

000 001 002 003 004 005 TP-SPIKFORMER: TOKEN PRUNED SPIKING TRANS- 006 FORMER 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Spiking neural networks (SNNs) offer an energy-efficient alternative to traditional
032 neural networks due to their event-driven computing paradigm. However, recent
033 advancements in spiking transformers have focused on improving accuracy with
034 large-scale architectures, which require significant computational resources and
035 limit deployment on resource-constrained devices. In this paper, we propose a
036 simple yet effective token pruning method for spiking transformers, termed TP-
037 Spikformer, that reduces storage and computational overhead while maintaining
038 competitive performance. Specifically, we first introduce a heuristic spatiotemporal
039 information-retaining criterion that comprehensively evaluates tokens' importance,
040 assigning higher scores to informative tokens for retention and lower scores to
041 uninformative ones for pruning. Based on this criterion, we propose an information-
042 retaining token pruning framework that employs a block-level early stopping strat-
043 egy for uninformative tokens, instead of removing them outright. This also helps
044 preserve more information during token pruning. We demonstrate the effective-
045 ness, efficiency and scalability of TP-Spikformer through extensive experiments
046 across diverse architectures, including Spikformer, QKFormer and Spike-driven
047 Transformer V1 and V3, and a range of tasks such as image classification, object
048 detection, semantic segmentation and event-based object tracking. Particularly,
049 TP-Spikformer performs well in a training-free manner. These results reveal its
050 potential as an efficient and practical solution for deploying SNNs in real-world
051 applications with limited computational resources.
052
053

1 INTRODUCTION

034 Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient solution for next-
035 generation machine intelligence due to their sparse event-driven computing paradigm Gerstner &
036 Kistler (2002); Izhikevich (2003). In SNNs, the discrete binary spike serves as the fundamental
037 information carrier, and it is conveyed in an event-driven manner. This unique computing paradigm
038 allows only a subset of neurons to be activated and engage in synaptic accumulation operations,
039 achieving significant computational efficiency Pfeiffer & Pfeil (2018); Roy et al. (2019); Li et al.
040 (2024). In addition, the sparse event-driven nature of SNNs has spurred the development of neuro-
041 morphic hardware, such as TrueNorth Akopyan et al. (2015) and Loihi Davies et al. (2018), further
042 harnessing their potential for energy efficiency. Despite the significant efficiency advantages, the
043 limited performance of SNNs presents challenges to their widespread applications.
044

045 Building on the success of Transformer models across various fields Devlin et al. (2019); Dosovitskiy
046 et al. (2020), researchers have integrated them with SNNs, such as Spikformer Zhou et al. (2022),
047 QKFormerZhang et al. (2024), Spike-driven transformer(SDT)-V1 Yao et al. (2023a), V2 Yao et al.
048 and V3 Yao et al. (2025), leading to significant performance improvements on large and complex
049 benchmarks. However, these gains come at the expense of a large number of model parameters and
050 high computational complexity. For example, the recently introduced SDT-V3 Yao et al. (2025)
051 achieves 86.2% accuracy on ImageNet. Yet, this model contains 173 million parameters, requires
052 1384MB of memory, and performs 28.4 billion synaptic operations per second during inference.
053 These substantial demands on storage and computational resources present significant challenges for
deploying Transformer-based SNNs on resource-limited scenarios Qiu et al. (2025).

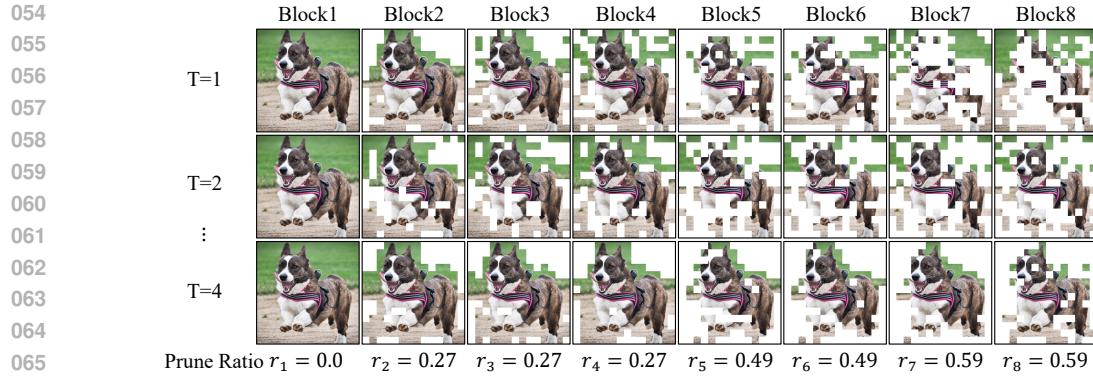


Figure 1: Visualization of token pruning across time step and block with our method. Experiments are conducted on SDT-V1-8-512, and white areas are pruned tokens. This reveals that TP-Spikformer prunes uninformative tokens while retaining informative ones, keeping the focus on the subject.

070
071 Researchers have made significant efforts to compress large-scale spiking transformers, including
072 techniques of quantization Qiu et al. (2025); Cao et al. (2025), network architecture search Wang
073 et al. (2024b); Che et al. (2024), and pruning Zhuge et al. (2024); Zhou et al. (2024c). Among these,
074 token pruning is a specialized compression method for Transformer architectures; it dynamically
075 reduces the number of tokens processed in each block during inference, enhancing both storage and
076 computational efficiency. The underlying principle of token pruning is that, in visual tasks, the final
077 prediction typically relies on only a subset of the tokens. This allows us to selectively remove certain
078 tokens, accelerating inference while maintaining competitive accuracy Rao et al. (2021); Yin et al.
079 (2022). Therefore, token pruning poses a promising solution for the efficient deployment of spiking
080 transformers, particularly in edge scenarios. However, current token pruning methods in SNNs suffer
081 from two major limitations Zhuge et al. (2024); Liu et al. (2024); Kang et al. (2024). First, most
082 approaches modify the original structure when applied to spiking transformers, such as introducing
083 tokens, adding trainable modules, or altering network connections. Second, these methods typically
084 require retraining the model, resulting in large training costs. These issues raise the application costs
085 and reduce their generalizability.

086 In this paper, we propose a simple yet effective token pruning approach for spiking transformer
087 (TP-Spikformer), aiming to compress its storage and accelerate its computation while maintain-
088 ing competitive performance. We first propose a heuristic spatiotemporal information-retaining
089 token pruning criterion (IRToP), where informative tokens are assigned higher scores to retain
090 and uninformative tokens are given lower scores to prune. Based on this criterion, we design an
091 information-retaining token pruning architecture (IR-Arc), which achieves compression and accelera-
092 tion by applying a block-level early stopping strategy for uninformative tokens, rather than direct
093 dropping. This also helps retain more information during token pruning. The token pruning results of
094 TP-Spikformer are depicted in Figure 1, and our main contributions are summarized as follows:

- 095 • We propose a heuristic spatiotemporal information-retaining criterion for token pruning,
096 termed IRToP. Spatially, IRToP recognizes tokens that differ significantly from neighbors as
097 more distinctive. Temporally, IRToP identifies tokens with greater variation across adjacent
098 time steps as carriers of richer temporal information. By integrating both aspects, IRToP
effectively identifies informative tokens and assigns them higher retention priority.
- 100 • We propose an information-retention token pruning architecture, named IR-Arc, where infor-
101 mative tokens undergo complete forward computation but uninformative tokens implement
102 a block-level early stopping strategy, reducing storage and computation overhead effectively.
103 IR-Arc makes TP-Spikformer exhibit high versatility and requires no training from scratch,
attaining competitive performance even under zero fine-tuning conditions.
- 105 • We select a variety of architectures for our experiments, including the feature-map invariant
106 Spikformer and SDT-V1, the feature pyramid-based QKFormer, and the advanced SDT-V3.
107 Additionally, we assess TP-Spikformer on multiple tasks such as classification, segmentation,
detection, and tracking. Through validation across multiple architectures and tasks, we
demonstrate the effectiveness, efficiency, and scalability of our method.

108

2 RELATED WORK

110 **Spiking transformer.** Spikformer pioneers self-attention and direct Transformer training in SNNs
 111 Zhou et al., which eliminates float multiplication in attention via spike-based Q, K, and V. Spikformer
 112 V2 explores masked image modeling in spiking transformers, achieving 81.1% accuracy on ImageNet
 113 with just 1 time step Zhou et al. (2024b). SpikingResformer proposes a dual-spike self-attention
 114 and combines it with a ResNet-based architecture, improving performance with reduced parameters
 115 Shi et al. (2024). QKFormer uses spike-based Q and K for attention computation and introduces
 116 spiking patch embeddings with deformable shortcuts, achieving milestone results on multiple datasets
 117 Zhou et al. (2024a). In the SNN community, the series of Spike-driven Transformer has gained
 118 notable attention with its spike-driven design. SDT-V1 pioneers spike-driven computation in spiking
 119 transformers, converting spike-related matrix multiplications to efficient addition operations Yao et al.
 120 (2023a). SDT-V2 extends SDT-V1 into a meta architecture, exploring structure design, spike-driven
 121 attention, and skip connection to enhance performance Yao et al.. SDT-V3 optimizes spiking neuron
 122 firing patterns and designs an efficient Transformer, enabling SNN performance to match that of
 123 ANN Yao et al. (2025). Despite substantial accuracy improvements, SNNs' inherent energy efficiency
 124 is undermined, limiting their deployment in resource-limited scenarios.

125 **Token pruning in spiking transformer.** SparseSpikformer proposes a hybrid pruning framework
 126 operating at both weight and token levels, removing unimportant background tokens based on neurons'
 127 spike firing rates Liu et al. (2024). However, it has two limitations: it relies on firing rate for token
 128 importance without leveraging SNNs' temporal characteristics, and its validation is limited to a single
 129 architecture and small-scale datasets, leaving its scalability to other architectures and benchmarks
 130 unexplored. AT-SNN adopts an adaptive computation time (ACT) mechanism to mask unimportant
 131 tokens using Halting Scores during training, followed by a similarity-based token merging strategy to
 132 reduce computational overhead Kang et al. (2024). However, ACT introduces additional parameters
 133 requiring retraining, and AT-SNN's validation is also limited to a single architecture and simple
 134 datasets. Recently, STATA introduces an anchor token for token pruning with dual temporal and
 135 inter-layer alignment mechanisms, becoming the first token pruning method in spiking transformer
 136 validated on ImageNet Zhuge et al. (2024). However, it requires a complete retraining process, and
 137 the additional loss terms increase training overhead compared to uncompressed counterparts.

138

3 PRELIMINARY

140 **Spiking neuron model.** Spiking neurons mimic the information transmission and processing of
 141 biological neurons. Due to the high computational complexity of biological neurons, researchers
 142 simplify spiking neurons into differential equations for computer simulation. The neural behavior
 143 of spiking neurons typically includes three mechanisms: membrane potential integration, spike
 144 generation, and reset. Below, we describe these behaviors using the widely adopted Leaky Integrate-
 145 and-Fire (LIF) model Wu et al. (2018); Neftci et al. (2019), which can be described as follows:

$$\tilde{\mathbf{u}}^\ell[t] = \mathbf{u}^\ell[t-1] + f(\mathbf{w}^\ell, \mathbf{s}^{\ell-1}[t]), \quad (1)$$

$$\mathbf{s}^\ell[t] = \text{Heaviside}(\tilde{\mathbf{u}}^\ell[t] - \theta), \quad (2)$$

$$\mathbf{u}^\ell[t] = \begin{cases} \tilde{\mathbf{u}}^\ell[t] (1 - \mathbf{s}^\ell[t]), & \text{hard reset,} \\ \tau \tilde{\mathbf{u}}^\ell[t] - \theta \mathbf{s}^\ell[t], & \text{soft reset,} \end{cases} \quad (3)$$

152 where τ is the constant leaky factor, t is the time step, \mathbf{w}^ℓ is the weight matrix of layer ℓ , and $f(\cdot)$
 153 is the convolution or linear operation followed by batch normalization (BN). As described above,
 154 neurons integrate inputs and emit a spike $\mathbf{s} \in \{0, 1\}$ when the membrane potential $\tilde{\mathbf{u}}$ exceeds the
 155 threshold θ . After spike emission, the reset mechanism is invoked to update the membrane potential.
 156

157 **Spiking transformer.** The spiking transformer architecture typically comprises four components:
 158 input embedding, spiking self-attention (SSA), multi-layer perceptron (MLP), and a classification
 159 head (CH). Given a 2D image sequence I , the input embedding module linearly projects it into
 160 D -dimensional spiking features vector and partitions it into either a 2D grid of $H \times W$ spiking
 161 patches or N flattened spiking patches. After adding positional encoding, the initial feature \mathbf{X}^0 passes
 162 through L transformer blocks, each containing SSA and MLP modules. Finally, the features \mathbf{X}^L are

162 aggregated via global average pooling (GAP) and processed by the CH to generate predictions. The
 163 process is formulated as follows:
 164

$$\mathbf{X}^0 = \text{InputEmbedding}(I), \quad \mathbf{X}^0 \in \mathbb{R}^{T \times H \times W \times D}, \quad (4)$$

$$\hat{\mathbf{X}}^\ell = \text{SSA}(\mathbf{X}^{\ell-1}) + \mathbf{X}^{\ell-1}, \quad \mathbf{X}^\ell \in \mathbb{R}^{T \times H \times W \times D}, \ell = 1 \dots L, \quad (5)$$

$$\mathbf{X}^\ell = \text{MLP}(\hat{\mathbf{X}}^\ell) + \hat{\mathbf{X}}^\ell, \quad \mathbf{X}^\ell \in \mathbb{R}^{T \times H \times W \times D}, \ell = 1 \dots L, \quad (6)$$

$$\mathbf{Y} = \text{CH}(\text{GAP}(\mathbf{X}^L)). \quad (7)$$

170 Notably, SSA provides an efficient approach to model the local-global information of images using
 171 spike-based queries (\mathbf{q}), keys (\mathbf{k}), and values (\mathbf{v}) without employing softmax, described as,
 172

$$\text{SSA}(\mathbf{X}^{\ell-1}) = \mathcal{SN}((\mathbf{q}_s \mathbf{k}_s^\top) \mathbf{v}_s), \quad (8)$$

$$\mathbf{x}_s = \mathcal{SN}(\mathbf{x}), \quad \mathbf{x} = \mathbf{w}_x \cdot \mathcal{SN}(\mathbf{X}^{\ell-1}), \quad \mathbf{x} \in \{\mathbf{q}, \mathbf{k}, \mathbf{v}\}. \quad (9)$$

175 This design combines the efficiency of SNNs with the modeling capabilities of Transformers, enabling
 176 effective processing of information with reduced computational overhead Yao et al. (2023a).
 177

178 4 METHOD

180 In this section, we introduce our simple yet effective token pruning method for efficient spiking
 181 transformers. We first present the heuristic spatiotemporal information-retaining criterion that assesses
 182 token importance. Then, we introduce the information-retention pruning architecture with the block-
 183 level early stopping strategy. By integrating these two components, our TP-Spikformer achieves
 184 improved efficiency, scalability, and effectiveness.
 185

186 4.1 HEURISTIC SPATIOTEMPORAL INFORMATION-RETAINING CRITERION

188 Extensive neuroscience research has shown that the human visual system does not process all
 189 information equally, but instead prioritizes regions that are spatially salient or exhibit significant
 190 temporal changes Itti et al. (2002); Fecteau & Munoz (2006). This selective mechanism allows
 191 biological systems to allocate computational resources efficiently to informative regions of visual
 192 input Koch & Ullman (1987). Inspired by this, we propose the IRTToP to guide token pruning in
 193 spiking transformers, which assesses tokens based on their information content, giving tokens with
 194 richer spatial and temporal information higher preservation priority.

195 **Spatial token scorer.** In the human visual system, spatial locations compete for saliency within
 196 feature maps, allowing only those that quite differ from their local surroundings to persist for further
 197 processing Itti et al. (2002). This motivates us to assess the representational divergence between each
 198 token and its spatial neighbors, assigning higher retention scores to those with greater spatial saliency.
 199

200 In the spiking transformer framework, feature representations are structured either as spatial feature
 201 maps $\mathbf{X}^{\ell-1} \in \mathbb{R}^{T \times H \times W \times D}$ or in their flattened form $\mathbf{X}^{\ell-1} \in \mathbb{R}^{T \times N \times D}$, where $N = H \times W$ is
 202 the total number of tokens. Consider a spatial feature map at time step t , for each token located at
 203 spatial position (h, w) , i.e., $\mathbf{X}_{t,h,w}^{\ell-1} \in \mathbb{R}^D$, we compute the dissimilarity between this token and a
 204 representative one in its spatial window. The spatial dissimilarity of a single token is computed as,
 205

$$\mathcal{S}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}) = 1 - \frac{\langle \mathbf{X}_{t,h,w}^{\ell-1}, \mathbf{Y}_{t,h,w}^{\ell-1} \rangle}{|\mathbf{X}_{t,h,w}^{\ell-1}| \cdot |\mathbf{Y}_{t,h,w}^{\ell-1}|}, \quad \mathbf{Y}_{t,h,w}^{\ell-1} = \frac{1}{|\mathcal{W}_{h,w}|} \sum_{(p,q) \in \mathcal{W}_{h,w}} \mathbf{X}_{t,p,q}^{\ell-1}, \quad (10)$$

208 where the representative token $\mathbf{Y}_{t,h,w}^{\ell-1}$ is the mean representation within the spatial window, capturing
 209 the local contextual information around the target token. Unlike pairwise similarity calculations with
 210 neighbor tokens, using this representative token reduces computational complexity. $\mathcal{W}_{h,w}$ is the set
 211 of valid neighboring positions within the $k \times k$ window centered at the coordinate (h, w) , defined as,
 212

$$\mathcal{W}_{h,w} = \{(h \pm \lfloor \frac{k-1}{2} \rfloor, w \pm \lfloor \frac{k-1}{2} \rfloor)\} \cap [0, H-1] \times [0, W-1]. \quad (11)$$

213 We calculate the dissimilarity for each token in the feature map at time step t and normalize these
 214 values to obtain the spatial saliency score. Each score is constrained between 0 and 1, with the sum of
 215

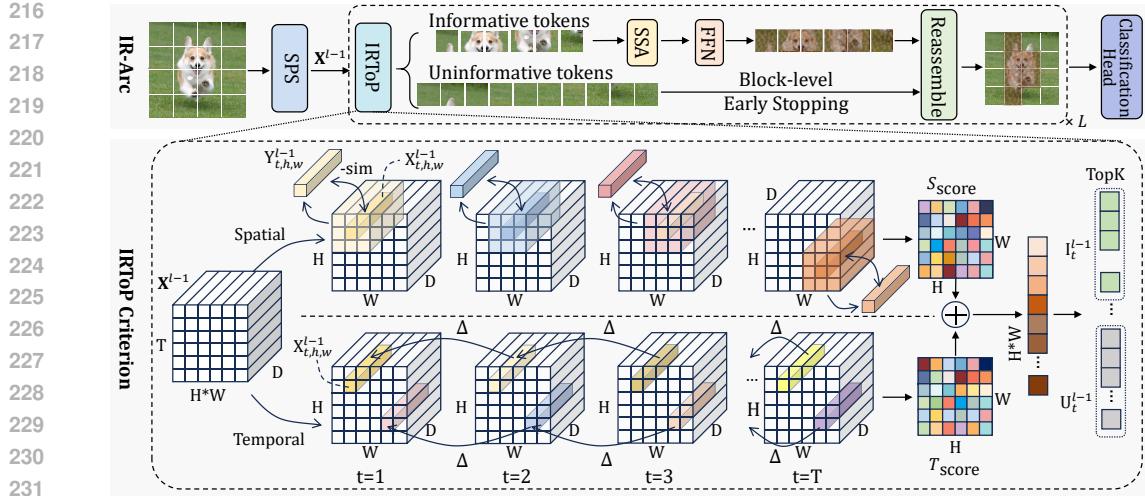


Figure 2: The overall workflow of the proposed TP-Spikformer, including the information-retention token pruning framework (**top**) and the spatiotemporal information-retaining criterion (**bottom**).

all scores equal to 1. A higher score indicates greater spatial saliency of a token, and these tokens are given higher priority for retention in token pruning. This ensures that the most spatially informative tokens of the original feature maps are preserved as much as possible during token pruning. Notably, this approach can be easily extended to frameworks with flattened token representations.

Temporal token scorer. Neuroscientific research has demonstrated that the human visual system is highly sensitive to sudden and significant temporal changes Rensink (2002); Nothdurft (2000). This processing mechanism serves as an efficient information compression strategy, enabling the brain to swiftly locate and process key temporal dynamics within extensive visual input. Inspired by this, we measure the temporal dynamics of each token between consecutive time steps and assign higher retention scores to tokens exhibiting significant temporal variations. Considering a token at a position (h, w) in the spatial feature map, we compute its temporal variation as,

$$\mathcal{T}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}) = \begin{cases} |\mathbf{X}_{t,h,w}^{\ell-1} - \mathbf{X}_{t-1,h,w}^{\ell-1}|, & \text{if } t > 1, \\ |\mathbf{X}_{t,h,w}^{\ell-1}|, & \text{if } t = 1. \end{cases} \quad (12)$$

We calculate and normalize the temporal variation of all tokens at time t to obtain their temporal variation scores. Higher scores indicate richer temporal information of a token, leading to higher retention priority during pruning. This biologically inspired method allows spiking transformers to capture critical temporal features of input sequences while filtering out redundant information.

IRToP criterion. We combine the normalized spatial saliency and temporal variation scores for each token to obtain a spatiotemporal score at each time step, as detailed in Figure 2. Formally, for a token located at position (h, w) at time step t , our IRToP criterion evaluates this token as follows,

$$\text{IRToP}(\mathbf{X}_{t,h,w}^{\ell-1}) = \hat{\mathcal{S}}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}) + \hat{\mathcal{T}}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}), \quad (13)$$

where $\hat{\mathcal{S}}$ and $\hat{\mathcal{T}}$ denotes the normalized score. Given the ℓ -th block's pruning rate r_ℓ , we classify tokens in the input feature map $\mathbf{X}^{\ell-1}$ into informative and non-informative tokens based on their scores. Specifically, we denote a set of token scores in $\mathbf{X}^{\ell-1}$ at time step t as $\text{TS}_t^{\ell-1} = \{\text{IRToP}(\mathbf{X}_{t,h,w}^{\ell-1})\}_{h=1,w=1}^{H,W}$, so the sets of informative tokens $\mathbf{I}_t^{\ell-1}$ and uninformative tokens $\mathbf{U}_t^{\ell-1}$ is:

$$\mathbf{I}_t^{\ell-1} = \{\mathbf{X}_{t,h,w}^{\ell-1} \mid (h, w) \in \text{TopK}(\text{TS}_t^{\ell-1})\}, \quad (14)$$

$$\mathbf{U}_t^{\ell-1} = \{\mathbf{X}_{t,h,w}^{\ell-1} \mid \{(h, w)\}_{h=1,w=1}^{H,W} \notin \text{TopK}(\text{TS}_t^{\ell-1})\}, \quad (15)$$

where $K = \lceil (1 - r_\ell) \times H \times W \rceil$ is the number of tokens to retain and $\text{TopK}(\cdot)$ returns the highest-scoring token coordinates. The tokens in $\mathbf{U}_t^{\ell-1}$ are candidates for token pruning. In summary, the IRToP criterion offers a neuroscience-inspired heuristic approach for token pruning in spiking transformers, enabling computational efficiency while retaining critical information.

270 4.2 INFORMATION-RETENTION TOKEN PRUNING ARCHITECTURE
271

272 After categorizing informative and uninformative tokens based on the IRToP criterion, we propose an
273 IR-Arc for token pruning in spiking transformers. The forward propagation of the ℓ -th block at time
274 step t in our approach is described by the following formulas:

$$275 \quad \mathbf{I}_t^{\ell-1}, \mathbf{U}_t^{\ell-1} \leftarrow \{\text{IRToP}(\mathbf{X}_{t,h,w}^{\ell-1})\}_{h=1,w=1}^{H,W}, \quad \mathbf{X}_t^{\ell-1} \in \mathbb{R}^{H \times W \times D}, \quad (16)$$

$$276 \quad \mathbf{I}'_t^\ell = \text{SSA}(\mathbf{I}_t^{\ell-1}) + \mathbf{I}_t^{\ell-1}, \quad \mathbf{I}_t^{\ell-1} \in \mathbb{R}^{k \times D}, \quad (17)$$

$$278 \quad \mathbf{X}_{t,\text{inf}}^\ell = \text{MLP}(\mathbf{I}'_t^\ell) + \mathbf{I}'_t^\ell, \quad \mathbf{I}'_t^\ell \in \mathbb{R}^{k \times D}, \quad (18)$$

$$280 \quad \mathbf{X}_{t,\text{uni}}^\ell = \mathbf{U}_t^{\ell-1}, \quad \mathbf{U}_t^{\ell-1} \in \mathbb{R}^{(H \times W - k) \times D}, \quad (19)$$

$$281 \quad \mathbf{X}_t^\ell = \text{Reassemble}(\mathbf{X}_{t,\text{inf}}^\ell, \mathbf{X}_{t,\text{uni}}^\ell), \quad \mathbf{X}_t^\ell \in \mathbb{R}^{H \times W \times D}. \quad (20)$$

282 In IR-Arc, informative tokens undergo complete SSA and MLP to further extract the essential
283 features, while uninformative ones are skipped via block-level early stopping. All tokens are then
284 reassembled into their original positions to restore the feature map size. Unlike direct token removal,
285 IR-Arc skips the calculation of uninformative tokens and then keeps them unchanged. This not only
286 reduces memory and computational overhead, but also retains more information during token pruning.
287 Additionally, the retention and reassembly strategy allows TP-Spikformer to be easily extended to
288 hierarchical spiking transformers, like QKFormer Zhou et al. (2024a), detailed in Appendix F.

289 We summarize the workflow of TP-Spikformer in Algorithm 1 and its advantages from two aspects.
290 First, the information-retention strategy optimally allocates computational resources to tokens with
291 high information content, enhancing efficiency without compromising model’s feature extraction
292 capabilities. Second, it reduces memory and computation cost by skipping uninformative tokens
293 rather than removing them directly, ensuring compatibility with models with feature pyramids.

294 **Algorithm 1** The overall workflow of TP-Spikformer.

295 **Require:** Trained spiking transformer model; Token pruning ratio per block $r = \{r_1, \dots, r_L\}$; Input image I .
296 **Ensure:** Classification results, with token pruning performed in forward propagation.

```

297 ▷  $\mathbf{X}^0 \leftarrow \text{InputEmbedding}(I)$ 
298  for  $t \leftarrow 1$  to  $T$  do
299    for  $\ell \leftarrow 1$  to  $L$  do
300      ▷ Get the input feature map:  $\mathbf{X}_t^{\ell-1}$  and define an avg_kernel with shape  $[D, D, k, k]$  and value 1;
301      ▷ Get representative tokens from each  $k \times k$  spatial window:  $\mathbf{Y}_t^{\ell-1} \leftarrow \text{Conv2d}(\mathbf{X}_t^{\ell-1}, \text{avg\_kernel})$ ;
302      ▷ Token scoring:  $\text{TS}_t^{\ell-1} = \text{SpatialScorer}(\mathbf{X}_t^{\ell-1}, \mathbf{Y}_t^{\ell-1}) + \text{TemporalScorer}(\mathbf{X}_t^{\ell-1}, \mathbf{X}_{t-1}^{\ell-1})$ ;
303      ▷ Select the K most informative tokens:  $\mathbf{I}_t^{\ell-1} \leftarrow \{\mathbf{X}_{t,h,w}^{\ell-1} \mid (h, w) \in \text{TopK}(\text{TS}_t^{\ell-1})\}$ ;
304      ▷ Get the remaining uninformative tokens:  $\mathbf{U}_t^{\ell-1} \leftarrow \text{All Tokens} \setminus \text{Informative Tokens}$ 
305      ▷ Extract and retain important information:  $\mathbf{I}'_t^\ell \leftarrow \text{SSA}(\mathbf{I}_t^{\ell-1}) + \mathbf{I}_t^{\ell-1}$ ,  $\mathbf{X}_{t,\text{inf}}^\ell \leftarrow \text{MLP}(\mathbf{I}'_t^\ell) + \mathbf{I}'_t^\ell$ ;
306      ▷ Early stopping for uninformative tokens:  $\mathbf{X}_{t,\text{uni}}^\ell \leftarrow \mathbf{U}_t^{\ell-1}$ ;
307      ▷ Reassemble tokens to restore the original feature map size:  $\mathbf{X}_t^\ell \leftarrow \text{Reassemble}(\mathbf{X}_{t,\text{inf}}^\ell, \mathbf{X}_{t,\text{uni}}^\ell)$ ;
308    end for
309    ▷  $Y = \text{CH}(\text{GAP}(\mathbf{X}_t^L))$ ;
310  end for

```

311 5 EXPERIMENT
312

313 In this section, we conduct extensive experiments to assess our method. **First**, we evaluate TP-
314 Spikformer’s efficacy and efficiency on various architectures and tasks, comparing it with related
315 work and uncompressed counterparts. **Second**, we study the zero-finetuning accuracy preservation
316 property of TP-Spikformer. **Third**, we quantify the actual efficiency gains achieved by TP-Spikformer
317 in training time and memory cost. **Finally**, we conduct ablation studies to validate the efficacy of
318 IRToP and IR-Arc. We also visualize temporal and spatial scores of TP-Spikformer to provide
319 insights into their operational mechanisms. Appendix A provides details about experimental setups.

320 5.1 PERFORMANCE COMPARISON
321

322 **Image classification.** We first compare TP-Spikformer with existing SNN token pruning methods.
323 Existing methods are mostly validated on the Spikformer and small datasets, and we compare TP-
324 Spikformer with them in Table 1 and 2. Clearly, TP-Spikformer maintains high performance even

324 Table 1: Comparison of TP-Spikformer on small-scale datasets. ‘S’ means the method doesn’t add
 325 extra parameters or need retraining. N_{avg} is the average token retention ratio. \dagger is an estimated token
 326 retention ratio based on reported metrics. Top three results are highlighted as first, second, and third.
 327

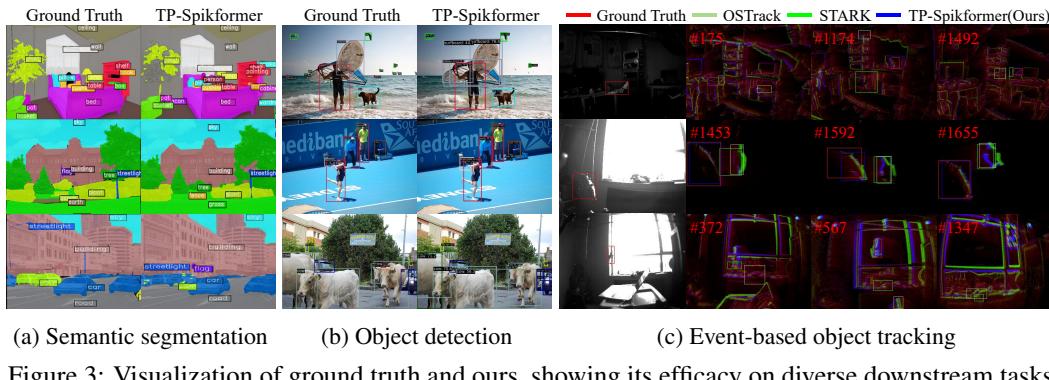
Method	S	CIFAR-10			CIFAR-100			DVS-CIFAR10		
		T	N_{avg}	Acc. (%)	T	N_{avg}	Acc. (%)	T	N_{avg}	Acc. (%)
Spikformer Zhou et al. (2021)	-	4	$\times 1$	95.19 <small>Base</small>	4	$\times 1$	78.21 <small>Base</small>	16	$\times 1$	80.9 <small>Base</small>
	\times	4	$\times 0.85$	95.18 <small>(-0.01)</small>	4	$\times 0.85$	77.70 <small>(-0.51)</small>	16	$\times 0.85$	79.3 <small>(-1.6)</small>
SparseSpikformer Liu et al. (2024)	\times	4	$\times 0.70$	95.03 <small>(-0.16)</small>	4	$\times 0.70$	77.07 <small>(-1.14)</small>	16	$\times 0.70$	78.4 <small>(-2.5)</small>
	\times	4	$\times 0.63$	94.77 <small>(-0.42)</small>	4	$\times 0.63$	76.78 <small>(-1.43)</small>	16	$\times 0.63$	79.1 <small>(-1.8)</small>
AT-SNN Kang et al. (2024)	\times	4	$\times 0.28$	95.06 <small>(-0.13)</small>	4	$\times 0.75$	78.14 <small>(-0.07)</small>	-	-	-
	\times	4	$\times 0.21$	94.88 <small>(-0.31)</small>	4	$\times 0.58$	77.27 <small>(-0.94)</small>	-	-	-
STATA Zhuge et al. (2024)	\times	4	$\times 0.50^\dagger$	95.00 <small>(-0.19)</small>	4	$\times 0.50^\dagger$	77.70 <small>(-0.51)</small>	16	$\times 0.50^\dagger$	80.7 <small>(-0.2)</small>
TP-Spikformer	\checkmark	4	$\times 0.25$	95.16 <small>(-0.03)</small>	4	$\times 0.60$	78.48 <small>(+0.27)</small>	16	$\times 0.78$	81.0 <small>(+0.1)</small>
	\checkmark	4	$\times 0.20$	95.12 <small>(-0.07)</small>	4	$\times 0.55$	77.83 <small>(-0.38)</small>	16	$\times 0.50$	80.7 <small>(-0.2)</small>

339 Table 2: Comparison of TP-Spikformer on ImageNet. ‘Thr’ reports model throughput on one A800.
 340

Method	Architecture	S	T	N_{avg}	OPsblock (G)	Power (mJ)	Acc. (%)	Thr (imgs/s)
SEW Fang et al. (2021)	SEW-ResNet-152	-	4	$\times 1$	-	12.891	69.26	-
Spikformer Zhou et al. (2022)	Spikformer-8-768	-	4	$\times 1$	18.91	21.48	74.81	229
SNN-ViT Wang et al. (2025)	SNN-ViT-8-512	-	4	$\times 1$	-	35.75	80.23	378
STATA Zhuge et al. (2024)	Spikformer-8-768	\times	4	$\times 0.50^\dagger$	-	11.16	74.03	-
	SDT-V1-8-768	\checkmark	4	$\times 1$	9.04 <small>Base</small>	10.26 <small>Base</small>	76.32 <small>Base</small>	156 <small>Base</small>
	[NeurIPS23] Yao et al. (2023a)	\checkmark	4	$\times 0.74$	6.75 <small>(-25%)</small>	8.20 <small>(-19%)</small>	75.82 <small>(-50%)</small>	181 <small>(+16%)</small>
		\checkmark	4	$\times 0.65$	5.93 <small>(-34%)</small>	7.46 <small>(-26%)</small>	75.62 <small>(-70%)</small>	189 <small>(+21%)</small>
		\checkmark	4	$\times 0.51$	4.71 <small>(-48%)</small>	6.36 <small>(-38%)</small>	74.79 <small>(-15%)</small>	202 <small>(+29%)</small>
	QK-10-768	\checkmark	4	$\times 1$	15.08 <small>Base</small>	32.12 <small>Base</small>	85.56 <small>Base</small>	75 <small>Base</small>
	[NeurIPS24] Zhang et al. (2024)	\checkmark	4	$\times 0.72$	10.7 <small>(-29%)</small>	28.18 <small>(-12%)</small>	84.45 <small>(-1.11)</small>	84 <small>(+12%)</small>
		\checkmark	4	$\times 0.65$	9.61 <small>(-36%)</small>	27.19 <small>(-15%)</small>	84.32 <small>(-1.24)</small>	88 <small>(+17%)</small>
		\checkmark	4	$\times 0.53$	7.97 <small>(-47%)</small>	25.71 <small>(-20%)</small>	82.53 <small>(-3.03)</small>	106 <small>(+41%)</small>
	SDT-V3-19M	\checkmark	1×4	$\times 1$	1.74 <small>Base</small>	5.47 <small>Base</small>	79.72 <small>Base</small>	1562 <small>Base</small>
	[TPAMI25] Yao et al. (2025)	\checkmark	1×4	$\times 0.78$	1.37 <small>(-21%)</small>	4.68 <small>(-14%)</small>	79.01 <small>(-71%)</small>	1785 <small>(+14%)</small>
		\checkmark	1×4	$\times 0.65$	1.13 <small>(-35%)</small>	4.43 <small>(-19%)</small>	78.10 <small>(-1.62)</small>	1851 <small>(+19%)</small>
		\checkmark	1×4	$\times 0.56$	0.98 <small>(-44%)</small>	4.25 <small>(-22%)</small>	77.55 <small>(-2.17)</small>	1886 <small>(+21%)</small>

354 under high compression ratios, e.g., retaining only 20% tokens on CIFAR-10 with merely a 0.07%
 355 accuracy drop. Then, we assess TP-Spikformer on Imagenet-1K and various architectures, focusing
 356 on accuracy, block operations (OPsblock), power, and throughput. As shown in Table 2, reducing
 357 tokens greatly lowers OPsblock and power, with minimal accuracy loss. For instance, retaining only
 358 53% tokens in QKFormer cuts OPsblock by 47%, power by 20%, while maintaining 82.53% accuracy.
 359 This indicates TP-Spikformer serves as an effective and general token pruning method for SNNs.

360 **Semantic segmentation.** We use ADE20K to assess the efficacy of TP-Spikformer in semantic
 361 segmentation tasks. *This comparison aims to show TP-Spikformer’s competitiveness despite token
 362 pruning, not its superiority in performance.* We use TP-Spikformer with SDT-V3 and N_{avg} of 0.78
 363 and 0.56 as the backbone for feature extraction, and other settings follow Yao et al. (2025). Results
 364 and visualizations are shown in Table 3 and Figure 3a. With only 56% tokens retained, TP-Spikformer
 365 achieves a $1.7 \times$ throughput with only a 0.2% mIoU drop compared to the uncompressed SDT-V3.



376 Figure 3: Visualization of ground truth and ours, showing its efficacy on diverse downstream tasks.
 377

378

379

Table 3: Segmentation result on ADE20K.

380

Method	N_{avg}	T	Param (M)	Thr (img/s)	MIoU (%)
(Yao et al.)	$\times 1$	4	16.5	59.6	33.6
	$\times 1$	1	58.9	37.6	34.8
	$\times 1$	4	58.9	36.8	35.3
(Yao et al., 2025)	$\times 1$	2	11.0	82.7	31.9
	$\times 1$	4	11.0	74.5	40.1
	$\times 1$	8	11.0	70.4	41.4
TP-Spikformer	$\times 0.78$	4	11.0	112.2	40.2
TP-Spikformer	$\times 0.56$	4	11.0	128.6	40.0

389

390

Object detection. We use COCO2017 to evaluate the efficacy of TP-Spikformer, which also aims to show its competitiveness under token pruning instead of superior mAP. We also use SDT-V3 with N_{avg} of 0.78 and 0.56 as the backbone, and others follow Yao et al. (2025). Results and visualizations are shown in Table 4 and Figure 3b. With only 78% tokens and fewer time steps, TP-Spikformer reaches a $1.4\times$ throughput with only a 1% mAP drop, showing its efficacy in object detection.

392

393

Event-based tracking. We select the event-based tracking task to verify the effect of TP-Spikformer in sequence vision tasks. Experiments are conducted on three benchmarks, i.e., FE108 Zhang et al. (2021), FELT Wang et al. (2024a), and VisEvent Wang et al. (2023). Similar in segmentation and detection, we use SDT-V3 with N_{avg} of 0.78 and 0.56 as the backbone, and other settings follow Shan et al. (2025). Results and visualizations are shown in Table 3 and Figure 3c. Using only 56% of the tokens, TP-Spikformer surpasses most RGB-based trackers and rivals the advanced SDTrack, demonstrating its effectiveness in sequential vision tasks.

404

Table 5: TP-Spikformer vs. advanced trackers on three event-based object tracking benchmarks.

Methods	Time step	N_{avg}	Power (mJ)	FE108		FELT		VisEvent	
				AUC(%)	PR(%)	AUC(%)	PR(%)	AUC(%)	PR(%)
STARK Yan et al. (2021)	1	$\times 1$	58.88	57.4	89.2	39.6	51.7	34.1	46.8
SimTrack Chen et al. (2022)	1	$\times 1$	93.84	56.7	88.3	36.8	47.0	34.6	47.6
OSTrack ₂₅₆ Ye et al. (2022)	1	$\times 1$	98.90	54.6	87.1	35.9	45.5	32.7	46.4
ARTTrack ₂₅₆ Wei et al. (2023)	1	$\times 1$	174.8	56.6	88.5	39.5	49.4	33.0	43.8
SeqTrack-B ₂₅₆ Chen et al. (2023)	1	$\times 1$	302.7	53.5	85.5	33.0	42.0	28.6	43.3
HiT-B Kang et al. (2023)	1	$\times 1$	19.78	55.9	88.5	38.5	48.9	34.6	47.6
HIPTrack Cai et al. (2024)	1	$\times 1$	307.7	50.8	81.0	38.2	48.9	32.1	45.2
ODTrack Zheng et al. (2024)	1	$\times 1$	335.8	43.2	69.7	29.7	35.9	24.7	34.7
STNet Zhang et al. (2022)	3	$\times 1$	-	-	-	-	-	35.0	50.3
SDTrackTiny Shan et al. (2025)	4	$\times 1$	8.16	59.0	91.3	39.3	51.2	35.6	49.2
TP-Spikformer	4	$\times 0.65$	6.65	59.0	91.2	39.1	50.4	35.3	49.7
TP-Spikformer	4	$\times 0.56$	6.51	58.4	90.6	38.9	50.0	35.2	49.4

416

417

418

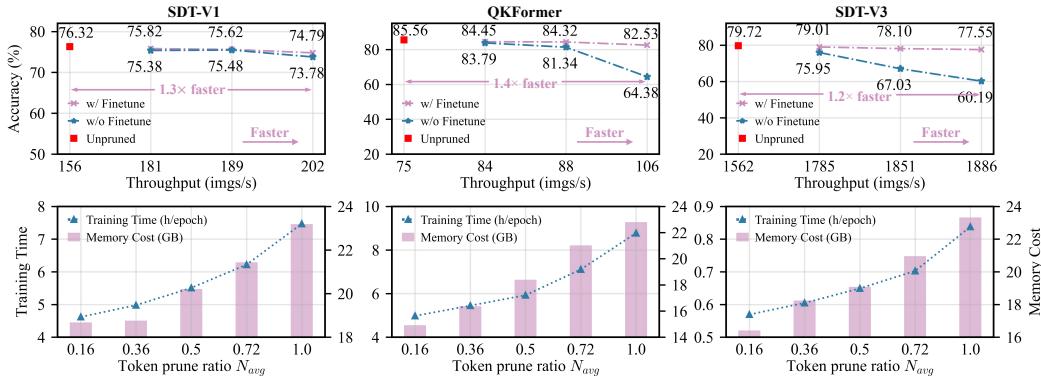


Figure 4: Zero-finetuning accuracy preservation (top) and efficiency gains (bottom) of TP-Spikformer.

432 Table 6: Ablation study. Random denotes random token pruning; Drop means token removal that
 433 reduces feature map size; Spatial and Temporal is using one single scorer for token selection.

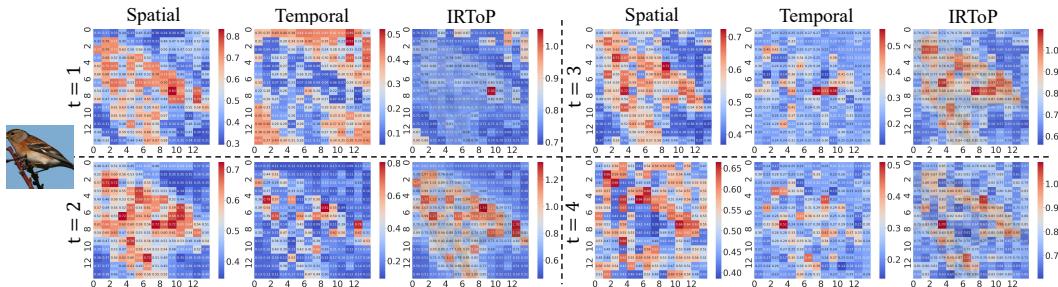
Architecture	[Random, Drop]	[Random, IR-Arc]	[Spatial, IR-Arc]	[Temporal, IR-Arc]	[IRToP, IR-Arc]
SDT-V1 _{×0.52}	59.88%	60.02%	73.52%	70.95%	73.78%
QKFormer _{×0.65}	Fail	74.45%	58.93%	79.69%	81.16%
SDT-V3 _{×0.78}	Fail	73.15%	75.95%	-	75.95%

438 439 5.2 VALIDATION AND ABLATION STUDY

440
 441 **Zero-finetuning accuracy preservation of TP-Spikformer.** We observe that TP-Spikformer can
 442 also perform well in a training-free manner. To verify this, we prune three architectures using
 443 official pre-trained weights, comparing results with and without fine-tuning. As shown in Figure 4(a),
 444 TP-Spikformer attains high accuracy without fine-tuning, showing its simplicity and generalization.
 445 This makes it well-suited for real-world scenarios with limited resources and no retraining budget.

446 **Speedup and memory improvement of TP-Spikformer.** Besides inference throughput, we quantify
 447 the efficiency gains of TP-Spikformer in training. Experiments are conducted on ImageNet, measuring
 448 training time and memory usage. These metrics are tested on a single NVIDIA 4090, with the batch
 449 sizes of SDT-V1, QKFormer, and SDT-V3 set to 20, 15, and 200. As shown in Figure 4(b), TP-
 450 Spikformer notably reduces both training and memory cost as the token retention ratio decreases.

451 **Ablation study of IRToP and IR-Arc.** We conduct ablation studies on ImageNet without fine-tuning,
 452 assessing IRToP and IR-Arc. Table 6 summarizes results, with key findings outlined below. **First**,
 453 IRToP outperforms Random token pruning under IR-Arc, with gains of 13.76%, 6.71%, and 2.8%
 454 on SDT-V1, QKFormer, and SDT-V3, respectively, showing its efficacy. **Second**, the efficacy of
 455 IR-Arc is shown by comparing it with Drop; though their gap is small on SDT-V1 (59.88% vs.
 456 60.02%), IR-Arc better supports varying feature map sizes, like QKFormer. **Third**, decoupled
 457 analyses of Temporal and Spatial show that the Spatial scorer suffices on SDT-V1, while
 458 Temporal is more important on QKFormer, showing that both scorers in IRToP are indispensable.



468 469 Figure 5: Visualization of spatial and temporal token scores in the 8th block of SDT-V1-8-768.

470 **Decoupling analysis of IRToP.** We decouple and visualize spatial and temporal scores to understand
 471 their roles. Figure 5 shows token scores from the last block before the classification head, where
 472 the spatial scorer assigns higher scores to tokens related to the main subject, while the temporal one
 473 emphasizes edges and key parts (e.g., claws, wings, beak). We find the temporal scorer underperforms
 474 at time step 1, likely due to the large magnitudes of background tokens causing misidentification.
 475 This also explains the poor token pruning results at the first time step in Figure 1. We thus recommend
 476 using only spatial scores at the first step and combining both from the second step onward.

477 478 6 CONCLUSION

480 Existing transformer-based SNNs integrate transformer performance with SNN efficiency, yet are
 481 constrained by increased model size and computational demands. This paper presents TP-Spikformer,
 482 a simple yet effective token pruning approach for spiking transformers that reduces memory and
 483 computation overhead. Drawing inspiration from human visual processing, TP-Spikformer imple-
 484 ments the IRToP criterion and IR-Arc architecture, striking an excellent balance between efficiency
 485 and performance across multiple architectures and tasks. Extensive experiments and comprehensive
 studies demonstrate its value in real-world scenarios with limited resources and no retraining budget.

486 REFERENCES
487

488 Philipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
489 Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
490 flow of a 65 mw 1 million neuron programmable neurosynaptic chip. *IEEE transactions on*
491 *computer-aided design of integrated circuits and systems*, 34(10):1537–1557, 2015.

492 Wenrui Cai, Qingjie Liu, and Yunhong Wang. Hiptrack: Visual tracking with historical prompts.
493 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
494 19258–19267, 2024.

495 Honglin Cao, Zijian Zhou, Wenjie Wei, Ammar Belatreche, Yu Liang, Dehao Zhang, Malu
496 Zhang, Yang Yang, and Haizhou Li. Binary event-driven spiking transformer. *arXiv preprint*
497 *arXiv:2501.05904*, 2025.

498 Kaiwei Che, Zhaokun Zhou, Jun Niu, Zhengyu Ma, Wei Fang, Yanqi Chen, Shuaijie Shen, Li Yuan,
499 and Yonghong Tian. Auto-spikformer: Spikformer architecture search. *Frontiers in Neuroscience*,
500 18:1372257, 2024.

501 Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, QiuHong Shen, Bo Li, Weihao Gan, Wei Wu, and Wanli
502 Ouyang. Backbone is all your need: A simplified architecture for visual object tracking. In
503 *European Conference on Computer Vision*, pp. 375–392. Springer, 2022.

504 Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
505 Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
506 Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
507 Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
508 *arXiv preprint arXiv:1906.07155*, 2019.

509 Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. Seqtrack: Sequence to sequence
510 learning for visual object tracking. In *Proceedings of the IEEE/CVF conference on computer vision*
511 and pattern recognition, pp. 14572–14581, 2023.

512 MMSegmentation Contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox and
513 benchmark, 2020.

514 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
515 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
516 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

517 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
518 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
519 pp. 248–255. Ieee, 2009.

520 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
521 neural network via gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.

522 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
523 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
524 *the North American chapter of the association for computational linguistics: human language*
525 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

526 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
527 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
528 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
529 *arXiv:2010.11929*, 2020.

530 Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
531 residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*,
532 34:21056–21069, 2021.

533 Jillian H Fecteau and Douglas P Munoz. Salience, relevance, and firing: a priority map for target
534 selection. *Trends in cognitive sciences*, 10(8):382–390, 2006.

540 Wolfram Gerstner and Werner M Kistler. *Spiking neuron models: Single neurons, populations, plasticity*. Cambridge university press, 2002.
 541
 542

543 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 544 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.
 545

546 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the IEEE international conference on computer vision*, pp. 2961–2969, 2017.
 547

548 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14, 2014.
 549 doi: 10.1109/ISSCC.2014.6757323.
 550

551 Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for
 552 rapid scene analysis. *IEEE Transactions on pattern analysis and machine intelligence*, 20(11):
 553 1254–1259, 2002.
 554

555 Eugene M Izhikevich. Simple model of spiking neurons. *IEEE Transactions on neural networks*, 14
 556 (6):1569–1572, 2003.
 557

558 Ben Kang, Xin Chen, Dong Wang, Houwen Peng, and Huchuan Lu. Exploring lightweight hierarchi-
 559 cal vision transformers for efficient visual tracking. In *Proceedings of the IEEE/CVF International
 560 Conference on Computer Vision*, pp. 9612–9621, 2023.
 561

562 Donghwa Kang, Youngmoon Lee, Eun-Kyu Lee, Brent Kang, Jinkyu Lee, and Hyeongboo Baek.
 563 At-snn: Adaptive tokens for vision transformer on spiking neural network. *arXiv preprint
 564 arXiv:2408.12293*, 2024.
 565

566 Seijo Kim, Seongsik Park, Byunggoon Na, and Sungroh Yoon. Spiking-yolo: spiking neural
 567 network for energy-efficient object detection. In *Proceedings of the AAAI conference on artificial
 568 intelligence*, volume 34, pp. 11270–11277, 2020.
 569

570 Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
 571 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 572 6399–6408, 2019.
 573

574 Christof Koch and Shimon Ullman. Shifts in selective visual attention: towards the underlying neural
 575 circuitry. In *Matters of intelligence: Conceptual structures in cognitive neuroscience*, pp. 115–141.
 576 Springer, 1987.
 577

578 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 579

580 Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 734–750, 2018.
 581

582 Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass.
 583 Brain-inspired computing: A systematic survey and future trends. *Proceedings of the IEEE*, 2024.
 584

585 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 586 dataset for object classification. *Frontiers in neuroscience*, 11:244131, 2017.
 587

588 Yang Li, Xiang He, Yiting Dong, Qingqun Kong, and Yi Zeng. Spike calibration: Fast and accurate
 589 conversion of spiking neural network for object detection and segmentation. *arXiv preprint
 590 arXiv:2207.02702*, 2022.
 591

592 Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
 593 Channel pruning via automatic structure search. In *Proceedings of the Twenty-Ninth International
 594 Conference on International Joint Conferences on Artificial Intelligence*, pp. 673–679, 2021.
 595

596 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 597 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision-
 598 ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
 599 Part V 13*, pp. 740–755. Springer, 2014.
 600

594 Yue Liu, Shanlin Xiao, Bo Li, and Zhiyi Yu. Sparsespikformer: A co-design framework for token
 595 and weight pruning in spiking transformer. In *ICASSP 2024-2024 IEEE International Conference
 596 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6410–6414. IEEE, 2024.

597

598 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 599 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 600 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

601 Hans-Christoph Nothdurft. Salience from feature contrast: additivity across dimensions. *Vision
 602 research*, 40(10-12):1183–1201, 2000.

603

604 Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and challenges.
 605 *Frontiers in neuroscience*, 12, 2018.

606

607 Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu,
 608 Yimeng Shan, Yang Yang, and Haizhou Li. Quantized spike-driven transformer. *arXiv preprint
 arXiv:2501.13492*, 2025.

609

610 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamiccvit:
 611 Efficient vision transformers with dynamic token sparsification. *Advances in neural information
 612 processing systems*, 34:13937–13949, 2021.

613

614 Ronald A Rensink. Change detection. *Annual review of psychology*, 53(1):245–277, 2002.

615

616 Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
 617 Generalized intersection over union: A metric and a loss for bounding box regression. In *Pro-
 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 658–666,
 618 2019.

619

620 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 621 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

622

623 Yimeng Shan, Zhenbang Ren, Haodi Wu, Wenjie Wei, Rui-Jie Zhu, Shuai Wang, Dehao Zhang,
 624 Yichen Xiao, Jieyuan Zhang, Kexin Shi, et al. Sdtrack: A baseline for event-based tracking via
 spiking neural networks. *arXiv preprint arXiv:2503.08703*, 2025.

625

626 Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: bridging resnet and vision transformer
 627 in spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition*, pp. 5610–5619, 2024.

628

629 Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
 630 directly-trained spiking neural networks for object detection. In *Proceedings of the IEEE/CVF
 631 International Conference on Computer Vision*, pp. 6555–6565, 2023.

632

633 Shuai Wang, Malu Zhang, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Yu Liang, Yimeng Shan,
 634 Qian Sun, Enqi Zhang, and Yang Yang. Spiking vision transformer with saccadic attention. *arXiv
 preprint arXiv:2502.12677*, 2025.

635

636 Xiao Wang, Jianing Li, Lin Zhu, Zhipeng Zhang, Zhe Chen, Xin Li, Yaowei Wang, Yonghong Tian,
 637 and Feng Wu. Visevent: Reliable object tracking via collaboration of frame and event flows. *IEEE
 638 Transactions on Cybernetics*, 2023.

639

640 Xiao Wang, Ju Huang, Shiao Wang, Chuanming Tang, Bo Jiang, Yonghong Tian, Jin Tang, and Bin
 641 Luo. Long-term frame-event visual tracking: Benchmark dataset and baseline. *arXiv preprint
 arXiv:2403.05839*, 2024a.

642

643 Ziqing Wang, Qidong Zhao, Jinku Cui, Xu Liu, and Dongkuan Xu. Autost: training-free neural
 644 architecture search for spiking transformers. In *ICASSP 2024-2024 IEEE International Conference
 645 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 3455–3459. IEEE, 2024b.

646

647 Wenjie Wei, Malu Zhang, Jilin Zhang, Ammar Belatreche, Jibin Wu, Zijing Xu, Xuerui Qiu, Hong
 648 Chen, Yang Yang, and Haizhou Li. Event-driven learning for spiking neural networks. *arXiv
 preprint arXiv:2403.00270*, 2024.

648 Xing Wei, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yihong Gong. Autoregressive visual tracking.
 649 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 650 9697–9706, 2023.

651 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 652 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

653 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
 654 networks: Faster, larger, better. In *Proceedings of the AAAI conference on artificial intelligence*,
 655 volume 33, pp. 1311–1318, 2019.

656 Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun Zhang,
 657 and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
 658 mechanisms. *arXiv preprint arXiv:2406.03287*, 2024.

659 Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal
 660 transformer for visual tracking. In *Proceedings of the IEEE/CVF international conference on*
 661 *computer vision*, pp. 10448–10457, 2021.

662 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, XU Bo, and Guoqi
 663 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
 664 of next-generation neuromorphic chips. In *The Twelfth International Conference on Learning*
 665 *Representations*.

666 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 667 transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023a.

668 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li.
 669 Attention spiking neural networks. *IEEE transactions on pattern analysis and machine intelligence*,
 670 2023b.

671 Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
 672 wei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
 673 approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

674 Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning and
 675 relation modeling for tracking: A one-stream framework. In *European Conference on Computer*
 676 *Vision*, pp. 341–357. Springer, 2022.

677 Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
 678 Adaptive tokens for efficient vision transformer. In *Proceedings of the IEEE/CVF conference on*
 679 *computer vision and pattern recognition*, pp. 10809–10818, 2022.

680 Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma, Huihui
 681 Zhou, Yonghong Tian, et al. Qkformer: Hierarchical spiking transformer using qk attention.
 682 *Advances in Neural Information Processing Systems*, 37:13074–13098, 2024.

683 Hong Zhang, Yang Li, Bin He, Xiongfei Fan, Yue Wang, and Yu Zhang. Direct training high-
 684 performance spiking neural networks for object recognition and detection. *Frontiers in Neuro-*
 685 *science*, 17:1229951, 2023.

686 Jiqing Zhang, Xin Yang, Yingkai Fu, Xiaopeng Wei, Baocai Yin, and Bo Dong. Object tracking
 687 by jointly exploiting frame and event domain. In *Proceedings of the IEEE/CVF International*
 688 *Conference on Computer Vision*, pp. 13043–13052, 2021.

689 Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Felix Heide, Baocai Yin, and Xin Yang.
 690 Spiking transformers for event-based single object tracking. In *Proceedings of the IEEE/CVF*
 691 *conference on Computer Vision and Pattern Recognition*, pp. 8801–8810, 2022.

692 Yaozong Zheng, Bineng Zhong, Qihua Liang, Zhiyi Mo, Shengping Zhang, and Xianxian Li. Odtrack:
 693 Online dense temporal token learning for visual tracking. In *Proceedings of the AAAI Conference*
 694 *on Artificial Intelligence*, volume 38, pp. 7588–7596, 2024.

702 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
 703 Semantic understanding of scenes through the ade20k dataset. *International Journal of Computer*
 704 *Vision*, 127(3):302–321, 2019.

705 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu
 706 Ma, Huihui Zhou, and Yonghong Tian. QKFormer: Hierarchical spiking transformer using q-k
 707 attention. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 708 2024a. URL <https://openreview.net/forum?id=AVd7DpiooC>.

709 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, YAN Shuicheng, Yonghong Tian, and
 710 Li Yuan. Spikformer: When spiking neural network meets transformer. In *The Eleventh Interna-*
 711 *tional Conference on Learning Representations*.

712 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.
 713 Spikformer: When spiking neural network meets transformer. *arXiv preprint arXiv:2209.15425*,
 714 2022.

715 Zhaokun Zhou, Kaiwei Che, Wei Fang, Keyu Tian, Yuesheng Zhu, Shuicheng Yan, Yonghong Tian,
 716 and Li Yuan. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. *arXiv*
 717 *preprint arXiv:2401.02020*, 2024b.

718 Zhaokun Zhou, Kaiwei Che, Jun Niu, Man Yao, Guoqi Li, Li Yuan, Guibo Luo, and Yuesheng Zhu.
 719 Spatial-temporal spiking feature pruning in spiking transformer. *IEEE Transactions on Cognitive*
 720 *and Developmental Systems*, 2024c.

721 Zhengyang Zhuge, Peisong Wang, Xingting Yao, and Jian Cheng. Towards efficient spiking trans-
 722 former: a token sparsification framework for training and inference acceleration. In *Forty-first*
 723 *International Conference on Machine Learning*, 2024.

724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A EXPERIMENT DETAILS**
757758 **A.1 IMAGE CLASSIFICATION**
759760 **Dataset** We evaluate TP-Spikformer on both static and dynamic datasets. The static datasets include
761 CIFAR-10, CIFAR-100, and the large-scale ImageNet-1K. CIFAR-10 is a widely used benchmark in
762 computer vision, containing 10 categories with 6,000 32×32 images per category Krizhevsky et al.
763 (2009). CIFAR-100 maintains the same image size but expands the categories to 100, which are
764 organized into 20 superclasses Krizhevsky et al. (2009). ImageNet-1K is a large-scale vision dataset,
765 featuring approximately 1.28 million training images and 50,000 test images across 1,000 categories
766 Deng et al. (2009). Its diverse categories and rich image content make it a critical benchmark for
767 image classification. Additionally, DVS-CIFAR10 is a dynamic dataset derived from CIFAR-10 using
768 a dynamic vision sensor Li et al. (2017). This dataset includes 9,000 training samples and 1,000 test
769 samples, with temporal resolution in the microsecond range and spatial resolution of 128×128 .
770771 **Experimental setup** For small-scale datasets
772 CIFAR and DVS-CIFAR-10, we perform exper-
773 iments with two token pruning ratio settings.
774 Specifically, N_{avg} is set to 0.25 and 0.20 for
775 CIFAR-10, and 0.65 and 0.55 for CIFAR-100.
776 We use the Spikformer-4-384 as used in stud-
777 ies Liu et al. (2024); Kang et al. (2024); Zhuge
778 et al. (2024), fine-tuning with a learning rate of
779 $5e-5$ and time step 4. For DVS-CIFAR10, we
780 set N_{avg} to 0.78 and 0.5, using the Spikformer-2-
781 384 and fine-tuning with a learning rate of $7e-4$.
782 Other experimental settings follow prior work.
783 For the large-scale ImageNet, we conduct exper-
784 iments with three pruning ratios for each structure,
785 detailed in Table 2. We summarize the token retention
786 ratio per block of small datasets in Table 7 and
787 Imagenet-1K in Table 8. In the next paragraph, we introduce how the token retention ratio per block
788 is obtained. During fine-tuning, we remove the warm-up epoch and set the learning rate to $1e-5$ for
789 50 epochs. The batch size per GPU for SDT-V1 and QKFormer is 72, while 760 for SDT-V3. The
790 detailed settings for ImageNet are shown in Table 9. In all experiments, when calculating the spatial
791 scores of tokens, we compute the set of neighboring positions in a 3×3 window, i.e., $k = 3$. We also
792 discuss the effect of k on performance in C.
793794 Table 7: Token preserving ratio on small datasets.
795796

Block	CIFAR-10		CIFAR-100		DVS-CIFAR10	
	0.25	0.20	0.60	0.55	0.78	0.50
1	0.76	0.56	0.76	0.76	0.78	0.76
2	0.14	0.14	0.76	0.76	0.78	0.25
3	0.06	0.06	0.76	0.56	-	-
4	0.06	0.06	0.14	0.14	-	-

797 Table 8: Token preserving ratio in each transformer block on Imagenet-1K.
798799

Block	SDT-V1			QKFormer			SDT-V3		
	0.74	0.65	0.51	0.72	0.65	0.53	0.78	0.65	0.56
1	1	1	0.73	0.90	0.81	0.64	1	0.81	0.64
2	1	0.73	0.73	0.90	0.81	0.64	0.90	0.81	0.64
3	0.73	0.73	0.51	0.72	0.64	0.64	0.90	0.64	0.64
4	0.73	0.73	0.51	0.72	0.64	0.49	0.90	0.64	0.64
5	0.73	0.51	0.51	0.72	0.64	0.49	0.64	0.64	0.49
6	0.73	0.51	0.51	0.72	0.64	0.49	0.64	0.56	0.49
7	0.51	0.51	0.32	0.64	0.64	0.49	0.64	0.56	0.49
8	0.51	0.51	0.32	0.64	0.56	0.49	0.64	0.56	0.49
9	-	-	-	0.64	0.56	0.49	-	-	-
10	-	-	-	0.64	0.56	0.49	-	-	-

805 In order to find the optimal pruning combination between blocks, we employ a search strategy before
806 fine-tuning to determine the token pruning ratio per block based on the given global pruning rate. The
807 grid search used is a very simple method, which is intended to perform a coarse search to initially
808 identify a reasonable pruning rate. Given a pre-trained model and a global token preservation, we
809 summarize its detailed search process below.

Table 9: Experimental setups on Imagenet-1K.

Hyper-parameter	SDT-V1	QKFormer	SDT-V3
N_{avg}	0.74, 0.65, 0.51	0.72, 0.65, 0.51	0.78, 0.65, 0.56
k in IRIoP	3	3	3
Time step	4	4	4
Warmup epoch	None	None	None
Epoch	50	50	50
Resolution	224×224	224×224	224×224
Batch size per GPU	72	72	760
Optimizer	Adam	Adam	Adam
Weight decay	0	0	0
Initial learning rate	1e-5	1e-5	1e-5
Learning rate decay	Cosine	Cosine	Cosine

- First is to obtain a set of token preservation ratio combinations. Specifically, the search space for ratios is restricted to a small set of discrete values, such as 0.9×0.9 , 0.8×0.8 , 0.75×0.75 , 0.6×0.6 , etc. Furthermore, we impose a monotonic constraint, requiring the token preservation ratio to decrease progressively from shallow to deeper blocks. This is motivated by the observation that shallow layers capture low-level features and thus require higher token retention, while deeper layers handle high-level semantic information and can tolerate more aggressive token pruning Lin et al. (2021).
- Second, we randomly sample a small batch of data from the training dataset and evaluate the accuracy for each combination in the combinations set. The combination with the top-1 accuracy is selected and used for subsequent fine-tuning.

By reviewing the search logs, we observe that different configurations give similar performance under the same global ratio. Therefore, the grid search is only used for SDT-V3, while for QKFormer and SDT-V1, we directly set the ratios manually and fine-tune the models without performing grid search. We summarize the search details for SDT-V3 in Table 10, including the discrete search space, the number of candidate combinations, the time to evaluate each combination, and the total search time.

Table 10: Search details for the SDT-V3.

Model	N_{avg}	Searching space per token retention ratio	Number of combinations	Evaluation time per combination (4*NVIDIA 4090)	Total Time
SDT-V3	0.78	[1, 0.90, 0.81, 0.72, 0.64, 0.56, 0.49]	65	26s	28min 11s
SDT-V3	0.65	[0.81, 0.72, 0.64, 0.56, 0.49, 0.42, 0.36]	89	22s	32min 38s
SDT-V3	0.56	[0.81, 0.72, 0.64, 0.56, 0.49, 0.42, 0.36]	166	16s	44min 16s

A.2 SEMANTIC SEGMENTATION

Dataset ADE20K Zhou et al. (2019) is a widely used and well-established dataset for semantic segmentation in computer vision research. It comprises approximately 25,000 images, with over 20,000 images designated for training, 2,000 images for validation, and 3,000 images for testing. Each image in the dataset is densely annotated with pixel-level labels across 150 distinct semantic categories. These categories cover a wide array of objects, such as people, cars, and animals, as well as scene elements like sky, roads, and vegetation, each with intricate visual features that make semantic segmentation tasks more challenging. Due to its diversity and complexity, ADE20K serves as a critical and challenging benchmark for evaluating the performance of segmentation algorithms.

Experimental setup In this work, we begin by converting the *mmsegmentation* Contributors (2020) codebase to its spike-based version, inspired by the SDT-V3 Yao et al. (2025). We employ TP-Spikformer with SDT-V3-19M as the backbone for feature extraction, integrated with spike FPN

(Kirillov et al., 2019) for segmentation. The backbone is initialized using pretrained weights from ImageNet, ensuring that the network has a strong starting point for feature extraction. The newly added layers are initialized using the Xavier method Glorot & Bengio (2010). The experimental settings follow the parameters set in SDT-V3 to ensure consistency and comparability. We fine-tune the model with two ratios same as object detection on 4×4090 with a batch size of 12 per GPU, while original SDT-V3 is limited to 8. The results in Table 3 show that our method maintains the performance of SDT-V3 and greatly increases throughputs. This comparison is not intended to demonstrate that our method achieves top-1 accuracy, but rather to highlight that our approach remains competitive even under token pruning conditions.

A.3 OBJECT DETECTION

Dataset We evaluate TP-Spikformer on COCO2017 Lin et al. (2014), a large-scale benchmark that is widely used for object detection tasks. The dataset comprises a total of 118K training images, 5K validation images, and 40K test images, providing a comprehensive and diverse set of visual data. It covers 80 object categories, including everyday items such as cars, bicycles, animals, and household objects, which are essential for testing the algorithm’s ability to recognize and interpret a wide range of visual content. In addition to object categories, COCO offers multiple types of annotations, including object instance segmentation masks, keypoints, and captions, all of which contribute to the dataset’s robustness for evaluating various vision tasks. Notably, COCO emphasizes contextual relationships between objects within complex, everyday scenes, offering a more realistic and challenging evaluation setting compared to simpler datasets. This makes COCO a crucial benchmark for assessing the performance of computer vision algorithms in real-world, practical applications.

Experimental setup Similar to semantic segmentation, we begin by converting the *mmdetection* Chen et al. (2019) codebase to its spike-based version. Our model architecture integrates TP-Spikformer with Mask R-CNN (He et al., 2017). The backbone is initialized using pretrained weights from ImageNet, and the newly added layers are initialized using the Xavier method (Glorot & Bengio, 2010). We fine-tune the model with two different average token retention ratios: 0.56 and 0.78. These two settings allow us to explore how different levels of token retention influence the model’s performance in object detection and segmentation tasks. The experiments are conducted on a $4 \times A800$ setup, with a batch size of 5 per GPU, providing ample computational resources to handle the large-scale training process. The results are summarized in Table 4, which also highlights that our approach remains competitive in object detection tasks.

A.4 EVENT-BASED TRACKING

Dataset We use three event-based tracking benchmarks to assess our TP-Spikformer, detailed as:

- FE108 is captured by the DAVIS346 dynamic vision sensor, with an event rate spanning a range from 0 to 3800 events/ms Zhang et al. (2021). This dataset features 21 diverse target categories. The diversity of categories and the high event rate make FE108 particularly useful for evaluating event-based models under varying conditions.
- FELT Wang et al. (2024a) is specifically designed to address the challenges associated with long-term object tracking in dynamic environments. This dataset places a strong emphasis on scenarios where the loss and recovery of targets are crucial for maintaining tracking accuracy.
- VisEvent Wang et al. (2023) is a large-scale dataset dedicated to event-based visual tasks, offering a robust testing ground for various event-driven models and algorithms under extreme conditions. With its broad scope, VisEvent includes a wide range of event-based visual tasks, providing a unique and challenging environment for assessing model performance.

These datasets serve as three of the most important benchmarks in event-based tracking. Their diversity makes them important for evaluating the performance of event-driven models and algorithms.

Experimental setup We use the SDTrack pipeline to build a tracker for event-based tracking tasks Shan et al. (2025). Specifically, we train the tracker using an image pair matching task Chen et al.

(2022); Yan et al. (2021); Ye et al. (2022) and employ weighted focal loss Law & Deng (2018) for classification. For the predicted bounding boxes, L1 loss and generalized IoU loss Rezatofighi et al. (2019) are used for bounding box regression. We train the model for 100 epochs on the FE108 and VisEvent datasets, using a pretrained ImageNet-1K model, and for 300 epochs on the FELT dataset. For each training epoch on the FE108 and FELT datasets, we randomly sample 60,000 sample pairs with a maximum interval of 200, while on VisEvent, we use 30,000 pairs. The learning rate used during training is 4e-4, decaying to 4e-5 at 80% of the training progress. We apply normalization and regularization on the FELT dataset, and a Hanning window penalty is used to constrain the predicted boxes. However, no data augmentation or preprocessing is applied to the FE108 and VisEvent. All of the above experimental settings are strictly aligned with SDTrack Shan et al. (2025).

B MEASUREMENT OF EFFICIENCY METRICS

Table 11: Training time and memory usage of TP-Spikformer under different ratios and architectures.

N_{avg}	SDT-V1		QKFormer		SDT-V3	
	Memory usage (GB)	Training time (h/epoch)	Memory usage (GB)	Training time (h/epoch)	Memory usage (GB)	Training time (min/epoch)
$\times 1$	23.19	7.47	22.80	8.78	23.33	50.27
$\times 0.72$	21.44	6.22	21.03	7.11	20.96	42.16
$\times 0.50$	20.21	5.51	18.40	5.93	19.08	38.96
$\times 0.36$	18.76	4.98	16.37	5.45	18.25	36.29
$\times 0.16$	18.68	4.62	14.92	4.98	16.42	34.16

As shown in Figure 4, we report the training time per epoch, GPU memory usage, and inference throughput for SDT-V1, QKFormer, and SDT-V3. In this section, we provide a detailed description of how these metrics are measured, including the measurement method, experimental setup, and results.

The training time per epoch and GPU memory usage are measured by monitoring the time taken to complete one epoch and the GPU memory consumption during training. These metrics are tested on a single NVIDIA 4090, with batch sizes fixed at 20 for SDT-V1, 15 for QKFormer, and 200 for SDT-V3. We measure these two metrics of TP-Spikformer under different token pruning rates, with the results summarized in Table 11. It is evident that the proposed TP-Spikformer significantly reduces both training time and memory consumption, resulting in substantial efficiency gains. As a result, under the same configuration, when maximizing GPU resource utilization, TP-Spikformer typically allows for a higher batch size compared to its uncompressed counterpart.

For the metric of inference throughput, we estimate it by calculating the number of images processed per second during the inference process. The throughput values reported in Figure 4 and Tables 2-4 are measured on a single NVIDIA A800 GPU, with a batch size of 36 for both SDT-V1 and QKFormer, and 1024 for SDT-V3 in the classification task. In the case of segmentation and detection tasks, the batch size is fixed to 1. The obtained throughput results, presented in Tables 2 to 4, display that TP-Spikformer achieves higher throughput across all models while maintaining high accuracy. This enhances the efficiency of model inference and faster real-time processing, making it more suitable for deployment in resource-constrained scenarios that require real-time processing.

C ANALYSIS OF k IN THE IRTOP CRITERION

In this section, we evaluate the impact of different values of k on the performance of TP-Spikformer, specifically SDT-V1, QKFormer, and SDT-V3, on the ImageNet-1K dataset under zero-finetuning conditions. The results are summarized in Table 12. Each architecture shows stable performance across the different values of k , with a slight decrease in accuracy as k increases. This drop in performance may be attributed to the fact that larger spatial windows, while capturing more global context, reduce focus on important local details, which is crucial for tasks like fine-grained detection and segmentation. Therefore, we select $k = 3$ for the experiments presented in the main text, as it offers a good balance between computational efficiency and effectiveness.

Table 12: Performance of TP-Spifkormer with different k on ImageNet-1K without finetuning.

k value	SDT-V1			QKFormer			SDT-V3		
	0.74	0.65	0.51	0.72	0.65	0.53	0.78	0.65	0.56
3	75.38	75.48	73.78	83.79	81.34	64.38	75.95	67.03	60.19
5	75.37	75.48	73.77	83.65	81.23	64.18	75.77	66.59	59.71
7	75.34	75.48	73.77	83.66	81.20	64.32	75.59	66.47	59.40

D ADAPTIVE WEIGHTING OF SPATIAL AND TEMPORAL SCORERS IN IRToP

As for Eq. 13, we have explored adaptive weighting between spatial and temporal components to analyze the effects of adaptive weight in the IRToP criterion. Specifically, we introduce a learnable parameter α to balance the spatial and temporal scores adaptively. The modified IRToP criterion is formulated as:

$$\text{IRToP}(\mathbf{X}_{t,h,w}^{\ell-1}) = \alpha \times \hat{\mathcal{S}}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}) + (1 - \alpha) \times \hat{\mathcal{T}}_{\text{score}}(\mathbf{X}_{t,h,w}^{\ell-1}), \quad (21)$$

where α is initialized to 0.5 (equal weighting) and is differentiable, allowing it to be optimized during training. This enables the model to automatically learn the optimal balance between spatial and temporal importance. We conduct experiments on ImageNet-1K using SDT-V1 with a pruning ratio of 0.51, fine-tuning for 50 epochs. The results are summarized Table 13. Compared to fixed equal weighting ($\alpha = 0.5$), we observe a slight performance drop when using the adaptive weighting method. We suspect this is because the learned value of α converges to around 0.3, suggesting that the model tends to emphasize temporal features over spatial ones. In this case, the model may overly focus on critical temporal dynamics and local details, potentially at the expense of broader spatial context that is essential for robust feature representation, leading to the observed performance degradation.

Table 13: Analysis of adaptive weighting of spatial and temporal scorers in IRToP.

Model	Ratio	Final ratio α	Fine-tuning accuracy under adaptive α	Fine-tuning accuracy under fixed $\alpha=0.5$
SDT-V1	0.51	0.3	74.23%	74.79%

E DETAILED ANALYSIS OF IRToP

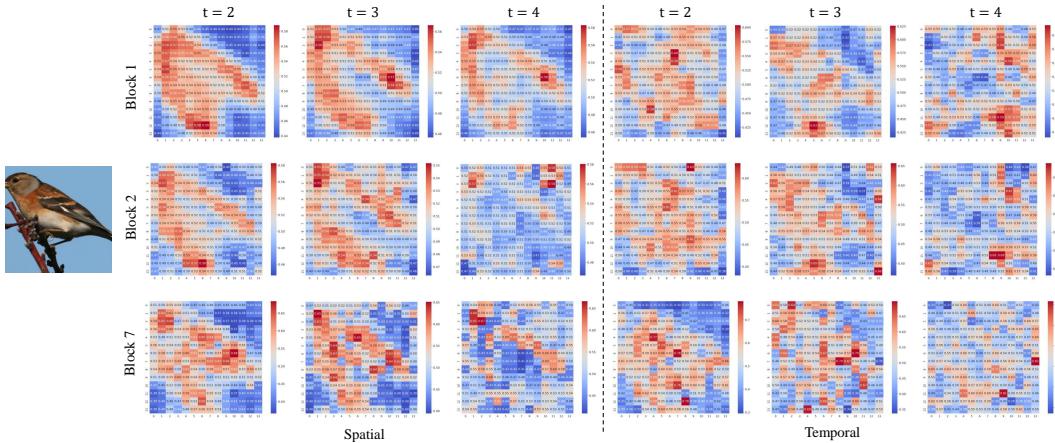


Figure 6: Detailed visualization of spatial and temporal token scores of SDT-V1-8-768.

IRToP proves effective by selecting informative tokens with two key characteristics: tokens that represent the overall outline and tokens that capture specific detail features. As a supplement to

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 Figure 5, we further analyze the scores of tokens selected from the 1st, 2nd, and 7th encoder blocks.
 In Figure 6, we decouple and visualize their spatial and temporal scores. From the spatial scores, it
 is clear that, irrespective of the time step and block, the spatial token scorer assigns higher scores
 to tokens representing the main outline, followed by those representing specific details, and lastly,
 background tokens. In terms of temporal scores, the temporal token scorer further extracts feature
 information by assigning higher scores to tokens that correspond to specific detail features. For
 example, in the 1st block at $t = 3$, tokens representing the bird’s claws receive high scores. In the
 2nd and 7th blocks at $t = 3$, tokens representing the head, wings, and branches are assigned high
 scores. Similarly, at $t = 4$ in the 7th block, tokens representing the bird’s tail are given high scores.

1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 The above visualization results can be explained by the design of the spatial token scorer and the
 temporal token scorer. The spatial token scorer relies on the similarity with neighboring tokens,
 assigning higher scores to tokens that differ significantly from their local surroundings. This is why
 the spatial token scorer extracts more information representing texture and boundary features. The
 computation of the temporal token scorer is inspired by the working mechanism of the human visual
 system. Specifically, tokens representing distinct features are captured over time, while background
 tokens are gradually ignored. As a result, the temporal token scorer is able to extract specific
 feature information. Overall, by combining the spatial token scorer with the temporal token scorer,
 IRTToP effectively selects informative tokens, reducing computational resources while maintaining
 performance.

1044
 1045
**F WHY CANNOT DIRECT TOKEN PRUNING BE EXTENDED TO THE FEATURE
 1046 VARIANT SPIKING TRANSFORMER?**
 1047

1048
 1049
 1050 Direct token pruning refers to identifying uninformative tokens and discarding them without further
 1051 processing in the subsequent network layers. In this section, we first discuss why this approach
 1052 cannot be applied to feature-variant spiking transformers. Then, we use a feature-variant QKFormer
 1053 as an example to illustrate the issue. Finally, we explain how our method effectively solves this issue.

1054 Early SNN transformers, e.g., Spikformer Zhou et al. and SDT-V1 Yao et al. (2023a), follow ViT-style
 1055 designs from ANNs, using patch embedding and standard transformer blocks. As the field developed,
 1056 recent SOTA models like QKFormer Zhou et al. (2024a) and SDT-V2/V3 Yao et al.; 2025) incorporate
 1057 convolution layers with kernels larger than 1 inside transformer blocks. For example, QKFormer
 1058 applies conv-based Spiking Patch Embedding before each block, and SDT-V3 uses spike-based
 1059 separable convolutions before every attention layer. Unlike ANNs where features can be flattened
 1060 for token pruning, these convolutional layers embedded in the transformer blocks require structured
 1061 and square feature maps for token pruning in SNNs. These feature-variant spiking transformers
 1062 include many operations that reduce the size of feature maps, such as downsampling and convolution.
 1063 The inherent structural sensitivity of these operations makes direct token pruning incompatible with
 1064 feature-variant spiking Transformers, which can be understood from two aspects:

1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073

- On the one hand, convolution operations rely on structured grid-like inputs. This means that if tokens are removed from a transformer block, the remaining tokens may no longer form a valid image layout, making them incompatible with later convolutional layers.
- On the other hand, due to its strong prior assumptions, e.g., spatial local correlation and translation invariance, the convolution operation heavily relies on the spatial structure of feature maps. However, removing tokens disrupts the spatial structure of feature maps. This disruption (1) impairs local information propagation, (2) degrades the effectiveness of trained filters, and (3) compromises the model’s representational ability.

1074 As detailed in the above two reasons, it is the existence of convolution in spiking transformers that
 1075 makes direct token removal infeasible, while our block-level early stopping strategy remains viable.
 1076 This also indicates that, when pruning advanced spiking transformers like QKFormer and SDT-V2/V3,
 1077 it is essential to preserve the overall architectural integrity. Notably, existing SNN token pruning
 1078 methods have only been tested on ViT-like Spikformer and spike-driven transformer V1, and have
 1079 not yet been applied to recent SOTA spiking transformers. To the best of our knowledge, we are the
 first to evaluate token pruning on these advanced spiking architectures.

We then use the advanced hierarchical transformer architecture QKFormer in SNNs as an example to illustrate the above issue. In QKFormer, each stage consists of the Spiking Patch Embedding with Deformed Shortcut (SPEDS) module and QKFormer block. The SPEDS module includes structure-sensitive convolution and pooling operations, which reduce the number of tokens by a 2×2 patch size before each stage and transform the number of channels into $2C$ to generate hierarchical spiking representations. If we directly prune the uninformative tokens identified by IRToP criterion in the first stage, the remaining informative tokens need be reorganized into a new feature map before being input into the second stage. This will lead to the following two challenges.

- *Difficulty in reshaping the feature map.* The reorganizing process typically requires the remaining informative tokens to be arranged into a square feature map for efficient processing in the next stage (e.g., $196 = 14 \times 14$). However, after pruning uninformative tokens in the first stage, the number of remaining tokens often cannot form the required square shape for reshaping the feature map.
- *Disruption of spatial structure.* Even if we constrain the remaining informative tokens' count to match the square shape, the spatial structure of the reconstructed feature map is inevitably disrupted. This results in the failure of well-trained parameters in the convolution operations within the SPEDS module of the second stage. This would affect the information flow in subsequent network layers and significantly degrade model performance.

TP-Spikformer addresses this challenge by introducing a block-level early stopping strategy for uninformative tokens. Instead of directly removing tokens that would disrupt the spatial structure of the feature map, TP-Spikformer bypasses the processing of uninformative tokens within the transformer blocks, and then reorganizes all tokens spatially before inputting them into the next stage. This process reduces the memory and computational overhead associated with token pruning by bypassing the computation of uninformative tokens. Moreover, by preserving the integrity of the feature map's spatial structure, TP-Spikformer avoids the difficulties of reshaping tokens and maintains the well-trained parameters of the filters, ensuring that the model maintains competitive performance even without fine-tuning.

G ZERO-FINETUNING ACCURACY PRESERVATION OF TP-SPIKFORMER

The zero-finetuning accuracy preservation of TP-Spikformer is made in a comparative sense. Existing advanced token pruning methods in SNNs often modify the original model architecture when applied to spiking transformers. These modifications may include introducing new tokens (STATA Zhuge et al. (2024)), adding trainable modules (ACT Kang et al. (2024)). Since these additions are randomly initialized, they require full retraining, which significantly increases data requirements, training costs, and reduces generalizability. Therefore, though our method does not completely preserve accuracy on QKFormer and SDT-V3, it achieves better accuracy than existing spiking token pruning methods under the same no-fine-tuning setting.

In Section 5.2, we conduct an in-depth analysis of TP-Spikformer's zero-finetuning performance preservation property in image classification tasks. In this section, we demonstrate that TP-Spikformer exhibits this property in other vision tasks as well. We evaluate the performance of the unpruned model using publicly available SDT-V3 detection and segmentation code and obtain results of 39.49% MIoU for semantic segmentation and 53.9% mAP@0.5 for object detection, respectively. Then, we directly apply our token pruning method to the obtained weights without any fine-tuning. With a compression ratio of 0.78, TP-Spikformer achieves performance of 36.15% and 47.7% in semantic segmentation and object detection, representing reductions of 3.34% and 6.2%, respectively. These results indicate that TP-Spikformer maintains its zero-finetuning

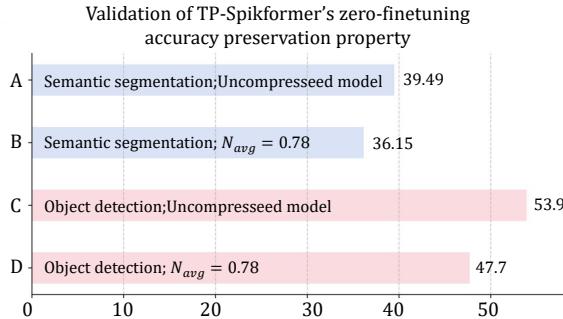


Figure 7: TP-Spikformer's zero-finetuning accuracy preservation on segmentation and detection.

1134 performance preservation property in various downstream vision tasks, highlighting its effectiveness
 1135 for real-world scenarios with limited resources and no retraining budget.
 1136

1138 H EFFECT OF TP-SPIKFORMER IN ACCELERATING TRAINING FROM SCRATCH

1140 Table 14: Effect of TP-Spikformer in the training process.
 1141

1143 Model	1144 Params (M)	1145 Token preservation ratio	1146 Total training time	1147 GPU Memory (batch size=1280)	1148 Acc.
SDT-V3	5.1	1	57h14min	77.49 GB	73.9%
TP-Spikformer	5.1	0.65	50h 49min	66.90 GB	73.6%

1149 Although our method is mainly designed to improve deployment efficiency, it can also be easily
 1150 applied during training. To verify this, we conduct experiments on large-scale ImageNet using
 1151 SDT-V3-5M with and without our token pruning method, both trained from scratch. All experiments
 1152 are run on a single H800 GPU, using the same settings as the original SDT-V3 to ensure a fair
 1153 comparison. As shown in Table 14, TP-Spikformer achieves 73.6% accuracy, close to the 73.9%
 1154 of the unpruned model, while reducing training time by 7.5 hours. This shows its effectiveness in
 1155 speeding up training. Moreover, TP-Spikformer uses much less GPU memory due to fewer tokens,
 1156 which allows larger models or batch sizes to be trained on the same hardware.
 1157

1158 I VALIDITY OF TP-SPIKFORMER ON NON-VISUAL TASKS

1159 The vision datasets used in the manuscript, like ImageNet, COCO, and ADE20K, are universally
 1160 recognized as complex datasets in the fields of classification, detection, and segmentation, respectively.
 1161 These experimental results prove the effectiveness of S²NN in complex image tasks. To further show
 1162 the efficacy of our method in non-image tasks, we have conducted experiments in NLP tasks.
 1163

1164 We extend our TP-Spikformer to the SpikeLM proposed by Xing et al. (2024) without additional
 1165 architecture adjustment. Experiments utilize a 12-layer BERT-based encoder transformer and are
 1166 performed on the GLUE benchmark. The token preservation ratio is set to [1, 1, 1, 0.9, 0.9, 0.9, 0.8,
 1167 0.8, 0.8, 0.7, 0.7, 0.7], while all other training configurations follow the original paper. The results are
 1168 presented in the table below. Clearly, TP-Spikformer achieves a performance of 75.9%, showing no
 1169 significant loss. These results confirm the effectiveness of our method on NLP tasks, demonstrating
 1170 its general applicability beyond the vision domain.
 1171

1172 Table 15: Validation of TP-Spikformer on the GLUE benchmark.
 1173

1174 Model	1175 SST-2	1176 MRPC	1177 RTE	1178 MNLI	1179 QNLI	1180 QQP	1181 CoLA	1182 STS-B	1183 Avg.
SpikeLM	87.0	85.7	69.0	77.1	85.3	83.9	38.8	84.9	76.5
TP-Spikformer	87.9	84.7	68.2	76.0	84.6	84.2	37.0	84.9	75.9

1184 J POTENTIAL OF TP-SPIKFORMER WITH OTHER COMPRESSION TECHNIQUES

1185 Our TP-Spikformer is orthogonal to other lightweight approaches and can be used in conjunction
 1186 with them. Here, we investigate the combination of TP-Spikformer with quantization. We select
 1187 the Q-SDT proposed by Qiu et al. (2025) to evaluate this combination. Specifically, we conduct
 1188 experiments on CIFAR-10 by applying TP-Spikformer to Q-SDT, training the model from scratch.
 1189 The results are shown in Table 16. While there is a performance gap compared to the baseline, the
 1190 96.9% accuracy demonstrates that our token pruning method can work effectively with quantization
 1191 techniques.
 1192

Table 16: Potential of TP-Spikformer with quantization.

Model	Preserving Ratio	Bits	GPU Memory (GB)	Accuracy (%)
Q-SDT Qiu et al. (2025)	1	4-1	19.27	97.8%
Q-SDT+TP-Spikformer	0.54	4-1	15.98	96.9%

K LEARNING ALGORITHM OF TP-SPIKFORMER

We employ the widely used spatiotemporal backpropagation (STBP) Wu et al. (2018) to train the TP-Spikformer, where we need to compute gradients of the loss function \mathcal{L} to synaptic weights. Through chain rule decomposition, we can decompose this gradient as,

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}_{ij}^\ell} = \sum_{t=1}^T \left(\frac{\partial \mathcal{L}}{\partial \mathbf{s}_i^\ell[t]} \frac{\partial \mathbf{s}_i^\ell[t]}{\partial \tilde{\mathbf{u}}_i^\ell[t]} \frac{\partial \tilde{\mathbf{u}}_i^\ell[t]}{\partial \mathbf{w}_{ij}^\ell} + \frac{\partial \mathcal{L}}{\partial \mathbf{u}_i^\ell[t+1]} \frac{\partial \mathbf{u}_i^\ell[t+1]}{\partial \tilde{\mathbf{u}}_i^\ell[t]} \frac{\partial \tilde{\mathbf{u}}_i^\ell[t]}{\partial \mathbf{w}_{ij}^\ell} \right), \quad (22)$$

where the derivative of the loss function with respect to the spike and membrane potential, i.e., $\partial \mathcal{L} / \partial \mathbf{s}_i^\ell[t]$ and $\partial \mathcal{L} / \partial \mathbf{u}_i^\ell[t+1]$ are obtained iteratively, the terms of $\partial \tilde{\mathbf{u}}_i^\ell[t] / \partial \mathbf{w}_{ij}^\ell$, $\partial \mathbf{u}_i^\ell[t+1] / \partial \tilde{\mathbf{u}}_i^\ell[t]$, and $\partial \tilde{\mathbf{u}}_i^\ell[t] / \partial \mathbf{w}_{ij}^\ell$ can be calculated based on Eq. 1. Unfortunately, a fundamental challenge in this training arises from the non-differentiable nature of spike emission. Mathematically, the gradient of the spike generation function as described in Eq. 2, i.e., $\partial \mathbf{s}_i^\ell[t] / \partial \tilde{\mathbf{u}}_i^\ell[t]$, becomes undefined at the firing threshold θ and vanishes elsewhere. This discontinuity prevents the direct application of standard backpropagation algorithms commonly used in deep learning. To overcome this limitation, we use surrogate gradient functions to approximate the derivative of $\partial \mathbf{s}_i^\ell[t] / \partial \tilde{\mathbf{u}}_i^\ell[t]$ Wu et al. (2018), with various functions can be employed like rectangular Wu et al. (2019), triangular Deng et al. (2022), and linear Wei et al. (2024). TP-Spikformer employs the triangular-shaped surrogate gradient formulation, described as,

$$\frac{\partial \mathbf{s}_i^\ell[t]}{\partial \tilde{\mathbf{u}}_i^\ell[t]} = \max(0, \beta - |\tilde{\mathbf{u}}_i^\ell[t] - \theta|), \quad (23)$$

where β is the factor that defines the range of gradient computation, and θ is the threshold as in Eq. 2. Consequently, the TP-Spikformer can be trained directly with gradient backpropagation.

L THEORETICAL ENERGY CONSUMPTION

When analyzing the energy consumption of SNNs, previous studies Yao et al. (2023b); Zhou et al.; 2024a) commonly assume that MAC and AC operations are implemented on 45nm hardware Horowitz (2014), where $E_{MAC} = 4.6pJ$ and $E_{AC} = 0.9pJ$. To facilitate comparison between different methods, we adopt this approach to theoretically calculate TP-Spikformer’s energy consumption, described by the following equation:

$$E_{total} = E_{MAC} \cdot FLOPs_{Conv}^1 + E_{AC} \times \left(\sum_{n=2}^N SOPs_{Conv}^n + \sum_{l=1}^L \times SOPs_{Block}^l + SOPs_{MLP} \right), \quad (24)$$

where $SOPs$ refers to the number of synaptic operations, $SOPs_{Conv}^n$ and $SOPs_{MLP}^m$ represent the $SOPs$ for the convolutional operations in the embedding module and the MLP in the classification head, respectively, and $SOPs_{Block}^l$ denotes the $SOPs$ for each transformer block. The number of $SOPs$ in TP-Spikformer is computed as:

$$SOPs^\ell = fr_{Avg}^\ell \times T \times FLOPs^\ell, \quad (25)$$

where fr_{Avg} is the average firing rate of the layer across time steps T , and $FLOPs^\ell$ is the number of floating point operations for the ℓ -th layer. A spiking transformer typically consists of three components: path embedding, transformer blocks, and the classification head. In TP-Spikformer, the energy consumption of the path embedding and classification head is consistent with the uncompressed counterpart, while the energy consumption of the transformer blocks is significantly reduced.

1242 **M INSTRUCTIONS FOR USING LARGE LANGUAGE MODELS**
12431244 In preparing this manuscript, we utilize a large language model (LLM) solely to aid and polish the
1245 writing. The LLM is used for grammar checking, language refinement, and improving clarity of
1246 expression. It does not contribute to the formulation of research ideas, methodology, experiments,
1247 data analysis, or conclusions. All presented in this paper is entirely the work of the authors.
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295