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ABSTRACT

Spiking neural networks (SNNs) offer an energy-efficient alternative to traditional
neural networks due to their event-driven computing paradigm. However, recent
advancements in spiking transformers have focused on improving accuracy with
large-scale architectures, which require significant computational resources and
limit deployment on resource-constrained devices. In this paper, we propose a
simple yet effective token pruning method for spiking transformers, termed TP-
Spikformer, that reduces storage and computational overhead while maintaining
competitive performance. Specifically, we first introduce a heuristic spatiotemporal
information-retaining criterion that comprehensively evaluates tokens’ importance,
assigning higher scores to informative tokens for retention and lower scores to
uninformative ones for pruning. Based on this criterion, we propose an information-
retaining token pruning framework that employs a block-level early stopping strat-
egy for uninformative tokens, instead of removing them outright. This also helps
preserve more information during token pruning. We demonstrate the effective-
ness, efficiency and scalability of TP-Spikformer through extensive experiments
across diverse architectures, including Spikformer, QKFormer and Spike-driven
Transformer V1 and V3, and a range of tasks such as image classification, object
detection, semantic segmentation and event-based object tracking. Particularly,
TP-Spikformer performs well in a training-free manner. These results reveal its
potential as an efficient and practical solution for deploying SNNs in real-world
applications with limited computational resources.

1 INTRODUCTION

Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient solution for next-
generation machine intelligence due to their sparse event-driven computing paradigm Gerstner &
Kistler (2002); Izhikevich (2003). In SNNs, the discrete binary spike serves as the fundamental
information carrier, and it is conveyed in an event-driven manner. This unique computing paradigm
allows only a subset of neurons to be activated and engage in synaptic accumulation operations,
achieving significant computational efficiency Pfeiffer & Pfeil (2018); Roy et al. (2019); Li et al.
(2024). In addition, the sparse event-driven nature of SNNs has spurred the development of neuro-
morphic hardware, such as TrueNorth Akopyan et al. (2015) and Loihi Davies et al. (2018), further
harnessing their potential for energy efficiency. Despite the significant efficiency advantages, the
limited performance of SNNs presents challenges to their widespread applications.

Building on the success of Transformer models across various fields Devlin et al. (2019); Dosovitskiy
et al. (2020), researchers have integrated them with SNNs, such as Spikformer Zhou et al. (2022),
QKFormerZhang et al. (2024), Spike-driven transformer(SDT)-V1 Yao et al. (2023a), V2 Yao et al.
and V3 Yao et al. (2025), leading to significant performance improvements on large and complex
benchmarks. However, these gains come at the expense of a large number of model parameters and
high computational complexity. For example, the recently introduced SDT-V3 Yao et al. (2025)
achieves 86.2% accuracy on ImageNet. Yet, this model contains 173 million parameters, requires
1384MB of memory, and performs 28.4 billion synaptic operations per second during inference.
These substantial demands on storage and computational resources present significant challenges for
deploying Transformer-based SNNs on resource-limited scenarios Qiu et al. (2025).
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Figure 1: Visualization of token pruning across time step and block with our method. Experiments
are conducted on SDT-V1-8-512, and white areas are pruned tokens. This reveals that TP-Spikformer
prunes uninformative tokens while retaining informative ones, keeping the focus on the subject.

Researchers have made significant efforts to compress large-scale spiking transformers, including
techniques of quantization Qiu et al. (2025); Cao et al. (2025), network architecture search Wang
et al. (2024b); Che et al. (2024), and pruning Zhuge et al. (2024); Zhou et al. (2024c). Among these,
token pruning is a specialized compression method for Transformer architectures; it dynamically
reduces the number of tokens processed in each block during inference, enhancing both storage and
computational efficiency. The underlying principle of token pruning is that, in visual tasks, the final
prediction typically relies on only a subset of the tokens. This allows us to selectively remove certain
tokens, accelerating inference while maintaining competitive accuracy Rao et al. (2021); Yin et al.
(2022). Therefore, token pruning poes a promising solution for the efficient deployment of spiking
transformers, particularly in edge scenarios. However, current token pruning methods in SNNs suffer
from two major limitations Zhuge et al. (2024); Liu et al. (2024); Kang et al. (2024). First, most
approaches modify the original structure when applied to spiking transformers, such as introducing
tokens, adding trainable modules, or altering network connections. Second, these methods typically
require retraining the model, resulting in large training costs. These issues raise the application costs
and reduce their generalizability.

In this paper, we propose a simple yet effective token pruning approach for spiking transformer
(TP-Spikformer), aiming to compress its storage and accelerate its computation while maintain-
ing competitive performance. We first propose a heuristic spatiotemporal information-retaining
token pruning criterion (IRToP), where informative tokens are assigned higher scores to retain
and uninformative tokens are given lower scores to prune. Based on this criterion, we design an
information-retaining token pruning architecture (IR-Arc), which achieves compression and accelera-
tion by applying a block-level early stopping strategy for uninformative tokens, rather than direct
dropping. This also helps retain more information during token pruning. The token pruning results of
TP-Spikformer are depicted in Figure 1, and our main contributions are summarized as follows:

• We propose a heuristic spatiotemporal information-retaining criterion for token pruning,
termed IRToP. Spatially, IRToP recognizes tokens that differ significantly from neighbors as
more distinctive. Temporally, IRToP identifies tokens with greater variation across adjacent
time steps as carriers of richer temporal information. By integrating both aspects, IRToP
effectively identifies informative tokens and assigns them higher retention priority.

• We propose an information-retention token pruning architecture, named IR-Arc, where infor-
mative tokens undergo complete forward computation but uninformative tokens implement
a block-level early stopping strategy, reducing storage and computation overhead effectively.
IR-Arc makes TP-Spikformer exhibit high versatility and requires no training from scratch,
attaining competitive performance even under zero fine-tuning conditions.

• We select a variety of architectures for our experiments, including the feature-map invariant
Spikformer and SDT-V1, the feature pyramid-based QKFormer, and the advanced SDT-V3.
Additionally, we assess TP-Spikformer on multiple tasks such as classification, segmentation,
detection, and tracking. Through validation across multiple architectures and tasks, we
demonstrate the effectiveness, efficiency, and scalability of our method.
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2 RELATED WORK

Spiking transformer. Spikformer pioneers self-attention and direct Transformer training in SNNs
Zhou et al., which eliminates float multiplication in attention via spike-based Q, K, and V. Spikformer
V2 explores masked image modeling in spiking transformers, achieving 81.1% accuracy on ImageNet
with just 1 time step Zhou et al. (2024b). SpikingResformer proposes a dual-spike self-attention
and combines it with a ResNet-based architecture, improving performance with reduced parameters
Shi et al. (2024). QKFormer uses spike-based Q and K for attention computation and introduces
spiking patch embeddings with deformable shortcuts, achieving milestone results on multiple datasets
Zhou et al. (2024a). In the SNN community, the series of Spike-driven Transformer has gained
notable attention with its spike-driven design. SDT-V1 pioneers spike-driven computation in spiking
transformers, converting spike-related matrix multiplications to efficient addition operations Yao et al.
(2023a). SDT-V2 extends SDT-V1 into a meta architecture, exploring structure design, spike-driven
attention, and skip connection to enhance performance Yao et al.. SDT-V3 optimizes spiking neuron
firing patterns and designs an efficient Transformer, enabling SNN performance to match that of
ANN Yao et al. (2025). Despite substantial accuracy improvements, SNNs’ inherent energy efficiency
is undermined, limiting their deployment in resource-limited scenarios.

Token pruning in spiking transformer. SparseSpikformer proposes a hybrid pruning framework
operating at both weight and token levels, removing unimportant background tokens based on neurons’
spike firing rates Liu et al. (2024). However, it has two limitations: it relies on firing rate for token
importance without leveraging SNNs’ temporal characteristics, and its validation is limited to a single
architecture and small-scale datasets, leaving its scalability to other architectures and benchmarks
unexplored. AT-SNN adopts an adaptive computation time (ACT) mechanism to mask unimportant
tokens using Halting Scores during training, followed by a similarity-based token merging strategy to
reduce computational overhead Kang et al. (2024). However, ACT introduces additional parameters
requiring retraining, and AT-SNN’s validation is also limited to a single architecture and simple
datasets. Recently, STATA introduces an anchor token for token pruning with dual temporal and
inter-layer alignment mechanisms, becoming the first token pruning method in spiking transformer
validated on ImageNet Zhuge et al. (2024). However, it requires a complete retraining process, and
the additional loss terms increase training overhead compared to uncompressed counterparts.

3 PRELIMINARY

Spiking neuron model. Spiking neurons mimic the information transmission and processing of
biological neurons. Due to the high computational complexity of biological neurons, researchers
simplify spiking neurons into differential equations for computer simulation. The neural behavior
of spiking neurons typically includes three mechanisms: membrane potential integration, spike
generation, and reset. Below, we describe these behaviors using the widely adopted Leaky Integrate-
and-Fire (LIF) model Wu et al. (2018); Neftci et al. (2019), which can be described as follows:

ũℓ[t] = uℓ[t− 1] + f(wℓ, sℓ−1[t]), (Voltage integration), (1)

sℓ[t] = Heavside(ũℓ[t]− θ), (Spike generation), (2)

uℓ[t] =

{
ũℓ[t]

(
1− sℓ[t]

)
, hard reset,

τ ũℓ[t]− θsℓ[t], soft reset,
(Reset mechanism), (3)

where τ is the constant leaky factor, t is the time step, wℓ is the weight matrix of layer ℓ, and f(·)
is the convolution or linear operation followed by batch normalization (BN). As described above,
neurons integrate inputs and emit a spike s ∈ {0, 1} when the membrane potential ũ exceeds the
threshold θ. After spike emission, the reset mechanism is invoked to update the membrane potential.

Spiking transformer. The spiking transformer architecture typically comprises four components:
input embedding, spiking self-attention (SSA), multi-layer perceptron (MLP), and a classification
head (CH). Given a 2D image sequence I , the input embedding module linearly projects it into
D-dimensional spiking features vector and partitions it into either a 2D grid of H ×W spiking
patches or N flattened spiking patches. After adding positional encoding, the initial feature X0 passes
through L transformer blocks, each containing SSA and MLP modules. Finally, the features XL are

3
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aggregated via global average pooling (GAP) and processed by the CH to generate predictions. The
process is formulated as follows:

X0 = InputEmbedding (I) , X0 ∈ RT×H×W×D, (4)

X̂ℓ = SSA(Xℓ−1) +Xℓ−1, Xℓ ∈ RT×H×W×D, ℓ = 1...L, (5)

Xℓ = MLP(X̂ℓ) + X̂ℓ, Xℓ ∈ RT×H×W×D, ℓ = 1...L, (6)

Y = CH(GAP(XL)). (7)

Notably, SSA provides an efficient approach to model the local-global information of images using
spike-based queries (q), keys (k), and values (v) without employing softmax, described as,

SSA(Xℓ−1) = SN ((qsk
⊤
s )vs), (8)

xs = SN (x), x = wx · SN (Xℓ−1), x ∈ {q,k,v}. (9)

This design combines the efficiency of SNNs with the modeling capabilities of Transformers, enabling
effective processing of information with reduced computational overhead Yao et al. (2023a).

4 METHOD

In this section, we introduce our simple yet effective token pruning method for efficient spiking
transformers. We first present the heuristic spatiotemporal information-retaining criterion that assesses
token importance. Then, we introduce the information-retention pruning architecture with the block-
level early stopping strategy. By integrating these two components, our TP-Spikformer achieves
improved efficiency, scalability, and effectiveness.

4.1 HEURISTIC SPATIOTEMPORAL INFORMATION-RETAINING CRITERION

Extensive neuroscience research has shown that the human visual system does not process all
information equally, but instead prioritizes regions that are spatially salient or exhibit significant
temporal changes Itti et al. (2002); Fecteau & Munoz (2006). This selective mechanism allows
biological systems to allocate computational resources efficiently to informative regions of visual
input Koch & Ullman (1987). Inspired by this, we propose the IRToP to guide token pruning in
spiking transformers, which assesses tokens based on their information content, giving tokens with
richer spatial and temporal information higher preservation priority.

Spatial token scorer. In the human visual system, spatial locations compete for saliency within
feature maps, allowing only those that quite differ from their local surroundings to persist for further
processing Itti et al. (2002). This motivates us to assess the representational divergence between each
token and its spatial neighbors, assigning higher retention scores to those with greater spatial saliency.

In the spiking transformer framework, feature representations are structured either as spatial feature
maps Xℓ−1 ∈ RT×H×W×D or in their flattened form Xℓ−1 ∈ RT×N×D, where N = H ×W is
the total number of tokens. Consider a spatial feature map at time step t, for each token located at
spatial position (h,w), i.e., Xℓ−1

t,h,w ∈ RD, we compute the dissimilarity between this token and a
representative one in its spatial window. The spatial dissimilarity of a single token is computed as,

Sscore(Xℓ−1
t,h,w) = 1−

⟨Xℓ−1
t,h,w,Y

ℓ−1
t,h,w⟩

|Xℓ−1
t,h,w| · |Y

ℓ−1
t,h,w|

, Yℓ−1
t,h,w =

1

|Wh,w|
∑

(p,q)∈Wh,w

Xℓ−1
t,p,q, (10)

where the representative token Yℓ−1
t,h,w is the mean representation within the spatial window, capturing

the local contextual information around the target token. Unlike pairwise similarity calculations with
neighbor tokens, using this representative token reduces computational complexity. Wh,w is the set
of valid neighboring positions within the k× k window centered at the coordinate (h,w), defined as,

Wh,w = {(h± ⌊k − 1

2
⌋, w ± ⌊k − 1

2
⌋)} ∩ [0, H − 1]× [0,W − 1]. (11)

We calculate the dissimilarity for each token in the feature map at time step t and normalize these
values to obtain the spatial saliency score. Each score is constrained between 0 and 1, with the sum of
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Figure 2: The overall workflow of the proposed TP-Spikformer, including the information-retention
token pruning framework (top) and the spatiotemporal information-retaining criterion (bottom).

all scores equal to 1. A higher score indicates greater spatial saliency of a token, and these tokens are
given higher priority for retention in token pruning. This ensures that the most spatially informative
tokens of the original feature maps are preserved as much as possible during token pruning. Notably,
this approach can be easily extended to frameworks with flattened token representations.

Temporal token scorer. Neuroscientific research has demonstrated that the human visual system is
highly sensitive to sudden and significant temporal changes Rensink (2002); Nothdurft (2000). This
processing mechanism serves as an efficient information compression strategy, enabling the brain
to swiftly locate and process key temporal dynamics within extensive visual input. Inspired by this,
we measure the temporal dynamics of each token between consecutive time steps and assign higher
retention scores to tokens exhibiting significant temporal variations. Considering a token at a position
(h,w) in the spatial feature map, we compute its temporal variation as,

Tscore(Xℓ−1
t,h,w) =

{
|Xℓ−1

t,h,w −Xℓ−1
t−1,h,w|, if t > 1,

|Xℓ−1
t,h,w|, if t = 1.

(12)

We calculate and normalize the temporal variation of all tokens at time t to obtain their temporal
variation scores. Higher scores indicate richer temporal information of a token, leading to higher
retention priority during pruning. This biologically inspired method allows spiking transformers to
capture critical temporal features of input sequences while filtering out redundant information.

IRToP criterion. We combine the normalized spatial saliency and temporal variation scores for
each token to obtain a spatiotemporal score at each time step, as detailed in Figure 2. Formally, for a
token located at position (h,w) at time step t, our IRToP criterion evaluates this token as follows,

IRToP(Xℓ−1
t,h,w) = Ŝscore(X

ℓ−1
t,h,w) + T̂score(X

ℓ−1
t,h,w), (13)

where Ŝ and T̂ denotes the normalized score. Given the ℓ-th block’s pruning rate rℓ, we clas-
sify tokens in the input feature map Xℓ−1 into informative and non-informative tokens based on
their scores. Specifically, we denote a set of token scores in Xℓ−1 at time step t as TSℓ−1

t =

{IRToP(Xℓ−1
t,h,w)}

H,W
h=1,w=1, so the sets of informative tokens Iℓ−1

t and uninformative tokens Uℓ−1
t is:

Iℓ−1
t = {Xℓ−1

t,h,w | (h,w) ∈ TopK(TSℓ−1
t )}, (14)

Uℓ−1
t = {Xℓ−1

t,h,w | {(h,w)}
H,W
h=1,w=1 /∈ TopK(TSℓ−1

t )}, (15)

where K = ⌈(1− rℓ)×H×W ⌉ is the number of tokens to retain and TopK(·) returns the highest-
scoring token coordinates. The tokens in Uℓ−1

t are candidates for token pruning. In summary,
the IRToP criterion offers a neuroscience-inspired heuristic approach for token pruning in spiking
transformers, enabling computational efficiency while retaining critical information.
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4.2 INFORMATION-RETENTION TOKEN PRUNING ARCHITECTURE

After categorizing informative and uninformative tokens based on the IRToP criterion, we propose an
IR-Arc for token pruning in spiking transformers. The forward propagation of the ℓ-th block at time
step t in our approach is described by the following formulas:

Iℓ−1
t ,Uℓ−1

t ← {IRToP(Xℓ−1
t,h,w)}

H,W
h=1,w=1, Xℓ−1

t ∈ RH×W×D, (16)

I′
ℓ
t = SSA(Iℓ−1

t ) + Iℓ−1
t , Iℓ−1

t ∈ Rk×D, (17)

Xℓ
t,inf = MLP(I′

ℓ
t) + I′

ℓ
t, I′

ℓ−1
t ∈ Rk×D, (18)

Xℓ
t,uni = Uℓ−1

t , Uℓ−1
t ∈ R(H×W−k)×D, (19)

Xℓ
t = Reassemble(Xℓ

t,inf ,X
ℓ
t,uni), Xℓ

t ∈ RH×W×D. (20)
In IR-Arc, informative tokens undergo complete SSA and MLP to further extract the essential
features, while uninformative ones are skipped via block-level early stopping. All tokens are then
reassembled into their original positions to restore the feature map size. Unlike direct token removal,
IR-Arc skips the calculation of uninformative tokens and then keeps them unchanged. This not only
reduces memory and computational overhead, but also retains more information during token pruning.
Additionally, the retention and reassembly strategy allows TP-Spikformer to be easily extended to
hierarchical spiking transformers, like QKFormer Zhou et al. (2024a), detailed in Appendix F.

We summarize the workflow of TP-Spikformer in Algorithm 1 and its advantages from two aspects.
First, the information-retention strategy optimally allocates computational resources to tokens with
high information content, enhancing efficiency without compromising model’s feature extraction
capabilities. Second, it reduces memory and computation cost by skipping uninformative tokens
rather than removing them directly, ensuring compatibility with models with feature pyramids.

Algorithm 1 The overall workflow of TP-Spikformer.

Require: Trained spiking transformer model; Token pruning ratio per block r = {r1, · · · , rL}; Input image I .
Ensure: Classification results, with token pruning performed in forward propagation.

▷X0 ← InputEmbedding(I)
for t← 1 to T do

for ℓ← 1 to L do
▷ Get the input feature map: Xℓ−1

t and define an avg kernel with shape [D,D, k, k] and value 1;
▷ Get representative tokens from each k × k spatial window: Yℓ−1

t ← Conv2d(Xℓ−1
t , avg kernel);

▷ Token scoring: TSℓ−1
t = SpatialScorer(Xℓ−1

t ,Yℓ−1
t ) + TemporalScorer(Xℓ−1

t ,Xℓ−1
t−1);

▷ Select the K most informative tokens: Iℓ−1
t ← {Xℓ−1

t,h,w | (h,w) ∈ TopK(TSℓ−1
t )};

▷ Get the remaining uninformative tokens: Uℓ−1
t ← All Tokens \ Informative Tokens

▷ Extract and retain important information: I′ℓt ← SSA(Iℓ−1
t ) + Iℓ−1

t , Xℓ
t,inf ← MLP(I′

ℓ
t) + I′

ℓ
t ;

▷ Early stopping for uninformative tokens: Xℓ
t,uni ← Uℓ−1

t ;
▷ Reassemble tokens to restore the original feature map size: Xℓ

t ← Reassemble(Xℓ
t,inf ,X

ℓ
t,uni);

end for
▷ Y = CH(GAP(XL

t ));
end for

5 EXPERIMENT

In this section, we conduct extensive experiments to assess our method. First, we evaluate TP-
Spikformer’s efficacy and efficiency on various architectures and tasks, comparing it with related
work and uncompressed counterparts. Second, we study the zero-finetuning accuracy preservation
property of TP-Spikformer. Third, we quantify the actual efficiency gains achieved by TP-Spikformer
in training time and memory cost. Finally, we conduct ablation studies to validate the efficacy of
IRToP and IR-Arc. We also visualize temporal and spatial scores of TP-Spikformer to provide
insights into their operational mechanisms. Appendix A provides details about experimental setups.

5.1 PERFORMANCE COMPARISON

Image classification. We first compare TP-Spikformer with existing SNN token pruning methods.
Existing methods are mostly validated on the Spikformer and small datasets, and we compare TP-
Spikformer with them in Table 1 and 2. Clearly, TP-Spikformer maintains high performance even
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Table 1: Comparison of TP-Spikformer on small-scale datasets. ‘S’ means the method doesn’t add
extra parameters or need retraining. Navg is the average token retention ratio. † is an estimated token
retention ratio based on reported metrics. Top three results are highlighted as first, second, and third.

Method S
CIFAR-10 CIFAR-100 DVS-CIFAR10

T Navg Acc. (%) T Navg Acc. (%) T Navg Acc. (%)

Spikformer Zhou et al. - 4 ×1 95.19 Base 4 ×1 78.21 Base 16 ×1 80.9 Base

SparseSpikformer Liu et al. (2024)
✗ 4 ×0.85 95.18 (-0.01) 4 ×0.85 77.70 (-0.51) 16 ×0.85 79.3 (-1.6)
✗ 4 ×0.70 95.03 (-0.16) 4 ×0.70 77.07 (-1.14) 16 ×0.70 78.4 (-2.5)
✗ 4 ×0.63 94.77 (-0.42) 4 ×0.63 76.78 (-1.43) 16 ×0.63 79.1 (-1.8)

AT-SNN Kang et al. (2024) ✗ 4 ×0.28 95.06 (-0.13) 4 ×0.75 78.14 (-0.07) - - -
✗ 4 ×0.21 94.88 (-0.31) 4 ×0.58 77.27 (-0.94) - - -

STATA Zhuge et al. (2024) ✗ 4 ×0.50† 95.00 (-0.19) 4 ×0.50† 77.70 (-0.51) 16 ×0.50† 80.7 (-0.2)

TP-Spikformer ✓ 4 ×0.25 95.16 (-0.03) 4 ×0.60 78.48 (+0.27) 16 ×0.78 81.0 (+0.1)
✓ 4 ×0.20 95.12 (-0.07) 4 ×0.55 77.83 (-0.38) 16 ×0.50 80.7 (-0.2)

Table 2: Comparison of TP-Spikformer on ImageNet. ‘Thr’ reports model throughput on one A800.
Method Architecture S T Navg OPsblock (G) Power (mJ) Acc. (%) Thr (imgs/s)

SEW Fang et al. (2021) SEW-ResNet-152 - 4 ×1 - 12.891 69.26 -
Spikformer Zhou et al. (2022) Spikformer-8-768 - 4 ×1 18.91 21.48 74.81 229
SNN-ViT Wang et al. (2025) SNN-ViT-8-512 - 4 ×1 - 35.75 80.23 378

STATA Zhuge et al. (2024) Spikformer-8-768 ✗ 4 ×0.50† - 11.16 74.03 -

TP-Spikformer

SDT-V1-8-768
[NeurIPS23]Yao et al. (2023a)

- 4 ×1 9.04 Base 10.26 Base 76.32 Base 156 Base

✓ 4 ×0.74 6.75 (↓25%) 8.20 (↓19%) 75.82 (-0.50) 181 (↑16%)

✓ 4 ×0.65 5.93 (↓34%) 7.46 (↓26%) 75.62 (-0.70) 189 (↑21%)

✓ 4 ×0.51 4.71 (↓48%) 6.36 (↓38%) 74.79 (-1.53) 202 (↑29%)

QK-10-768
[NeurIPS24]Zhang et al. (2024)

- 4 ×1 15.08 Base 32.12 Base 85.56 Base 75 Base

✓ 4 ×0.72 10.7 (↓29%) 28.18 (↓12%) 84.45 (-1.11) 84 (↑12%)

✓ 4 ×0.65 9.61 (↓36%) 27.19 (↓15%) 84.32 (-1.24) 88 (↑17%)

✓ 4 ×0.53 7.97 (↓47%) 25.71 (↓20%) 82.53 (-3.03) 106 (↑41%)

SDT-V3-19M
[TPAMI25]Yao et al. (2025)

- 1×4 ×1 1.74 Base 5.47 Base 79.72 Base 1562 Base

✓ 1×4 ×0.78 1.37 (↓21%) 4.68 (↓14%) 79.01 (-0.71) 1785 (↑14%)

✓ 1×4 ×0.65 1.13 (↓35%) 4.43 (↓19%) 78.10 (-1.62) 1851 (↑19%)

✓ 1×4 ×0.56 0.98 (↓44%) 4.25 (↓22%) 77.55 (-2.17) 1886 (↑21%)

under high compression ratios, e.g., retaining only 20% tokens on CIFAR-10 with merely a 0.07%
accuracy drop. Then, we assess TP-Spikformer on Imagenet-1K and various architectures, focusing
on accuracy, block operations (OPsblock), power, and throughput. As shown in Table 2, reducing
tokens greatly lowers OPsblock and power, with minimal accuracy loss. For instance, retaining only
53% tokens in QKFormer cuts OPsblock by 47%, power by 20%, while maintaining 82.53% accuracy.
This indicates TP-Spikformer serves as an effective and general token pruning method for SNNs.

Semantic segmentation. We use ADE20K to assess the efficacy of TP-Spikformer in semantic
segmentation tasks. This comparison aims to show TP-Spikformer’s competitiveness despite token
pruning, not its superiority in performance. We use TP-Spikformer with SDT-V3 and Navg of 0.78
and 0.56 as the backbone for feature extraction, and other settings follow Yao et al. (2025). Results
and visualizations are shown in Table 3 and Figure 3a. With only 56% tokens retained, TP-Spikformer
achieves a 1.7× throughput with only a 0.2% mIoU drop compared to the uncompressed SDT-V3.

TP-SpikformerGround Truth

(a) Semantic segmentation

TP-SpikformerGround Truth

(b) Object detection

TP-Spikformer(Ours)OSTrack STARKGround Truth
#1174 #1492

#1453 #1592 #1655

#372 #567 #1347

#175

(c) Event-based object tracking

Figure 3: Visualization of ground truth and ours, showing its efficacy on diverse downstream tasks.
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Table 3: Segmentation result on ADE20K.

Method Navg T
Param
(M)

Thr
(imgs/s)

MIoU
(%)

(Yao et al.)
×1 4 16.5 59.6 33.6
×1 1 58.9 37.6 34.8
×1 4 58.9 36.8 35.3

(Yao et al., 2025)
×1 2 11.0 82.7 31.9
×1 4 11.0 74.5 40.1
×1 8 11.0 70.4 41.4

TP-Spikformer ×0.78 4 11.0 112.2 40.2
TP-Spikformer ×0.56 4 11.0 128.6 40.0

Table 4: Object detection results on COCO 2017.

Method Navg T
Param
(M)

Thr
(imgs/s)

mAP
@0.5(%)

(Kim et al., 2020) - 3500 10.2 - 25.7
(Li et al., 2022) - 512 17.1 - 45.3

(Zhang et al., 2023) - 4 11.3 - 28.5
(Su et al., 2023) - 4 26.9 - 50.1

(Yao et al.) ×1 1 34.9 32.6 44.0
(Yao et al., 2025) ×1 8 38.7 29.8 58.8

TP-Spikformer ×0.78 4 38.7 42.9 55.4
TP-Spikformer ×0.56 4 38.7 43.6 54.4

Object detection. We use COCO2017 to evaluate the efficacy of TP-Spikformer, which also aims to
show its competitiveness under token pruning instead of superior mAP. We also use SDT-V3 with
Navg of 0.78 and 0.56 as the backbone, and others follow Yao et al. (2025). Results and visualizations
are shown in Table 4 and Figure 3b. With only 78% tokens and fewer time steps, TP-Spikformer
reaches a 1.4× throughput with only a 1% mAP drop, showing its efficacy in object detection.

Event-based tracking. We select the event-based tracking task to verify the effect of TP-Spikformer
in sequence vision tasks. Experiments are conducted on three benchmarks, i.e., FE108 Zhang et al.
(2021), FELT Wang et al. (2024a), and VisEvent Wang et al. (2023). Similar in segmentation and
detection, we use SDT-V3 with Navg of 0.78 and 0.56 as the backbone, and other settings follow
Shan et al. (2025). Results and visualizations are shown in Table 3 and Figure 3c. Using only 56%
of the tokens, TP-Spikformer surpasses most RGB-based trackers and rivals the advanced SDTrack,
demonstrating its effectiveness in sequential vision tasks.

Table 5: TP-Spikformer vs. advanced trackers on three event-based object tracking benchmarks.

Methods Time
step Navg

Power
(mJ)

FE108 FELT VisEvent

AUC(%) PR(%) AUC(%) PR(%) AUC(%) PR(%)

STARK Yan et al. (2021) 1 ×1 58.88 57.4 89.2 39.6 51.7 34.1 46.8
SimTrack Chen et al. (2022) 1 ×1 93.84 56.7 88.3 36.8 47.0 34.6 47.6
OSTrack256 Ye et al. (2022) 1 ×1 98.90 54.6 87.1 35.9 45.5 32.7 46.4

ARTrack256 Wei et al. (2023) 1 ×1 174.8 56.6 88.5 39.5 49.4 33.0 43.8
SeqTrack-B256 Chen et al. (2023) 1 ×1 302.7 53.5 85.5 33.0 42.0 28.6 43.3

HiT-B Kang et al. (2023) 1 ×1 19.78 55.9 88.5 38.5 48.9 34.6 47.6
HIPTrack Cai et al. (2024) 1 ×1 307.7 50.8 81.0 38.2 48.9 32.1 45.2

ODTrack Zheng et al. (2024) 1 ×1 335.8 43.2 69.7 29.7 35.9 24.7 34.7
STNet Zhang et al. (2022) 3 ×1 - - - - - 35.0 50.3

SDTrackTiny Shan et al. (2025) 4 ×1 8.16 59.0 91.3 39.3 51.2 35.6 49.2

TP-Spikformer 4 ×0.65 6.65 59.0 91.2 39.1 50.4 35.3 49.7
TP-Spikformer 4 ×0.56 6.51 58.4 90.6 38.9 50.0 35.2 49.4

Faster Faster Faster

1.3× faster 1.4× faster
1.2× faster

SDT-V1 QKFormer SDT-V3

Figure 4: Zero-finetuning accuracy preservation (top) and efficiency gains (bottom) of TP-Spikformer.
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Table 6: Ablation study. Random denotes random token pruning; Drop means token removal that
reduces feature map size; Spatial and Temporal is using one single scorer for token selection.

Architecture [Random, Drop][Random, IR-Arc][Spatial, IR-Arc][Temporal, IR-Arc][IRToP, IR-Arc]

SDT-V1×0.52 59.88% 60.02% 73.52% 70.95% 73.78%
QKFormer×0.65 Fail 74.45% 58.93% 79.69% 81.16%

SDT-V3×0.78 Fail 73.15% 75.95% - 75.95%

5.2 VALIDATION AND ABLATION STUDY

Zero-finetuning accuracy preservation of TP-Spikformer. We observe that TP-Spikformer can
also perform well in a training-free manner. To verify this, we prune three architectures using
official pre-trained weights, comparing results with and without fine-tuning. As shown in Figure 4(a),
TP-Spikformer attains high accuracy without fine-tuning, showing its simplicity and generalization.
This makes it well-suited for real-world scenarios with limited resources and no retraining budget.

Speedup and memory improvement of TP-Spikformer. Besides inference throughput, we quantify
the efficiency gains of TP-Spikformer in training. Experiments are conducted on ImageNet, measuring
training time and memory usage. These metrics are tested on a single NVIDIA 4090, with the batch
sizes of SDT-V1, QKFormer, and SDT-V3 set to 20, 15, and 200. As shown in Figure 4(b), TP-
Spikformer notably reduces both training and memory cost as the token retention ratio decreases.

Ablation study of IRToP and IR-Arc. We conduct ablation studies on ImageNet without fine-tuning,
assessing IRToP and IR-Arc. Table 6 summarizes results, with key findings outlined below. First,
IRToP outperforms Random token pruning under IR-Arc, with gains of 13.76%, 6.71%, and 2.8%
on SDT-V1, QKFormer, and SDT-V3, respectively, showing its efficacy. Second, the efficacy of
IR-Arc is shown by comparing it with Drop; though their gap is small on SDT-V1 (59.88% vs.
60.02%), IR-Arc better supports varying feature map sizes, like QKFormer. Third, decoupled
analyses of Temporal and Spatial show that the Spatial scorer suffices on SDT-V1, while
Temporal is more important on QKFormer, showing that both scorers in IRToP are indispensable.

TemporalSpatial

t=
1

t=
3

t=
2

t=
4

Spatial Temporal IRToPIRToP

Figure 5: Visualization of spatial and temporal token scores in the 8th block of SDT-V1-8-768.

Decoupling analysis of IRToP. We decouple and visualize spatial and temporal scores to understand
their roles. Figure 5 shows token scores from the last block before the classification head, where
the spatial scorer assigns higher scores to tokens related to the main subject, while the temporal one
emphasizes edges and key parts (e.g., claws, wings, beak). We find the temporal scorer underperforms
at time step 1, likely due to the large magnitudes of background tokens causing misidentification.
This also explains the poor token pruning results at the first time step in Figure 1. We thus recommend
using only spatial scores at the first step and combining both from the second step onward.

6 CONCLUSION

Existing transformer-based SNNs integrate transformer performance with SNN efficiency, yet are
constrained by increased model size and computational demands. This paper presents TP-Spikformer,
a simple yet effective token pruning approach for spiking transformers that reduces memory and
computation overhead. Drawing inspiration from human visual processing, TP-Spikformer imple-
ments the IRToP criterion and IR-Arc architecture, striking an excellent balance between efficiency
and performance across multiple architectures and tasks. Extensive experiments and comprehensive
studies demonstrate its value in real-world scenarios with limited resources and no retraining budget.
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A EXPERIMENT DETAILS

A.1 IMAGE CLASSIFICATION

Dataset We evaluate TP-Spikformer on both static and dynamic datasets. The static datasets include
CIFAR-10, CIFAR-100, and the large-scale ImageNet-1K. CIFAR-10 is a widely used benchmark in
computer vision, containing 10 categories with 6,000 32×32 images per category Krizhevsky et al.
(2009). CIFAR-100 maintains the same image size but expands the categories to 100, which are
organized into 20 superclasses Krizhevsky et al. (2009). ImageNet-1K is a large-scale vision dataset,
featuring approximately 1.28 million training images and 50,000 test images across 1,000 categories
Deng et al. (2009). Its diverse categories and rich image content make it a critical benchmark for
image classification. Additionally, DVS-CIFAR10 is a dynamic dataset derived from CIFAR-10 using
a dynamic vision sensor Li et al. (2017). This dataset includes 9,000 training samples and 1,000 test
samples, with temporal resolution in the microsecond range and spatial resolution of 128×128.

Table 7: Token preserving ratio on small datasets.

Block
CIFAR-10 CIFAR-100 DVS-CIFAR10
0.25 0.20 0.60 0.55 0.78 0.50

1 0.76 0.56 0.76 0.76 0.78 0.76

2 0.14 0.14 0.76 0.76 0.78 0.25

3 0.06 0.06 0.76 0.56 - -

4 0.06 0.06 0.14 0.14 - -

Experimental setup For small-scale datasets
CIFAR and DVS-CIFAR-10, we perform exper-
iments with two token pruning ratio settings.
Specifically, Navg is set to 0.25 and 0.20 for
CIFAR-10, and 0.65 and 0.55 for CIFAR-100.
We use the Spikformer-4-384 as used in stud-
ies Liu et al. (2024); Kang et al. (2024); Zhuge
et al. (2024), fine-tuning with a learning rate of
5e-5 and time step 4. For DVS-CIFAR10, we
set Navg to 0.78 and 0.5, using the Spikformer-2-
384 and fine-tuning with a learning rate of 7e-4.
Other experimental settings follow prior work.
For the large-scale ImageNet, we conduct experiments with three pruning ratios for each structure,
detailed in Table 2. We summarize the token retention ratio per block of small datasets in Table 7 and
Imagenet-1K in Table 8. In the next paragraph, we introduce how the token retention ratio per block
is obtained. During fine-tuning, we remove the warm-up epoch and set the learning rate to 1e-5 for
50 epochs. The batch size per GPU for SDT-V1 and QKFormer is 72, while 760 for SDT-V3. The
detailed settings for ImageNet are shown in Table 9. In all experiments, when calculating the spatial
scores of tokens, we compute the set of neighboring positions in a 3× 3 window, i.e., k = 3. We also
discuss the effect of k on performance in C.

Table 8: Token preserving ratio in each transformer block on Imagenet-1K.

Block
SDT-V1 QKFormer SDT-V3

0.74 0.65 0.51 0.72 0.65 0.53 0.78 0.65 0.56
1 1 1 0.73 0.90 0.81 0.64 1 0.81 0.64
2 1 0.73 0.73 0.90 0.81 0.64 0.90 0.81 0.64
3 0.73 0.73 0.51 0.72 0.64 0.64 0.90 0.64 0.64
4 0.73 0.73 0.51 0.72 0.64 0.49 0.90 0.64 0.64
5 0.73 0.51 0.51 0.72 0.64 0.49 0.64 0.64 0.49
6 0.73 0.51 0.51 0.72 0.64 0.49 0.64 0.56 0.49
7 0.51 0.51 0.32 0.64 0.64 0.49 0.64 0.56 0.49
8 0.51 0.51 0.32 0.64 0.56 0.49 0.64 0.56 0.49
9 - - - 0.64 0.56 0.49 - - -

10 - - - 0.64 0.56 0.49 - - -

In order to find the optimal pruning combination between blocks, we employ a search strategy before
fine-tuning to determine the token pruning ratio per block based on the given global pruning rate. The
grid search used is a very simple method, which is intended to perform a coarse search to initially
identify a reasonable pruning rate. Given a pre-trained model and a global token preservation, we
summarize its detailed search process below.
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Table 9: Experimental setups on Imagenet-1K.

Hyper-parameter SDT-V1 QKFormer SDT-V3

Navg 0.74, 0.65, 0.51 0.72, 0.65, 0.51 0.78, 0.65, 0.56
k in IRToP 3 3 3
Time step 4 4 4

Warmup epoch None None None
Epoch 50 50 50

Resolution 224×224 224×224 224×224
Batch size per GPU 72 72 760

Optimizer Adam Adam Adam
Weight decay 0 0 0

Initial learning rate 1e-5 1e-5 1e-5
Learning rate decay Cosine Cosine Cosine

• First is to obtain a set of token preservation ratio combinations. Specifically, the search
space for ratios is restricted to a small set of discrete values, such as 0.9×0.9, 0.8×0.8,
0.75×0.75, 0.6×0.6, etc. Furthermore, we impose a monotonic constraint, requiring the
token preservation ratio to decrease progressively from shallow to deeper blocks. This is
motivated by the observation that shallow layers capture low-level features and thus require
higher token retention, while deeper layers handle high-level semantic information and can
tolerate more aggressive token pruning Lin et al. (2021).

• Second, we randomly sample a small batch of data from the training dataset and evaluate
the accuracy for each combination in the combinations set. The combination with the top-1
accuracy is selected and used for subsequent fine-tuning.

By reviewing the search logs, we observe that different configurations give similar performance
under the same global ratio. Therefore, the grid search is only used for SDT-V3, while for
QKFormer and SDT-V1, we directly set the ratios manually and fine-tune the models without
performing grid search. We summarize the search details for SDT-V3 in Table 10, including the
discrete search space, the number of candidate combinations, the time to evaluate each combination,
and the total search time.

Table 10: Search details for the SDT-V3.

Model Navg
Searching space per
token retention ratio

Number of
combinations

Evaluation time
per combination

Total Time
(4*NVIDIA 4090)

SDT-V3 0.78 [1,0.90,0.81,0.72,0.64,0.56,0.49] 65 26s 28min 11s
SDT-V3 0.65 [0.81,0.72,0.64,0.56,0.49,0.42,0.36] 89 22s 32min 38s
SDT-V3 0.56 [0.81,0.72,0.64,0.56,0.49,0.42,0.36] 166 16s 44min 16s

A.2 SEMANTIC SEGMENTATION

Dataset ADE20K Zhou et al. (2019) is a widely used and well-established dataset for semantic
segmentation in computer vision research. It comprises approximately 25,000 images, with over
20,000 images designated for training, 2,000 images for validation, and 3,000 images for testing.
Each image in the dataset is densely annotated with pixel-level labels across 150 distinct semantic
categories. These categories cover a wide array of objects, such as people, cars, and animals, as
well as scene elements like sky, roads, and vegetation, each with intricate visual features that make
semantic segmentation tasks more challenging. Due to its diversity and complexity, ADE20K serves
as a critical and challenging benchmark for evaluating the performance of segmentation algorithms.

Experimental setup In this work, we begin by converting the mmsegmentation Contributors (2020)
codebase to its spike-based version, inspired by the SDT-V3 Yao et al. (2025). We employ TP-
Spikformer with SDT-V3-19M as the backbone for feature extraction, integrated with spike FPN
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(Kirillov et al., 2019) for segmentation. The backbone is initialized using pretrained weights from
ImageNet, ensuring that the network has a strong starting point for feature extraction. The newly
added layers are initialized using the Xavier method Glorot & Bengio (2010). The experimental
settings follow the parameters set in SDT-V3 to ensure consistency and comparability. We fine-tune
the model with two ratios same as object detection on 4×4090 with a batch size of 12 per GPU,
while original SDT-V3 is limited to 8. The results in Table 3 show that our method maintains
the performance of SDT-V3 and greatly increases throughputs. This comparison is not intended
to demonstrate that our method achieves top-1 accuracy, but rather to highlight that our approach
remains competitive even under token pruning conditions.

A.3 OBJECT DETECTION

Dataset We evaluate TP-Spikformer on COCO2017 Lin et al. (2014), a large-scale benchmark
that is widely used for object detection tasks. The dataset comprises a total of 118K training images,
5K validation images, and 40K test images, providing a comprehensive and diverse set of visual
data. It covers 80 object categories, including everyday items such as cars, bicycles, animals, and
household objects, which are essential for testing the algorithm’s ability to recognize and interpret
a wide range of visual content. In addition to object categories, COCO offers multiple types of
annotations, including object instance segmentation masks, keypoints, and captions, all of which
contribute to the dataset’s robustness for evaluating various vision tasks. Notably, COCO emphasizes
contextual relationships between objects within complex, everyday scenes, offering a more realistic
and challenging evaluation setting compared to simpler datasets. This makes COCO a crucial
benchmark for assessing the performance of computer vision algorithms in real-world, practical
applications.

Experimental setup Similar to semantic segmentation, we begin by converting the mmdetection
Chen et al. (2019) codebase to its spike-based version. Our model architecture integrates TP-
Spikformer with Mask R-CNN (He et al., 2017). The backbone is initialized using pretrained weights
from ImageNet, and the newly added layers are initialized using the Xavier method (Glorot &
Bengio, 2010). We fine-tune the model with two different average token retention ratios: 0.56 and
0.78. These two settings allow us to explore how different levels of token retention influence the
model’s performance in object detection and segmentation tasks. The experiments are conducted on
a 4×A800 setup, with a batch size of 5 per GPU, providing ample computational resources to handle
the large-scale training process. The results are summarized in Table 4, which also highlights that our
approach remains competitive in object detection tasks.

A.4 EVENT-BASED TRACKING

Dataset We use three event-based tracking benchmarks to assess our TP-Spifkormer, detailed as:

• FE108 is captured by the DAVIS346 dynamic vision sensor, with an event rate spanning a
range from 0 to 3800 events/ms Zhang et al. (2021). This dataset features 21 diverse target
categories. The diversity of categories and the high event rate make FE108 particularly
useful for evaluating event-based models under varying conditions.

• FELT Wang et al. (2024a) is specifically designed to address the challenges associated with
long-term object tracking in dynamic environments. This dataset places a strong emphasis
on scenarios where the loss and recovery of targets are crucial for maintaining tracking
accuracy.

• VisEvent Wang et al. (2023) is a large-scale dataset dedicated to event-based visual tasks, of-
fering a robust testing ground for various event-driven models and algorithms under extreme
conditions. With its broad scope, VisEvent includes a wide range of event-based visual
tasks, providing a unique and challenging environment for assessing model performance.

These datasets serve as three of the most important benchmarks in event-based tracking. Their
diversity makes them important for evaluating the performance of event-driven models and algorithms.

Experimental setup We use the SDTrack pipeline to build a tracker for event-based tracking tasks
Shan et al. (2025). Specifically, we train the tracker using an image pair matching task Chen et al.
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(2022); Yan et al. (2021); Ye et al. (2022) and employ weighted focal loss Law & Deng (2018) for
classification. For the predicted bounding boxes, L1 loss and generalized IoU loss Rezatofighi et al.
(2019) are used for bounding box regression. We train the model for 100 epochs on the FE108 and
VisEvent datasets, using a pretrained ImageNet-1K model, and for 300 epochs on the FELT dataset.
For each training epoch on the FE108 and FELT datasets, we randomly sample 60,000 sample pairs
with a maximum interval of 200, while on VisEvent, we use 30,000 pairs. The learning rate used
during training is 4e-4, decaying to 4e-5 at 80% of the training progress. We apply normalization and
regularization on the FELT dataset, and a Hanning window penalty is used to constrain the predicted
boxes. However, no data augmentation or preprocessing is applied to the FE108 and VisEvent. All of
the above experimental settings are strictly aligned with SDTrack Shan et al. (2025).

B MEASUREMENT OF EFFICIENCY METRICS

Table 11: Training time and memory usage of TP-Spikformer under different ratios and architectures.

Navg

SDT-V1 QKFormer SDT-V3
Memory

usage (GB)
Training

time (h/epoch)
Memory

usage (GB)
Training

time (h/epoch)
Memory

usage (GB)
Training

time (min/epoch)

×1 23.19 7.47 22.80 8.78 23.33 50.27
×0.72 21.44 6.22 21.03 7.11 20.96 42.16
×0.50 20.21 5.51 18.40 5.93 19.08 38.96
×0.36 18.76 4.98 16.37 5.45 18.25 36.29
×0.16 18.68 4.62 14.92 4.98 16.42 34.16

As shown in Figure 4, we report the training time per epoch, GPU memory usage, and inference
throughput for SDT-V1, QKFormer, and SDT-V3. In this section, we provide a detailed description of
how these metrics are measured, including the measurement method, experimental setup, and results.

The training time per epoch and GPU memory usage are measured by monitoring the time taken to
complete one epoch and the GPU memory consumption during training. These metrics are tested
on a single NVIDIA 4090, with batch sizes fixed at 20 for SDT-V1, 15 for QKFormer, and 200
for SDT-V3. We measure these two metrics of TP-Spikformer under different token pruning rates,
with the results summarized in Table 11. It is evident that the proposed TP-Spikformer significantly
reduces both training time and memory consumption, resulting in substantial efficiency gains. As a
result, under the same configuration, when maximizing GPU resource utilization, TP-Spikformer
typically allows for a higher batch size compared to its uncompressed counterpart.

For the metric of inference throughput, we estimate it by calculating the number of images processed
per second during the inference process. The throughput values reported in Figure 4 and Tables 2-4 are
measured on a single NVIDIA A800 GPU, with a batch size of 36 for both SDT-V1 and QKFormer,
and 1024 for SDT-V3 in the classification task. In the case of segmentation and detection tasks, the
batch size is fixed to 1. The obtained throughput results, presented in Tables 2 to 4, display that
TP-Spikformer achieves higher throughput across all models while maintaining high accuracy. This
enhances the efficiency of model inference and faster real-time processing, making it more suitable
for deployment in resource-constrained scenarios that require real-time processing.

C ANALYSIS OF k IN THE IRTOP CRITERION

In this section, we evaluate the impact of different values of k on the performance of TP-Spikformer,
specifically SDT-V1, QKFormer, and SDT-V3, on the ImageNet-1K dataset under zero-finetuning
conditions. The results are summarized in Table 12. Each architecture shows stable performance
across the different values of k, with a slight decrease in accuracy as k increases. This drop in
performance may be attributed to the fact that larger spatial windows, while capturing more global
context, reduce focus on important local details, which is crucial for tasks like fine-grained detection
and segmentation. Therefore, we select k = 3 for the experiments presented in the main text, as it
offers a good balance between computational efficiency and effectiveness.
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Table 12: Performance of TP-Spifkormer with different k on ImageNet-1K without finetuning.

k value
SDT-V1 QKFormer SDT-V3

0.74 0.65 0.51 0.72 0.65 0.53 0.78 0.65 0.56
3 75.38 75.48 73.78 83.79 81.34 64.38 75.95 67.03 60.19
5 75.37 75.48 73.77 83.65 81.23 64.18 75.77 66.59 59.71
7 75.34 75.48 73.77 83.66 81.20 64.32 75.59 66.47 59.40

D ADAPTIVE WEIGHTING OF SPATIAL AND TEMPORAL SCORERS IN IRTOP

As for Eq. 13, we have explored adaptive weighting between spatial and temporal components to
analyze the effects of adaptive weight in the IRToP criterion. Specifically, we introduce a learnable
parameter α to balance the spatial and temporal scores adaptively. The modified IRToP criterion is
formulated as:

IRToP(Xℓ−1
t,h,w) = α× Ŝscore(Xℓ−1

t,h,w) + (1− α)× T̂score(Xℓ−1
t,h,w), (21)

where α is initialized to 0.5 (equal weighting) and is differentiable, allowing it to be optimized during
training. This enables the model to automatically learn the optimal balance between spatial and
temporal importance. We conduct experiments on ImageNet-1K using SDT-V1 with a pruning ratio
of 0.51, fine-tuning for 50 epochs. The results are summarized Table 13. Compared to fixed equal
weighting (α = 0.5), we observe a slight performance drop when using the adaptive weighting method.
We suspect this is because the learned value of α converges to around 0.3, suggesting that the model
tends to emphasize temporal features over spatial ones. In this case, the model may overly focus on
critical temporal dynamics and local details, potentially at the expense of broader spatial context that
is essential for robust feature representation, leading to the observed performance degradation.

Table 13: Analysis of adaptive weighting of spatial and temporal scorers in IRToP.

Model Ratio Final ratio α
Fine-tuning accuracy

under adaptive α
Fine-tuning accuracy

under fixed α=0.5

SDT-V1 0.51 0.3 74.23% 74.79%

E DETAILED ANALYSIS OF IRTOP
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Figure 6: Detailed visualization of spatial and temporal token scores of SDT-V1-8-768.

IRToP proves effective by selecting informative tokens with two key characteristics: tokens that
represent the overall outline and tokens that capture specific detail features. As a supplement to
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Figure 5, we further analyze the scores of tokens selected from the 1st, 2nd, and 7th encoder blocks.
In Figure 6, we decouple and visualize their spatial and temporal scores. From the spatial scores, it
is clear that, irrespective of the time step and block, the spatial token scorer assigns higher scores
to tokens representing the main outline, followed by those representing specific details, and lastly,
background tokens. In terms of temporal scores, the temporal token scorer further extracts feature
information by assigning higher scores to tokens that correspond to specific detail features. For
example, in the 1st block at t = 3, tokens representing the bird’s claws receive high scores. In the
2nd and 7th blocks at t = 3, tokens representing the head, wings, and branches are assigned high
scores. Similarly, at t = 4 in the 7th block, tokens representing the bird’s tail are given high scores.

The above visualization results can be explained by the design of the spatial token scorer and the
temporal token scorer. The spatial token scorer relies on the similarity with neighboring tokens,
assigning higher scores to tokens that differ significantly from their local surroundings. This is why
the spatial token scorer extracts more information representing texture and boundary features. The
computation of the temporal token scorer is inspired by the working mechanism of the human visual
system. Specifically, tokens representing distinct features are captured over time, while background
tokens are gradually ignored. As a result, the temporal token scorer is able to extract specific
feature information. Overall, by combining the spatial token scorer with the temporal token scorer,
IRToP effectively selects informative tokens, reducing computational resources while maintaining
performance.

F WHY CANNOT DIRECT TOKEN PRUNING BE EXTENDED TO THE FEATURE
VARIANT SPIKING TRANSFORMER?

Direct token pruning refers to identifying uninformative tokens and discarding them without further
processing in the subsequent network layers. In this section, we first discuss why this approach
cannot be applied to feature-variant spiking transformers. Then, we use a feature-variant QKFormer
as an example to illustrate the issue. Finally, we explain how our method effectively solves this issue.

Early SNN transformers, e.g., Spikformer Zhou et al. and SDT-V1 Yao et al. (2023a), follow ViT-style
designs from ANNs, using patch embedding and standard transformer blocks. As the field developed,
recent SOTA models like QKFormer Zhou et al. (2024a) and SDT-V2/V3 Yao et al.; 2025) incorporate
convolution layers with kernels larger than 1 inside transformer blocks. For example, QKFormer
applies conv-based Spiking Patch Embedding before each block, and SDT-V3 uses spike-based
separable convolutions before every attention layer. Unlike ANNs where features can be flattened
for token pruning, these convolutional layers embedded in the transformer blocks require structured
and square feature maps for token pruning in SNNs. These feature-variant spiking transformers
include many operations that reduce the size of feature maps, such as downsampling and convolution.
The inherent structural sensitivity of these operations makes direct token pruning incompatible with
feature-variant spiking Transformers, which can be understood from two aspects:

• On the one hand, convolution operations rely on structured grid-like inputs. This means that
if tokens are removed from a transformer block, the remaining tokens may no longer form a
valid image layout, making them incompatible with later convolutional layers.

• On the other hand, due to its strong prior assumptions, e.g., spatial local correlation and
translation invariance, the convolution operation heavily relies on the spatial structure of
feature maps. However, removing tokens disrupts the spatial structure of feature maps.
This disruption (1) impairs local information propagation, (2) degrades the effectiveness of
trained filters, and (3) compromises the model’s representational ability.

As detailed in the above two reasons, it is the existence of convolution in spiking transformers that
makes direct token removal infeasible, while our block-level early stopping strategy remains viable.
This also indicates that, when pruning advanced spiking transformers like QKFormer and SDT-V2/V3,
it is essential to preserve the overall architectural integrity. Notably, existing SNN token pruning
methods have only been tested on ViT-like Spikformer and spike-driven transformer V1, and have
not yet been applied to recent SOTA spiking transformers. To the best of our knowledge, we are the
first to evaluate token pruning on these advanced spiking architectures.
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We then use the advanced hierarchical transformer architecture QKFormer in SNNs as an example
to illustrate the above issue. In QKFormer, each stage consists of the Spiking Patch Embedding
with Deformed Shortcut (SPEDS) module and QKFormer block. The SPEDS module includes
structure-sensitive convolution and pooling operations, which reduce the number of tokens by a 2×2
patch size before each stage and transform the number of channels into 2C to generate hierarchical
spiking representations. If we directly prune the uninformative tokens identified by IRToP criterion
in the first stage, the remaining informative tokens need be reorganized into a new feature map before
being input into the second stage. This will lead to the following two challenges.

• Difficulty in reshaping the feature map. The reorganizing process typically requires the
remaining informative tokens to be arranged into a square feature map for efficient processing
in the next stage (e.g., 196 = 14×14). However, after pruning uninformative tokens in the
first stage, the number of remaining tokens often cannot form the required square shape for
reshaping the feature map.

• Disruption of spatial structure. Even if we constrain the remaining informative tokens’
count to match the square shape, the spatial structure of the reconstructed feature map is
inevitably disrupted. This results in the failure of well-trained parameters in the convolution
operations within the SPEDS module of the second stage. This would affect the information
flow in subsequent network layers and significantly degrade model performance.

TP-Spikformer addresses this challenge by introducing a block-level early stopping strategy for
uninformative tokens. Instead of directly removing tokens that would disrupt the spatial structure
of the feature map, TP-Spikformer bypasses the processing of uninformative tokens within the
transformer blocks, and then reorganizes all tokens spatially before inputting them into the next
stage. This process reduces the memory and computational overhead associated with token pruning
by bypassing the computation of uninformative tokens. Moreover, by preserving the integrity of
the feature map’s spatial structure, TP-Spikformer avoids the difficulties of reshaping tokens and
maintains the well-trained parameters of the filters, ensuring that the model maintains competitive
performance even without fine-tuning.

G ZERO-FINETUNING ACCURACY PRESERVATION OF TP-SPIKFORMER

The zero-finetuning accuracy preservation of TP-Spikformer is made in a comparative sense. Existing
advanced token pruning methods in SNNs often modify the original model architecture when applied
to spiking transformers. These modifications may include introducing new tokens (STATA Zhuge
et al. (2024)), adding trainable modules (ACT Kang et al. (2024)). Since these additions are randomly
initialized, they require full retraining, which significantly increases data requirements, training costs,
and reduces generalizability. Therefore, though our method does not completely preserve accuracy
on QKFormer and SDT-V3, it achieves better accuracy than existing spiking token pruning methods
under the same no-fine-tuning setting.
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Figure 7: TP-Spikformer’s zero-finetuning accuracy
preservation on segmentation and detection.

In Section 5.2, we conduct an in-depth anal-
ysis of TP-Spikformer’s zero-finetuning
performance preservation property in im-
age classification tasks. In this section, we
demonstrate that TP-Spikformer exhibits
this property in other vision tasks as well.
We evaluate the performance of the un-
pruned model using publicly available SDT-
V3 detection and segmentation code and
obtain results of 39.49% MIoU for seman-
tic segmentation and 53.9% mAP@0.5 for
object detection, respectively. Then, we
directly apply our token pruning method
to the obtained weights without any fine-
tuning. With a compression ratio of 0.78,
TP-Spikformer achieves performance of
36.15% and 47.7% in semantic segmentation and object detection, representing reductions of 3.34%
and 6.2%, respectively. These results indicate that TP-Spikformer maintains its zero-finetuning
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performance preservation property in various downstream vision tasks, highlighting its effectiveness
for real-world scenarios with limited resources and no retraining budget.

H EFFECT OF TP-SPIKFORMER IN ACCELERATING TRAINING FROM SCRATCH

Table 14: Effect of TP-Spikformer in the training process.

Model Params (M) Token preservation
ratio

Total training
time

GPU Memory
(batch size=1280) Acc.

SDT-V3 5.1 1 57h14min 77.49 GB 73.9%
TP-Spikformer 5.1 0.65 50h 49min 66.90 GB 73.6%

Although our method is mainly designed to improve deployment efficiency, it can also be easily
applied during training. To verify this, we conduct experiments on large-scale ImageNet using
SDT-V3-5M with and without our token pruning method, both trained from scratch. All experiments
are run on a single H800 GPU, using the same settings as the original SDT-V3 to ensure a fair
comparison. As shown in Table 14, TP-Spikformer achieves 73.6% accuracy, close to the 73.9%
of the unpruned model, while reducing training time by 7.5 hours. This shows its effectiveness in
speeding up training. Moreover, TP-Spikformer uses much less GPU memory due to fewer tokens,
which allows larger models or batch sizes to be trained on the same hardware.

I VALIDITY OF TP-SPIKFORMER ON NON-VISUAL TASKS

The vision datasets used in the manuscript, like ImageNet, COCO, and ADE20K, are universally
recognized as complex datasets in the fields of classification, detection, and segmentation, respectively.
These experimental results prove the effectiveness of S2NN in complex image tasks. To further show
the efficacy of our method in non-image tasks, we have conducted experiments in NLP tasks.

We extend our TP-Spikformer to the SpikeLM proposed by Xing et al. (2024) without additional
architecture adjustment. Experiments utilize a 12-layer BERT-based encoder transformer and are
performed on the GLUE benchmark. The token preservation ratio is set to [1, 1, 1, 0.9, 0.9, 0.9, 0.8,
0.8, 0.8, 0.7, 0.7, 0.7], while all other training configurations follow the original paper. The results are
presented in the table below. Clearly, TP-Spikformer achieves a performance of 75.9%, showing no
significant loss. These results confirm the effectiveness of our method on NLP tasks, demonstrating
its general applicability beyond the vision domain.

Table 15: Validation of TP-Spikformer on the GLUE benchmark.

Model SST-2 MRPC RTE MNLI QNLI QQP CoLA STS-B Avg.

SpikeLM 87.0 85.7 69.0 77.1 85.3 83.9 38.8 84.9 76.5
TP-Spikformer 87.9 84.7 68.2 76.0 84.6 84.2 37.0 84.9 75.9

J POTENTIAL OF TP-SPIKFORMER WITH OTHER COMPRESSION TECHNIQUES

Our TP-Spikformer is orthogonal to other lightweight approaches and can be used in conjunction
with them. Here, we investigate the combination of TP-Spikformer with quantization. We select
the Q-SDT proposed by Qiu et al. (2025) to evaluate this combination. Specifically, we conduct
experiments on CIFAR-10 by applying TP-Spikformer to Q-SDT, training the model from scratch.
The results are shown in Table 16. While there is a performance gap compared to the baseline, the
96.9% accuracy demonstrates that our token pruning method can work effectively with quantization
techniques.
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Table 16: Potential of TP-Spikformer with quantization.

Model Preserving Ratio Bits GPU Memory (GB) Accuracy (%)

Q-SDT Qiu et al. (2025) 1 4-1 19.27 97.8%
Q-SDT+TP-Spikformer 0.54 4-1 15.98 96.9%

K LEARNING ALGORITHM OF TP-SPIKFORMER

We employ the widely used spatiotemporal backpropagation (STBP) Wu et al. (2018) to train the
TP-Spikformer, where we need to compute gradients of the loss function L to synaptic weights.
Through chain rule decomposition, we can decompose this gradient as,

∂L
∂wℓ

ij

=

T∑
t=1

(
∂L

∂sℓi [t]

∂sℓi [t]

∂ũℓ
i [t]

∂ũℓ
i [t]

∂wℓ
ij

+
∂L

∂uℓ
i [t+ 1]

∂uℓ
i [t+ 1]

∂ũℓ
i [t]

∂ũℓ
i [t]

∂wℓ
ij

)
, (22)

where the derivative of the loss function with respect to the spike and membrane potential, i.e.,
∂L/∂sℓi [t] and ∂L/∂uℓ

i [t+ 1] are obtained iteratively, the terms of ∂ũℓ
i [t]/∂w

ℓ
ij , ∂uℓ

i [t+ 1]/∂ũℓ
i [t],

and ∂ũℓ
i [t]/∂w

ℓ
ij can be calculated based on Eq. 1. Unfortunately, a fundamental challenge in this

training arises from the non-differentiable nature of spike emission. Mathematically, the gradient
of the spike generation function as described in Eq. 2, i.e., ∂sℓi [t]/∂ũ

ℓ
i [t], becomes undefined at

the firing threshold θ and vanishes elsewhere. This discontinuity prevents the direct application of
standard backpropagation algorithms commonly used in deep learning. To overcome this limitation,
we use surrogate gradient functions to approximate the derivative of ∂sℓi [t]/∂ũ

ℓ
i [t] Wu et al. (2018),

with various functions can be employed like rectangular Wu et al. (2019), triangular Deng et al.
(2022), and linear Wei et al. (2024). TP-Spikformer employs the triangular-shaped surrogate gradient
formulation, described as,

∂sℓi [t]

∂ũℓ
i [t]

= max
(
0, β − |ũℓ

i [t]− θ|
)
, (23)

where β is the factor that defines the range of gradient computation, and θ is the threshold as in Eq. 2.
Consequently, the TP-Spikformer can be trained directly with gradient backpropagation.

L THEORETICAL ENERGY CONSUMPTION

When analyzing the energy consumption of SNNs, previous studies Yao et al. (2023b); Zhou et al.;
2024a) commonly assume that MAC and AC operations are implemented on 45nm hardware Horowitz
(2014), where EMAC = 4.6pJ and EAC = 0.9pJ . To facilitate comparison between different
methods, we adopt this approach to theoretically calculate TP-Spikformer’s energy consumption,
described by the following equation:

Etotal = EMAC · FLOPs1Conv + EAC × (

N∑
n=2

SOPsnConv +

L∑
l=1

×SOPslBlock + SOPsMLP ),

(24)

where SOPs refers to the number of synaptic operations, SOPsnconv and SOPsmMLP represent the
SOPs for the convolutional operations in the embedding module and the MLP in the classification
head, respectively, and SOPslBlock denotes the SOPs for each transformer block. The number of
SOPs in TP-Spikformer is computed as:

SOPsℓ = frℓAvg × T × FLOPsℓ, (25)

where frAvg is the average firing rate of the layer across time steps T , and FLOPsl is the number
of floating point operations for the ℓ-th layer. A spiking transformer typically consists of three
components: path embedding, transformer blocks, and the classification head. In TP-Spikformer, the
energy consumption of the path embedding and classification head is consistent with the uncompressed
counterpart, while the energy consumption of the transformer blocks is significantly reduced.
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M INSTRUCTIONS FOR USING LARGE LANGUAGE MODELS

In preparing this manuscript, we utilize a large language model (LLM) solely to aid and polish the
writing. The LLM is used for grammar checking, language refinement, and improving clarity of
expression. It does not contribute to the formulation of research ideas, methodology, experiments,
data analysis, or conclusions. All presented in this paper is entirely the work of the authors.

24


	Introduction
	Related work
	Preliminary
	Method
	Heuristic spatiotemporal information-retaining criterion
	Information-retention token pruning architecture

	Experiment
	Performance comparison
	Validation and ablation study

	Conclusion
	Experiment Details
	Image Classification
	Semantic Segmentation
	Object Detection
	Event-based Tracking

	Measurement of Efficiency Metrics
	Analysis of k in the IRToP criterion
	Adaptive weighting of spatial and temporal scorers in IRToP
	Detailed Analysis of IRToP
	Why cannot direct token pruning be extended to the feature variant spiking transformer?
	Zero-finetuning accuracy preservation of TP-Spikformer
	Effect of TP-Spikformer in accelerating training from scratch
	Validity of TP-Spikformer on non-visual tasks
	Potential of TP-Spikformer with other compression techniques
	Learning algorithm of TP-Spikformer
	Theoretical Energy Consumption
	Instructions for using Large Language Models

