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ABSTRACT

We study function spaces parametrized by neural networks, referred to as neu-
romanifolds. Specifically, we focus on deep Multi-Layer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs) with an activation function that is
a sufficiently generic polynomial. First, we address the identifiability problem,
showing that, for almost all functions in the neuromanifold of an MLP, there ex-
ist only finitely many parameter choices yielding that function. For CNNs, the
parametrization is generically one-to-one. As a consequence, we compute the
dimension of the neuromanifold. Second, we describe singular points of neuro-
manifolds. We characterize singularities completely for CNNs, and partially for
MLPs. In both cases, they arise from sparse subnetworks. For MLPs, we prove
that these singularities often correspond to critical points of the mean-squared er-
ror loss, which does not hold for CNNs. This provides a geometric explanation
of the sparsity bias of MLPs. All of our results leverage tools from algebraic
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Figure 1: Subnetworks define singular points (orange) of the neuromanifold.

1 INTRODUCTION

Machine learning models parametrize spaces of functions, often referred to as neuromanifolds
(Calinl, 2020; [Marchetti et al., 2025)). Their geometry governs several learning aspects, ranging from
expressivity and sample complexity to the training dynamics. Neuromanifolds are central to statis-
tical learning theory—where they are referred to as hypothesis spaces—and information geometry
(Amari, [2016)), and have been analyzed from the perspective of various mathematical disciplines.

A classical question in machine learning is identifiability—the problem of describing the parame-
ters that correspond to the same function. Several works have formally addressed this question for
specific activation functions, such as Tanh (Fefferman et al., [1994)), Sigmoid (Vlaci¢ & Bolcskei,
2022), ReLU (Grigsby et al., 2023 |Bona-Pellissier et al.,|2023), and monomials (Finkel et al.,2024;
Usevich et al.| [2025). Identifiability can be interpreted as characterizing the redundancies or ‘sym-
metries’ of the parametrization of the neuromanifold (Lim et al.| 2024). The degree of redundancy



Under review as a conference paper at ICLR 2026

determines the dimension of the neuromanifold, which, in turn, measures the sample complexity
of the corresponding model (Cucker & Smale| [2002). Moreover, non-identifiable functions often
correspond to singularities of the neuromanifold. These are special points where the model is not a
smooth manifold, such as edges, cusps, or self-intersections. As advocated by the field of Singular
Learning Theory (Watanabe, 2009), singular points play an important role for learning, e.g., in terms
of generalization error (Wei et al.,[2022) and training stability (Amari et al.,|2006; |Wei et al., [2008]).

In this work, we investigate the identifiability and singularities of both Multi-Layer Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs). Instead of focusing on a single activation
function, we consider a large class of activation functions, namely, generic polynomials of large
degree. This is motivated by the fact that polynomials can approximate arbitrary continuous func-
tions, and thus, polynomial neural networks approximate arbitrary networks. Crucially, considering
polynomial activations makes geometric analysis more feasible for two reasons. First, polynomial
MLPs are the only ones whose neuromanifolds live in finite-dimensional ambient spaces (Leshno
et al.l 1993, Theorem 1). Second, it allows us to employ tools from algebraic geometry (Kileel
et al.l 2019; [Trager et al., 2020). The latter is a rich field of mathematics that is particularly suitable
for analyzing symmetries and singular spaces. Polynomial networks are the central focus of neu-
roalgebraic geometry (Marchetti et al., 2025)—an emerging field bridging algebraic geometry and
theoretical deep learning, where our work naturally fits.

Our main results apply to sufficiently generic polynomial activation functions of large degree:

Identifiability: We prove that almost all functions in the neuromanifold of an MLP correspond
to only finitely many parameters (Theorem [4.1)). This result is in line with the widespread belief
that general MLPs have discrete parameter symmetries (coming from permutations of neurons in
each layer). However, the only available proofs of this claim are for Tanh and Sigmoid activations
(Fefferman et al., [1994; [Vlaci¢ & Bolcskei, [2022). Our result extends the identifiability studies
for monomial activations (Finkel et al., 2024} [Usevich et al., [2025)) to the broad class of generic
polynomials. In particular, we deduce that the dimension of the neuromanifold coincides with the
number of parameters. This resolves the dimension conjecture by (Kileel et al.,[2019) in a general
form. For CNNs, we prove a stronger result: almost all functions are uniquely identifiable, i.e., they
correspond to a single choice of parameters (Theorem [4.4).

Singularities: We consider sparse subnetworks, where a subset of neurons is inactive. We prove
that these subnetworks (under appropriate assumptions) are singular points of the neuromanifold,
both for MLPs (Theorem [4.2)) and CNNs (Theorem 4.6). We then introduce the notion of critically
exposed parameter sets, that contain critical points of the mean-squared error loss with positive prob-
ability over the dataset (Definition ). We prove that subnetworks of MLPs are critically exposed
(Theorem[4.3)), while they are not in the case of CNNs (Proposition {.5).

Our results can be interpreted from the perspective of sparsity bias—the empirically-observed phe-
nomenon that neural networks tend to discard neurons during their training process, effectively
converging to a function parametrized by a smaller subarchitecture. This is closely related to the
popular ‘lottery ticket hypothesis’ (Frankle & Carbinl 2019)—the suggestion that the model implic-
itly identifies and amplifies subnetworks that are particularly efficient for the given task, resulting
in sparse representations of data. Our singularity results provide a geometric explanation of these
phenomena. Indeed, our notion of critically exposedness formalizes the idea of a bias of the training
dynamics towards the given set, since critical points are local attractors for stochastic gradient flows
(Chen et al.,|2023). Our results on critical exposedness of subnetworks indicate that the sparsity bias
is exhibited by MLPs, but not by pure single-channel CNNs. This is in line with recent empirical
findings for convolutional architectures (Blumenfeld et al., [2020).

2 RELATED WORK

Algebraic geometry of deep learning. As anticipated, a line of research in theoretical deep
learning—recently termed ‘neuroalgebraic geometry’ (Marchetti et al., 2025)—explores the study of
neuromanifolds of polynomial neural networks through the lens of algebraic geometry. Motivated by
the fact that polynomials can approximate arbitrary continuous functions, the goal of neuroalgebraic
geometry is to approach fundamental problems in machine learning via tools from algebra. One
such problem is identifiability, which represents a core focus of neuroalgebraic geometry. Several
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models have been analyzed in the literature, ranging from MLPs with linear (Trager et al.||2020) and
monomial activations (Kileel et al.l 2019} [Finkel et al.l [2024} Kubjas et al., |2024; Marchetti et al.,
2024), to CNNs with linear (Kohn et al., 2022} 2024} Shahverdi, [2024) and monomial activations
(Shahverdi et al.| [2025)), to (un-normalized) attention-based networks (Henry et al.| [2025)). In this
work, we contribute to this line of research by addressing identifiability for MLPs and CNNs with
(generic) polynomial activation functions. Singularities are also central in neuroalgebraic geometry,
due to their role in the learning process. However, they are formally understood only for linear
MLPs (Trager et al.,2020) and monomial CNNs (Shahverdi et al.| 2025). In both cases, they coin-
cide with subnetworks of the corresponding architecture. The general relation between singularities
and subnetworks is conjectural (Marchetti et al) [2025). In this work, we show that subnetworks
often define singular points for MLPs and CNNs, further sedimenting this relation. [4.4]

Implicit sparsity bias. Several works have theoretically analyzed the tendency of neural networks
to converge to sparse data representations. A line of research (Woodworth et al., [2020; Nacson
et al., [2022}; |Pesme et al., [2021; |Andriushchenko et al.l [2023) has shown that, for deep diagonal
linear networks, the training dynamics, when initialized around the origin, implicitly penalizes the
¢1 norm of the weights, inducing sparsity in the representation. A similar bias towards low-rank
solutions has been shown for deep linear networks trained with a regularized loss (Kunin et al.|
2019; [Z1yin et al.| 2022; 'Wang & Jacot, 2024). Closely related to our work, these biases have been
recently reformulated in terms of subnetworks (Chen et al.l [2023). Most of the previous literature
focuses on simple models, and on tools and ideas from (stochastic) dynamical systems theory. In
contrast, we promote a purely geometric perspective, explaining the subnetwork bias in terms of the
singularities and the parametrization of the neuromanifold. Moreover, we focus on general models—
specifically, deep networks with polynomial activations. This generality is enabled by the powerful
tools from algebraic geometry.

Singular learning theory. The role of singularities in machine learning—and especially their ef-
fect on the training dynamics (Amari et al., 20065 Wei et al.| | 2008)—has been promoted by Singular
Learning Theory (SLT) (Watanabe, |2009;2007; |Amari et al., 2003; |Wei et al.,[2022). The latter falls
into the more general framework of information geometry, focusing on the Riemannian geometry
of the Fisher information metric. Crucially, however, the notion of singularity in SLT drastically
differs from the one adopted in this work. Following the formalism of neuroalgebraic geometry, we
consider singular points of the neuromanifold in the classical algebro-geometric sense—see Section
[.2)and Appendix [A] In contrast, singularities in SLT are parameters where the metric tensor, once
pulled back, is degenerate. This happens due to extra degrees of freedom in parameter space, or
due to criticalities of the parametrization. Both these cases can lead to singular or smooth points of
the neuromanifold. Vice versa, a singular point can arise in neuromanifolds that are parametrized
regularly, where the pulled-back metric tensor is non-degenerate; this is the case for polynomial
CNNs, as we will discuss in Section [#.4] Therefore, the two notions of singularity are different and
incomparable. In a sense, our results extend ideas similar to the ones from SLT to a function space
perspective, i.e., in terms of the geometry of the neuromanifold.

3 BACKGROUND
In this section, we overview the basic notions around deep neural networks and their neuromanifolds.

3.1 NEUROMANIFOLDS AND SUBNETWORKS OF MLPS

Fix a function o: R — R, a sequence of L > 1 positive integers dy, ..., d, and, for every i =

1,...,L,amatrix W; € R¥xdi-1

Definition 1. A Multi-Layer Perceptron (MLP) with architecture d = (dy, . . . , dr,), activation func-

tion o and weights W = (W, ..., W) is the map fw: R% — R? given by the composition:
fw=Wgoogo---000 Wy, (D

where o is applied coordinate-wise.

We now introduce the function spaces parametrized by neural networks. Let W = EBZL:l Rdixdi-1
be the parameter space of an MLP, and ¢: W > W +— fyy be its parametrization map.
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Definition 2. The neuromanifold of an MLP with architecture d and activation function o is the
image of the parametrization ¢, i.e.,

Mao ={fw | W e W}, 2

As anticipated, from now on, we assume that o is a (univariate) polynomial of some degree r > 1:

o(z) = Zaixi. 3)
i=0

In this case, fw is a (multivariate and vector-valued) polynomial of degree at most 7“1, i..,

Ma., €V, where V is the space of all polynomial maps R% — R92-1 of degree at most 7“1, In
particular, the neuromanifold lives in an ambient space V of functions, which is finite-dimensional
and linear. This is unique to polynomial activations (Leshno et al.| [1993| Theorem 1). Moreover, it
follows immediately from the Tarski-Seidenberg theorem that My , is a semi-algebraic variety, i.e.,
it can be defined by polynomial equalities and inequalities in V.

We also introduce the notion of a subnetwork of an MLP, which will be central in our results. For
everyi=1,...,L—1,let A, C{1,...,d;} and define A = (A}, As,..., A _1).

Definition 3. A parameter W € W is an A-subnetwork if for every i = 1,..., L — 1 and every
j € A;, the j-th column of W, vanishes. We say that W is a strict subnetwork if, moreover, the
j-th row of W; vanishes for j € A;.

For simplicity, we set Ag = Ay, = 0, i.e., we do not allow subnetworks obtained by removing input
or output neurons.

3.2  OPTIMIZATION

We consider a regression problem with mean squared error objective. To this end, let D be a
dataset, i.e., a finite subset D C R% x RI- representing input-output pairs. The corresponding
loss Lo : V = R is given by:

Lof)= D Ilf@) —yl* )

(z,y)€D

An MLP is trained on the dataset D by minimizing £p o ¢ over W. Since the loss is quadratic,
equation 4| can be rephrased as L1 (f) = Q(f — u), where @ is a quadratic form on V and u € V,
both depending on D. By a standard argument (Trager et al., [2020; [Shahverdi et al., [2025; Kubjas
et al., 2024), for large and generic D, the quadric () is non-degenerate and u is generi in V.
Therefore, with enough data, training the network amounts to optimizing a non-degenerate distance
from a generic point in the ambient space of the neuromanifold.

Since optimization is typically performed via gradient descent, we will be interested in the critical
points of the loss, where its gradient vanishes. These correspond to the equilibria of the gradient
flow, and are therefore the stationary points of gradient descent. For a loss £,(f) := Q(f — u)
as above, it follows from the chain rule that W € ‘W is a critical point of £,, o ¢ if, and only if,
fw —u is orthogonal according to the scalar product induced by () to the image of the differential of
o based at W. This geometric interpretation of criticality will be crucial in some of our arguments.

4 RESULTS
In this section, we present our main results. We first focus on MLPs, and then consider CNNss.

4.1 IDENTIFIABILITY OF MLPs

We now discuss identifiability of MLPs which, from the perspective of algebraic geometry, means
to investigate the fibers of the parametrization map . Formally, the fiber of ¢ at W is defined as
¢ fw) ={W' eW| fw = fw}.

'Throughout this work, we refer as ‘generic’ to elements in a space X that are allowed to vary outside of a
proper algebraic subset of X. Intuitively, these elements lie ‘almost anywhere’.
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To begin with, observe that if W is an A-subnetwork, then fy coincides with the function obtained
by removing from the architecture the neurons of the i-th layer with indices in A;, resulting in an
MLP with architecture (dg — |Ag|, ..., dr, —|AL|). This implies that fy is independent of the d;_;
entries of the j-th row of W, for j € A;. In particular, strict subnetworks parametrize the same
function as the corresponding non-strict ones. Therefore, the fiber of ¢ has a large fiber at W—a
fact has been observed in the SLT literature (Amari et al., 2006; [Wei et al., 2008}; |Orhan & Pitkow,
2018). More precisely, this fiber has dimension dim(o =1 (fw)) > Zf:_ll |Ai| di—1.

In our main result, we prove that, if the activation o is generic and of large-enough degree, the fiber
of ¢ at a generic W € W is instead finite, i.e., 0-dimensional. In other words, we show generic finite
identifiability. This is equivalent, by the fiber-dimension theorem (Shafarevich, 2013, Chap. 1.6.3),
to that the dimension of the neuromanifold is equal to the number of parameters. The dimension of
the neuromanifold is a fundamental invariant measuring the expressivity and sample complexity of
the model (Kileel et al.,|2019; [Marchetti et al., 2025). From a mathematical perspective, computing
the dimension is an involved problem. For polynomial MLPs, it was originally conjectured in (Kileel
et al.L[2019), and only recently established in (Finkel et al.,[2024} Usevich et al.} 2025)) for monomial
activations o(x) = z". We extend those result to more general polynomial activations. Note that
monomial MLPs have infinite generic fibers, arising from neuron-wise scalings.

Theorem 4.1. Suppose that d; > 1fori=0,...,L—1, and let o be a generic polynomial of large
enough degree v > 0 (depending on d). Then, the generic fiber of the parametrization map ¢ is
finite. In particular,

L
dim(Ma,;) = dim(W) = did; 1. (5)
=1

Proof. Since the result is highly technical, we summarize the proof here. A full proof is provided in
Appendix

We first show that it suffices to prove the result for a single activation. From the properties of the
Zariski topology, it then follows that the result holds for a generic one. We then pick a particular
activation of large degree r whose coefficients are extremely sparse, i.e., the a, in equation[3|vanishes
for many 0 < 7 < r. For this activation, we argue that some homogeneous components of fy (seen
as a multivariate polynomial in its input) coincide with MLPs with the same weights W, but where
the activation function is a monomial. This implies that the fiber of ¢ at W is contained in the
intersection of the fibers of MLPs with monomial activation. As mentioned above, the generic fibers
of these networks are known; they coincide with permutations of neurons at each layer, and neuron-
wise rescalings. In order to conclude, we show that the intersection of the fibers of the monomial
MLPs induces equations that the rescalings must satisfy. Via toric geometry we prove that those
equations imply that there are only finitely many possible rescalings, concluding the proof. O

4.2 SINGULARITIES OF MLPs

Here, we show that subnetworks may yield singularities of the neuromanifold. To this end, recall
that a point in a variety is singular if its tangent space has exceeding dimension, i.e., larger than the
dimension of the variety; see Section [A]for a formal definition. Intuitively, singularities are special
points where a variety exhibits degeneracy—see Figure 2] for an illustration.

Before stating our result, we discuss a simple yet illustrative case, where subnetworks are known
to coincide with singularities (Trager et al., |2020; Marchetti et al., 2025). Consider a linear MLP,
meaning that o(x) = z is the identity polynomial. Suppose that the architecture exhibits a ‘bottle-
neck’, i.e., dg,d;, > d := min;—;, . 1—1d;. Then the neuromanifold contains all the linear maps
R% — R of rank at most d—a space known as determinantal variety. The geometry of the lat-
ter is well understood: the singular points coincide exactly with the maps of rank strictly less than
d. These can be represented as subnetworks, for example, by choosing A;, where d; = d, of an
appropriate cardinality.

We now state the main result of this section, establishing singularity of subnetworks, under an ar-
chitectural assumption similar to the bottleneck from the example above.

Theorem 4.2. Suppose that o has large enough degree v > 0 (depending on d), and that enough
coefficients of o are non-vanishing. Foreveryi =1,...,L—1, fix proper subsets A; C {1,...,d;}.
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Suppose that for some i = 0,...,L —2, Ajy1 # 0 and d; — |A;| < d; — |Aj] forall j < i. If
W € Wis a A-subnetwork, then fw is a singular point of My -

Proof. We prove the claim for a generic A-subnetwork W. This is sufficient since the singular
locus is Zariski closed. For simplicity of notation, we assume d;, = 1—the same proof extends to
the general case. Consider the index i € {0, ..., L — 2} provided by the hypothesis. For j € A; 1
and k ¢ A; o, the chain rule implies:

9p
— (W) =2 Wiiqlit o 6
aWi+2[k7j]( ) 7 t;; walid oo fwlt] ] (6)
where A € R is a scalar, and W’ = (W7y,..., W;). The above expression defines a vector in the

tangent space of Mq  at fyw. Due to the genericity of W, we have that A # 0.

Now, fw is unaffected when the j-th row of W, changes. As this row varies and r increases,
the hypothesis on the coefficients of o implies that the polynomials (>, 4, Wis1[j, t] 2¢) over

R%~I4:l span a linear space of arbitrary large dimension. Due to the hypothesis on d; — |A,| for
J < i, the rank of the weight matrices W; is at least d; — | A;| for generic ;. Since, moreover, the
image of the activation function o is, at least, a half-line in R, we conclude that the image of o o fw-
has non-empty interior in R%~14:l i e it is dense in the Zariski topology. In other words, & o fyy
is a dominant map onto R%~14:!_ This implies that if some polynomials over R% 4| are linearly
independent, then they remain such over R% after pre-composing them by o o fy—this follows
from the general principle of duality in algebraic geometry (Dieudonne & Grothendieck, (1971} I,
Corollary 1.2.7). In conclusion, the polynomials from equation 0| generate a linear space of arbitrary
large dimension. This shows that for » > 0, the dimension of the tangent space of Mg , at fw
increases, while dim(M4q ) remains bounded, implying that fy is a singular point. [

Theorem leaves open the question of whether all the singularities of the neuromanifold are
parametrized by subnetworks—see Section [5]for a discussion. As mentioned above, this is true for
linear MLPs, i.e., when o(z) = z.

Remark 4.1. The singular points described in Theorem .2] are also singular on the neuromanifolds
of MLPs with (sufficiently generic) continuous activations. This is because neuromanifolds of poly-
nomial MLPs approximate those of MLPs with arbitrary continuous functions (on some bounded
domain), and in the limit singularities persist; they can only become of more severe type or new
singularities can appear. The same is true for singularities of CNNs described in Theorem4.6]

4.3 EXPOSEDNESS OF MLPs

Our next main result is concerned with the role of subnetworks in the optimization process. Moti-
vated by Section3.2] we consider objectives of the form £, (f) = Q(f — ), where f,u € V and Q
is a non-degenerate quadratic form over V. We now introduce a central notion concerned with biases
of the optimization process towards subsets of the parameter space W. The notion is general, since
it applies to any algebraic map ¢: W — V. In particular, it can be used for any polynomial machine
learning model, including neural networks with polynomial activations of arbitrary architecture.

Definition 4. A subset S C ‘W is critically exposed if the set
Us={ueV|IWeS V(L,op)(W)=0} 7
has a non-empty interior in V.

In the above, the notion of interior is intended with respect to the Euclidean topology of 'V, since the
latter is the standard one in applications. However, all the following results will hold in the Zariski
topology of V, which is natural in the context of algebraic geometry. The Zariski topology is coarser
than the Euclidean one, implying that the following statements are actually stronger. Therefore,
from now on we stick to the Zariski topology.

Intuitively, the notion of critically exposedness formalizes the presence of a bias towards S in the
optimization process. Since u depends on the dataset, the weights in a critically exposed set are
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equilibria of the training dynamics for a non-negligible amount of data. More concretely, if u is
sampled randomly from a full-support distribution over V, then the weights in S will be equilibria
with positive probability.

Remark 4.2. 1f the Jacobian Jw ¢ of ¢ at W vanishes at some weights W € ‘W, then W is critical
for every u € 'V (actually, for any loss function). In particular, the singleton S = {W} is critically
exposed, and Us = V. In the case of MLPs with ¢(0) = 0, this holds for the zero weights W = 0.

Exposedness can be rephrased in geometric terms. From the discussion at the end of Section [3.2]it
follows that W € W is a critical point of £,, if, and only if, the image of Jw is orthogonal to
fw — u, according to the scalar product over V induced by (). In other words, the locus of u for
which a given W is critical coincides with the translated orthogonal complement fy +im(Jw )"
of the image of the Jacobian. As a consequence,

Us= |J fw+imJwe)*. ®)
Wes

The right-hand side is the union of a family of affine subspaces of V indexed by S. Exposedness
amounts to the statement that this union has full dimension dim(Ug) = dim(V). Below, we leverage
on this geometric strategy to show that strict subnetworks of MLPs are critically exposed. As we
shall see in the next section, this drastically differs for convolutional architectures, for which the
dimensionality of the union Ug is typically deficient.
Theorem 4.3. Suppose o(0) = 0. Foreveryi=1,...,L—1, fix A; C{1,...,d;}, with |A;| < d;.
Let S C'W be the set of strict A-subnetworks. Then any open set of S is critically exposed.

Proof. Fix a strict A-subnetwork W. From the chain rule applied to equation|[I] it follows that

€))

8@ 0 ifiGAkOTjEAk_l,
OWyli, 7] (W) = 9¢ls (W) otherwise.
) OWy[3,5]

In the above, ¢|s: S — V denotes the restriction of ¢ to S. Therefore, V(£,, o ¢)(W) is obtained
by padding V(£,, o ¢|s)(W) with vanishing entries. In particular, if W is a critical point for
L, 0 p|s, it is critical for £, o ¢ as well. Hence, im(Jw¢|s)* = im(Jw)*, and so the union Ug
in equation contains the embedded normal bundle of (the smooth locus of) ¢(.S). This bundle has
full dimension dim(V), even when restricted to the image of an open set 7 C S. This shows that
Ur is full-dimensional, and exposedness of 1" follows. O

Remark 4.3. Theoremholds also for activations with ¢(0) # 0, if one uses a different definition
of strict A-subnetworks W: namely, for every layer ¢ and every j € A;, the j-th column of W;, 4
vanishes and the j-th row of W; coincides with its k-th row for some k ¢ A;. These repeated
rows in the weight matrices lead to repeated columns in the Jacobian Jw , instead of 0-columns as
in equation 9

The proof of Theorem[4.3|shows actually more: since Jw ¢ is obtained by adding vanishing columns
to Jw|s, the gradient descent dynamics of £ o ¢ and of £ o |g are isomorphic over S for any
differentiable loss £: V — R. Put simply, from a dynamical perspective, strict subnetworks are
equivalent when seen as embedded in W or as MLPs with a smaller architecture. Similar consider-
ations, with analogous Jacobian arguments, have been made in (Chen et al.| 2023)).

4.4 COMPARISON WITH CONVOLUTIONAL NETWORKS

So far, we have considered neural networks with a fully-connected architecture. In this section,
we instead discuss convolutional networks—a classical architecture originated in computer vision
(Fukushima, |1979; LeCun et al.,|1995). We start by recalling the basic definitions. To this end, fix
positive integers k, s,d’ € N representing filter size, stride, and output dimension respectively. The
convolution between a filter w € R* and an input vector x € R?, with d = s(d’ — 1) + k, is the

vector w %, T € R4 defined for 1 <i<d as:

k

(ws 2)[i] = wlj] ls(i — 1) + j]. (10)

j=1
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MLP CNN

Figure 2: Illustration of the different types of singularities (orange) arising in the neuromanifolds of
MLPs and CNNZs.

Note that we consider one-dimensional convolutions for simplicity, but the theory holds similarly for
higher-dimensional ones. Now, fix sequences k, s € Zgl, de Zifl such that d; = s;(d;+1 + k;)
for all 4, and vectors w = (wy,...,wr) € @le Rk,
Definition 5. A Convolutional Neural Network (CNN) with architecture (k, s, d) and weights w is
the map f,, : R% — R? given by:

fw(@) =wp %5, 0 (- %5, 0(W1 %4, T)), (11)

where o is applied coordinate-wise.

Similarly to MLPs, via abuse of notation, we denote by W = @Ll R*: the parameter space, by
¢: W 3> w — f, the parametrization map, and its image—i.e., the neuromanifold—by My s 4,

The geometry of the neuromanifold is well understood for monomial activation functions o (z) = ="
(Shahverdi et al, 2025}, [Kohn et al.,[2022). Below, we extend the main results from (Shahverdi et al
2025)) to general polynomial activations with o(0) = 0. Specifically, we show that ¢ is regular in
W\ »~1(0), meaning that its Jacobian Jy, ¢ has full rank for every w € W\ ¢ ~1(0). The reason
we exclude the fiber of the zero function is that, similarly to MLPs, the Jacobian is rank deficient at
w if fy = 0 (see Remark[4.2).

Theorem 4.4. Let o be a generic polynomial of large enough degree r > 0 (depending on L)
with 0(0) = 0. Then the parametrization map o restricted to W \ ¢~1(0) is regular; generically

one-to-one, and its remaining fibers are finite. In particular, dim(My g q,0) = dim(W) = ZiL:1 k.

The proof is provided in Appendix[C.1I] Theorem[.4]establishes a stronger property than the one sat-
isfied by the parametrization of an MLP (cf. Theorem[.I]). As such, it has important consequences
in terms of singularities and exposedness. Specifically, since the parametrization ¢ is regular, it
does not induce spurious critical points of the loss in parameter space (Trager et al., 2020, i.e., all
critical parameters w (away from ¢ ~1(0)) yield critical functions fy,. Since moreover all fibers of
¢ (excluding 0) are finite, we conclude that the singular points of My s a.» \ {0} are nodal, i.e.,
they arise from self-intersections. Differently from the case of MLPs, these singularities are of mild
type—see Figure[2)for an illustration, and do not cause critically exposedness. In fact, we now show
that, once the fiber of 0 has been excluded, no algebraic set can be critically exposed. This paints a
completely different picture than in the case of MLPs (cf. Theorem [£.3)).

Proposition 4.5. Assume the hypotheses of Theorem[d.4} Let S C W be an open set of an algebraic
variety strictly contained in W. If 0 & ©(S), then S is not critically exposed.

The proof is provided in Appendix [C.3] The fact that, differently from MLPs, subnetworks do not
define equilibria for the training dynamics of CNNs has been sometimes observed empirically. For
example, it has been established that initializing CNNs with almost all vanishing weights does not
result in a collapsed dynamics. Instead, the network recovers from the initialization, and learns well

(Blumenfeld et al., [2020).

Nevertheless, subnetworks of CNNs can yield singular points of the neuromanifold. In fact, we
show now that all singularities arise from subnetworks in the case of convolutional architectures.
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Since CNNs exhibit a weight-sharing pattern, the notion of subnetwork is different than for MLPs.
Specifically, we wish subnetworks to be reparametrizable by a smaller architecture, i.e., by smaller
filters. We will think of the latter as being represented by filters that are padded by vanishing entries

on the left or on the right. This leads to the following definition. Pick integers A1, ..., Ay such that
0 < A; < k; forevery i, and define A = (Ay,..., Ap).
Definition 6. A parameter w € W is an A-subnetwork if for each ¢ = 1,..., L, w;[j] = 0 holds

either forall j = 1,..., A; orforall j = k; — A; + 1,..., k;. The subnetwork is proper if A; > 0
for at least one 7.

Given an A-subnetwork, we denote by ¢; € Z the cardinality of A;, equipped with a positive or neg-
ative sign corresponding to whether w; is padded with zeros on the left or on the right, respectively.
We also recursively define tg = 0, #; = t; +#;_1/s;_1 for i > 1. The proof of the following claim
is also provided in Appendix

Theorem 4.6. Assume the hypotheses of Theorem Letw € W\ ¢~ 1(0). Then fy, is a singular
point of Mx s 4, if, and only if, w is a proper A-subnetwork such that t; € Z for all i, and t;, = 0.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have considered neural networks with an activation function that is a sufficiently-generic poly-
nomial. By leveraging arguments from algebraic geometry, we have studied questions related to
identifiability, singularity, and exposedness for MLPs and CNNs. Overall, this work addresses open
problems in neuroalgebraic geometry (Marchetti et al., 2024), and provides a novel geometric per-
spective on the sparsity bias of neural networks. Yet, it is subject to limitations, as outlined below.

Complete characterization of singularities and exposedness. Theorems [4.2] states that subnet-
works of MLPs can parametrize singular points of the neuromanifold. However, it is unclear whether
this describes all singularities. For deep linear MLPs (Trager et al.,|2020) and for deep polynomial
CNNs (see Theorem [.6)), all singularities come from subnetworks. The problem of a full charac-
terization of the singularities of polynomial MLPs is left open. Similarly, a complete classification
of critically exposed parameter subsets for polynomial MLPs, beyond the subnetworks described in
Theorem.3]and Remark [4.3] is crucial for a complete understanding of the biases of deep networks.

Type of critical points. Our analysis has only considered whether weights are critical points of
the objective, disregarding the type of criticality (local minimum/maximum, or saddle). Although
all critical points are equilibria of the dynamics, local minima correspond to the (local) attractors.
Thus, it would be interesting to incorporate the type of critical points in our analysis; in particular,
to understand whether subnetworks are local minima for non-negligible amounts of u € V.

Beyond the algebraic. Throughout this work, in order to leverage on tools from algebraic geome-
try, we have focused on neural networks with polynomial activations. However, several popular ac-
tivation functions are either piece-wise polynomial (e.g., ReLU), or completely non-algebraic (e.g.,
Tanh and SoftMax). Extending our results to the non-polynomial case is therefore important. As
mentioned in Section [I] a promising strategy to this end is polynomial approximation; since poly-
nomials can (locally) approximate arbitrary continuous functions, neuromanifolds of general neural
networks can be approximated by algebraic ones. This approach is, generally speaking, part of the
research program of neuroalgebraic geometry (Marchetti et al., 2024), and has been often fruitful
for extending results for polynomial networks beyond the algebraic domain (Boullé et al.| 2020;
Zhang & Kileel| 2023)). Along those lines, it would be interesting to turn the limit arguments from
Remark [4.1] on singularities of non-polynomial neuromanifolds into a formal proof, and similarly
extend our identifiability and exposedness results beyond the strictly algebraic realm.
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APPENDIX

A SINGULARITY AND CRITICALITY

In this section, we aim to clarify the distinction between singular points of a variety and critical
points of its parametrization. Although both notions involve degeneracies, they can arise from dif-
ferent mechanisms and have different implications for optimization. Singular points are geometric
features of the variety itself, reflected in the dimension of the tangent space, while critical points
depend on the differential of the chosen parametrization.

To formally define singularities of a variety X C R", we assume that X is irreducible (i.e., it cannot
be written as the union of two proper non-empty subvarieties) and consider its vanishing ideal Ix
that consists of all polynomials in R[z1, ..., z,] that vanish along X. We then fix a generating set
(f1,..., fs) = Ix for that ideal and compute the s x n Jacobian matrix J whose (4, j)-th entry is

gg 7 . For almost every point p on X (i.e., except for p on some proper subvariety), the rank of J(p) is

the same. Those are the smooth points of X, and at those points p, the kernel of J(p) is the tangent
space of X at p. At the remaining points on X, the rank of the Jacobian drops; those are the singular
points. They form a subvariety of X, defined by the ideal Ix and the ¢ X ¢ minors of the Jacobian,
where c is the rank of J(p) at a smooth point p of X.

Through the classical examples of a nodal and a cuspidal cubic curve, we now illustrate how the
concepts of singularities on varieties and critical points of parametrizations differ, and how tangent
spaces play a key role in their characterization.

151
20t
15¢ Lor
Loy 05}
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0.0
0.0
05} -0.5¢
-1.0t
_10 L
_1.5 L
—2.0—3 0 1 2 15750 05 10 15 20
(a) Nodal cubic (b) Cuspidal cubic

Figure 3: Two singular cubic curves.

Example A.1. Consider the parametrization of two singular cubic curves:
©: R — R, t (121, t(t? — 1)) (nodal cubic y? = z*(z + 1)), (12)

P: R — R?, tes (12, %) (cuspidal cubic y? = z3). (13)

In both cases, the origin is a singular point of the curve; see Figure [3] For the nodal cubic, every
point on the curve except the origin has a fiber of size one. At the origin, however, the fiber is
unusual, since it contains two distinct parameters: ¢ ~1(0,0) = {—1,1}. In contrast, the cuspidal
parametrization is injective, i.e., 1)1 (x,y) consists of a single point for every (z,y) € im(1)).

The Jacobians of both parametrizations are
Jup=[2t 3t* —1], (14)

Jip =2t 3t7). (15)
Thus, ¢ is regular at every ¢ (i.e., the Jacobian never vanishes), while v is critical at t = 0 (where the
Jacobian is [0, 0]). In other words, the cuspidal parametrization is not regular at the cusp, although it
does not have any unusual fibers; its singularity arises solely from the drop in rank of the Jacobian.

13
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To see algebraically that the origin is indeed the only singular point of both curves, we compute the
Jacobian of their defining equations f(z,y) = 2%(z + 1) — y? and g(x,y) = 23 — y?, respectively:

Jf =322 + 20 — 2y, (16)

Jg=[32> -2y (17)

Both vanish precisely when (z,y) = (0,0). At all other points on the curves, the kernel of the
Jabobian is the 1-dimensional tangent space. At the singularity (0, 0), the Zariski tangent space is
the whole 2-dimensional ambient plane R2. For the node, the plane is spanned by the two distinct
tangent directions corresponding to ¢t = —1 and ¢ = 1, with slopes 1 and —1, respectively. For the
cusp, however, the 2-dimensional tangent space arises from the vanishing of all first-order terms,
which corresponds geometrically to infinite curvature at the origin. In particular, since Jov» = 0,
this tangent space cannot be detected solely from the diffential of the parametrization. &

This example illustrates that critical points of a parametrization can cause singularities on the image
variety, but that not all singularities of parametrized varieties arise like that. Moreover, not every
critical point of a parametrization leads to a singular point on the image. This can be for instance seen
by projecting the cuspidal curve in Figure [3bonto y-axis: Composing the cuspidal parametrization
1) with that projection leads to a parametrization ¢ — t3 of the line R' (which is clearly smooth
everywhere) that is not regular at ¢ = 0. All in all, critical points of parametrizations and singularities
of their image varieties are subtly related, but non implies the other in general.

The effect that different types of singularities have when optimizing a loss over high-dimensional
algebraic varieties is largely unknown. Cuspidal-type singularities, arising from a rank drop of the
parametrization’s Jacobian, may appear both as spurious (Trager et al.| [2020) and genuine critical
points of the loss. In the case of MLPs, we show that these types of singularities are critically
exposed. In contrast, nodal-type singularities do not exhibit this behavior. This reflects the main
difference between the singular points of MLPs and CNNs (see Figure [2) since we show that all
singularities of CNNs are of nodal type.

B THEOREMK.T]

In this section, we prove Theoremd.1] We begin with some technical results.

Lemma B.1. Let o(x) = 25 + - - - + 25 be a polynomial activation function such that Bj > jL:ll

forevery j > 1, and 31 > 1. Define og,(x) = 2P, Then for all weights W € ‘W, the MLP can be
decomposed as:

L
fw(r) = Z Wros W10 Wr 2+ 05,Wi(z) + R(z), (18)
i=1
where the remainder R(x) does not contain any monomial of degree [3]]7_1 foreveryj=1,...,L.

Proof. Tt suffices to show that monomials of degree ﬁf ~1 appear solely in the term
Wrop,Wr105,Wr -+ 05, W1 (z). (19)
We verify this by tracking the degrees generated layer by layer.
First, note that the monomials of degrees BlLfl and Bf ~1 are clearly only generated by the terms
Wrog Wi_108,Wi_o---05,Wi(x) and Wirog, Wi_108, Wi—o---05, Wi(z), (20)
respectively. Thus, we focus our analysis on degrees BJL “lforl <j<L.

We proceed by induction on the number of layers k, where 2 < k < L. Specifically, we claim that
at layer k, monomials of degree 6;-“*1 appear exclusively through the composition

WkUBjWk—lo',Bj "'(T[;(].Wl(l’). (21)

14
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Moreover, we claim that the closest degrees immediately preceding and succeeding B;-“ ~1 are given
by (ﬁf‘Q —1)B; + Bj_1 and (B¥2 — 1)B1 + B4 1, respectively.
For k = 2, note that the degrees appearing at the second layer are

Pr < P2 < <PBr-1<Pr, (22)
and thus R(x) = 0 at this stage.

For the induction hypothesis, assume that the claim holds for some layer £ < L. That is, mono-

mials of degrees BEF1 are solely generated by equation [21|at layer k, and the sequence of degrees
generated has the form

Pl BT B+ B < < BET = B+ By < B!
<BIT =B B < < By = Br 4 Bro < By,

where intermediate terms represent monomials whose degrees lie strictly between the bounds above.

(23)

For the inductive step, consider the (k + 1)-layer composition, expressed by
L
WiproWio - - oWy (z) = Z Wis108,Wio - aWy(z). (24)
i=1
To obtain monomials of degree exactly 3F, we analyze each summand individually. For any choice

of o, with j # i, we claim that no monomial of degree ¥ emerges. Hence, the only valid choice
is j = ¢. To see this, we consider two cases

* j < i :In this case, to obtain a term of degree at least ¥ in the multinomial expansion
of o5, Wxo ...acWi(x), we have to use at least one the monomials of Wyo...cWi(x) of

degree larger than ﬁzk ~1. By equation the smallest possible degree is Bf B+ Bia
However, by our assumption, this is strictly larger than ,BiL_l > Bk

* j > i : In this case, since the smallest degree appearing in Wyo ...oW;(x) is Bf_l
according to equation the smallest degree after passing through o, is 3; ,Bf > B; >
BE~1. Hence, all terms are of degree larger than 3.

Moreover, the neighboring degrees of B¥ in o5, Wyo - - oWy () are

BEYBi = 1)+ (B =B+ Bic1) <BE< BB — 1)+ (B =B+ Biv1). (25)

=BF—Bi+Bi—1 =B¥—B1+Bit1
This exactly confirms the inductive step, hence the uniqueness of the decomposition in equation[I8]
O
Lemma B.2. Let e; > ey be positive integers of opposite parity. Fori = 1,... L, let W; €

R%*di-1 be generic. For j = 1,2, define

Ay o= {(DsaWa, DjaWaD 7, oo WD, ) | Dy € ding, (R)VE=1,..., L~ 1},
(26)
where diag;c (R) is the set of real invertible diagonal matrices of size dy, x di. Then A; N Ag
consists exactly of those tuples in Ay for which each D1, = A\ ;1 is a multiple of the identity for
some 1, € R\ {0} that satisfy

eL—Q €L73 e
AT, A Ao =1 7)

Proof. Take (/1/171, .. ,WL) € A; N Ajy. By definition, there exist diagonal invertible matrices D j,
such that fork =2,..., L —1:

Wi =Dy Wi =Dy Wi, Wi =Dy WiDifh, = DopWiDyi2 . (28)
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Since a generic matrix admits no diagonal symmetries, D; 1 = D2 =: D. For k = 2 the second
equality becomes

D3 3Dy s Wo = Wa D2, (29)
where A := e; — eo. Left multiplication by a diagonal matrix scales rows, while right multiplication
scales columns. Thus, since W5 is generic, both DA and Di 5D172 are the same scalar multiple of

the identity. Since A is odd, this yields D = A1 1/ and Dy 5 = )\]:lADLQ for some A1 1 € R\ {0}.

By plugging this relation into the equality for £ = 3 and repeating the same argument shows that
D12 = Xi2I,and that Dy 3 = A;?A)\iQADLg. Inductively, forevery k = 1,...,L — 1 we get

k—2 k—3
—Ae, —Ae,

Dy =gl Dok =X\1"7 A, Al Dike (30)

Atthe last layer, the equality W, Dy 7' | = WD, 7> | gives Dy 1 = DilL/e_zl. Using the equality
for k = L — 1 in equation 30} we get

Ae: —Ael=3  —pel—1 _A
Dit2i=M1 7 Mo 2 o Apol 3D
Hence, D 1,1 is also a scalar multiple of the identity matrix, say Ay r—1/, and thus
ey P yey ? e
A A AL A =1 (32)

Conversely, a direct computation reveals that these scalar multiples of the identity yield indeed a
point in the intersection A; N As. O

Now, we can finally prove the desired theorem.

Proof of Theorem We fix a sufficiently large degree r. It is sufficient to show that there exists a
polynomial o of degree r for which the theorem holds. Indeed, ¢ having finite fibers is equivalent
to its Jacobian attaining the maximal rank dim('W) at generic weights W. The condition that the
Jacobian has maximum rank dim('W) is open with respect to the Zariski topology in the coefficient
space of ¢. Since open sets are dense, if this condition holds for one polynomial activation of degree
r, it holds for a generic one.

Consider the sparse polynomial
L
o(x):= Zxﬁi, (33)
i=1

where 3; > ﬂf:ll forall i, 81, = r,and 31 > 6m? — 6m form = —1+ 2max{dy,...,dr_1}. Set
op,(r) := 2%, Then, by Lemma the output of the MLP uniquely decomposes as

L
Z WirogWi—108,Wir—2---0p,Wi(z)+ (remaining terms). (34)

i=1

Each monomial term in equation is an MLP with monomial activation 2:%:. From (Finkel et al.|
2024), since 3; > 6m? — 6m for all 4, the generic fiber of the parametrization map of such an MLP
consists of weights of the form

(Pi,lDi,lwl, PioDisWoD P, ..., WLD;f:lHTL_l) , (35)

where P; ; are permutation matrices and D; ; are invertible diagonal matrices of size d; x d;. For
generic parameters W, the fiber ¢ ~!(fw) is contained in the intersection of the sets of such tuples.
In other words, every tuple in the fiber ¢~ (fw) can be expressed as in equation for every
1=1,...,L.

Since W is generic and each D; ; is diagonal, it follows that all the corresponding permutation
matrices must coincide at the intersection. That is, we have P; ; = Py ; for all ¢, 7, k. Since we
wish to show finiteness of fibers, without loss of generality, we may assume that these permutation
matrices are identities.
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Now, by comparing tuples equation [35] for different indices i, Lemma [B.2) implies that each diag-
onal matrix reduces to a scalar multiple of the identity, that is, D; ; = X; ;I for some \; ; € R*.
Moreover, the intersection is characterized explicitly by the polynomial system:

L—2 L-3
N N A = 1=0,
(36)

BL—2 ﬂLffj
AL AL "'/\il,L—Q)‘LJ/—l —1=0.
We use the lattice-ideal approach in toric geometry to show that this system has finitely many solu-

tions; see (Sahin, 2023, Section 7). Let A[i, j] = Bf:il ~J. Then A is a Vandermonde matrix of size
(L —1) x (L — 1) with determinant

det(A) == [ (B8 —8)#0. (37)

1<i<j<L—1

Using the Smith normal form, there exist matrices U, V' € GLy_1(Z) such that

UAV = diag(ty,...,05—1), (38)
where ¢4 | lo | --- | €p—1. Letting A = (Ap1,..., A —1) € (C*)E~1, define new coordinates
Q= (w1,...,wr_1) via

L—1 _
Vi,
wi= [ AL 2" (39)
k=1
Since V' is unimodular, the map A — € is an algebraic automorphism of the torus. In these new
coordinates, the system equation [36(is equivalent to wfl =1, ..., wiL_ - = 1, which has exactly
01011 < oo solutions in (C*)E~1. Hence, o~ !(fw) is finite, and the claimed dimension
follows directly from the fiber-dimension theorem. O

C POLYNOMIAL CONVOLUTIONAL NETWORKS

In this section, we provide technical details for the proofs in Section[4.4] We first establish a general
result on univariate polynomials o(z) = >.7_, a;z".

Lemma C.1. Suppose that r > 2 and that a,.,a,_1 # 0. Moreover, let uy,...,ur, € R\ {0} and
AL, ..., AL € R be such that, for all x € R,

)\L’LLLO'()\Lfl’U,Lfld(..O'(/\lul.l?)...))) = uLa(uL,la(...a(ulx)...))). (40)
Then, \{ = --- = A, = L.

Proof. Consider the following rational function:
xo'(x)
Plx) == ———= 41
@)=, @)

which is well-defined wherever o(x) # 0. Define inductively:

{G()(if) = )\1'LL1£L', {H()(LE) =u1x,
Gr() == Apg1tup+10(Gr—1(2)). Hy(2) = up10(Hp—1(z)).
The left-hand side of equation l4__0] coincides with G _1(x) = Apup, O’(G L_Q(l’)), while the right-

hand side is Hy,—1(2) = ur,o (Hp—2(x)). Now, by differentiating equation and then dividing by
equation[40] we obtain

(42)

! H/
P(Gr_s) Giiz = P(Hp_») Hiiz 43)

By applying the chain rule iteratively, the above identity is equivalent to

L—2 L—2
[I P(Gr@) = ] P(Hx(@)). (44)
k=0 k=0
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We assume for contradiction that A, # 1 for some k. Let m := min{0 < k < L — 2 | A\py1 # 1}.
For every j < m, we have that G; = H;. Moreover, G,,(z) = A\p4+1 Hp (z) with Ajppq # 1. In
particular, equation 4] becomes

L—2 L—2
[I AGi(x)) = T P(Hx(2)). (45)
k=m k=m

Now, set 3 := —a;—:l. As © — o0, the rational function P satisfies

P(x)=r+ g +0(z7?). (46)

Thus, for every k > 0, we have

P(Gy(z)) =7+ Gf(x) +O(z7298% ) P(Hp(z)) =7+ Hf(m) + O(z—2 4 ) - (47)

Since deg G, = deg Hy, = r*, the terms of order up to —7"™ in equation [43]are

L—2 3 N L=2 8 m
( 1 r)’“*Gm(x)”O(x ):< 1 r>'(T+Hm<x>”O<x ) @9

k=m+1 k=m+1

Using G, (z) = A1 Hp (), we obtain
1- )\m+1

B—L0 — O ). (49)
Am_;,_le(Z‘) ( )
Since the left hand-side is of order O(z~""") and 8 # 0 by hypothesis, we conclude that \,,, ;1 = 1,
which is a contradiction O
Corollary C.2. Suppose thatr > 2, ag = 0 and a,,a,_1 # 0. Moreover, let wy € RF .. wp €
Rz pe non-zero filters and let A1, ..., \p, € R be such that, for all x € Rdo,

ALWL *s, 0 (% 0(AW1 Ksy X)) = WL *s,, O (- *g, (W1 %5, T)) . (50)
Then, \y = ---= A, = 1.
Proof. Let i = 1,...,dy be the smallest index such that the variable z; appears in one of the

monomials of equation@]with non-zero coefficient. Substituting z; — Oforall j # iin equation@]
yields the equality of univariate polynomials in equation where uy, is the first non-zero entry of
the filter wg. Thus, the claim follows from Lemma [C.1} O

C.1 PROOF OF THEOREM [4.4]

Proof. We first show regularity. Similarly to the proof of Theorem 4.1} we will do so for a specific
activation function, which will imply the statement for a generic one. Consider the polynomial
activation defined by

o(x) =Pt 4. 2P, (31
where 51 > 1, B, = r, and 5; > ﬁj(-f;l) for all j > 1. We will show that the parametrization map

¢ with this activation is regular on W \ ¢ ~1(0). Note that ¢ ~1(0) consists precisely of those filter
tuples where one of the filter is zero, because convolving with a non-zero filter is a full-rank linear
map (Shahverdi et al., 2025, Lemma 4.1).

By Lemma [B.T] the CNN output decomposes uniquely as

L
fw = Z WL, %, 08; (- *s, 0p, (W1 %5, T)) + (remaining terms). (52)
i=1

From (Shahverdi et al 2025, Proposition A.2), if f,, # 0, the kernel of the differential of the CNN
parametrization with monomial activation o, is explicitly given by the subspace

Ai = {hi1wn, (X1 Bi + Xig)wa, oo, (=X n—2Bi + N —1)wr—1, —Ai, -1 Biwr | Ai; € R}
(53)
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Using the decomposition equation 52} we deduce that the kernel of the Jacobian J ¢ is contained
in the intersection ﬂiLzl A;. Now, let v; € R contain the coefficients of the filters wy, in A; and

define L-1 pL—2 T
Vj::(ﬁj_aﬂj_v"'aﬂjﬁl) . (54)
Then, (v;,v;) = 0. Hence, in ﬂiLzl A;, we must have
f*l 5*2 e B 1
L oBETE o B 1
vr, = 0. (55)
L=l pgk=2 ... 5 1

Since 3; — 3; # 0 for all i # j, the matrix in equation[53]is a full-rank Vandermonde matrix, which

is invertible. Therefore, the only solution is vz, = 0. It follows that ﬂle A; = {0}, and hence
the parameterization map ¢ has an injective differential over W \ ¢ ~1(0). In other words, ¢ is an
immersion away from ¢~ 1(0).

Since ¢ is an immersion at generic weights w € W, it necessarily has finite fibers. We wish to
show that the generic fiber is a singleton. To this end, choose weights w = (wy,...,wr,), where
w; = (1,1,...,1) for all i. From (Shahverdi et al.| 2025, Theorem 4.6), it follows that the fiber
¢ }(fw) is contained in {(Ajw1,...,A\rwy) | A € R}. But then Corollary implies that
0 1(fw) = {w} is a singleton. Since ¢ is regular at w, there is an open neighborhood around
w such that every fiber remains a singleton. Since open sets are dense in the Zariski topology, we
conclude that the generic fiber is a singleton.

C.2 PROOF OF THEOREM 4.6

Proof. Since ¢ is regular, generically one-to-one and has finite fibers over W\ ¢ ~1(0), the property
that fy, is a singular point is equivalent to the corresponding fiber o ~!( f,,) not being a singleton.

We start by assuming that fy, # 0 is a singular point, i.e., there is another filter vector w’ such that
fw = fw’. By Corollary w’ differs from w by more than just layerwise scalings by constants.
The monomials of maximal degree appearing in fy, (x) are

W %y, O (7 Ksy O (W1 Ksy ) = W Ksy O (0 %, (W] x5, T)) (56)
In particular, w and w’ also give rise to the same monomial CNN. Now, (Shahverdi et al., 2025,
Theorem 4.6) states that w is a proper A-subnetwork for some A, and that the filters in w’ are

shifted versions of the filters in w. These shifts need to satisfy £; € Z and {7, = 0 according to
(Shahverdi et al., 2025, Remark 4.2).

For the converse direction, we consider a proper A-subnetwork w that satisfies the assumptions of

the statement. To this end, define new weights w’ = (w},...,w}) as:
¢ (O,,O,wz[l],wzm’,wl[k‘l—&—tz]), tzSO

Since each filter w; is non-zero and t; # 0 for some j, it holds that w # w’. Since tr, = 0, by
leveraging on the equivariance property of convolutions, it is an immediate calculation to verify that
fw = fw, as desired. O

C.3 PROOF OF PROPOSITION [4.3]

Proof. Since ¢ if regular, dim(im(Jw¢)*) = dim(V) — dim(My s a,,) for every W € S. Since
¢ has finite fibers, equation 8] defines a family of affine subspaces of V, where only a finite number
of subspaces is indexed by a given point in ¢(.S). Therefore, dim(Us) < dim(¢(5)) + dim(V) —
dim(Mg g a,0)- Since S is contained in an algebraic variety strictly contained in W, dim(p(S)) <
dim(My g g,0). We conclude that dim(Ug) < dim(V), implying that Ug must have empty interior.

O
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