MinShare_top3
(0.39), F21S (0.37), WorstStress_top3 (0.37), F3S (0.35), F13S (0.34). Inter-
pretation: lower stress counts (especially in ROIs 20/21/13) and low weakest-
link stress/share are associated with class “1”.

— Strong positives: burden_over_weakstress (+0.41),
worst_deficit_over_WorstStress_top3 (+0.40), worst_deficit and its sqrt
(+0.36), ischemic_burden_sum and its sqrt (+0.35), WorstRelDef_top4
(+0.34). Ratios that normalize deficits by weak stress are particularly
discriminative.

Feature Suggestions.
1. Global Stress—Rest Features

e Features: F1S-F22S, F1R-F22R
¢ Transformations:

22
global _stress_total = Z FES
k=1

22
global_rest_total = Z FER
k=1

global_stress_total
global _rest_total

global_SR _ratio =

* Rationale: Provides a global ischemic signature independent of ROI-level noise.
2. Weakest-Link Ratio Features (ROIs 20, 21, 13)

* Compute: F20S/F20R,F21S/F21R,F13S/F13R

* Transformations:

— MinSoverR_top3 = minimum of the three ratios
— MaxSoverR_top3 = maximum
— RatioRange_top3 = max min

» Rationale: Encodes focal ischemia (low minima), heterogeneity (range), and ROI-
specific vulnerabilities.

3. Global Burden Normalization

e Feature: burden_share_sqrt = sqrt_abs (ischemic_burden_sum)
/ global_stress_total

* Rationale: Captures the global-local contrast consistent with heavy-tailed is-
chemic burden distributions.

22

Under review as a conference paper at ICLR 2026

EDA Report

Code:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_theme (style="whitegrid", context="notebook")

Sanity checks
if "df’ not in globals():
raise ValueError ("DataFrame 'df’ is required in the environment
.")
if “income’ not in df.columns:
raise ValueError ("Target column ’income’ is missing from ’'df’."

)

Ensure target is numeric 0/1
if not np.issubdtype (df[’income’].dtype, np.number) :
raise ValueError ("Target ’income’ must be encoded as 0/1
numeric.")

Baseline positive rate
baseline_rate = df[’income’] .mean ()
print (f"Baseline >50K rate: {baseline_rate:.3f}")

Helper: safe quantile binning with fallback
def safe_gcut (series, g=6, labels=None):
"""Quantile bin with duplicate handling; fallback to cut if
needed."""
s = pd.Series(series) .astype(float)
Build guantile edges and drop duplicates
quantiles = np.unique (np.nanpercentile(s, np.linspace (0, 100, g
+ 1))
If too few unique edges, fallback to equal-width cut
if len(gquantiles) <= 2:

eps = le-6
return pd.cut (s, bins=q, duplicates=’drop’, include_lowest=
True)
try:
return pd.qcut (s, g=min(g, len(quantiles) - 1),

duplicates=’'drop’, labels=labels)
except Exception:
return pd.cut (s, bins=q, duplicates=’drop’, include_lowest=
True)

Helper: min/max cell summary for pivoted mean target
def summarize_pivot_rates (df_pivot, df_counts=None,
min_count=30, label=""):
pivot_vals = df_pivot.copy ()
if df_counts is not None:
mask = (df_counts >= min_count)
pivot_vals = pivot_vals.where (mask)
vmin = np.nanmin (pivot_vals.values)
vmax = np.nanmax (pivot_vals.values)
print (f"[{label}] cell >50K rate: min={vmin:.3f}, "
f"max={vmax:.3f}, spread={vmax - vmin:.3f}")

Qutput:

Baseline >50K rate: 0.239

23

Under review as a conference paper at ICLR 2026

EDA Report

Code:

Age Education interaction heatmap

if all(c in df.columns for c¢ in [’age’,’education_num’]):
age_bins = safe_qgcut (df[’age’], g=6)
edu_bins = safe_qgcut (df[’education_num’], g=6)

Range labels
age_bins = age_bins.cat.rename_categories ([f"{int (i.left) } {
int (i.right) }"
for i in age_bins.
cat.categories])
edu_bins = edu_bins.cat.rename_categories ([f"{int (i.left) } {
int (i.right) }"
for 1 in edu_bins.
cat.categories])

df_tmp = df.assign(age_bin=age_bins, edu_bin=edu_bins)

rate df_tmp.pivot_table(’income’,’edu_bin’,’age_bin’, ' mean’)
cnt = df_tmp.pivot_table(’income’,’edu_bin’,’age_bin’,’size’)

fig, ax = plt.subplots(figsize=(9,5))
sns.heatmap (rate, vmin=0, vmax=1l, cmap="viridis",
annot=True, fmt=".2f", cbar_kws={’label’ :’"P (>50K)”’
}, ax=ax)
ax.set (title="Income rate: Education Age",
xlabel="Age bins", ylabel="Education_num bins")

summarize_pivot_rates(rate, cnt, min_count=50, label="
Age Education™)
else:
print ("Required columns missing.")

Output:

[Age Education] cell >50K rate: min=0.007, max=0.649, spread=0.642

Income rate by Education (rows) x Age (cols)

- 1.0
g
(=]
-0.8
w
=
52
Eo 0.6 _
3 b4
= [=]
g 2
ER 0.4 %
=1
29
w
0.2
w
—
o
o
0.0

16-24 24-31 31-37 37-44 44-53 53-90
Age bins

A.7 EXTENDING PIFE TO DEEP LEARNING MODELS

Generalization across predictive model is crucial for flexibility of the pipeline. In this section, we
will discuss the performance of MLP and TabPFN [Hollmann et al.| (2022)). Using gpt-5 as both LLM
and VLM, we have seen consistent improvements in MLP and TabPFN.

24

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison across different neural predictive models. Values represent mean
+ standard deviation of the metric score. We use F1-micro for classification and (1 - rae) for regres-
sion. For adult we have mentions N/A, TabPFN does not work for datasets larger than 10000 samples
tasks. gpt-5 is used as both LLM and VLM.

MLP TabPFN
Dataset
Baseline PIFE (Ours) % Improvement Baseline PIFE (Ours) Improvement

pima_indian” 0.72040.008 0.731-0.006 1.528 0.76040.005 0.768--0.008 1.053
fertility” 0.8404+0 0.857+0.025 2.02440.000 0.880 0.880 0
housing_boston’ 0.678+0.002 0.694-:0.006 2.36 0.73640.002 0.737+0.005 0.136
airfoil’ 0.728+0.003 0.780-+0.003 7.143 0.886-+0.002 0.884-+0.002 -0.226
openml_586 0.58240.006 0.771+0.024 32.474 0.85540.002 0.857-+0.001 0.234
adult”® 0.85140.002 0.852+0.001 0.118 N/A N/A N/A

A.7.1 FEATURE IMPORTANCE IN NEURAL NETWORK MODELS

Neural network—based predictors do not provide intrinsic feature-importance scores. To integrate
them into our framework, we approximate feature importance using model-specific post-hoc tech-
niques.

MLP Feature Importance. For a Multilayer Perceptron (MLP), we compute feature importance
from the first linear layer. Let the input dimension be d, and let the weight matrix of the first layer
be

W(l) c thd’

where h is the number of hidden units. The importance score for feature j is defined as the mean
absolute contribution across all hidden units:

TabPFN Feature Importance via Permutation. For TabPFN, which is a black-box predictor, we
estimate feature importance using permutation importance. Given a dataset X € R™*? with labels
y and a predictive model f, let

S(f, X,y)
denote the evaluation score (e.g., f1, 1-rae). For each feature j, we construct a perturbed dataset
ngl?m by permuting only column j:
Xégr)m = PermuteColumn(X, j).

The feature importance is quantified as the drop in performance due to permutation:

FIP™N = S(f, X, y) — S(f, X v).

Higher values indicate stronger contribution of feature j to predictive performance.

A.8 REVERSE POLISH NOTATION FOR FEATURE REPRESENTATION

We adopt Reverse Polish Notation (RPN) from [Zou et al.| (2025) as a representation scheme for
the features generated in PIFE. In RPN, operators follow their operands, eliminating the need for
parentheses and reducing ambiguity in expression evaluation. This structure allows for a compact
and unambiguous encoding of complex feature transformations, which is particularly useful when
features are generated programmatically or by language models.

Using RPN provides several advantages. First, it enables straightforward reconstruction of
the original feature expression, as the sequence of operands and operators directly encodes the
computational order. Second, RPN facilitates efficient storage and manipulation of features, since it
can be easily parsed into computational graphs or evaluated using stack-based execution.

25

Under review as a conference paper at ICLR 2026

Comparison t-statistic p-value Interpretation

CAAFE vs OCTREE 3.6698 0.0009 CAAEFE performs significantly better than OCTREE
CAAFE vs PIFE —2.4065 0.0216 PIFE performs significantly better than CAAFE
OCTREE vs PIFE -5.0073 1.10 x 107° PIFE performs significantly better than OCTREE

Table 11: Welch’s t-test results comparing CAAFE, OCTREE, and PIFE across datasets to assess
statistical significance.

A.9 STATISTICAL SIGNIFICANCE ACROSS BASELINE METHODS

Statistical Significance Analysis. We assess whether the performance improvements of PIFE
over the baseline AutoFE method are statistically meaningful by conducting a Welch’s t-test at a
significance level of & = 0.05. As reported in Table [[T| PIFE achieves statistically significant
gains with notable improvements on more complex or high-dimensional tasks such as airfoil,
megawatt_I, messidor _features, and several OpenML benchmarks. These are domains where
multi-step feature reasoning and interaction-driven transformations are particularly beneficial, and
the iterative EDA-guided process of PIFE provides measurable advantages.

For the remaining datasets, the performance differences are not statistically significant; how-
ever, PIFE matches or slightly exceeds the baseline across all cases, indicating method stability and
the absence of regressions. Importantly, PIFE does not exhibit statistically significant degradation
on any dataset. Overall, the significance analysis confirms that PIFE delivers robust improvements
and is especially effective in settings where higher-order feature interactions play a critical role.

A.10 HYPERPARAMETERS
A.10.1 PREDICTIVE MODELS

As shown in Table [I2] we consider both regression and classification models with standard hyper-
parameters for baseline evaluation and testing AutoFE methods.

Table 12: Regression and Classification Models with Parameters

Task Model Parameters

Regression Linear Regression -

Regression Random Forest Regressor | n_estimators = 10, random_state = 0

Regression XGBoost Regressor n_estimators = 10, random_state = 0
Classification | Logistic Regression solver = saga, class_weight = balanced, tol =

0.0005, C = 0.5, max_iter = 10000, penalty =12
Classification | Random Forest Classifier | n_estimators = 10, random_state = 0
Classification | XGBoost Classifier n_estimators = 10, random_state = 0

A.10.2 PARAMETERS FOR DEEP LEARNING METHODS
We list down hyperparameters used for MLP and HyperFast in Table|13|and Table

Table 13: Parameters for MLP

Parameter Value
Number of layers 3

Layer size 256
Dropout 0.2
Learning rate 1x1073
Batch size 256
Epochs 100
Optimiser Adam
Patience 40

26

Under review as a conference paper at ICLR 2026

Table 14: Parameters for HyperFast

Parameter Value
Number of ensembles (N) 16
Batch size 2048
NN bias False
Stratified sampling False
Optimization strategy None
Optimize steps 64
Random seed 3

A.10.3 FEATURE SELECTION METHODS

Details of parameters used for feature selection experiments (results in Table[3)) are listed in Table[I3]
and Table[T6l

Table 15: Parameters for Bayesian CMI-based Feature Selection

Parameter Values
alpha 0.5

trials 50
distance gower
min_num_feat_selected 0
scaling_criteria min_max
sample_df True

k 10
denomination 2
num_select_features 3

Table 16: Parameters for Genetic Algorithm-based Feature Selection

Parameter Values
elitism 5
generations 30

population_size 30
crossover_prob 0.8
mutation_prob 0.05

A.10.4 AUTOFE METHODS

Table summarizes the key parameters and their values for the AutoFE methods evaluated in
this study, including PIFE, OCTREE, CAAFE, OPENFE, AUTOFEAT, and DFS. These values
were chosen based on prior literature and preliminary experiments to ensure fair and comparable
evaluation across methods.

A.11 BASELINE SELECTION

While learning-based approaches, which aim to learn transformation policies directly from data,
represent an important category, we do not include them in our current evaluations due to the high
implementation complexity and substantial computational cost involved in training and adapting
these models. This selection allows us to compare how different strategies perform in practice
and to analyze their respective strengths, limitations, and implications for the future of feature
engineering.

The original CAAFE framework was primarily designed for classification tasks and evaluated only
with accuracy as the performance metric. In our adaptation, we extend CAAFE to also support

27

Under review as a conference paper at ICLR 2026

Table 17: Parameters and Values for AutoFE Variants

Method Parameter Value
total_steps 10
eda_steps 3
PIFE max_plots 3
max_insights_per_plot 1
n_features 5
timeout 86400
total_steps 5
rule_steps 10
OCTree n_features 1
timeout 86400
total_steps 10
n_features 1
CAAFE n_repeats 1
timeout 86400
min_candidate_features 2000
OpenFE feature_boosting False
n_repeats 1
timeout 86400
feateng_steps 2
Autofeat timeout 86400
max_depth 2
DFS transformations transform_primitives
timeout 86400

regression tasks, introduce additional evaluation metrics beyond accuracy for a fairer comparison,
and enrich the set of operators available for feature construction.

OCTree, on the other hand, required more substantial modifications. The original implementation
was tightly coupled with specific LLM APIs and lacked iterative refinement. We restructured its
pipeline to generalize API usage, extended the feature generation loop to be iterative, and incor-
porated support for regression tasks along with additional evaluation metrics. These modifications
make OCTree more robust and applicable across a broader range of tabular learning scenarios.

A.12 DISCUSSION ON FEATURE SELECTION METHODOLOGIES

Feature selection in our framework can be applied at two stages: (1) immediately after the feature
engineering step, or (2) after the full PiFE run. In our experiments, Feature Importance and
Bayesian Conditional Mutual Information (CMI) based selection were applied after the feature
engineering stage but prior to model validation, whereas a Genetic Algorithm based selection was
performed after the complete pipeline execution.

Feature selection plays a crucial role in enhancing both model interpretability and general-
ization. While an individual engineered feature may appear weak in isolation, its combination
with other features can capture complex interactions and yield a much stronger predictive signal.
Without an appropriate selection mechanism, such subtle but useful interactions may be overlooked
or drowned out by a large number of irrelevant or redundant features. By systematically ranking
and filtering features, our selection strategies help retain those that contribute jointly to predictive
power, thereby improving efficiency, reducing overfitting, and uncovering more meaningful feature
representations.

A.12.1 FEATURE IMPORTANCE BASED SELECTION

After features are generated in an iteration , we perform validation on the dataset with new features
and compute feature importance scores. If the validation score of the current run is greater than

28

Under review as a conference paper at ICLR 2026

that of the previous run, we retain all the features. Otherwise, we apply a filtering criterion: only
those features with importance greater than 1 / (number_of_features) are selected. This threshold is
motivated by the expectation that a retained feature should contribute at least more than the average
share of importance across all features.

A.12.2 CMI-BASED BAYESIAN OPTIMIZATION FOR FEATURE GROUP SELECTION

Bayesian Optimization (BO). BO is a sequential strategy for optimizing expensive black-box func-
tions. A surrogate model (e.g., Gaussian Process) provides mean u(x) and uncertainty o (), guiding
the selection of new points via an acquisition function a(z) (e.g., EI, UCB):

T = argmaxa(e | u(z), 0(x)).

In feature engineering, we need to add a feature subset to the the existing feature set. BO treats
this feature subset as X and the CMI as f(X)(objective function), enabling efficient exploration of
feature combinations.

f(X)=1(X;Y | 2),
where X is the feature subset, Y is the target, and Z is the feature set.

Conditional Mutual Information (CMI). CMI in feature engineering quantifies the unique con-
tribution of a feature subset X to predicting Y given the feature set Z:

I(X;Y|2)= /// p(z,y,2)log (x?,z’)y|(y)|z)dxdydz

We use a slightly modified version of the mixed-type k-NN estimator from|Mesner & Shalizi|(2020),
which is robust to discrete and continuous variables. We set K = max(3, min(20, \/n)), which
helps mitigatethe high-dimensionality issue in CMI calculation.

A.12.3 GENETIC ALGORITHM

Genetic Algorithms (GAs) are population-based metaheuristic optimization methods. A GA main-
tains a population of candidate solutions (chromosomes), where each chromosome encodes a subset
of features (typically as a binary string, with 1 indicating selection of a feature and O otherwise).
The algorithm evolves this population through the iterative application of genetic operators:

¢ Selection: Chromosomes are chosen based on their fitness, which in our case is the predic-
tive performance (e.g., validation accuracy or F score)

* Crossover: Pairs of chromosomes exchange parts of their feature subsets, enabling explo-
ration of new feature combinations.

* Mutation: Random flips of feature bits introduce diversity and help escape local optima.
The fitness of a chromosome c can be expressed as
Fitness(c) = Score(f(X.),Y),

where X denotes the features selected by chromosome ¢, Y is the target, and f(+) is the downstream
predictive model.

Over successive generations, the GA converges toward feature subsets that maximize predictive
performance. While computationally more expensive than other methods like CMI-BO and MFI,
GAs often identify subsets of features with strong predictive power, making them effective when
interactions between features play an important role.

A.13 PROMPTS

Listing 7: EDA Analysis Code Generation

You are an EDA agent operating in a Kaggle Grandmaster-style automated
feature engineering pipeline. This is iteration {current_iteration}
of a multi-stage EDA loop. Your role is to produce competition-grade
exploratory data analysis code that progressively builds upon the
analyses performed in previous iterations.

Remember: this is a strategic, hypothesis-driven EDA process - think

like a top Kaggle competitor uncovering hidden signal iteratively
across multiple passes.

29

Under review as a conference paper at ICLR 2026

You are provided with:

- Dataset description

- Summary of preprocessing steps taken

— Previous EDA code history and respective observations if any.

Dataset Description:
{dataset_description}

Pre-processing Steps:
{preprocessing_summary}

Focus Areas: 0/1/2

% focus_strategies = {

[0: {

S 8

% "primary": "distribution_analysis",

% "secondary": "correlation_analysis",

% "description": "Initial exploration: distributions and basic

correlations of top features"

by

oe

% 1: {
% "primary": "interaction_analysis",
% "secondary": "non_linear_patterns"
Yy — _p ’
% "description": "Interaction exploration: feature pairs and

non—-linear relationships"

by

o°

% 2: A

% "primary": "temporal_categorical",

% "secondary": "outlier_analysis",

% "description": "Advanced patterns: temporal trends and

categorical encodings"

— o
—

Memory (previous code and observations):
{memory}

Analysis Constraints

STRICT LIMITS:

- Maximum {max_plots} plots total

— Do NOT explicitly suggest feature transformations, binning, encoding,
or normalization.

- Focus on uncovering patterns, trends, correlations, and anomalies in
the data.

— Avoid bias towards only high-importance features include a mix of
numerical, categorical, and temporal features.

- For large datasets (>5000 rows), sample strategically before complex
plots.

Response Format
Your response should strictly follow the following Code Structure:

Before the code block include a short xxImplementation Rationalexx of 24
sentences that explains:

- Why you chose the specific analyses / plots (what hypothesis you are
testing),

— What you expect the output to reveal (the type of insight sought),

— One-line failure mode / limitation: Think Harder (e.g., ’'may fail on
heavy-tailed column; will downsample if >5000 rows’).

30

Under review as a conference paper at ICLR 2026

\

— Divide the code into code cells using ‘# %%' to demarcate different
sections in the code.

— Code should be wrapped within python ... ''' quotes. Do not write
code at any other place than this.

- Do not write the context of the code block in the same line as ‘# $%°'.
Write it in a new line with enumeration, where enumeration should be
in comments.

- Each section should focus on a different type of analysis aimed at
revealing meaningful patterns.

- Ensure diversity by analyzing features across different types and
varying levels of correlation with the target.

— All plots must have proper titles, axis labels, and legends where
applicable.

— Produce plots that are clear and informative, suitable for
presentation.

— If plots become too crowded or contain too many elements to be
readable, split them into multiple smaller plots.

- Each plot should be individually assigned to a unique and
human-readable variable name.

— Do NOT use ‘plt.show()‘ or save figures to files Jjust generate them.

- For expensive plots (swarm, violin, scatter, kde, displot, etc.), if
dataset size >5000 rows, downsample to 5000 using stratified
sampling (if categorical column available), else use appropriate
sampling.

ANRRRY

Mandatory Imports

Each EDA code block must begin with:
*Y'python

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

General Instructions

— Assume the dataset with variable name df is already present.

- Always include all required imports in your code. Do NOT assume
imports persist across steps.

— Preserve existing variable assignments and do not overwrite previously
assigned variables.

- Maintain continuity with past EDA steps by avoiding duplicate analyses
and expanding on previously explored patterns.

— Incorporate findings from earlier iterations to guide where to dig
deeper.

- Ensure coverage across diverse feature types (numerical, categorical,
temporal) .

— Generate new, non-redundant insights that add incremental wvalue.

— All generated code should be clean, modular, and ready for execution
without edits.

- Use # %% to clearly separate analysis sections.

— Include explanatory comments in the format: # INSIGHT: <purpose of
this analysis>, but do NOT explicitly suggest feature
transformations.

Listing 8: EDA Analysis Insight Generation

You are a feature engineering specialist analyzing outputs from an EDA
process.
You are provided with:

31

Under review as a conference paper at ICLR 2026

— The code used to generate the EDA
— The plots generated from that code
- The textual/statistical outputs produced

Your job is to extract meaningful, high-value insights from these
materials and then propose specific, well reasoned feature
transformations inspired by these insights. Insights must be
grounded in visual and statistical evidence, not speculation.

Think like a Kaggle Grandmaster preparing features for a top-tier
competition.

Task Description
{dataset_description}

EDA Code Context
{eda_code}

Available Operators
{operators_description}

Instructions

Analysis Guidelines When forming INSIGHTS:

- Highlight relationships, anomalies, patterns, or distributions that
stand out in the data.

— Capture interactions, trends, and category-level differences.

— Refer to the specific visualization or statistical summary they come
from.

— Generate maximum {max_insights_per_plot} insights per plot.

When forming FEATURE_TRANSFORMATIONS :

— Map each transformation to a corresponding insight.

— Use ONLY the Available Operators listed above for suggesting feature
transformations.

- You can suggest dropping features if they are redundant, highly
correlated, or unhelpful for the target variable.

- Provide reasoning linked to potential model performance improvements.

— Keep recommendations actionable, clear, and technically precise.

— Strictly NEVER include the target column in any feature engineering,
transformations, encodings, interaction terms, binning, scaling, or
statistical computations.

Response format

Your output MUST be structured in exactly two sections using the
following XML-style tags:

<INSIGHTS>

List clear, evidence-backed observations from the EDA results and plots.

Avoid feature suggestions here keep this purely as descriptive,
analytical findings.

Each insight should explicitly reference the plot or analysis it came
from.

</INSIGHTS>

<FEATURE_TRANSFORMATIONS>

For each transformation:

— Specify the exact feature(s) involved

— Describe the suggested transformation or engineering step using
Available Operators

— Provide a short reasoning for why it is beneficial based on the
insights above

— Include 35 high-priority transformations that would add the most value

32

Under review as a conference paper at ICLR 2026

- You can suggest dropping features if they are redundant, highly
correlated, or unhelpful for the target variable.
</FEATURE_TRANSFORMATIONS>

AVOID: generic or obvious patterns, restating axis labels, or vague
statements.

FOCUS: insights that directly inform strong, competition-grade feature
engineering.

Listing 9: Feature Engineering Code Generation

You are a feature-engineering agent. Your goal is to generate new
machine-learning-ready features and return executable Python code
that creates them.You will be provided with the Dataset Description,
the Pre-processing Steps, the Feature Transformation Guidelines,
list of allowed operators for feature engineering, the Feature
importance scores and the Rejected Features.

Task description:
{dataset_description}

Pre-processing Steps:
{preprocessing_step_summary (preprocess, target_encoder) }

Feature Transformation Guidelines:
{guidelines}

Available Operators:
{operators_description}

Feature importance scores:
{[f"{k}: {v:.5f}" for k, v in feature_importance_scores.items ()] if
feature_importance_scores is not None else []}

Rejected Features:
{rejected_features}

Instructions:

Feature Engineering Instructions:

1) Generate exactly {n_features} new machine-learning-ready features.

2) You should think about the reasons for the rejected features and try
to incorporate that learning while creating new featurs

3) Feature Transformation Guidelines contains ideas based on exploratory
data analysis conducted earlier. You should create new features that
are based on the ideas in the Feature Transformation Guidelines.

4) You should use the list of Available Operators, for feature
engineering to create new features.

Code Instructions:

- Do not wrap the entire code inside a function or class.

— Assume the environment is similar to a Jupyter Notebook, so you may
use # %% to separate code blocks.You may define small utility/helper
functions if needed, but make sure they are invoked within the same
code block.

— The final output should be an executable code block, not a function or
class definition.

— Ensure that code is enclosed within python code literal as follows. Do

not write code anywhere else.

python

[code goes here]

AN

AURNRY

Target Leakage Prevention Rules:

33

Under review as a conference paper at ICLR 2026

STRICT RULES TO AVOID TARGET LEAKAGE:

— NEVER create features that directly transform or encode the target
column itself (e.g., log(target), residuals vs. target,
deviation-from-target, ranks of target within bins, z-scores,
percentiles, etc.).

— The target column may only be used to compute group—-level aggregate
statistics (mean, median, std, count) at the group level.

- Example: mean (target) by year, median(target) by region.
— These must be computed on df_train only, stored as a mapping, and
applied to df_test with a fallback.

— Forbidden feature patterns include:

— Any function that directly transforms target values row-by-row
(log, rank, residual).

— Any feature whose definition requires subtracting or dividing a
rows own target from an aggregate.

— Any within-bin or within-group ranking of target values.

— Always check that the engineered feature can be computed in
exactly the same way for both df_train and df_test without needing
df_test [TARGET_COL] .

- If a proposed feature would violate these rules, DO NOT generate
it instead, list it in

SAFETY_REPORT [’ features_dropped_due_to_no_test_support’].

Feature Inclusion & Target-Use Rules (MANDATORY, concise):

CRITICAL: The runtime convention is that the target column WILL be
present in df_train as ’target’, and WILL NOT be present in df_test.
Follow these rules without exception:

— INPUT ASSUMPTION
- df_train contains the target column named ’target’.

- df_test, if provided, MUST NOT contain the target column. Agents
must treat df_test as unlabeled.

— FEATURE INCLUSION: Every suggested feature must be constructible on
BOTH df_train and df_test. If the feature cannot be created for
df_test without reading the target (TARGET_COL) or other unavailable
test-only data, DO NOT create that feature for df_train drop it
entirely. Never produce train-only features.

— TARGET USAGE (TRAIN-ONLY STATISTICS): You may compute aggregate
statistics using df_train[TARGET_COL] only to build train-derived
mapping objects (e.g., group means/counts/medians). All such
computations MUST:

- be computed only on df_train,

— APPLYING MAPPINGS TO TEST: For every train-derived mapping, provide
explicit code that applies the mapping to df_test inside if df_test
is not None: using map/merge and .fillna (<fallback>).

- Example pattern (must be used):

‘Y 'python
mapping = df_train.groupby (’X’) [TARGET_COL] .median () .to_dict ()
df_train[’f’] = df_train[’X’].map (mapping) .fillna(<fallback>)
if df_test is not None:

df_test[’f’] = df_test[’X’] .map (mapping).fillna(<fallback>)
_train _mappings|[’mapping_name’] = mapping

AURTRY

— INTERMEDIATE / TRAIN-ONLY COLUMNS: If you create intermediate columns
on df_train solely to compute mapping/statistics or to use them to
create suggested features, remove them from df_train before
finishing the code (so columns remain symmetric). Do NOT leave
intermediate columns that cannot be created on df_test.

— COLUMN SYMMETRY CHECK: At the end of your code, ensure df_train and
df_test have the same columns (except for TARGET_COL in df_train).
Add this assertion:

‘Y 'python

34

Under review as a conference paper at ICLR 2026

Ensure column symmetry between train and test sets
if df_test is not None:

train_cols = set (df_train.columns) - {TARGET_COL}

test_cols = set (df_test.columns)

assert train_cols == test_cols, f"Column mismatch: train has
{train_cols - test_cols} extra, test has {test_cols - train_cols}
extra"

AURNRY

— NON-IMPLEMENTABLE FEATURES: If any transform (e.g., direct arithmetic
with TARGET_COL in df_test, or features requiring target values at
test-time) cannot be implemented safely on df_test, explicitly
exclude that feature and list it under
SAFETY_REPORT [’ features_dropped_due_to_no_test_support’].

— FORBIDDEN: Under no circumstance should the generated code access
TARGET_COL within df_test or assume its existence there. Do not
create features that would require test-time predictions or labels.

— RANDOMNESS: Use deterministic randomness via RANDOM_STATE for any
sampling/splitting operations on df_train; do not sample df_test.

Templates (must be used for any transform that depends on target/train
statistics):

Provide transformations using these exact patterns when the operation
depends on train statistics.

A) GroupByThenMean (safe pattern)
‘Y 'python

compute mapping on train ONLY
edu_mean_by_occ =

df_train.groupby (' occupation’) [’ education—num’] .mean () .to_dict ()
apply to train
df_train[’QualificationSurplus’] = df_train[’education—-num’] -

df_train[’occupation’] .map (edu_mean_by_occ)
apply to test (no target used). fallback to 0 for unseen occupations
if df_test is not None:
df_test[’QualificationSurplus’] = (
df_test[’education—-num’] -
df_test[’occupation’] .map (edu_mean_by_occ)
) .fillna (0)

B) Target-like encoding (train-derived, safe pattern)
‘Y 'python
compute target-encoding stats on train ONLY
enc_by_cat = df_train.groupby (’cat_col’) [TARGET_COL] .agg (
["mean’,’ count’]
) .to_dict (orient=’index’)
convert to mapping (use mean, with global fallback)
global_mean = df_train[TARGET_COL] .mean ()
cat_mean_map = {k: v[’mean’] for k, v in enc_by_cat.items() }
apply
df_train[’cat_col_te’] =
df_train[’cat_col’] .map(cat_mean_map) .fillna(global_mean)
if df_test is not None:
df_test[’cat_col_te’] =
df_test[’cat_col’].map(cat_mean_map) .fillna(global_mean)

AN

C) Stratified sampling for train-only operations (must not touch df_test)

‘Y 'python

from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(n_splits=5, shuffle=True,
random_state=RANDOM_STATE)

for train_idx, holdout_idx in skf.split (df_train, df_train[TARGET_COL]) :

35

Under review as a conference paper at ICLR 2026

operate only on df_train.iloc[train_idx], use holdout for internal
validation
pass

AURNRY

D) ALWAYS include mapping objects in code and show how they’1ll be
persisted/serialized if needed.

Templates for Intermediate Features:

‘Y 'python

Interaction: lymphatics early_uptake (concatenated string, factorized)

df_train[’lymphatics_earlyuptake’] = df_train[’lymphatics’].astype(str)
+ /" + df_train[’early_uptake’].astype(str)

Factorize (shared mapping for train, then reapply to test)
all_cats = pd.concat ([df_train[’lymphatics_earlyuptake’],

(df_test [’ lymphatics’].astype(str) + '_’' +
df_test[’early_uptake’].astype(str)) if (’df_test’ in locals() and
df_test is not None) else pd.Series([],dtype=str)]

lympt_early_map, lympt_early_uniques = pd.factorize(all_cats, sort=True)

train_codes = lympt_early_map[:len(df_train)]

df_train[’lymphatics_earlyuptake_code’] = train_codes

Remove lymphatics_earlyuptake as its not the suggested feature and it
can not be created in df_test

df_train.drop (columns=[’lymphatics_earlyuptake’], inplace=True)
if ’"df_test’ in locals () and df_test is not None:

test_codes = lympt_early map[len(df_train) :]

df_test [’ lymphatics_earlyuptake_code’] = test_codes

_train_mappings [’ lymphatics_earlyuptake_factorization’] =
dict (zip (lympt_early_uniques, range (len (lympt_early_uniques))))

AN

— IMPORTANT: Intermediate Feature Cleanup
At the end of your code, ensure you remove ALL intermediate features
that were created solely for computation purposes:

AN

Clean up intermediate features
intermediate_features = [’'temp_featurel’, ’'temp_feature2’,
"mapping_temp’]
for feature in intermediate_features:
if feature in df_train.columns:
df_train.drop(columns=[feature], inplace=True)
if df_test is not None and feature in df_test.columns:
df_test.drop(columns=[feature], inplace=True)

Response Format for Python Code:
- Python code for n feature transformations

AN

python
[feature engineering code]

AN

— RPN Format:

Reverse Polish Notation and Description of n feature transformations
Provide in this format:

FeatureName: <new_feature_name>
RPN : featurel feature2 +

Description : Sum of featurel and feature2

FeatureName: <new_feature_name>

36

Under review as a conference paper at ICLR 2026

RPN : feature3 feature3 featured4 GroupByThenMean -
Description : Difference between feature3 and mean of feature3 grouped
by featured

Instructions for RPN Notation:

— Use the format Dropped_ <FeatureName> for features that are dropped.
— Do not use square brackets in the FeatureName.
— Separate tokens in the RPN string with spaces.
- Examples of correct RPN:
— featurel feature2 +
- featurel drop (for dropping a feature)
— featurel featurel feature2 GroupByThenMean -

— Avoid invalid RPN such as featurel feature2 GroupByThenMean -
subtraction - requires two operands.

- Example with GroupByThenMean:

‘Y'python

edu_mean_by_occ =
df_train.groupby (' occupation’) [’ education_num’] .mean ()
df_train[’QualificationSurplus’] = df_train[’education-num’] -
df_train[’occupation’] .map (edu_mean_by_occ)

python

Copy code

edu_mean_by_occ =
df_train.groupby (' occupation’) [’ education_num’] .mean ()
df_train[’QualificationSurplus’] = df_train[’education—-num’] -

df_train[’occupation’] .map (edu_mean_by_occ)
if df_test is not None:
df_test[’QualificationSurplus’] = (
df_test[’education-num’] -
df_test[’occupation’] .map (edu_mean_by_occ)
) .fillna (0)

AURTRY

RPN: education-num education_num occupation GroupByThenMean -
This RPN correctly represents the operation.

Incorrect RPN: education_num occupation GroupByThenMean - (only 1
operand before subtraction)

— Drop Operation Examples:
— To drop a feature: RPN: feature_name drop
— To drop multiple features: RPN: featurel drop feature2 drop
- Always document dropped features in your response with the
Dropped_<FeatureName> format

37

Under review as a conference paper at ICLR 2026

A.14 EXAMPLE PIFE FEATURES FROM EXPERIMENT RUNS

Higher Order Feature

Competition : spectf

Name of the feature: Sum_x_Hotspot

RPN: FIS F2S + F3S + F4S + F5S + F6S + F7S + F8S + F9S + F10S + F11S + F12S +
F13S + F14S + F15S + F16S + F17S + F18S + F19S + F20S + F21S + F22S + F20S F21S
max F22S F13S max max *

Order: 21

EDA Reasoning: Interaction of global stress and regional hotspot (maps to the
“global-regional synergy” insight)

Features: F1S,... F22S, max_stress_13.20_21_22

Transformation:

1) StressSum_all = F1S + F2S + ... + F22S (chain the “+” operator across all stress ROIs)
2) Sum_x_Hotspot = StressSum_all max_stress_13_20_21_22

Reasoning: The Q1 quadrant (high-high) showed a 0.43 abnormal rate vs 0.20 elsewhere.
The multiplicative term encodes this synergy explicitly and is often more predictive than
either marginal.

Figure 7: Higher Order Feature Generation

Higher Predictive Power

Competition: poker_hand

Name of the feature: rank_pair_sum

RPN: C1 C1/C1 C2 - abs + reciprocal round C1 C1 / C1 C3 - abs + reciprocal round +
C1 C1/C1 C4 - abs + reciprocal round + C1 C1 / C1 CS - abs + reciprocal round + C2 C1
- abs C1 C1 / + reciprocal round + C2 C3 - abs C1 C1 / + reciprocal round + C2 C4 - abs
C1 C1 / + reciprocal round + C2 C5 - abs C1 C1 / + reciprocal round + C3 C4 - abs Cl
C1 / + reciprocal round + C3 C5 - abs C1 C1 / + reciprocal round + C4 C5 - abs C1 C1 / +
reciprocal round +

Feature Importance: 0.35005184128253863

Increase in score after adding feature: 0.306

EDA Reasoning :

Feature(s): C1-C5

Transformation: Build pairwise “same-rank” indicators and aggregate. 1) ONES =C1/Cl1
2) For each unordered pair (i, j) among 1..5: diff_ij = abs(Ci Cj) diffl_ij = diff_ij + ONES
eq-ij = round(reciprocal(diff1_ij)) equals 1 if Ci=Cj, else 0 3) rank_pair_sum = sum(eq-ij
over the 10 pairs) using + 4) For each i: eq_i = sum(eq_ij over j i) using + max_same_rank =
max(eq-1, eq-2, eq-3, eq-4, eq-5) using max

Reasoning: From the correlation heatmap and uniform marginals, single ranks are uninfor-
mative; equality patterns drive CLASS. rank_pair_sum differentiates high-card/straight/flush
(0), one pair (1), two pair (2), three-kind (3), full house (4), four-kind (6). max_same_rank
(values 0-3) is a strong proxy for the largest multiplicity (pair/three/four). These directly
target rare classes (3,6,7) and improve separability under heavy imbalance.

Figure 8: Higher Predictive Power

38

Under review as a conference paper at ICLR 2026

Weak features combined to get strong feature

Competition: messidor_features

Name of the feature: MA_RANGE

RPN: mal ma2 max ma3 max ma4 max maS max ma6 max mal ma2 min ma3 min ma4
min ma5 min ma6 min -

Feature Importances:

MA_RANGE: 0.09319

mal: 0.04985
maz: 0.04468
ma3: 0.04219
mad: 0.03743
mab: 0.04279
ma6: 0.03985

EDA Reasoning: MA_RANGE: max(mal, max(ma2, max(ma3, max(ma4, max(maJ,
ma6))))) min(mal, min(ma2, min(ma3, min(ma4, min(ma5, ma6)))))

Reasoning: Despite high within-cluster correlations, thresholds are not identical. The box-
plots show distributional spread growing with DR. The range across thresholds measures
stability/sensitivity of detections to «; noisy/non-DR images may show different spreads
than true DR.

Figure 9: Effective Feature Combination

A.15 CoOST AND TIME

Table 18] summarizes the average monetary cost of running PIFE using GPT-4.1 and GPT-5. The
reported values include both the Exploratory Data Analysis (EDA) step and the feature engineering
(FE) stage. When using GPT-4.1, the complete pipeline costs approximately $1.21 per dataset,
with $0.94 spent on EDA and $0.27 spent on FE. In contrast, the cost increases to approximately
$4.95 per dataset when using GPT-5, with $4.15 attributed to EDA and $0.79 to FE. Higher cost
is expected because GPT-5 is a reasoning-oriented model and typically produces longer and more
detailed analytical outputs, resulting in increased token usage.

Table 18: PIFE cost for gpt-4.1 and gpt-5

LLM EDA cost per dataset FE cost per dataset Cost per dataset

opt-4.1 $0.93894 $0.26953 $ 1.2085
opt-5 $ 4.1549 $0.7905 $4.9454

Table 19| reports the average time required for EDA and feature engineering per dataset when using
GPT-4.1 and GPT-5. Although GPT-5 incurs a significantly higher runtime (approximately 9,000
seconds per dataset), this difference is primarily attributable to its stronger reasoning capabilities,
which lead to more detailed analyses and substantially longer generated outputs. In contrast, GPT-
4.1 completes the entire pipeline in roughly 2,000 seconds per dataset, producing shorter and more
concise reasoning chains.

Table 19: PIFE time(in s) for gpt-4.1 and gpt-5

LLM EDA time per dataset FE time per dataset Time per dataset

gpt-4.1 1438.71 378.99 2031.41
gpt-5 7380.7 1307.16 8995.19

39

Under review as a conference paper at ICLR 2026

A.16 LLM USAGE

Apart from our proposed framework, PiFE, we leveraged LLMs to assist in refining the writing
of this research paper. The models were used solely for language polishing, grammar corrections,
and clarity improvements, without influencing the scientific content, experimental design, results, or
conclusions.

A.17 BROADER IMPACT STATEMENT

Utility and Real-World Relevance. The AutoFE method can autonomously generate, evaluate,
and select meaningful features from raw data, potentially enabling more robust and interpretable
predictive models in real-world applications. By leveraging EDA-driven insights, it can provide
data scientists with explainable and interpretable features, enhancing model transparency and
decision-making. With appropriate statistical safeguards, validation checks, and privacy-preserving
measures, it can help mitigate the risk of spurious or misleading features and support the responsible
deployment of LLM-assisted feature engineering systems.

Risks and Biases. LLM-assisted feature generation can be influenced by biases present in the train-
ing data, including memorization of datasets or solutions from prior competitions, which may lead to
overfitting or inflated performance on familiar tasks. To mitigate this, incorporating recent Kaggle
competitions and unseen datasets during evaluation can help assess generalization and reduce re-
liance on memorized patterns. Selecting diverse datasets from multiple sources is critical to capture
varied real-world scenarios, minimize systemic bias, and ensure broadly applicable and fair features.
Additionally, running experiments across multiple random seeds can provide a more robust assess-
ment of LLM-based frameworks, helping to quantify variability and improve reliability in feature
generation.

40

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Hierarchical EDA Insight Extraction
	Symbolic Transformation Program Generation
	Iterative Refinement and Downstream Feedback

	Experiments
	Experimental Setup
	Performance Comparisons
	Ablations

	Conclusion
	Appendix
	Reproducibility
	Dataset Collection, Preprocessing and Results
	Evaluating PIFE Under Realistic Train-Test Splits
	Additional Experiments and EDA-Guided Feature Examples for Time Series Data
	Time-Series Classification Results
	Illustrative EDA Visualizations and Derived Features
	Discussion: Dependence on EDA Diversity

	Hallucination Mitigation in PIFE
	Grounding Feature Generation in EDA
	Reliability of VLM Interpretations
	Downstream Validation as a Safety Layer

	EDA-Driven Interpretability: Dataset-Specific Agent Trajectories Examples
	Extending PIFE to Deep Learning Models
	Feature Importance in Neural Network Models

	Reverse Polish Notation for Feature Representation
	Statistical Significance Across Baseline Methods
	Hyperparameters
	Predictive Models
	Parameters for Deep Learning Methods
	Feature Selection Methods
	AutoFE Methods

	Baseline Selection
	Discussion on Feature Selection Methodologies
	Feature Importance based Selection
	CMI-based Bayesian Optimization for Feature Group Selection
	Genetic Algorithm

	Prompts
	Example PIFE Features from experiment runs
	Cost and Time
	LLM Usage
	Broader Impact Statement

