
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PREDICTING FROM STRINGS: LANGUAGE MODEL
EMBEDDINGS FOR BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization is ubiquitous in the field of experimental design and black-
box optimization for improving search efficiency, but has been traditionally re-
stricted to regression models which are only applicable to fixed search spaces and
tabular input features. We propose Embed-then-Regress, a paradigm for applying
in-context regression over string inputs, through the use of string embedding ca-
pabilities of pretrained language models. By expressing all inputs as strings, we
able to perform general-purpose regression for Bayesian Optimization over differ-
ent search domains such as traditional and combinatorial optimization, obtaining
comparable results to state-of-the-art Gaussian Process-based algorithms.

1 INTRODUCTION

A fundamental component of all value-based search methods is regression, in which proposed so-
lutions are filtered by predictions on their performance, before evaluation. By utilizing an accurate
regression model, or regressor, along with balanced explore-exploit mechanisms, large improve-
ments to the sample complexity of search have been widely possible. However, many regression
methods so-far have been task-specific, due to the reliance of modelling assumptions and dimen-
sionality constraints. Learning-based regression methods are particularly susceptible to this issue,
due to their reliance on fixed-length tensors for input representation.

{a:2,b:-3}

Embedding SpaceSearch Space In-Context
Regression

{a:5,b:2}

Figure 1: Using language models, we embed
string representations of search space candidates
as features for downstream regression.

Recent progress in large language models
(LLMs) have demonstrated the flexibility and
versatility of representation of information as
strings, which allow for a wider range of data
formats to be encoded for subsequent process-
ing. The potential of LLMs for universal
learning-based regression is considerable, al-
lowing for regressors that can be generalized
across multiple tasks, thereby mitigating the
task-specific limitations of current methods.

In this work we focus on improving the flexibil-
ity of regressor-guided search methods through
the use of LLM-based embeddings, which map
arbitrary strings to fixed-length vectors to be used in downstream tensor-based regressor models,
such as an in-context learning (ICL) based Transformer. Specifically, our contributions are:

• We describe our framework, “embed-then-regress” which uses a language model to em-
bed a string representation of a trial to be used as a single token feature for a in-context
regressor, such as a Transformer-based neural process.

• By pretraining this regressor at scale over a large variety of offline evaluation data, we can
achieve uncertainty-aware numeric predictions over objective functions from unseen tasks.

• After augmenting the framework with explore-exploit techniques, we achieve competitive
optimization results over a variety of optimization tasks, including traditional and combi-
natorial optimization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK AND MOTIVATION

Bayesian Optimization refers to a class of techniques which use regressors for solving blackbox
optimization problems, by suggesting best candidates according to an explore-exploit tradeoff. For
a given objective, the speed of optimization relies heavily on the regressor’s underlying prior, or
assumptions about the nature of the objective, such as its smoothness and landscape. Largely dom-
inated by the use of Gaussian Process (GP) regressors, the field of Bayesian Optimization has thus
seen a rise in works (Wang et al., 2024; Fan et al., 2024) which seek to learn better prior GP hy-
perparameters such as length-scales and kernel amplitudes based on offline pretraining or manually
designed feature representations for combinatorial objects (Deshwal et al., 2023), while keeping
underlying kernel definitions fixed.

Numerous end-to-end neural network-based approaches such as the use of attention mechanisms and
Transformers (Vaswani et al., 2017) have been introduced to allow more learnable behaviors, and we
refer the reader to (Song et al., 2024b) which provides a general reference on their use for blackbox
optimization. Relevant to our particular case of regression, works such as (Nguyen & Grover, 2022;
Garg et al., 2022) demonstrated the benefits of using raw Transformers as in-context regression
models, or neural processes, with others (Bai et al., 2023; Zhang et al., 2024) establishing provable
guarantees. Similarly, (Müller et al., 2022) demonstrated that Transformers trained on synthetic
data as “prior-fitted networks” are capable of Bayesian inference, leading to their use in Bayesian
optimization (Müller et al., 2023; Nguyen & Grover, 2024).

Unfortunately, as both raw Transformers and GPs require fixed dimensional features, this limits
their applications to inputs expressable as tabular features for e.g. hyperparameter tuning, or task-
specific embeddings for e.g. chemistry (Maus et al., 2022). Further works have attempted to improve
the flexibility of regression-modeling through the use of token-based representations, which allows
regressors to be simultaneously used over various types of input formats. Since the context-window
of Transformers still remain the most expensive limitation, a useful organization of recent works can
be based on their treatment of the total sequence length, roughly equal to:

(number of trials)× (average trial token length) (1)

Among sequence-to-sequence methods which pretrain for blackbox optimization specifically, (Chen
et al., 2022) uses custom tokenizations to minimize trial token length in order to maximize trial
count. However, this is restricted to very constrained search spaces (e.g. flat hyperparameter spaces),
and lacks flexibility in utilizing arbitrary forms of data. In contrast, (Song et al., 2024a) allows
arbitrary string representations, but the large token length of each trial severely limits the trial count
allowed in the context window, forcing the use of alternative but tedious methods of absorbing online
data, such as inference-time fine-tuning.

Other methods (Vacareanu et al., 2024) use text-to-text chat-based services such as ChatGPT (Ope-
nAI, 2022) and Gemini (Google, 2024) to demonstrate their emergent capabilities for in-context
regression, but such methods lack the ability to pretrain over large amounts of offline evaluations.
Efforts in ICL-based reward modeling with chat-based LLMs (Lightman et al., 2024) allow fine-
tuning over chains of thought, but have only used coarse discretized scores of e.g. {−1, 0, 1} rather
than highly precise numeric predictions over vastly different scales.

For optimization, we require a regressor with all of the following capabilities:

• Pretrainable over offline evaluations to allow effective meta-learning.

• Flexible representation of inputs with raw strings for application in multiple domains.

• Allow long-range in-context regression using multiple previous evaluations.

• Production of precise numeric predictions over diverse objective scales.

This naturally leads to the use of embedding-based methods which can compress any string repre-
sentation of a trial into a feature vector, using only a single unit of sequence length when sent to a
ICL model such as a raw Transformer. This can be seen as a form of encoding and decoding, which
has been shown to produce competitive results over pure language modeling tasks (Raffel et al.,
2020).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ICL Regressor (Transformer)

Embedder Projection

History Target

Embedder Projection Embedder Projection

Figure 2: Overview of our model.

3 METHOD

3.1 PRELIMINARIES

Let f : X → R be a real-valued function over a search space X . The goal of blackbox optimization
is to produce an x∗ which maximizes f :

x∗ = argmax
x∈X

f(x) (2)

We define a regressor as a prediction model which can output a distribution of prediction values for
f(·) over a query point x, given the history {xs, ys}ts=1 of trajectory of t evaluations over f so far.
Such regressors may also be learnable over additional offline data besides the given history.

During inference, the regressor may be turned into an acquisition function a : X → R to represent
explore-exploit tradeoffs. We assume the existence of a (potentially task-dependent) acquisition
optimizer which can quickly and cheaply sample suggestions x ∈ X , usually in the form of an
evolutionary algorithm. The history-dependent acquisition at+1(·) may thus be used to filter out
poor samples, or used in an entire Bayesian optimization loop in which the acquisition optimizer is
used to find xt+1 := argmaxx∈X at+1(x) as the next x-proposal.

3.2 IN-CONTEXT TRANSFORMER REGRESSOR

An embedding-based regressor uses an embedder φ : X → Rd to map a suggestion x to a fixed-
length representation x ∈ Rd, which can then be used as a regular feature vector for a numeric
regression model. A string-based embedder first represents x as a string, which is then passed
to a language model for embedding. We specifically use the typical definition of language model
embedding, in which we apply a forward pass of the underlying model (encoder or decoder) on the
(tokenized) string representation to obtain all token logits in RL×d, and then pool across the length
axis to obtain a vector in Rd. We discuss specific string representations in our experiments in Section
4.

For our underlying regression model, we then use an additional Transformer (Vaswani et al., 2017),
by sending in as input sequence (x1⊕ y1), . . . , (xt⊕ yt) where y ∈ Rd is the feature representation
of the float y after applying a trainable projection, and x⊕ y is the trial representation expressed as
the concatenation of x and y.

In order to obtain a prediction for a query point x, we may then further append a query (x⊕0) to the
history input sequence where 0 is a dummy value, and following a forward pass of the Transformer
where (x⊕0) attends to all previous trials, post-process the corresponding t+1-th output feature with
a parametric output distribution over R. For our case we assume a Gaussian N (µt+1(x), σ

2
t+1(x))

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

using mean and standard deviation output heads. The key components to our method can be sum-
marized in Figure 2.

Additional techniques below are utilized to stabilize training and prediction:

Parallel Predictions: In order to simultaneously predict over a given set of k target points
xt+1, . . . , xt+k, we additionally append (xt+1 ⊕ 0), . . . , (xt+k, 0) to the history sequence and gen-
erate a custom attention pattern of shape (t+k)× t where all tokens to attend to the history while no
tokens attend to the targets. This allows an efficient parallel modeling of p(yt+i | xt+i, {xs, ys}ts=0)
for 1 ≤ i ≤ k which speeds up training when computing a summed loss over multiple target predic-
tions.

y-Normalization: Depending on the function, y-value outputs may contain a wide variety of scales,
and need to be normalized properly. We can define our normalization procedure parameterized by a
history of objectives (y1, . . . , yt), also applicable to incoming target values. These steps consist of,
in order: (1) Shifting objectives to have zero mean and divide by standard deviation. (2) Reducing
harmful effects of bad outliers by fitting the “bad half” of objectives {yi ≤ ymedian} to a normal
curve, using percentiles as z-scores. (3) Linearly scale y ← y−ymin

ymax−ymin
which ensures all historical

y-values within [0, 1] and apply additional damping (e.g. sigmoid or log transform) to target values
significantly outside this range.

Encoding Metadata: Many times there may be a metadata m associated to an objective f , which
provides useful prediction information on the behavior of f or simply can inform the model of a
new objective or search space. We can also embed this metadata as an additional feature m, which
is concatenated to every x similarly to standard encoder-decoder techniques (Raffel et al., 2020).

3.3 PRETRAINING AND INFERENCE

Denote a task T = (f,X) as a specific objective function over a particular search space.

Pretraining: We assume a collection of offline training tasks {T1, T2, . . .}, with different search
spaces and objective functions, with each task containing its own collection of evaluated trials
{xs, ys}Ts=1 where T is the (potentially task-specific) offline trajectory length.

While the embedder is frozen, we pretrain the weights θ of the ICL regression Transformer, over
all such offline evaluation data. Each training example consists of a sampled task and history cutoff
length t′ ∈ [0, T) so that {xs, ys}s≤t′ is considered a history, while {xt′+i, yt′+i}Tt′+i are target
points, with the loss computed as the sum of prediction losses over all targets, i.e.

T−t′∑
i=1

`θ(xt′+i, yt′+i; {xs, ys}t
′

s=1) (3)

where `θ(x, y; {xs, ys}ts=1) is the negative log-likelihood using our Gaussian output distribution, of
predicting y given x and history {xs, ys}ts=1.

Inference: At inference, we use our mean and deviation head to form a UCB-based acquisition
at+1(x) = µt+1(x)+

√
β·σt+1(x) where

√
β is a problem-dependent constant. We use a (potentially

domain-dependent) zeroth-order optimizer such as evolutionary search to maximize this acquisition,
and thus only require forward passess, although gradient-based acquisition maximization is possible
with soft-prompt optimization techniques (Lester et al., 2021).

Since there may be distributional shifts for parameter names encountered between pretraining and
inference, we may either apply data augmentation by randomizing parameter names during pretrain-
ing, or transform the search space during inference to match those encountered in pretraining.

3.4 MODEL DETAILS

In this paper, to demonstrate the validity of our approach on relatively low compute budgets, we
intentionally use relatively smaller language model embedder sizes in comparison to the larger GPT
(OpenAI, 2023) or Gemini (Google, 2024) family of models. Specifically, we use a pretrained
T5-XL encoder (1B parameters), based on the encoder-decoder T5-family of models (Raffel et al.,
2020). Along with only 8 layers of the underlying regression Transformer, this leads to a maximum

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

required training budget of approximately 16 GPUs for training and 1 GPU for inference, possible
with most academic budgets.

The cheap inference cost is also necessary when the acquisition function may be called thousands
of times by a zeroth-order acquisition optimizer per candidate proposal. It is worth noting that time
and memory complexity costs may even further be reduced using efficient Transformers (Tay et al.,
2022). Faster embedders lead to large constant factor reductions, while faster regressors can lead to
linear Õ(t) complexities with respect to the number of trials.

Appendix A contains all details with respect to model sizes, training details, and hyperparameters
used.

4 EXPERIMENTS

4.1 END-TO-END BLACKBOX OPTIMIZATION

To emphasize the broad applicability of our Embed-then-Regress method, we do not focus on achiev-
ing state-of-the-art results compared to domain-specific baselines, but rather demonstrate its effec-
tiveness across a variety of tasks. Improvements within specific domains are left for future work.
We evaluate the performance of our algorithm on various problems consisting of traditional and
combinatorial objectives, with their exact details in Appendix B.

Traditional Optimization: In common optimization scenarios, the search space is a flat Cartesian
product of float and categorical parameter types. Our string-based regression will represent each x
with standard JSON over the dictionary mapping parameter names to values, e.g. for a search space
with two parameters, one continuous named p0 and another integer p1, the string representation for
an example trial would be {"p0":0.3,"p1":4}.

0 25 50 75 100

102

103

BuecheRastrigin 4D

0 25 50 75 100

102

6 × 101

NegativeSphere 5D

0 25 50 75 100

103

2 × 103

SharpRidge 5D

0 25 50 75 100

102

Ne
g.

 f(
x)

SchaffersF7IllConditioned 8D

0 25 50 75 100

102

103

104

RosenbrockRotated 4D

0 25 50 75 100
102

2 × 102

3 × 102

4 × 102

6 × 102

SharpRidge 4D

0 25 50 75 100
100

101

GriewankRosenbrock 4D

0 25 50 75 100
Number of Trials

2 × 101

3 × 101

4 × 101

6 × 101

Gallagher21Me 7D

0 25 50 75 100

101

Lunacek 2D

Vizier GP-Bandit Random Quasi Random Embed-then-Regress (Ours)

Figure 3: (↓) Lower is better. Median optimality gap curves across 9 randomized test functions, some
with non-continuous parameters. Note: y-axis is log-scaled to depict clearer separation between
baselines.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We benchmark over the Blackbox Optimization Benchmarking (BBOB) suite (ElHara et al., 2019),
one of the most widely used synthetic function benchmarks, containing 24 different objectives over
continuous search spaces. In order to have a notion of offline “training” data and unseen “test”
functions to be optimized, we split the original functions across each landscape type (Separable,
Ill-Conditioned, etc.) into training and test sets, and additionally apply randomized transformations
(e.g. shifting, rotating, discretizing, increasing/decreasing dimensions) over all objectives to induce
non-continuous search spaces with categorical parameters and avoid overfitting. Evaluations were
uniformly sampled over the search space.

As a traditional GP baseline, we use the industry-grade UCB-based Bayesian Optimization method
“GP-Bandit” (Song et al., 2024c) from Open Source Vizier (Song et al., 2022). In order to control
for confounding factors affecting performance, our method uses the same “Firefly” acquisition opti-
mizer as Vizier’s, with the same evaluation budget. In Figure 3, we find that Embed-then-Regress is
generally comparable with and interestingly can even significantly outperform GP-Bandit in a few
cases.

Combinatorial Optimization: We further benchmark over combinatorial objectives whose search
spaces are typically difficult to regress over. Many of these can be found in common operations
research literature, e.g. permutation-based (Travelling Salesman, Quadratic Assignment, Flowshop
Scheduling, and N-Queens), and choice-based (submodular maximization problems such as cover-
ing and log-determinant functions).

Each of these problems can be parameterized by a set of coefficients (e.g. city locations for Travel-
ling Salesman, matrix entries for log-determinant). Note that we are in the bandit setting, in which
these coefficients are hidden from the algorithm and the only feedback is the final objective. Similar
to before, we thus can also generate offline pretraining data by randomizing these coefficients and
problem sizes, and evaluating over random candidates. For our string regression, we may simply
use JSON over indices; e.g. [2,0,3,1] for a permutation space of size 4, e.g. [1,3] for a

(
4
2

)
choice space.

100 200 300

25

20

15

10

5

0
Queen Placement (11)

100 200 300

34.0

33.5

33.0

32.5
Coverage (9, 4)

100 200 300

16

18

20

22

24
Modular (12, 4)

100 200 300320

315

310

305

300

295
Quadratic Assignment (14)

100 200 300
9.50

9.75

10.00

10.25

10.50

10.75

Coverage (7, 3)

100 200 300
30

25

20

15

10

5

0
Queen Placement (10)

100 200 300
72

74

76

78

80

Linear Ordering (9)

100 200 300

9.20

9.25

9.30

9.35
Log Determinant (8, 4)

Number of Trials

f(x
)

Regularized Evolution Random Embed-then-Regress (Ours)

Figure 4: (↑) Higher is better. Best-so-far curves across 6 randomized combinatorial problems. Title
parenthesis (P) means a permutation space of size P and (N,K) denotes a

(
N
K

)
choice space.

While there are few previous works using GPs for e.g. permutation spaces (Deshwal et al., 2022;
Oh et al., 2022), they require constructing very domain-specific kernels and complex acquisition
optimizers (e.g. semi-definite programming) making them difficult to reproduce. We thus use a
simpler optimizer such as Regularized Evolution (Real et al., 2019) which does not need modelling
assumptions other than implementing random mutations between trials and can be used broadly
(Real et al., 2020). We also empirically found this was better than other evolutionary alternatives
such as NSGA-II (Deb et al., 2002) or hill-climbing.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Rather than fully optimizing the acquisition, we can simply apply best-of-many sampling by using
the regressor’s UCB acquisition to rank sample candidates proposed by evolution, and suggest only
the best. In Figure 4, we see that this boosts exploration over the original Regularized Evolution,
which can often get stuck at local optima early on.

4.2 ABLATIONS

In this subsection, we ablate different effects on the model’s prediction ability, which directly affects
optimization performance.

String Embedder Size: In Figure 5, we see that the size of the pretrained string embedder has
a monotonic influence on the predictive performance over BBOB evaluations. As we vary the T5
embedder sizes (Small, Large, XL), there is a clear trend across all predictive metrics computed over
normalized y-values. These metrics consist of negative log-likelihood (NLL), mean average error
(MAE), R-Squared, and mean absolute calibration error (MACE) (Chung et al., 2021).

It is interesting to note that larger encoders, which are pretrained over mostly English text, lead to
better predictive performance over BBOB representations which do not contain any English words.
Considering that the embedder’s weights are also frozen, this trend potentially suggests that larger
language models inherently provide better features even for numeric data formats.

40 60 80 100
1.6

1.4

1.2

1.0

NLL

40 60 80 100

10 1

6 × 10 2

7 × 10 2

8 × 10 2

9 × 10 2

MAE

40 60 80 100
3 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1
R2

40 60 80 100

10 1

7 × 10 2

8 × 10 2

9 × 10 2

MACE

Number of context pointsNumber of context pointsNumber of context pointsNumber of context points
T5-Small T5-Large T5-XL

Figure 5: (↓, ↓, ↑, ↓) are better, respectively. Number of historical context points vs predictive met-
rics on unseen points over unseen BBOB function trajectories, while varying string embedder sizes.
Solid line denotes mean over 10 test functions and error bars denote standard deviation.

ICL Transformer Size: In Figure 6, we find that the ICL Transformer size also plays a role, where
higher layer sizes lead to better predictive outcomes. In contrast to the string embedder, here the
ICL model’s weights are trainable, and thus larger models can potentially possess higher capacities
and better inductive biases to train over the same offline data.

40 60 80 100
1.8

1.6

1.4

1.2

1.0

NLL

40 60 80 100

5 × 10 2

6 × 10 2

7 × 10 2

8 × 10 2

9 × 10 2
MAE

40 60 80 100
4 × 10 1

5 × 10 1

6 × 10 1

R2

40 60 80 100

10 1

6 × 10 2

7 × 10 2

8 × 10 2

9 × 10 2

MACE

Number of context pointsNumber of context pointsNumber of context pointsNumber of context points
2 layers 4 layers 6 layers 8 layers

Figure 6: Analogous setting to Figure 5, while varying the number of attention layers of the ICL
Transformer.

Overall in both cases for Figures 5 and 6, we verify in-context regression occurring for different test
functions, where more context points leads to better predictive performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 CONCLUSION AND FUTURE WORK

Our method, Embed-then-Regress, demonstrates the versatility of using string-based in-context re-
gression for Bayesian Optimization over a variety of problems. We have shown it to obtain com-
parable results against industry-standard GP baselines and allow flexibility in more esoteric spaces
such as permutations and combinations.

As strings are significantly more flexible representation formats of different data types, an ambitious
and exciting direction is to pretrain a unified in-context regression model over multiple different
domains, in order to obtain a “universal” in-context regressor. Furthermore, our method is not
limited only to Transformers for in-context regression; it may be possible to additionally create a
string-based GP sending string embeddings inputs to a kernel.

Further possible applications include prompt optimization (Fernando et al., 2024) and code search
(Romera-Paredes et al., 2023), areas which still predominantly use zeroth-order evolutionary algo-
rithms or even random search, which can be very sample inefficient compared to Bayesian Opti-
mization. Additionally, outside of blackbox optimzation problems which are stateless with respect
to inputs, it is worth investigating whether such methods are applicable for process-based reward
modelling (Lightman et al., 2024) and tree search-based approaches (Yao et al., 2023) for stateful
environments in language modelling.

REFERENCES

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Informa-
tion Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’Aurelio Ranzato, Sagi Perel, and Nando
de Freitas. Towards learning universal hyperparameter optimizers with transformers. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022,
2022.

Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty toolbox:
an open-source library for assessing, visualizing, and improving uncertainty quantification. arXiv
preprint arXiv:2109.10254, 2021.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. doi: 10.1109/
4235.996017.

Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim. Bayesian optimiza-
tion over permutation spaces. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 6515–6523. AAAI Press, 2022.

Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Janardhan Rao Doppa,
and David Eriksson. Bayesian optimization over high-dimensional combinatorial spaces via
dictionary-based embeddings. In Francisco J. R. Ruiz, Jennifer G. Dy, and Jan-Willem van de
Meent (eds.), International Conference on Artificial Intelligence and Statistics, 25-27 April 2023,
Palau de Congressos, Valencia, Spain, volume 206 of Proceedings of Machine Learning Re-
search, pp. 7021–7039. PMLR, 2023.

Ouassim Ait ElHara, Konstantinos Varelas, Duc Manh Nguyen, Tea Tusar, Dimo Brockhoff, Niko-
laus Hansen, and Anne Auger. COCO: the large scale black-box optimization benchmarking
(bbob-largescale) test suite. CoRR, abs/1903.06396, 2019.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Zhou Fan, Xinran Han, and Zi Wang. Transfer learning for bayesian optimization on heterogeneous
search spaces. Trans. Mach. Learn. Res., 2024, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? A case study of simple function classes. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Google. Gemini: A family of highly capable multimodal models, 2024.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 66–71, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 3045–
3059. Association for Computational Linguistics, 2021.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024.

Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, and Jacob R. Gard-
ner. Local latent space bayesian optimization over structured inputs. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Samuel Müller, Noah Hollmann, Sebastian Pineda-Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 25444–25470. PMLR, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 16569–16594. PMLR, 2022.

Tung Nguyen and Aditya Grover. LICO: large language models for in-context molecular optimiza-
tion. CoRR, abs/2406.18851, 2024. doi: 10.48550/ARXIV.2406.18851.

ChangYong Oh, Roberto Bondesan, Efstratios Gavves, and Max Welling. Batch bayesian optimiza-
tion on permutations using the acquisition weighted kernel. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

OpenAI. Introducing chatgpt. 2022.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao Liu,
Adam Kraft, Chen Liang, and Quoc Le. Pyglove: Symbolic programming for automated machine
learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 4780–4789. AAAI Press, 2019.

Esteban Real, Chen Liang, David R. So, and Quoc V. Le. Automl-zero: Evolving machine learn-
ing algorithms from scratch. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 8007–8019. PMLR, 2020.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, pp. 1–3, 2023.

Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, and Daniel Golovin. Open source vizier:
Distributed infrastructure and api for reliable and flexible black-box optimization. In Automated
Machine Learning Conference, Systems Track (AutoML-Conf Systems), 2022.

Xingyou Song, Oscar Li, Chansoo Lee, Bangding Yang, Daiyi Peng, Sagi Perel, and Yutian Chen.
Omnipred: Language models as universal regressors. CoRR, abs/2402.14547, 2024a. doi: 10.
48550/ARXIV.2402.14547.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position: Leverage foundational models for black-box optimization. CoRR, abs/2405.03547,
2024b. doi: 10.48550/ARXIV.2405.03547.

Xingyou Song, Qiuyi Zhang, Chansoo Lee, Emily Fertig, Tzu-Kuo Huang, Lior Belenki, Greg
Kochanski, Setareh Ariafar, Srinivas Vasudevan, Sagi Perel, and Daniel Golovin. The vizier
gaussian process bandit algorithm. Google DeepMind Technical Report, 2024c.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Comput. Surv., 55(6), December 2022. ISSN 0360-0300. doi: 10.1145/3530811.

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to num-
bers: Your large language model is secretly A capable regressor when given in-context examples.
CoRR, abs/2404.07544, 2024. doi: 10.48550/ARXIV.2404.07544.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Zi Wang, George E. Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research, 25(212):1–83, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
context. J. Mach. Learn. Res., 25:49:1–49:55, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

APPENDIX

A MODEL DETAILS

The full list of hyperparameters:

• ICL Transformer Size: 1024 feature dimension, feedforward projection outputs of 4096,
and 8 layers of multi-headed attention with 16 heads.

• String-Embedding: We use the T5-XL encoder. Strings were clipped to a maximum of 400
tokens, using the SentencePiece tokenizer (Kudo & Richardson, 2018) with a vocabulary
of 32000 subword tokens.

• Training: Effective batch size of 16, learning rate of 5 × 10−4, weight decay of 10−5,
gradient clipping of 0.5. A fixed number T ≥ 100 total trials were always placed in the
context window, with the number of history trials t′ sampled between [10, T − 10] and the
rest were target points for loss computations.

• Inference: UCB coefficient
√
β = 1.8.

For traditional optimization tasks, “Firefly” acquisition optimizer’s maximum evaluation budget was
10, 000 for both our method and Vizier’s, comparable to the regular default budget of 75, 000. Early
results showed no difference in end-to-end optimization performance.

For combinatorial tasks, Regularized Evolution used an initial population size of 50, and a tourna-
ment size of 7 ≈

√
population size, as prescribed in (Real et al., 2019). When it was augmented

by the acquisition, we chose the highest scoring proposal out of 5 samples as the final candidate for
evaluation.

B BENCHMARKING

For every algorithm and objective pair, we run 20 seeds and plot the best-so-far median with (25-75)
percentiles as error bars.

B.1 BBOB

Our train-test split is performed equally across all landscape types1 (separable, low/moderate condi-
itoning, high conditioning + unimodal, multi-modal with global structure, multi-modal with weak
global structure):

• Train: {Sphere, Ellipsoidal, Rastrigin, AttractiveSector, StepEllipsoidal, Ellipsoidal, Dis-
cus, BentCigar, Weierstrass, Schwefel, Gallagher101Me}

• Test: {BuecheRastrigin, LinearSlope, RosenbrockRotated, SharpRidge, DifferentPowers,
SchaffersF7, SchaffersF7IllConditioned, GriewankRosenbrock, Gallagher21Me, Katsuura,
Lunacek, NegativeSphere, NegativeMinDifference, FonsecaFleming}

For transformations, we applied the following, given an initial function f : Rdim → R:

• Shifting: Uniformly samples a shift c ∈ Rdim, and transform f(x) into f(x− c).
• Rotation: Uniformly samples an orthonormal matrix R ∈ Rdim×dim and transforms f(x)

into f(Rx).
• Discretization: Each parameter is randomly chosen to remain continuous, or either a
DISCRETE or CATEGORICAL parameter, whose feasible points are selected over a uni-
form grid between the original bounds [−5, 5], with the number of feasible points uniformly
selected from 2 to 16.

The offline training dataset consisted of 1M tasks over sampled training objectives (along with ran-
dom transformations) with each trial randomly sampled from its corresponding search space.

1https://numbbo.github.io/coco/testsuites/bbob

12

https://numbbo.github.io/coco/testsuites/bbob

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B.2 COMBINATORIAL

We implemented both objective functions and evolutionary algorithms in PyGlove (Peng et al.,
2020), a framework for evolutionary and combinatorial optimization.

Permutation: Let x be a permutation of [n] = {1, 2, . . . , n} where x(i) denotes the permutation
index at position i.

• Travelling Salesman: f(x) = −
∑n−1
i=1 ‖City(x(i)) − City(x(i+1))‖2 where each city’s

location is randomly sampled from R2

• Flowshop Scheduling: f(x) = −
∑n
i=1 Ci,x(i) where C ∈ Rn×n is a random set of costs.

• Linear Ordering: f(x) is the upper-triangular sum of the corresponding matrix after apply-
ing a permutation of rows and columns on W ∈ Rn×n using x.

• Quadratic Assignment: f(x) = −Trace(WPDP>) where W,D ∈ Rn×n are random
weight and distance matrices, respectively, and P is the permutation matrix associated
with x.

• N-Queens: A generalization of the classic 8-Queens problem, in which the i-th queen is
placed on (i, x(i)) and f(x) is negative of the number of pairs of queens which diagonally
attack each other.

Choices: Let Indk denote the collection of all k-sized subsets of [n]. We may represent x ∈ Indk as
a set of k indices.

• Modular Function: f(x) =
∑
i∈x w

(i) where (w(1), . . . , w(n)) ∈ Rn are random weights.

• Coverage Function: Let E1, . . . , En be random covers, i.e. subsets of [n] and
(w(1), . . . , w(n)) ∈ Rn be random weights. Let UnionCover(x) = | ∪i∈x Ei|. Then
f(x) =

∑
j∈UnionCover(x) w

(j)

• Log Determinant: Given a randomly sampled positive semi-definite matrix M ∈ Rn×n,
f(x) = log det(M ′) where M ′ ∈ Rk×k is the minor of M using the indices from x.

Offline data collection was done similarly to BBOB (i.e. random problem with random trial sam-
pling), to generate 1M tasks and corresponding trajectories.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C EXAMPLE STRING REPRESENTATIONS

Below, we provide some string representations of inputs x from different optimization tasks.

Benchmark Example x Examplem (if applicable)
Traditional (Continuous) x0:-0.3

x1:4.5
x2:-1.2
x3:"-4.1"

x0:DOUBLE,[-5,5]
x1:DOUBLE,[-5,5]
x2:DOUBLE,[-5,5]
x3:DOUBLE,[-5,5]

Traditional (Categorical) x0:"-1"
x1:"-1"
x2:"3.5"

x0:CATEGORICAL,["-5",-4",...,"4","5"]
x1:CATEGORICAL,["-5",-3","-1",...,"3","5"]
x2:CATEGORICAL,["-5","-4.5",...,"4.5","5.0"]

Combinatorial (Permutation) permutation:[0, 4, 2, 1, 3] task:"Permutation"
size:4

Combinatorial (Choice) choice:[1, 3] task:"Choice"
size: 4-choose-2

14

	Introduction
	Related Work and Motivation
	Method
	Preliminaries
	In-context Transformer Regressor
	Pretraining and Inference
	Model Details

	Experiments
	End-to-End Blackbox Optimization
	Ablations

	Conclusion and Future Work
	Model Details
	Benchmarking
	BBOB
	Combinatorial

	Example String Representations

