
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ON A RAZOR’S EDGE:
IDENTIFIABILITY AND SINGULARITY OF POLYNOMIAL
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study function spaces parametrized by neural networks, referred to as neu-
romanifolds. Specifically, we focus on deep Multi-Layer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs) with an activation function that is
a sufficiently generic polynomial. First, we address the identifiability problem,
showing that, for almost all functions in the neuromanifold of an MLP, there ex-
ist only finitely many parameter choices yielding that function. For CNNs, the
parametrization is generically one-to-one. As a consequence, we compute the
dimension of the neuromanifold. Second, we describe singular points of neuro-
manifolds. We characterize singularities completely for CNNs, and partially for
MLPs. In both cases, they arise from sparse subnetworks. For MLPs, we prove
that these singularities often correspond to critical points of the mean-squared er-
ror loss, which does not hold for CNNs. This provides a geometric explanation
of the sparsity bias of MLPs. All of our results leverage tools from algebraic
geometry.

Figure 1: Subnetworks define singular points (orange) of the neuromanifold.

1 INTRODUCTION

Machine learning models parametrize spaces of functions, often referred to as neuromanifolds
(Calin, 2020; Marchetti et al., 2025). Their geometry governs several learning aspects, ranging from
expressivity and sample complexity to the training dynamics. Neuromanifolds are central to statis-
tical learning theory—where they are referred to as hypothesis spaces—and information geometry
(Amari, 2016), and have been analyzed from the perspective of various mathematical disciplines.

A classical question in machine learning is identifiability—the problem of describing the parame-
ters that correspond to the same function. Several works have formally addressed this question for
specific activation functions, such as Tanh (Fefferman et al., 1994), Sigmoid (Vlačić & Bölcskei,
2022), ReLU (Grigsby et al., 2023; Bona-Pellissier et al., 2023), and monomials (Finkel et al., 2024;
Usevich et al., 2025). Identifiability can be interpreted as characterizing the redundancies or ‘sym-
metries’ of the parametrization of the neuromanifold (Lim et al., 2024). The degree of redundancy
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determines the dimension of the neuromanifold, which, in turn, measures the sample complexity
of the corresponding model (Cucker & Smale, 2002). Moreover, non-identifiable functions often
correspond to singularities of the neuromanifold. These are special points where the model is not a
smooth manifold, such as edges, cusps, or self-intersections. As advocated by the field of Singular
Learning Theory (Watanabe, 2009), singular points play an important role for learning, e.g., in terms
of generalization error (Wei et al., 2022) and training stability (Amari et al., 2006; Wei et al., 2008).

In this work, we investigate the identifiability and singularities of both Multi-Layer Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs). Instead of focusing on a single activation
function, we consider a large class of activation functions, namely, generic polynomials of large
degree. This is motivated by the fact that polynomials can approximate arbitrary continuous func-
tions, and thus, polynomial neural networks approximate arbitrary networks. Crucially, considering
polynomial activations makes geometric analysis more feasible for two reasons. First, polynomial
MLPs are the only ones whose neuromanifolds live in finite-dimensional ambient spaces (Leshno
et al., 1993, Theorem 1). Second, it allows us to employ tools from algebraic geometry (Kileel
et al., 2019; Trager et al., 2020). The latter is a rich field of mathematics that is particularly suitable
for analyzing symmetries and singular spaces. Polynomial networks are the central focus of neu-
roalgebraic geometry (Marchetti et al., 2025)—an emerging field bridging algebraic geometry and
theoretical deep learning, where our work naturally fits.

Our main results apply to sufficiently generic polynomial activation functions of large degree:

Identifiability: We prove that almost all functions in the neuromanifold of an MLP correspond
to only finitely many parameters (Theorem 4.1). This result is in line with the widespread belief
that general MLPs have discrete parameter symmetries (coming from permutations of neurons in
each layer). However, the only available proofs of this claim are for Tanh and Sigmoid activations
(Fefferman et al., 1994; Vlačić & Bölcskei, 2022). Our result extends the identifiability studies
for monomial activations (Finkel et al., 2024; Usevich et al., 2025) to the broad class of generic
polynomials. In particular, we deduce that the dimension of the neuromanifold coincides with the
number of parameters. This resolves the dimension conjecture by (Kileel et al., 2019) in a general
form. For CNNs, we prove a stronger result: almost all functions are uniquely identifiable, i.e., they
correspond to a single choice of parameters (Theorem 4.4).

Singularities: We consider sparse subnetworks, where a subset of neurons is inactive. We prove
that these subnetworks (under appropriate assumptions) are singular points of the neuromanifold,
both for MLPs (Theorem 4.2) and CNNs (Theorem 4.6). We then introduce the notion of critically
exposed parameter sets, that contain critical points of the mean-squared error loss with positive prob-
ability over the dataset (Definition 4). We prove that subnetworks of MLPs are critically exposed
(Theorem 4.3), while they are not in the case of CNNs (Proposition 4.5).

Our results can be interpreted from the perspective of sparsity bias—the empirically-observed phe-
nomenon that neural networks tend to discard neurons during their training process, effectively
converging to a function parametrized by a smaller subarchitecture. This is closely related to the
popular ‘lottery ticket hypothesis’ (Frankle & Carbin, 2019)—the suggestion that the model implic-
itly identifies and amplifies subnetworks that are particularly efficient for the given task, resulting
in sparse representations of data. Our singularity results provide a geometric explanation of these
phenomena. Indeed, our notion of critically exposedness formalizes the idea of a bias of the training
dynamics towards the given set, since critical points are local attractors for stochastic gradient flows
(Chen et al., 2023). Our results on critical exposedness of subnetworks indicate that the sparsity bias
is exhibited by MLPs, but not by pure single-channel CNNs. This is in line with recent empirical
findings for convolutional architectures (Blumenfeld et al., 2020).

2 RELATED WORK

Algebraic geometry of deep learning. As anticipated, a line of research in theoretical deep
learning—recently termed ‘neuroalgebraic geometry’ (Marchetti et al., 2025)—explores the study of
neuromanifolds of polynomial neural networks through the lens of algebraic geometry. Motivated by
the fact that polynomials can approximate arbitrary continuous functions, the goal of neuroalgebraic
geometry is to approach fundamental problems in machine learning via tools from algebra. One
such problem is identifiability, which represents a core focus of neuroalgebraic geometry. Several
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models have been analyzed in the literature, ranging from MLPs with linear (Trager et al., 2020) and
monomial activations (Kileel et al., 2019; Finkel et al., 2024; Kubjas et al., 2024; Marchetti et al.,
2024), to CNNs with linear (Kohn et al., 2022; 2024; Shahverdi, 2024) and monomial activations
(Shahverdi et al., 2025), to (un-normalized) attention-based networks (Henry et al., 2025). In this
work, we contribute to this line of research by addressing identifiability for MLPs and CNNs with
(generic) polynomial activation functions. Singularities are also central in neuroalgebraic geometry,
due to their role in the learning process. However, they are formally understood only for linear
MLPs (Trager et al., 2020) and monomial CNNs (Shahverdi et al., 2025). In both cases, they coin-
cide with subnetworks of the corresponding architecture. The general relation between singularities
and subnetworks is conjectural (Marchetti et al., 2025). In this work, we show that subnetworks
often define singular points for MLPs and CNNs, further sedimenting this relation. 4.4.

Implicit sparsity bias. Several works have theoretically analyzed the tendency of neural networks
to converge to sparse data representations. A line of research (Woodworth et al., 2020; Nacson
et al., 2022; Pesme et al., 2021; Andriushchenko et al., 2023) has shown that, for deep diagonal
linear networks, the training dynamics, when initialized around the origin, implicitly penalizes the
ℓ1 norm of the weights, inducing sparsity in the representation. A similar bias towards low-rank
solutions has been shown for deep linear networks trained with a regularized loss (Kunin et al.,
2019; Ziyin et al., 2022; Wang & Jacot, 2024). Closely related to our work, these biases have been
recently reformulated in terms of subnetworks (Chen et al., 2023). Most of the previous literature
focuses on simple models, and on tools and ideas from (stochastic) dynamical systems theory. In
contrast, we promote a purely geometric perspective, explaining the subnetwork bias in terms of the
singularities and the parametrization of the neuromanifold. Moreover, we focus on general models–
specifically, deep networks with polynomial activations. This generality is enabled by the powerful
tools from algebraic geometry.

Singular learning theory. The role of singularities in machine learning—and especially their ef-
fect on the training dynamics (Amari et al., 2006; Wei et al., 2008)—has been promoted by Singular
Learning Theory (SLT) (Watanabe, 2009; 2007; Amari et al., 2003; Wei et al., 2022). The latter falls
into the more general framework of information geometry, focusing on the Riemannian geometry
of the Fisher information metric. Crucially, however, the notion of singularity in SLT drastically
differs from the one adopted in this work. Following the formalism of neuroalgebraic geometry, we
consider singular points of the neuromanifold in the classical algebro-geometric sense—see Section
4.2 and Appendix A. In contrast, singularities in SLT are parameters where the metric tensor, once
pulled back, is degenerate. This happens due to extra degrees of freedom in parameter space, or
due to criticalities of the parametrization. Both these cases can lead to singular or smooth points of
the neuromanifold. Vice versa, a singular point can arise in neuromanifolds that are parametrized
regularly, where the pulled-back metric tensor is non-degenerate; this is the case for polynomial
CNNs, as we will discuss in Section 4.4. Therefore, the two notions of singularity are different and
incomparable. In a sense, our results extend ideas similar to the ones from SLT to a function space
perspective, i.e., in terms of the geometry of the neuromanifold.

3 BACKGROUND

In this section, we overview the basic notions around deep neural networks and their neuromanifolds.

3.1 NEUROMANIFOLDS AND SUBNETWORKS OF MLPS

Fix a function σ : R → R, a sequence of L > 1 positive integers d0, . . . , dL, and, for every i =
1, . . . , L, a matrix Wi ∈ Rdi×di−1 .
Definition 1. A Multi-Layer Perceptron (MLP) with architecture d = (d0, . . . , dL), activation func-
tion σ and weights W = (W1, . . . ,WL) is the map fW : Rd0 → RdL given by the composition:

fW =WL ◦ σ ◦ · · · ◦ σ ◦W1, (1)

where σ is applied coordinate-wise.

We now introduce the function spaces parametrized by neural networks. Let W =
⊕L

i=1 Rdi×di−1

be the parameter space of an MLP, and φ : W ∋ W 7→ fW be its parametrization map.
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Definition 2. The neuromanifold of an MLP with architecture d and activation function σ is the
image of the parametrization φ, i.e.,

Md,σ = {fW |W ∈ W} , (2)

As anticipated, from now on, we assume that σ is a (univariate) polynomial of some degree r > 1:

σ(x) =

r∑
i=0

aix
i. (3)

In this case, fW is a (multivariate and vector-valued) polynomial of degree at most rL−1, i.e.,
Md,σ ⊆ V, where V is the space of all polynomial maps Rd0 → RdL−1 of degree at most rL−1. In
particular, the neuromanifold lives in an ambient space V of functions, which is finite-dimensional
and linear. This is unique to polynomial activations (Leshno et al., 1993, Theorem 1). Moreover, it
follows immediately from the Tarski-Seidenberg theorem that Md,σ is a semi-algebraic variety, i.e.,
it can be defined by polynomial equalities and inequalities in V.

We also introduce the notion of a subnetwork of an MLP, which will be central in our results. For
every i = 1, . . . , L− 1, let Ai ⊆ {1, . . . , di} and define A = (A1, A2, . . . , AL−1).
Definition 3. A parameter W ∈ W is an A-subnetwork if for every i = 1, . . . , L − 1 and every
j ∈ Ai, the j-th column of Wi+1 vanishes. We say that W is a strict subnetwork if, moreover, the
j-th row of Wi vanishes for j ∈ Ai.

For simplicity, we set A0 = AL = ∅, i.e., we do not allow subnetworks obtained by removing input
or output neurons.

3.2 OPTIMIZATION

We consider a regression problem with mean squared error objective. To this end, let D be a
dataset, i.e., a finite subset D ⊂ Rd0 × RdL representing input-output pairs. The corresponding
loss LD : V → R≥0 is given by:

LD(f) =
∑

(x,y)∈D

∥f(x)− y∥2. (4)

An MLP is trained on the dataset D by minimizing LD ◦ φ over W. Since the loss is quadratic,
equation 4 can be rephrased as LD(f) = Q(f − u), where Q is a quadratic form on V and u ∈ V,
both depending on D. By a standard argument (Trager et al., 2020; Shahverdi et al., 2025; Kubjas
et al., 2024), for large and generic D, the quadric Q is non-degenerate and u is generic1 in V.
Therefore, with enough data, training the network amounts to optimizing a non-degenerate distance
from a generic point in the ambient space of the neuromanifold.

Since optimization is typically performed via gradient descent, we will be interested in the critical
points of the loss, where its gradient vanishes. These correspond to the equilibria of the gradient
flow, and are therefore the stationary points of gradient descent. For a loss Lu(f) := Q(f − u)
as above, it follows from the chain rule that W ∈ W is a critical point of Lu ◦ φ if, and only if,
fW−u is orthogonal according to the scalar product induced byQ to the image of the differential of
φ based at W. This geometric interpretation of criticality will be crucial in some of our arguments.

4 RESULTS

In this section, we present our main results. We first focus on MLPs, and then consider CNNs.

4.1 IDENTIFIABILITY OF MLPS

We now discuss identifiability of MLPs which, from the perspective of algebraic geometry, means
to investigate the fibers of the parametrization map φ. Formally, the fiber of φ at W is defined as
φ−1(fW) = {W′ ∈ W | fW = fW′}.

1Throughout this work, we refer as ‘generic’ to elements in a space X that are allowed to vary outside of a
proper algebraic subset of X. Intuitively, these elements lie ‘almost anywhere’.
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To begin with, observe that if W is an A-subnetwork, then fW coincides with the function obtained
by removing from the architecture the neurons of the i-th layer with indices in Ai, resulting in an
MLP with architecture (d0−|A0|, . . . , dL−|AL|). This implies that fW is independent of the di−1

entries of the j-th row of Wi for j ∈ Ai. In particular, strict subnetworks parametrize the same
function as the corresponding non-strict ones. Therefore, the fiber of φ has a large fiber at W—a
fact has been observed in the SLT literature (Amari et al., 2006; Wei et al., 2008; Orhan & Pitkow,
2018). More precisely, this fiber has dimension dim(φ−1(fW)) ≥

∑L−1
i=1 |Ai| di−1.

In our main result, we prove that, if the activation σ is generic and of large-enough degree, the fiber
of φ at a generic W ∈ W is instead finite, i.e., 0-dimensional. In other words, we show generic finite
identifiability. This is equivalent, by the fiber-dimension theorem (Shafarevich, 2013, Chap. 1.6.3),
to that the dimension of the neuromanifold is equal to the number of parameters. The dimension of
the neuromanifold is a fundamental invariant measuring the expressivity and sample complexity of
the model (Kileel et al., 2019; Marchetti et al., 2025). From a mathematical perspective, computing
the dimension is an involved problem. For polynomial MLPs, it was originally conjectured in (Kileel
et al., 2019), and only recently established in (Finkel et al., 2024; Usevich et al., 2025) for monomial
activations σ(x) = xr. We extend those result to more general polynomial activations. Note that
monomial MLPs have infinite generic fibers, arising from neuron-wise scalings.
Theorem 4.1. Suppose that di > 1 for i = 0, . . . , L− 1, and let σ be a generic polynomial of large
enough degree r ≫ 0 (depending on d). Then, the generic fiber of the parametrization map φ is
finite. In particular,

dim(Md,σ) = dim(W) =

L∑
i=1

didi−1. (5)

Proof. Since the result is highly technical, we summarize the proof here. A full proof is provided in
Appendix B.

We first show that it suffices to prove the result for a single activation. From the properties of the
Zariski topology, it then follows that the result holds for a generic one. We then pick a particular
activation of large degree r whose coefficients are extremely sparse, i.e., the ai in equation 3 vanishes
for many 0 ≤ i ≤ r. For this activation, we argue that some homogeneous components of fW (seen
as a multivariate polynomial in its input) coincide with MLPs with the same weights W, but where
the activation function is a monomial. This implies that the fiber of φ at W is contained in the
intersection of the fibers of MLPs with monomial activation. As mentioned above, the generic fibers
of these networks are known; they coincide with permutations of neurons at each layer, and neuron-
wise rescalings. In order to conclude, we show that the intersection of the fibers of the monomial
MLPs induces equations that the rescalings must satisfy. Via toric geometry we prove that those
equations imply that there are only finitely many possible rescalings, concluding the proof.

4.2 SINGULARITIES OF MLPS

Here, we show that subnetworks may yield singularities of the neuromanifold. To this end, recall
that a point in a variety is singular if its tangent space has exceeding dimension, i.e., larger than the
dimension of the variety; see Section A for a formal definition. Intuitively, singularities are special
points where a variety exhibits degeneracy—see Figure 2 for an illustration.

Before stating our result, we discuss a simple yet illustrative case, where subnetworks are known
to coincide with singularities (Trager et al., 2020; Marchetti et al., 2025). Consider a linear MLP,
meaning that σ(x) = x is the identity polynomial. Suppose that the architecture exhibits a ‘bottle-
neck’, i.e., d0, dL > d := mini=1,...,L−1 di. Then the neuromanifold contains all the linear maps
Rd0 → RdL of rank at most d—a space known as determinantal variety. The geometry of the lat-
ter is well understood: the singular points coincide exactly with the maps of rank strictly less than
d. These can be represented as subnetworks, for example, by choosing Ai, where di = d, of an
appropriate cardinality.

We now state the main result of this section, establishing singularity of subnetworks, under an ar-
chitectural assumption similar to the bottleneck from the example above.
Theorem 4.2. Suppose that σ has large enough degree r ≫ 0 (depending on d), and that enough
coefficients of σ are non-vanishing. For every i = 1, . . . , L−1, fix proper subsetsAi ⊂ {1, . . . , di}.
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Suppose that for some i = 0, . . . , L − 2, Ai+1 ̸= ∅ and di − |Ai| ≤ dj − |Aj | for all j ≤ i. If
W ∈ W is a A-subnetwork, then fW is a singular point of Md,σ .

Proof. We prove the claim for a generic A-subnetwork W. This is sufficient since the singular
locus is Zariski closed. For simplicity of notation, we assume dL = 1—the same proof extends to
the general case. Consider the index i ∈ {0, . . . , L− 2} provided by the hypothesis. For j ∈ Ai+1

and k ̸∈ Ai+2, the chain rule implies:

∂φ

∂Wi+2[k, j]
(W) = λ σ

∑
t̸∈Ai

Wi+1[j, t] σ ◦ fW′ [t]

 , (6)

where λ ∈ R is a scalar, and W′ = (W1, . . . ,Wi). The above expression defines a vector in the
tangent space of Md,σ at fW. Due to the genericity of W , we have that λ ̸= 0.

Now, fW is unaffected when the j-th row of Wi+1 changes. As this row varies and r increases,
the hypothesis on the coefficients of σ implies that the polynomials σ(

∑
t ̸∈Ai

Wi+1[j, t] zt) over
Rdi−|Ai| span a linear space of arbitrary large dimension. Due to the hypothesis on dj − |Aj | for
j ≤ i, the rank of the weight matrices Wj is at least di − |Ai| for generic Wj . Since, moreover, the
image of the activation function σ is, at least, a half-line in R, we conclude that the image of σ ◦fW′

has non-empty interior in Rdi−|Ai|, i.e., it is dense in the Zariski topology. In other words, σ ◦ fW′

is a dominant map onto Rdi−|Ai|. This implies that if some polynomials over Rdi−|Ai| are linearly
independent, then they remain such over Rd0 after pre-composing them by σ ◦ fW′—this follows
from the general principle of duality in algebraic geometry (Dieudonne & Grothendieck, 1971, I,
Corollary 1.2.7). In conclusion, the polynomials from equation 6 generate a linear space of arbitrary
large dimension. This shows that for r ≫ 0, the dimension of the tangent space of Md,σ at fW
increases, while dim(Md,σ) remains bounded, implying that fW is a singular point.

Theorem 4.2 leaves open the question of whether all the singularities of the neuromanifold are
parametrized by subnetworks—see Section 5 for a discussion. As mentioned above, this is true for
linear MLPs, i.e., when σ(x) = x.

Remark 4.1. The singular points described in Theorem 4.2 are also singular on the neuromanifolds
of MLPs with (sufficiently generic) continuous activations. This is because neuromanifolds of poly-
nomial MLPs approximate those of MLPs with arbitrary continuous functions (on some bounded
domain), and in the limit singularities persist; they can only become of more severe type or new
singularities can appear. The same is true for singularities of CNNs described in Theorem 4.6.

4.3 EXPOSEDNESS OF MLPS

Our next main result is concerned with the role of subnetworks in the optimization process. Moti-
vated by Section 3.2, we consider objectives of the form Lu(f) = Q(f − u), where f, u ∈ V and Q
is a non-degenerate quadratic form over V. We now introduce a central notion concerned with biases
of the optimization process towards subsets of the parameter space W. The notion is general, since
it applies to any algebraic map φ : W → V. In particular, it can be used for any polynomial machine
learning model, including neural networks with polynomial activations of arbitrary architecture.

Definition 4. A subset S ⊆ W is critically exposed if the set

US = {u ∈ V | ∃W ∈ S ∇(Lu ◦ φ)(W) = 0} (7)

has a non-empty interior in V.

In the above, the notion of interior is intended with respect to the Euclidean topology of V, since the
latter is the standard one in applications. However, all the following results will hold in the Zariski
topology of V, which is natural in the context of algebraic geometry. The Zariski topology is coarser
than the Euclidean one, implying that the following statements are actually stronger. Therefore,
from now on we stick to the Zariski topology.

Intuitively, the notion of critically exposedness formalizes the presence of a bias towards S in the
optimization process. Since u depends on the dataset, the weights in a critically exposed set are

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

equilibria of the training dynamics for a non-negligible amount of data. More concretely, if u is
sampled randomly from a full-support distribution over V, then the weights in S will be equilibria
with positive probability.
Remark 4.2. If the Jacobian JWφ of φ at W vanishes at some weights W ∈ W, then W is critical
for every u ∈ V (actually, for any loss function). In particular, the singleton S = {W} is critically
exposed, and US = V. In the case of MLPs with σ(0) = 0, this holds for the zero weights W = 0.

Exposedness can be rephrased in geometric terms. From the discussion at the end of Section 3.2 it
follows that W ∈ W is a critical point of Lu if, and only if, the image of JWφ is orthogonal to
fW − u, according to the scalar product over V induced by Q. In other words, the locus of u for
which a given W is critical coincides with the translated orthogonal complement fW + im(JWφ)⊥

of the image of the Jacobian. As a consequence,

US =
⋃

W∈S

fW + im(JWφ)⊥. (8)

The right-hand side is the union of a family of affine subspaces of V indexed by S. Exposedness
amounts to the statement that this union has full dimension dim(US) = dim(V). Below, we leverage
on this geometric strategy to show that strict subnetworks of MLPs are critically exposed. As we
shall see in the next section, this drastically differs for convolutional architectures, for which the
dimensionality of the union US is typically deficient.

Theorem 4.3. Suppose σ(0) = 0. For every i = 1, . . . , L− 1, fix Ai ⊆ {1, . . . , di}, with |Ai| < di.
Let S ⊆ W be the set of strict A-subnetworks. Then any open set of S is critically exposed.

Proof. Fix a strict A-subnetwork W. From the chain rule applied to equation 1, it follows that

∂φ

∂Wk[i, j]
(W) =

{
0 if i ∈ Ak or j ∈ Ak−1,

∂φ|S
∂Wk[i,j]

(W) otherwise.
(9)

In the above, φ|S : S → V denotes the restriction of φ to S. Therefore, ∇(Lu ◦ φ)(W) is obtained
by padding ∇(Lu ◦ φ|S)(W) with vanishing entries. In particular, if W is a critical point for
Lu ◦φ|S , it is critical for Lu ◦φ as well. Hence, im(JWφ|S)⊥ = im(JWφ)⊥, and so the union US

in equation 8 contains the embedded normal bundle of (the smooth locus of) φ(S). This bundle has
full dimension dim(V), even when restricted to the image of an open set T ⊆ S. This shows that
UT is full-dimensional, and exposedness of T follows.

Remark 4.3. Theorem 4.3 holds also for activations with σ(0) ̸= 0, if one uses a different definition
of strict A-subnetworks W: namely, for every layer i and every j ∈ Ai, the j-th column of Wi+1

vanishes and the j-th row of Wi coincides with its k-th row for some k /∈ Ai. These repeated
rows in the weight matrices lead to repeated columns in the Jacobian JWφ, instead of 0-columns as
in equation 9.

The proof of Theorem 4.3 shows actually more: since JWφ is obtained by adding vanishing columns
to JWφ|S , the gradient descent dynamics of L ◦ φ and of L ◦ φ|S are isomorphic over S for any
differentiable loss L : V → R. Put simply, from a dynamical perspective, strict subnetworks are
equivalent when seen as embedded in W or as MLPs with a smaller architecture. Similar consider-
ations, with analogous Jacobian arguments, have been made in (Chen et al., 2023).

4.4 COMPARISON WITH CONVOLUTIONAL NETWORKS

So far, we have considered neural networks with a fully-connected architecture. In this section,
we instead discuss convolutional networks—a classical architecture originated in computer vision
(Fukushima, 1979; LeCun et al., 1995). We start by recalling the basic definitions. To this end, fix
positive integers k, s, d′ ∈ N representing filter size, stride, and output dimension respectively. The
convolution between a filter w ∈ Rk and an input vector x ∈ Rd, with d = s(d′ − 1) + k, is the
vector w ⋆s x ∈ Rd′

defined for 1 ≤ i ≤ d′ as:

(w ⋆s x)[i] =

k∑
j=1

w[j] x[s(i− 1) + j]. (10)
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MLP CNN

Figure 2: Illustration of the different types of singularities (orange) arising in the neuromanifolds of
MLPs and CNNs.

Note that we consider one-dimensional convolutions for simplicity, but the theory holds similarly for
higher-dimensional ones. Now, fix sequences k, s ∈ ZL

≥1, d ∈ ZL+1
≥1 such that di = si(di+1 + ki)

for all i, and vectors w = (w1, . . . , wL) ∈
⊕L

i=1 Rki .
Definition 5. A Convolutional Neural Network (CNN) with architecture (k, s,d) and weights w is
the map fw : Rd0 → RdL given by:

fw(x) = wL ⋆sL σ (· · · ⋆s2 σ(w1 ⋆s1 x)) , (11)

where σ is applied coordinate-wise.

Similarly to MLPs, via abuse of notation, we denote by W =
⊕L

i=1 Rki the parameter space, by
φ : W ∋ w 7→ fw the parametrization map, and its image—i.e., the neuromanifold—by Mk,s,d,σ .

The geometry of the neuromanifold is well understood for monomial activation functions σ(x) = xr

(Shahverdi et al., 2025; Kohn et al., 2022). Below, we extend the main results from (Shahverdi et al.,
2025) to general polynomial activations with σ(0) = 0. Specifically, we show that φ is regular in
W \ φ−1(0), meaning that its Jacobian Jwφ has full rank for every w ∈ W \ φ−1(0). The reason
we exclude the fiber of the zero function is that, similarly to MLPs, the Jacobian is rank deficient at
w if fw = 0 (see Remark 4.2).
Theorem 4.4. Let σ be a generic polynomial of large enough degree r ≫ 0 (depending on L)
with σ(0) = 0. Then the parametrization map φ restricted to W \ φ−1(0) is regular, generically
one-to-one, and its remaining fibers are finite. In particular, dim(Mk,s,d,σ) = dim(W) =

∑L
i=1 ki.

The proof is provided in Appendix C.1. Theorem 4.4 establishes a stronger property than the one sat-
isfied by the parametrization of an MLP (cf. Theorem 4.1). As such, it has important consequences
in terms of singularities and exposedness. Specifically, since the parametrization φ is regular, it
does not induce spurious critical points of the loss in parameter space (Trager et al., 2020), i.e., all
critical parameters w (away from φ−1(0)) yield critical functions fw. Since moreover all fibers of
φ (excluding 0) are finite, we conclude that the singular points of Mk,s,d,σ \ {0} are nodal, i.e.,
they arise from self-intersections. Differently from the case of MLPs, these singularities are of mild
type—see Figure 2 for an illustration, and do not cause critically exposedness. In fact, we now show
that, once the fiber of 0 has been excluded, no algebraic set can be critically exposed. This paints a
completely different picture than in the case of MLPs (cf. Theorem 4.3).
Proposition 4.5. Assume the hypotheses of Theorem 4.4. Let S ⊂ W be an open set of an algebraic
variety strictly contained in W. If 0 ̸∈ φ(S), then S is not critically exposed.

The proof is provided in Appendix C.3. The fact that, differently from MLPs, subnetworks do not
define equilibria for the training dynamics of CNNs has been sometimes observed empirically. For
example, it has been established that initializing CNNs with almost all vanishing weights does not
result in a collapsed dynamics. Instead, the network recovers from the initialization, and learns well
(Blumenfeld et al., 2020).

Nevertheless, subnetworks of CNNs can yield singular points of the neuromanifold. In fact, we
show now that all singularities arise from subnetworks in the case of convolutional architectures.

8
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Since CNNs exhibit a weight-sharing pattern, the notion of subnetwork is different than for MLPs.
Specifically, we wish subnetworks to be reparametrizable by a smaller architecture, i.e., by smaller
filters. We will think of the latter as being represented by filters that are padded by vanishing entries
on the left or on the right. This leads to the following definition. Pick integers A1, . . . , AL such that
0 ≤ Ai ≤ ki for every i, and define A = (A1, . . . , AL).
Definition 6. A parameter w ∈ W is an A-subnetwork if for each i = 1, . . . , L, wi[j] = 0 holds
either for all j = 1, . . . , Ai or for all j = ki − Ai + 1, . . . , ki. The subnetwork is proper if Ai > 0
for at least one i.

Given an A-subnetwork, we denote by ti ∈ Z the cardinality ofAi, equipped with a positive or neg-
ative sign corresponding to whether wi is padded with zeros on the left or on the right, respectively.
We also recursively define t̃0 = 0, t̃i = ti + t̃i−1/si−1 for i ≥ 1. The proof of the following claim
is also provided in Appendix C.2.
Theorem 4.6. Assume the hypotheses of Theorem 4.4. Let w ∈ W \φ−1(0). Then fw is a singular
point of Mk,s,d,σ if, and only if, w is a proper A-subnetwork such that t̃i ∈ Z for all i, and t̃L = 0.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have considered neural networks with an activation function that is a sufficiently-generic poly-
nomial. By leveraging arguments from algebraic geometry, we have studied questions related to
identifiability, singularity, and exposedness for MLPs and CNNs. Overall, this work addresses open
problems in neuroalgebraic geometry (Marchetti et al., 2024), and provides a novel geometric per-
spective on the sparsity bias of neural networks. Yet, it is subject to limitations, as outlined below.

Complete characterization of singularities and exposedness. Theorems 4.2 states that subnet-
works of MLPs can parametrize singular points of the neuromanifold. However, it is unclear whether
this describes all singularities. For deep linear MLPs (Trager et al., 2020) and for deep polynomial
CNNs (see Theorem 4.6), all singularities come from subnetworks. The problem of a full charac-
terization of the singularities of polynomial MLPs is left open. Similarly, a complete classification
of critically exposed parameter subsets for polynomial MLPs, beyond the subnetworks described in
Theorem 4.3 and Remark 4.3, is crucial for a complete understanding of the biases of deep networks.

Type of critical points. Our analysis has only considered whether weights are critical points of
the objective, disregarding the type of criticality (local minimum/maximum, or saddle). Although
all critical points are equilibria of the dynamics, local minima correspond to the (local) attractors.
Thus, it would be interesting to incorporate the type of critical points in our analysis; in particular,
to understand whether subnetworks are local minima for non-negligible amounts of u ∈ V.

Beyond the algebraic. Throughout this work, in order to leverage on tools from algebraic geome-
try, we have focused on neural networks with polynomial activations. However, several popular ac-
tivation functions are either piece-wise polynomial (e.g., ReLU), or completely non-algebraic (e.g.,
Tanh and SoftMax). Extending our results to the non-polynomial case is therefore important. As
mentioned in Section 1, a promising strategy to this end is polynomial approximation; since poly-
nomials can (locally) approximate arbitrary continuous functions, neuromanifolds of general neural
networks can be approximated by algebraic ones. This approach is, generally speaking, part of the
research program of neuroalgebraic geometry (Marchetti et al., 2024), and has been often fruitful
for extending results for polynomial networks beyond the algebraic domain (Boullé et al., 2020;
Zhang & Kileel, 2023). Along those lines, it would be interesting to turn the limit arguments from
Remark 4.1 on singularities of non-polynomial neuromanifolds into a formal proof, and similarly
extend our identifiability and exposedness results beyond the strictly algebraic realm.

9
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APPENDIX

A SINGULARITY AND CRITICALITY

In this section, we aim to clarify the distinction between singular points of a variety and critical
points of its parametrization. Although both notions involve degeneracies, they can arise from dif-
ferent mechanisms and have different implications for optimization. Singular points are geometric
features of the variety itself, reflected in the dimension of the tangent space, while critical points
depend on the differential of the chosen parametrization.

To formally define singularities of a varietyX ⊆ Rn, we assume thatX is irreducible (i.e., it cannot
be written as the union of two proper non-empty subvarieties) and consider its vanishing ideal IX
that consists of all polynomials in R[x1, . . . , xn] that vanish along X . We then fix a generating set
⟨f1, . . . , fs⟩ = IX for that ideal and compute the s × n Jacobian matrix J whose (i, j)-th entry is
∂fi
∂xj

. For almost every point p onX (i.e., except for p on some proper subvariety), the rank of J(p) is
the same. Those are the smooth points of X , and at those points p, the kernel of J(p) is the tangent
space ofX at p. At the remaining points onX , the rank of the Jacobian drops; those are the singular
points. They form a subvariety of X , defined by the ideal IX and the c× c minors of the Jacobian,
where c is the rank of J(p) at a smooth point p of X .

Through the classical examples of a nodal and a cuspidal cubic curve, we now illustrate how the
concepts of singularities on varieties and critical points of parametrizations differ, and how tangent
spaces play a key role in their characterization.

(a) Nodal cubic (b) Cuspidal cubic

Figure 3: Two singular cubic curves.

Example A.1. Consider the parametrization of two singular cubic curves:
φ : R → R2, t 7→ (t2 − 1, t(t2 − 1)) (nodal cubic y2 = x2(x+ 1)), (12)

ψ : R → R2, t 7→ (t2, t3) (cuspidal cubic y2 = x3). (13)
In both cases, the origin is a singular point of the curve; see Figure 3. For the nodal cubic, every
point on the curve except the origin has a fiber of size one. At the origin, however, the fiber is
unusual, since it contains two distinct parameters: φ−1(0, 0) = {−1, 1}. In contrast, the cuspidal
parametrization is injective, i.e., ψ−1(x, y) consists of a single point for every (x, y) ∈ im(ψ).

The Jacobians of both parametrizations are
Jtφ = [2t 3t2 − 1], (14)

Jtψ = [2t 3t2]. (15)
Thus, φ is regular at every t (i.e., the Jacobian never vanishes), while ψ is critical at t = 0 (where the
Jacobian is [0, 0]). In other words, the cuspidal parametrization is not regular at the cusp, although it
does not have any unusual fibers; its singularity arises solely from the drop in rank of the Jacobian.
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To see algebraically that the origin is indeed the only singular point of both curves, we compute the
Jacobian of their defining equations f(x, y) = x2(x+ 1)− y2 and g(x, y) = x3 − y2, respectively:

Jf = [3x2 + 2x − 2y], (16)

Jg = [3x2 − 2y]. (17)

Both vanish precisely when (x, y) = (0, 0). At all other points on the curves, the kernel of the
Jabobian is the 1-dimensional tangent space. At the singularity (0, 0), the Zariski tangent space is
the whole 2-dimensional ambient plane R2. For the node, the plane is spanned by the two distinct
tangent directions corresponding to t = −1 and t = 1, with slopes 1 and −1, respectively. For the
cusp, however, the 2-dimensional tangent space arises from the vanishing of all first-order terms,
which corresponds geometrically to infinite curvature at the origin. In particular, since J0ψ = 0,
this tangent space cannot be detected solely from the diffential of the parametrization. ♢

This example illustrates that critical points of a parametrization can cause singularities on the image
variety, but that not all singularities of parametrized varieties arise like that. Moreover, not every
critical point of a parametrization leads to a singular point on the image. This can be for instance seen
by projecting the cuspidal curve in Figure 3b onto y-axis: Composing the cuspidal parametrization
ψ with that projection leads to a parametrization t 7→ t3 of the line R1 (which is clearly smooth
everywhere) that is not regular at t = 0. All in all, critical points of parametrizations and singularities
of their image varieties are subtly related, but non implies the other in general.

The effect that different types of singularities have when optimizing a loss over high-dimensional
algebraic varieties is largely unknown. Cuspidal-type singularities, arising from a rank drop of the
parametrization’s Jacobian, may appear both as spurious (Trager et al., 2020) and genuine critical
points of the loss. In the case of MLPs, we show that these types of singularities are critically
exposed. In contrast, nodal-type singularities do not exhibit this behavior. This reflects the main
difference between the singular points of MLPs and CNNs (see Figure 2) since we show that all
singularities of CNNs are of nodal type.

B THEOREM 4.1

In this section, we prove Theorem 4.1. We begin with some technical results.

Lemma B.1. Let σ(x) = xβL + · · ·+xβ1 be a polynomial activation function such that βj > βL−1
j−1

for every j > 1, and β1 > 1. Define σβi(x) = xβi . Then for all weights W ∈ W, the MLP can be
decomposed as:

fW(x) =

L∑
i=1

WLσβi
WL−1σβi

WL−2 · · ·σβi
W1(x) +R(x), (18)

where the remainder R(x) does not contain any monomial of degree βL−1
j for every j = 1, . . . , L.

Proof. It suffices to show that monomials of degree βL−1
j appear solely in the term

WLσβj
WL−1σβj

WL−2 · · ·σβj
W1(x). (19)

We verify this by tracking the degrees generated layer by layer.

First, note that the monomials of degrees βL−1
1 and βL−1

L are clearly only generated by the terms

WLσβ1WL−1σβ1WL−2 · · ·σβ1W1(x) and WLσβL
WL−1σβL

WL−2 · · ·σβL
W1(x), (20)

respectively. Thus, we focus our analysis on degrees βL−1
j for 1 < j < L.

We proceed by induction on the number of layers k, where 2 ≤ k ≤ L. Specifically, we claim that
at layer k, monomials of degree βk−1

j appear exclusively through the composition

WkσβjWk−1σβj · · ·σβjW1(x). (21)
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Moreover, we claim that the closest degrees immediately preceding and succeeding βk−1
j are given

by (βk−2
j − 1)βj + βj−1 and (βk−2

1 − 1)β1 + βj+1, respectively.

For k = 2, note that the degrees appearing at the second layer are

β1 < β2 < · · · < βL−1 < βL, (22)

and thus R(x) = 0 at this stage.

For the induction hypothesis, assume that the claim holds for some layer k < L. That is, mono-
mials of degrees βk−1

j are solely generated by equation 21 at layer k, and the sequence of degrees
generated has the form

βk−1
1 < βk−1

1 − β1 + β2 < · · · < βk−1
i − βi + βi−1 < βk−1

i

< βk−1
1 − β1 + βi+1 < · · · < βk−1

L − βL + βL−1 < βk−1
L ,

(23)

where intermediate terms represent monomials whose degrees lie strictly between the bounds above.

For the inductive step, consider the (k + 1)-layer composition, expressed by

Wk+1σWkσ · · ·σW1(x) =

L∑
i=1

Wk+1σβi
Wkσ · · ·σW1(x). (24)

To obtain monomials of degree exactly βk
i , we analyze each summand individually. For any choice

of σβj
with j ̸= i, we claim that no monomial of degree βk

i emerges. Hence, the only valid choice
is j = i. To see this, we consider two cases

• j < i : In this case, to obtain a term of degree at least βk
i in the multinomial expansion

of σβjWkσ . . . σW1(x), we have to use at least one the monomials of Wkσ . . . σW1(x) of
degree larger than βk−1

i . By equation 23, the smallest possible degree is βk−1
1 −β1+βi+1.

However, by our assumption, this is strictly larger than βL−1
i ≥ βk

i .

• j > i : In this case, since the smallest degree appearing in Wkσ . . . σW1(x) is βk−1
1

according to equation 23, the smallest degree after passing through σβj is βjβk−1
1 > βj >

βL−1
i . Hence, all terms are of degree larger than βk

i .

Moreover, the neighboring degrees of βk
i in σβiWkσ · · ·σW1(x) are

βk−1
i (βi − 1) + (βk−1

i − βi + βi−1)︸ ︷︷ ︸
=βk

i −βi+βi−1

< βk
i < βk−1

1 (β1 − 1) + (βk−1
1 − β1 + βi+1)︸ ︷︷ ︸

=βk
1−β1+βi+1

. (25)

This exactly confirms the inductive step, hence the uniqueness of the decomposition in equation 18.

Lemma B.2. Let e1 > e2 be positive integers of opposite parity. For i = 1, . . . , L, let Wi ∈
Rdi×di−1 be generic. For j = 1, 2, define

Aj :=
{(
Dj,1W1, Dj,2W2D

−ej
j,1 , . . . , WLD

−ej
j,L−1

)
| Dj,k ∈ diag×dk

(R) ∀k = 1, . . . , L− 1
}
,

(26)
where diag×dk

(R) is the set of real invertible diagonal matrices of size dk × dk. Then A1 ∩ A2

consists exactly of those tuples in A1 for which each D1,k = λ1,kI is a multiple of the identity for
some λ1,k ∈ R \ {0} that satisfy

λ
eL−2
2

1,1 λ
eL−3
2

1,2 · · ·λe21,L−2λ1,L−1 = 1 (27)

Proof. Take (Ŵ1, . . . , ŴL) ∈ A1 ∩A2. By definition, there exist diagonal invertible matrices Dj,k

such that for k = 2, . . . , L− 1:

Ŵ1 = D1,1W1 = D2,1W1, Ŵk = D1,kWkD
−e1
1,k−1 = D2,kWkD

−e2
2,k−1. (28)
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Since a generic matrix admits no diagonal symmetries, D1,1 = D2,1 =: D. For k = 2 the second
equality becomes

D−1
2,2D1,2W2 =W2D

∆, (29)
where ∆ := e1−e2. Left multiplication by a diagonal matrix scales rows, while right multiplication
scales columns. Thus, since W2 is generic, both D∆ and D−1

2,2D1,2 are the same scalar multiple of
the identity. Since ∆ is odd, this yields D = λ1,1I and D2,2 = λ−∆

1,1 D1,2 for some λ1,1 ∈ R \ {0}.

By plugging this relation into the equality for k = 3 and repeating the same argument shows that
D1,2 = λ1,2I , and that D2,3 = λ−e2∆

1,1 λ−∆
1,2 D1,3. Inductively, for every k = 1, . . . , L− 1 we get

D1,k−1 = λ1,k−1I, D2,k = λ
−∆ek−2

2
1,1 λ

−∆ek−3
2

1,2 · · ·λ−∆
1,k−1D1,k. (30)

At the last layer, the equalityWLD
−e1
1,L−1 =WLD

−e2
2,L−1 givesD2,L−1 = D

e1/e2
1,L−1. Using the equality

for k = L− 1 in equation 30, we get

D
∆/e2
1,L−1 = λ

−∆eL−3
2

1,1 λ
−∆eL−4

2
1,2 · · ·λ−∆

1,L−2I. (31)

Hence, D1,L−1 is also a scalar multiple of the identity matrix, say λ1,L−1I , and thus

λ
eL−2
2

1,1 λ
eL−3
2

1,2 · · ·λe21,L−2λ1,L−1 = 1. (32)

Conversely, a direct computation reveals that these scalar multiples of the identity yield indeed a
point in the intersection A1 ∩A2.

Now, we can finally prove the desired theorem.

Proof of Theorem 4.1. We fix a sufficiently large degree r. It is sufficient to show that there exists a
polynomial σ of degree r for which the theorem holds. Indeed, φ having finite fibers is equivalent
to its Jacobian attaining the maximal rank dim(W) at generic weights W. The condition that the
Jacobian has maximum rank dim(W) is open with respect to the Zariski topology in the coefficient
space of σ. Since open sets are dense, if this condition holds for one polynomial activation of degree
r, it holds for a generic one.

Consider the sparse polynomial

σ(x) :=

L∑
i=1

xβi , (33)

where βi > βL−1
i−1 for all i, βL = r, and β1 > 6m2 − 6m for m = −1+ 2max{d1, . . . , dL−1}. Set

σβi
(x) := xβi . Then, by Lemma B.1, the output of the MLP uniquely decomposes as

L∑
i=1

WLσβi
WL−1σβi

WL−2 · · ·σβi
W1(x) + (remaining terms). (34)

Each monomial term in equation 34 is an MLP with monomial activation xβi . From (Finkel et al.,
2024), since βi > 6m2 − 6m for all i, the generic fiber of the parametrization map of such an MLP
consists of weights of the form(

Pi,1Di,1W1, Pi,2Di,2W2D
−βi

i,1 P⊤
i,1, . . . , WLD

−βi

i,L−1P
⊤
i,L−1

)
, (35)

where Pi,j are permutation matrices and Di,j are invertible diagonal matrices of size dj × dj . For
generic parameters W, the fiber φ−1(fW) is contained in the intersection of the sets of such tuples.
In other words, every tuple in the fiber φ−1(fW) can be expressed as in equation 35 for every
i = 1, . . . , L.

Since W is generic and each Di,j is diagonal, it follows that all the corresponding permutation
matrices must coincide at the intersection. That is, we have Pi,j = Pk,j for all i, j, k. Since we
wish to show finiteness of fibers, without loss of generality, we may assume that these permutation
matrices are identities.
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Now, by comparing tuples equation 35 for different indices i, Lemma B.2 implies that each diag-
onal matrix reduces to a scalar multiple of the identity, that is, Di,j = λi,jI for some λi,j ∈ R∗.
Moreover, the intersection is characterized explicitly by the polynomial system:

λ
βL−2
L−1

L,1 λ
βL−3
L−1

L,2 · · ·λβL−1

L,L−2λL,L−1 − 1 = 0,
...

λ
βL−2
1

L,1 λ
βL−3
1

L,2 · · ·λβ1

L,L−2λL,L−1 − 1 = 0.

(36)

We use the lattice-ideal approach in toric geometry to show that this system has finitely many solu-
tions; see (Şahin, 2023, Section 7). Let A[i, j] = βL−1−j

L−i . Then A is a Vandermonde matrix of size
(L− 1)× (L− 1) with determinant

det(A) = ±
∏

1≤i<j≤L−1

(βj − βi) ̸= 0. (37)

Using the Smith normal form, there exist matrices U, V ∈ GLL−1(Z) such that

UAV = diag(ℓ1, . . . , ℓL−1), (38)

where ℓ1 | ℓ2 | · · · | ℓL−1. Letting Λ = (λL,1, . . . , λL,L−1) ∈ (C∗)L−1, define new coordinates
Ω = (ω1, . . . , ωL−1) via

ωj :=

L−1∏
k=1

λ
V −1[j,k]
L,k . (39)

Since V is unimodular, the map Λ 7→ Ω is an algebraic automorphism of the torus. In these new
coordinates, the system equation 36 is equivalent to ωℓ1

1 = 1, . . . , ω
ℓL−1

L−1 = 1, which has exactly
ℓ1 · · · ℓL−1 < ∞ solutions in (C∗)L−1. Hence, φ−1(fW) is finite, and the claimed dimension
follows directly from the fiber-dimension theorem.

C POLYNOMIAL CONVOLUTIONAL NETWORKS

In this section, we provide technical details for the proofs in Section 4.4. We first establish a general
result on univariate polynomials σ(x) =

∑r
i=0 aix

i.
Lemma C.1. Suppose that r > 2 and that ar, ar−1 ̸= 0. Moreover, let u1, . . . , uL ∈ R \ {0} and
λ1, . . . , λL ∈ R be such that, for all x ∈ R,

λLuL σ
(
λL−1uL−1 σ

(
. . . σ(λ1u1x) . . .

)))
= uL σ

(
uL−1 σ

(
. . . σ(u1x) . . .

)))
. (40)

Then, λ1 = · · · = λL = 1.

Proof. Consider the following rational function:

P (x) :=
xσ′(x)

σ(x)
, (41)

which is well-defined wherever σ(x) ̸= 0. Define inductively:{
G0(x) := λ1u1x,

Gk(x) := λk+1uk+1σ
(
Gk−1(x)

)
.

{
H0(x) := u1x,

Hk(x) := uk+1σ
(
Hk−1(x)

)
.

(42)

The left-hand side of equation 40 coincides with GL−1(x) = λLuL σ
(
GL−2(x)

)
, while the right-

hand side is HL−1(x) = uLσ
(
HL−2(x)

)
. Now, by differentiating equation 40 and then dividing by

equation 40, we obtain

P
(
GL−2

) G′
L−2

GL−2
= P

(
HL−2

) H ′
L−2

HL−2
. (43)

By applying the chain rule iteratively, the above identity is equivalent to
L−2∏
k=0

P
(
Gk(x)

)
=

L−2∏
k=0

P
(
Hk(x)

)
. (44)
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We assume for contradiction that λk ̸= 1 for some k. Let m := min{ 0 ≤ k ≤ L− 2 | λk+1 ̸= 1}.
For every j < m, we have that Gj = Hj . Moreover, Gm(x) = λm+1Hm(x) with λm+1 ̸= 1. In
particular, equation 44 becomes

L−2∏
k=m

P
(
Gk(x)

)
=

L−2∏
k=m

P
(
Hk(x)

)
. (45)

Now, set β := −ar−1

ar
. As x→ ∞, the rational function P satisfies

P (x) = r +
β

x
+O

(
x−2

)
. (46)

Thus, for every k ≥ 0, we have

P
(
Gk(x)

)
= r +

β

Gk(x)
+O

(
x−2 degGk

)
, P

(
Hk(x)

)
= r +

β

Hk(x)
+O

(
x−2 degHk

)
. (47)

Since degGk = degHk = rk, the terms of order up to −rm in equation 45 are(
L−2∏

k=m+1

r

)
· (r + β

Gm(x)
) +O

(
x−rm−1

)
=

(
L−2∏

k=m+1

r

)
· (r + β

Hm(x)
) +O

(
x−rm−1

)
. (48)

Using Gm(x) = λm+1Hm(x), we obtain

β
1− λm+1

λm+1Hm(x)
= O

(
x−rm−1

)
. (49)

Since the left hand-side is of order O(x−rm) and β ̸= 0 by hypothesis, we conclude that λm+1 = 1,
which is a contradiction

Corollary C.2. Suppose that r > 2, a0 = 0 and ar, ar−1 ̸= 0. Moreover, let w1 ∈ Rk1 , . . . , wL ∈
RkL be non-zero filters and let λ1, . . . , λL ∈ R be such that, for all x ∈ Rd0 ,

λLwL ⋆sL σ (· · · ⋆s2 σ(λ1w1 ⋆s1 x)) = wL ⋆sL σ (· · · ⋆s2 σ(w1 ⋆s1 x)) . (50)

Then, λ1 = · · · = λL = 1.

Proof. Let i = 1, . . . , d0 be the smallest index such that the variable xi appears in one of the
monomials of equation 50 with non-zero coefficient. Substituting xj 7→ 0 for all j ̸= i in equation 50
yields the equality of univariate polynomials in equation 40, where uk is the first non-zero entry of
the filter wk. Thus, the claim follows from Lemma C.1.

C.1 PROOF OF THEOREM 4.4

Proof. We first show regularity. Similarly to the proof of Theorem 4.1, we will do so for a specific
activation function, which will imply the statement for a generic one. Consider the polynomial
activation defined by

σ(x) = xβL + · · ·+ xβ1 , (51)

where β1 > 1, βL = r, and βj > β
(L−1)
j−1 for all j > 1. We will show that the parametrization map

φ with this activation is regular on W \ φ−1(0). Note that φ−1(0) consists precisely of those filter
tuples where one of the filter is zero, because convolving with a non-zero filter is a full-rank linear
map (Shahverdi et al., 2025, Lemma 4.1).

By Lemma B.1, the CNN output decomposes uniquely as

fw =

L∑
i=1

wL ⋆sL σβi
(· · · ⋆s2 σβi

(w1 ⋆s1 x)) + (remaining terms). (52)

From (Shahverdi et al., 2025, Proposition A.2), if fw ̸= 0, the kernel of the differential of the CNN
parametrization with monomial activation σβi

is explicitly given by the subspace

Ai := {λi,1w1, (−λi,1βi + λi,2)w2, . . . , (−λi,L−2βi + λi,L−1)wL−1,−λi,L−1βiwL | λi,j ∈ R}
(53)
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Using the decomposition equation 52, we deduce that the kernel of the Jacobian Jwφ is contained
in the intersection

⋂L
i=1 Ai. Now, let vj ∈ RL contain the coefficients of the filters wk in Aj and

define
γj := (βL−1

j , βL−2
j , . . . , βj , 1)

⊤. (54)

Then, ⟨γj , vj⟩ = 0. Hence, in
⋂L

i=1 Ai, we must have

βL−1
L βL−2

L · · · βL 1

βL−1
L−1 βL−2

L−1 · · · βL−1 1

...
...

. . .
...

...

βL−1
1 βL−2

1 · · · β1 1


vL = 0. (55)

Since βi − βj ̸= 0 for all i ̸= j, the matrix in equation 55 is a full-rank Vandermonde matrix, which
is invertible. Therefore, the only solution is vL = 0. It follows that

⋂L
i=1 Ai = {0}, and hence

the parameterization map φ has an injective differential over W \ φ−1(0). In other words, φ is an
immersion away from φ−1(0).

Since φ is an immersion at generic weights w ∈ W, it necessarily has finite fibers. We wish to
show that the generic fiber is a singleton. To this end, choose weights w = (w1, . . . , wL), where
wi = (1, 1, . . . , 1) for all i. From (Shahverdi et al., 2025, Theorem 4.6), it follows that the fiber
φ−1(fw) is contained in {(λ1w1, . . . , λLwL) | λi ∈ R}. But then Corollary C.2 implies that
φ−1(fw) = {w} is a singleton. Since φ is regular at w, there is an open neighborhood around
w such that every fiber remains a singleton. Since open sets are dense in the Zariski topology, we
conclude that the generic fiber is a singleton.

C.2 PROOF OF THEOREM 4.6

Proof. Since φ is regular, generically one-to-one and has finite fibers over W\φ−1(0), the property
that fw is a singular point is equivalent to the corresponding fiber φ−1(fw) not being a singleton.

We start by assuming that fw ̸= 0 is a singular point, i.e., there is another filter vector w′ such that
fw = fw′ . By Corollary C.2, w′ differs from w by more than just layerwise scalings by constants.
The monomials of maximal degree appearing in fw(x) are

wL ⋆sL σr (· · · ⋆s2 σr(w1 ⋆s1 x)) = w′
L ⋆sL σr (· · · ⋆s2 σr(w′

1 ⋆s1 x)) . (56)
In particular, w and w′ also give rise to the same monomial CNN. Now, (Shahverdi et al., 2025,
Theorem 4.6) states that w is a proper A-subnetwork for some A, and that the filters in w′ are
shifted versions of the filters in w. These shifts need to satisfy t̃i ∈ Z and t̃L = 0 according to
(Shahverdi et al., 2025, Remark 4.2).

For the converse direction, we consider a proper A-subnetwork w that satisfies the assumptions of
the statement. To this end, define new weights w′ = (w′

1, . . . , w
′
L) as:

w′
i =

{
(wi[ti + 1], wi[ti + 2], . . . , wi[ki], 0, . . . , 0) , ti ≥ 0,

(0, . . . , 0, wi[1], wi[2], . . . , wi[ki + ti]) , ti ≤ 0.
(57)

Since each filter wi is non-zero and tj ̸= 0 for some j, it holds that w ̸= w′. Since t̃L = 0, by
leveraging on the equivariance property of convolutions, it is an immediate calculation to verify that
fw = fw′ , as desired.

C.3 PROOF OF PROPOSITION 4.5

Proof. Since φ if regular, dim(im(JWφ)⊥) = dim(V) − dim(Mk,s,d,σ) for every W ∈ S. Since
φ has finite fibers, equation 8 defines a family of affine subspaces of V, where only a finite number
of subspaces is indexed by a given point in φ(S). Therefore, dim(US) ≤ dim(φ(S)) + dim(V) −
dim(Mk,s,d,σ). Since S is contained in an algebraic variety strictly contained in W, dim(φ(S)) <
dim(Mk,s,d,σ). We conclude that dim(US) < dim(V), implying that US must have empty interior.
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