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ABSTRACT

Bayesian Optimization is ubiquitous in the field of experimental design and black-
box optimization for improving search efficiency, but has been traditionally re-
stricted to regression models which are only applicable to fixed search spaces and
tabular input features. We propose Embed-then-Regress, a paradigm for applying
in-context regression over string inputs, through the use of string embedding ca-
pabilities of pretrained language models. By expressing all inputs as strings, we
able to perform general-purpose regression for Bayesian Optimization over differ-
ent search domains such as traditional and combinatorial optimization, obtaining
comparable results to state-of-the-art Gaussian Process-based algorithms.

1 INTRODUCTION

A fundamental component of all value-based search methods is regression, in which proposed so-
lutions are filtered by predictions on their performance, before evaluation. By utilizing an accurate
regression model, or regressor, along with balanced explore-exploit mechanisms, large improve-
ments to the sample complexity of search have been widely possible. However, many regression
methods so-far have been task-specific, due to the reliance of modelling assumptions and dimen-
sionality constraints. Learning-based regression methods are particularly susceptible to this issue,
due to their reliance on fixed-length tensors for input representation.

{a:2,b:-3}

Embedding SpaceSearch Space In-Context 
Regression

{a:5,b:2}

Figure 1: Using language models, we embed
string representations of search space candidates
as features for downstream regression.

Recent progress in large language models
(LLMs) have demonstrated the flexibility and
versatility of representation of information as
strings, which allow for a wider range of data
formats to be encoded for subsequent process-
ing. The potential of LLMs for universal
learning-based regression is considerable, al-
lowing for regressors that can be generalized
across multiple tasks, thereby mitigating the
task-specific limitations of current methods.

In this work we focus on improving the flexibil-
ity of regressor-guided search methods through
the use of LLM-based embeddings, which map
arbitrary strings to fixed-length vectors to be used in downstream tensor-based regressor models,
such as an in-context learning (ICL) based Transformer. Specifically, our contributions are:

• We describe our framework, “embed-then-regress” which uses a language model to em-
bed a string representation of a trial to be used as a single token feature for a in-context
regressor, such as a Transformer-based neural process.

• By pretraining this regressor at scale over a large variety of offline evaluation data, we can
achieve uncertainty-aware numeric predictions over objective functions from unseen tasks.

• After augmenting the framework with explore-exploit techniques, we achieve competitive
optimization results over a variety of optimization tasks, including traditional and combi-
natorial optimization.
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2 RELATED WORK AND MOTIVATION

Bayesian Optimization refers to a class of techniques which use regressors for solving blackbox
optimization problems, by suggesting best candidates according to an explore-exploit tradeoff. For
a given objective, the speed of optimization relies heavily on the regressor’s underlying prior, or
assumptions about the nature of the objective, such as its smoothness and landscape. Largely dom-
inated by the use of Gaussian Process (GP) regressors, the field of Bayesian Optimization has thus
seen a rise in works (Wang et al., 2024; Fan et al., 2024) which seek to learn better prior GP hy-
perparameters such as length-scales and kernel amplitudes based on offline pretraining or manually
designed feature representations for combinatorial objects (Deshwal et al., 2023), while keeping
underlying kernel definitions fixed.

Numerous end-to-end neural network-based approaches such as the use of attention mechanisms and
Transformers (Vaswani et al., 2017) have been introduced to allow more learnable behaviors, and we
refer the reader to (Song et al., 2024b) which provides a general reference on their use for blackbox
optimization. Relevant to our particular case of regression, works such as (Nguyen & Grover, 2022;
Garg et al., 2022) demonstrated the benefits of using raw Transformers as in-context regression
models, or neural processes, with others (Bai et al., 2023; Zhang et al., 2024) establishing provable
guarantees. Similarly, (Müller et al., 2022) demonstrated that Transformers trained on synthetic
data as “prior-fitted networks” are capable of Bayesian inference, leading to their use in Bayesian
optimization (Müller et al., 2023; Nguyen & Grover, 2024).

Unfortunately, as both raw Transformers and GPs require fixed dimensional features, this limits
their applications to inputs expressable as tabular features for e.g. hyperparameter tuning, or task-
specific embeddings for e.g. chemistry (Maus et al., 2022). Further works have attempted to improve
the flexibility of regression-modeling through the use of token-based representations, which allows
regressors to be simultaneously used over various types of input formats. Since the context-window
of Transformers still remain the most expensive limitation, a useful organization of recent works can
be based on their treatment of the total sequence length, roughly equal to:

(number of trials)× (average trial token length) (1)

Among sequence-to-sequence methods which pretrain for blackbox optimization specifically, (Chen
et al., 2022) uses custom tokenizations to minimize trial token length in order to maximize trial
count. However, this is restricted to very constrained search spaces (e.g. flat hyperparameter spaces),
and lacks flexibility in utilizing arbitrary forms of data. In contrast, (Song et al., 2024a) allows
arbitrary string representations, but the large token length of each trial severely limits the trial count
allowed in the context window, forcing the use of alternative but tedious methods of absorbing online
data, such as inference-time fine-tuning.

Other methods (Vacareanu et al., 2024) use text-to-text chat-based services such as ChatGPT (Ope-
nAI, 2022) and Gemini (Google, 2024) to demonstrate their emergent capabilities for in-context
regression, but such methods lack the ability to pretrain over large amounts of offline evaluations.
Efforts in ICL-based reward modeling with chat-based LLMs (Lightman et al., 2024) allow fine-
tuning over chains of thought, but have only used coarse discretized scores of e.g. {−1, 0, 1} rather
than highly precise numeric predictions over vastly different scales.

For optimization, we require a regressor with all of the following capabilities:

• Pretrainable over offline evaluations to allow effective meta-learning.

• Flexible representation of inputs with raw strings for application in multiple domains.

• Allow long-range in-context regression using multiple previous evaluations.

• Production of precise numeric predictions over diverse objective scales.

This naturally leads to the use of embedding-based methods which can compress any string repre-
sentation of a trial into a feature vector, using only a single unit of sequence length when sent to a
ICL model such as a raw Transformer. This can be seen as a form of encoding and decoding, which
has been shown to produce competitive results over pure language modeling tasks (Raffel et al.,
2020).
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ICL Regressor (Transformer)

Embedder Projection

History Target

Embedder Projection Embedder Projection

Figure 2: Overview of our model.

3 METHOD

3.1 PRELIMINARIES

Let f : X → R be a real-valued function over a search space X . The goal of blackbox optimization
is to produce an x∗ which maximizes f :

x∗ = argmax
x∈X

f(x) (2)

We define a regressor as a prediction model which can output a distribution of prediction values for
f(·) over a query point x, given the history {xs, ys}ts=1 of trajectory of t evaluations over f so far.
Such regressors may also be learnable over additional offline data besides the given history.

During inference, the regressor may be turned into an acquisition function a : X → R to represent
explore-exploit tradeoffs. We assume the existence of a (potentially task-dependent) acquisition
optimizer which can quickly and cheaply sample suggestions x ∈ X , usually in the form of an
evolutionary algorithm. The history-dependent acquisition at+1(·) may thus be used to filter out
poor samples, or used in an entire Bayesian optimization loop in which the acquisition optimizer is
used to find xt+1 := argmaxx∈X at+1(x) as the next x-proposal.

3.2 IN-CONTEXT TRANSFORMER REGRESSOR

An embedding-based regressor uses an embedder φ : X → Rd to map a suggestion x to a fixed-
length representation x ∈ Rd, which can then be used as a regular feature vector for a numeric
regression model. A string-based embedder first represents x as a string, which is then passed
to a language model for embedding. We specifically use the typical definition of language model
embedding, in which we apply a forward pass of the underlying model (encoder or decoder) on the
(tokenized) string representation to obtain all token logits in RL×d, and then pool across the length
axis to obtain a vector in Rd. We discuss specific string representations in our experiments in Section
4.

For our underlying regression model, we then use an additional Transformer (Vaswani et al., 2017),
by sending in as input sequence (x1⊕ y1), . . . , (xt⊕ yt) where y ∈ Rd is the feature representation
of the float y after applying a trainable projection, and x⊕ y is the trial representation expressed as
the concatenation of x and y.

In order to obtain a prediction for a query point x, we may then further append a query (x⊕0) to the
history input sequence where 0 is a dummy value, and following a forward pass of the Transformer
where (x⊕0) attends to all previous trials, post-process the corresponding t+1-th output feature with
a parametric output distribution over R. For our case we assume a Gaussian N (µt+1(x), σ

2
t+1(x))
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using mean and standard deviation output heads. The key components to our method can be sum-
marized in Figure 2.

Additional techniques below are utilized to stabilize training and prediction:

Parallel Predictions: In order to simultaneously predict over a given set of k target points
xt+1, . . . , xt+k, we additionally append (xt+1 ⊕ 0), . . . , (xt+k, 0) to the history sequence and gen-
erate a custom attention pattern of shape (t+k)× t where all tokens to attend to the history while no
tokens attend to the targets. This allows an efficient parallel modeling of p(yt+i | xt+i, {xs, ys}ts=0)
for 1 ≤ i ≤ k which speeds up training when computing a summed loss over multiple target predic-
tions.

y-Normalization: Depending on the function, y-value outputs may contain a wide variety of scales,
and need to be normalized properly. We can define our normalization procedure parameterized by a
history of objectives (y1, . . . , yt), also applicable to incoming target values. These steps consist of,
in order: (1) Shifting objectives to have zero mean and divide by standard deviation. (2) Reducing
harmful effects of bad outliers by fitting the “bad half” of objectives {yi ≤ ymedian} to a normal
curve, using percentiles as z-scores. (3) Linearly scale y ← y−ymin

ymax−ymin
which ensures all historical

y-values within [0, 1] and apply additional damping (e.g. sigmoid or log transform) to target values
significantly outside this range.

Encoding Metadata: Many times there may be a metadata m associated to an objective f , which
provides useful prediction information on the behavior of f or simply can inform the model of a
new objective or search space. We can also embed this metadata as an additional feature m, which
is concatenated to every x similarly to standard encoder-decoder techniques (Raffel et al., 2020).

3.3 PRETRAINING AND INFERENCE

Denote a task T = (f,X ) as a specific objective function over a particular search space.

Pretraining: We assume a collection of offline training tasks {T1, T2, . . .}, with different search
spaces and objective functions, with each task containing its own collection of evaluated trials
{xs, ys}Ts=1 where T is the (potentially task-specific) offline trajectory length.

While the embedder is frozen, we pretrain the weights θ of the ICL regression Transformer, over
all such offline evaluation data. Each training example consists of a sampled task and history cutoff
length t′ ∈ [0, T ) so that {xs, ys}s≤t′ is considered a history, while {xt′+i, yt′+i}Tt′+i are target
points, with the loss computed as the sum of prediction losses over all targets, i.e.

T−t′∑
i=1

`θ(xt′+i, yt′+i; {xs, ys}t
′

s=1) (3)

where `θ(x, y; {xs, ys}ts=1) is the negative log-likelihood using our Gaussian output distribution, of
predicting y given x and history {xs, ys}ts=1.

Inference: At inference, we use our mean and deviation head to form a UCB-based acquisition
at+1(x) = µt+1(x)+

√
β·σt+1(x) where

√
β is a problem-dependent constant. We use a (potentially

domain-dependent) zeroth-order optimizer such as evolutionary search to maximize this acquisition,
and thus only require forward passess, although gradient-based acquisition maximization is possible
with soft-prompt optimization techniques (Lester et al., 2021).

Since there may be distributional shifts for parameter names encountered between pretraining and
inference, we may either apply data augmentation by randomizing parameter names during pretrain-
ing, or transform the search space during inference to match those encountered in pretraining.

3.4 MODEL DETAILS

In this paper, to demonstrate the validity of our approach on relatively low compute budgets, we
intentionally use relatively smaller language model embedder sizes in comparison to the larger GPT
(OpenAI, 2023) or Gemini (Google, 2024) family of models. Specifically, we use a pretrained
T5-XL encoder (1B parameters), based on the encoder-decoder T5-family of models (Raffel et al.,
2020). Along with only 8 layers of the underlying regression Transformer, this leads to a maximum
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required training budget of approximately 16 GPUs for training and 1 GPU for inference, possible
with most academic budgets.

The cheap inference cost is also necessary when the acquisition function may be called thousands
of times by a zeroth-order acquisition optimizer per candidate proposal. It is worth noting that time
and memory complexity costs may even further be reduced using efficient Transformers (Tay et al.,
2022). Faster embedders lead to large constant factor reductions, while faster regressors can lead to
linear Õ(t) complexities with respect to the number of trials.

Appendix A contains all details with respect to model sizes, training details, and hyperparameters
used.

4 EXPERIMENTS

4.1 END-TO-END BLACKBOX OPTIMIZATION

To emphasize the broad applicability of our Embed-then-Regress method, we do not focus on achiev-
ing state-of-the-art results compared to domain-specific baselines, but rather demonstrate its effec-
tiveness across a variety of tasks. Improvements within specific domains are left for future work.
We evaluate the performance of our algorithm on various problems consisting of traditional and
combinatorial objectives, with their exact details in Appendix B.

Traditional Optimization: In common optimization scenarios, the search space is a flat Cartesian
product of float and categorical parameter types. Our string-based regression will represent each x
with standard JSON over the dictionary mapping parameter names to values, e.g. for a search space
with two parameters, one continuous named p0 and another integer p1, the string representation for
an example trial would be {"p0":0.3,"p1":4}.

0 25 50 75 100
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NegativeSphere 5D
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 f(
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Figure 3: (↓) Lower is better. Median optimality gap curves across 9 randomized test functions, some
with non-continuous parameters. Note: y-axis is log-scaled to depict clearer separation between
baselines.
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We benchmark over the Blackbox Optimization Benchmarking (BBOB) suite (ElHara et al., 2019),
one of the most widely used synthetic function benchmarks, containing 24 different objectives over
continuous search spaces. In order to have a notion of offline “training” data and unseen “test”
functions to be optimized, we split the original functions across each landscape type (Separable,
Ill-Conditioned, etc.) into training and test sets, and additionally apply randomized transformations
(e.g. shifting, rotating, discretizing, increasing/decreasing dimensions) over all objectives to induce
non-continuous search spaces with categorical parameters and avoid overfitting. Evaluations were
uniformly sampled over the search space.

As a traditional GP baseline, we use the industry-grade UCB-based Bayesian Optimization method
“GP-Bandit” (Song et al., 2024c) from Open Source Vizier (Song et al., 2022). In order to control
for confounding factors affecting performance, our method uses the same “Firefly” acquisition opti-
mizer as Vizier’s, with the same evaluation budget. In Figure 3, we find that Embed-then-Regress is
generally comparable with and interestingly can even significantly outperform GP-Bandit in a few
cases.

Combinatorial Optimization: We further benchmark over combinatorial objectives whose search
spaces are typically difficult to regress over. Many of these can be found in common operations
research literature, e.g. permutation-based (Travelling Salesman, Quadratic Assignment, Flowshop
Scheduling, and N-Queens), and choice-based (submodular maximization problems such as cover-
ing and log-determinant functions).

Each of these problems can be parameterized by a set of coefficients (e.g. city locations for Travel-
ling Salesman, matrix entries for log-determinant). Note that we are in the bandit setting, in which
these coefficients are hidden from the algorithm and the only feedback is the final objective. Similar
to before, we thus can also generate offline pretraining data by randomizing these coefficients and
problem sizes, and evaluating over random candidates. For our string regression, we may simply
use JSON over indices; e.g. [2,0,3,1] for a permutation space of size 4, e.g. [1,3] for a
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Figure 4: (↑) Higher is better. Best-so-far curves across 6 randomized combinatorial problems. Title
parenthesis (P ) means a permutation space of size P and (N,K) denotes a

(
N
K

)
choice space.

While there are few previous works using GPs for e.g. permutation spaces (Deshwal et al., 2022;
Oh et al., 2022), they require constructing very domain-specific kernels and complex acquisition
optimizers (e.g. semi-definite programming) making them difficult to reproduce. We thus use a
simpler optimizer such as Regularized Evolution (Real et al., 2019) which does not need modelling
assumptions other than implementing random mutations between trials and can be used broadly
(Real et al., 2020). We also empirically found this was better than other evolutionary alternatives
such as NSGA-II (Deb et al., 2002) or hill-climbing.
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Rather than fully optimizing the acquisition, we can simply apply best-of-many sampling by using
the regressor’s UCB acquisition to rank sample candidates proposed by evolution, and suggest only
the best. In Figure 4, we see that this boosts exploration over the original Regularized Evolution,
which can often get stuck at local optima early on.

4.2 ABLATIONS

In this subsection, we ablate different effects on the model’s prediction ability, which directly affects
optimization performance.

String Embedder Size: In Figure 5, we see that the size of the pretrained string embedder has
a monotonic influence on the predictive performance over BBOB evaluations. As we vary the T5
embedder sizes (Small, Large, XL), there is a clear trend across all predictive metrics computed over
normalized y-values. These metrics consist of negative log-likelihood (NLL), mean average error
(MAE), R-Squared, and mean absolute calibration error (MACE) (Chung et al., 2021).

It is interesting to note that larger encoders, which are pretrained over mostly English text, lead to
better predictive performance over BBOB representations which do not contain any English words.
Considering that the embedder’s weights are also frozen, this trend potentially suggests that larger
language models inherently provide better features even for numeric data formats.
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Number of context pointsNumber of context pointsNumber of context pointsNumber of context points
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Figure 5: (↓, ↓, ↑, ↓) are better, respectively. Number of historical context points vs predictive met-
rics on unseen points over unseen BBOB function trajectories, while varying string embedder sizes.
Solid line denotes mean over 10 test functions and error bars denote standard deviation.

ICL Transformer Size: In Figure 6, we find that the ICL Transformer size also plays a role, where
higher layer sizes lead to better predictive outcomes. In contrast to the string embedder, here the
ICL model’s weights are trainable, and thus larger models can potentially possess higher capacities
and better inductive biases to train over the same offline data.
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Figure 6: Analogous setting to Figure 5, while varying the number of attention layers of the ICL
Transformer.

Overall in both cases for Figures 5 and 6, we verify in-context regression occurring for different test
functions, where more context points leads to better predictive performance.
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5 CONCLUSION AND FUTURE WORK

Our method, Embed-then-Regress, demonstrates the versatility of using string-based in-context re-
gression for Bayesian Optimization over a variety of problems. We have shown it to obtain com-
parable results against industry-standard GP baselines and allow flexibility in more esoteric spaces
such as permutations and combinations.

As strings are significantly more flexible representation formats of different data types, an ambitious
and exciting direction is to pretrain a unified in-context regression model over multiple different
domains, in order to obtain a “universal” in-context regressor. Furthermore, our method is not
limited only to Transformers for in-context regression; it may be possible to additionally create a
string-based GP sending string embeddings inputs to a kernel.

Further possible applications include prompt optimization (Fernando et al., 2024) and code search
(Romera-Paredes et al., 2023), areas which still predominantly use zeroth-order evolutionary algo-
rithms or even random search, which can be very sample inefficient compared to Bayesian Opti-
mization. Additionally, outside of blackbox optimzation problems which are stateless with respect
to inputs, it is worth investigating whether such methods are applicable for process-based reward
modelling (Lightman et al., 2024) and tree search-based approaches (Yao et al., 2023) for stateful
environments in language modelling.
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APPENDIX

A MODEL DETAILS

The full list of hyperparameters:

• ICL Transformer Size: 1024 feature dimension, feedforward projection outputs of 4096,
and 8 layers of multi-headed attention with 16 heads.

• String-Embedding: We use the T5-XL encoder. Strings were clipped to a maximum of 400
tokens, using the SentencePiece tokenizer (Kudo & Richardson, 2018) with a vocabulary
of 32000 subword tokens.

• Training: Effective batch size of 16, learning rate of 5 × 10−4, weight decay of 10−5,
gradient clipping of 0.5. A fixed number T ≥ 100 total trials were always placed in the
context window, with the number of history trials t′ sampled between [10, T − 10] and the
rest were target points for loss computations.

• Inference: UCB coefficient
√
β = 1.8.

For traditional optimization tasks, “Firefly” acquisition optimizer’s maximum evaluation budget was
10, 000 for both our method and Vizier’s, comparable to the regular default budget of 75, 000. Early
results showed no difference in end-to-end optimization performance.

For combinatorial tasks, Regularized Evolution used an initial population size of 50, and a tourna-
ment size of 7 ≈

√
population size, as prescribed in (Real et al., 2019). When it was augmented

by the acquisition, we chose the highest scoring proposal out of 5 samples as the final candidate for
evaluation.

B BENCHMARKING

For every algorithm and objective pair, we run 20 seeds and plot the best-so-far median with (25-75)
percentiles as error bars.

B.1 BBOB

Our train-test split is performed equally across all landscape types1 (separable, low/moderate condi-
itoning, high conditioning + unimodal, multi-modal with global structure, multi-modal with weak
global structure):

• Train: {Sphere, Ellipsoidal, Rastrigin, AttractiveSector, StepEllipsoidal, Ellipsoidal, Dis-
cus, BentCigar, Weierstrass, Schwefel, Gallagher101Me}

• Test: {BuecheRastrigin, LinearSlope, RosenbrockRotated, SharpRidge, DifferentPowers,
SchaffersF7, SchaffersF7IllConditioned, GriewankRosenbrock, Gallagher21Me, Katsuura,
Lunacek, NegativeSphere, NegativeMinDifference, FonsecaFleming}

For transformations, we applied the following, given an initial function f : Rdim → R:

• Shifting: Uniformly samples a shift c ∈ Rdim, and transform f(x) into f(x− c).
• Rotation: Uniformly samples an orthonormal matrix R ∈ Rdim×dim and transforms f(x)

into f(Rx).
• Discretization: Each parameter is randomly chosen to remain continuous, or either a
DISCRETE or CATEGORICAL parameter, whose feasible points are selected over a uni-
form grid between the original bounds [−5, 5], with the number of feasible points uniformly
selected from 2 to 16.

The offline training dataset consisted of 1M tasks over sampled training objectives (along with ran-
dom transformations) with each trial randomly sampled from its corresponding search space.

1https://numbbo.github.io/coco/testsuites/bbob
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B.2 COMBINATORIAL

We implemented both objective functions and evolutionary algorithms in PyGlove (Peng et al.,
2020), a framework for evolutionary and combinatorial optimization.

Permutation: Let x be a permutation of [n] = {1, 2, . . . , n} where x(i) denotes the permutation
index at position i.

• Travelling Salesman: f(x) = −
∑n−1
i=1 ‖City(x(i)) − City(x(i+1))‖2 where each city’s

location is randomly sampled from R2

• Flowshop Scheduling: f(x) = −
∑n
i=1 Ci,x(i) where C ∈ Rn×n is a random set of costs.

• Linear Ordering: f(x) is the upper-triangular sum of the corresponding matrix after apply-
ing a permutation of rows and columns on W ∈ Rn×n using x.

• Quadratic Assignment: f(x) = −Trace(WPDP>) where W,D ∈ Rn×n are random
weight and distance matrices, respectively, and P is the permutation matrix associated
with x.

• N-Queens: A generalization of the classic 8-Queens problem, in which the i-th queen is
placed on (i, x(i)) and f(x) is negative of the number of pairs of queens which diagonally
attack each other.

Choices: Let Indk denote the collection of all k-sized subsets of [n]. We may represent x ∈ Indk as
a set of k indices.

• Modular Function: f(x) =
∑
i∈x w

(i) where (w(1), . . . , w(n)) ∈ Rn are random weights.

• Coverage Function: Let E1, . . . , En be random covers, i.e. subsets of [n] and
(w(1), . . . , w(n)) ∈ Rn be random weights. Let UnionCover(x) = | ∪i∈x Ei|. Then
f(x) =

∑
j∈UnionCover(x) w

(j)

• Log Determinant: Given a randomly sampled positive semi-definite matrix M ∈ Rn×n,
f(x) = log det(M ′) where M ′ ∈ Rk×k is the minor of M using the indices from x.

Offline data collection was done similarly to BBOB (i.e. random problem with random trial sam-
pling), to generate 1M tasks and corresponding trajectories.
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C EXAMPLE STRING REPRESENTATIONS

Below, we provide some string representations of inputs x from different optimization tasks.

Benchmark Example x Examplem (if applicable)
Traditional (Continuous) x0:-0.3

x1:4.5
x2:-1.2
x3:"-4.1"

x0:DOUBLE,[-5,5]
x1:DOUBLE,[-5,5]
x2:DOUBLE,[-5,5]
x3:DOUBLE,[-5,5]

Traditional (Categorical) x0:"-1"
x1:"-1"
x2:"3.5"

x0:CATEGORICAL,["-5",-4",...,"4","5"]
x1:CATEGORICAL,["-5",-3","-1",...,"3","5"]
x2:CATEGORICAL,["-5","-4.5",...,"4.5","5.0"]

Combinatorial (Permutation) permutation:[0, 4, 2, 1, 3] task:"Permutation"
size:4

Combinatorial (Choice) choice:[1, 3] task:"Choice"
size: 4-choose-2
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