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Abstract

Movement disorders such as Parkinson’s disease are characterised by complex abnormal-
ities of body motion that resist precise, replicable, and scalable quantification. Subjec-
tive clinical scores–the established standard–are limited in expressivity and vulnerable to
intra-observer variation; wearable sensor-based methods offer objectivity but with limited
anatomical sampling. Remote video-based approaches could deliver both highly expres-
sive and objective quantification of motion, but sufficient labelled samples are hard to
obtain under clinical data regimes. Here we develop a diffusion model-based, zero-shot,
and human-interpretable approach to gait assessment from video-derived pose data and
evaluate it in Parkinson’s Disease. Capable of detecting subtle changes in body motion
without explicit training, it shows potential for an accurate, robust, and scalable solution,
addressing the major limitations of existing methods.
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1. Introduction

Movement disorders such as Parkinson’s Disease (PD) involve complex abnormalities of
body motion that are critical to diagnosis, monitoring, and treatment selection. Gait is
a key aspect here, since it is both frequently affected and of great functional significance.
Clinicians typically use the Movement Disorder Society-sponsored revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008), which relies on ob-
servational judgments. However, their subjective nature poses challenges in reproducibility
and precise quantification.

Emerging machine-learning approaches quantify gait parameters through computer-
vision methods, analyzing features such as feet distance(Verlekar et al., 2018), swing ve-
locity(Eltoukhy et al., 2017), 2D body pose(Rupprechter et al., 2021; Jinila et al., 2022;
Tan et al., 2024; Nõmm et al., 2016), gait energy images(Ortells et al., 2018), and body
keypoints in Cartesian space(Kaur et al., 2022); or through wearable-device-based feature
extraction(Han et al., 2023; Moreau et al., 2023). Although promisingly performant on
selected test datasets, these methods have limitations such as reliance on specially designed
environments, customized camera setups, tailored sensors, and abundant labelled data.
Moreover, most measurements are conducted in Cartesian or 2D space, lacking translation-
and appearance-invariance, thus contributing to poor generalizability.

To address these limitations, here we propose a zero-shot diffusion model pretrained
on diverse human motions, quantifying the deviation of input actions from specific textual
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Figure 1: Proposed framework for quantifying the deviation of a test action from its pre-
diction under a given prompt, yielding a measure of movement anomaly.

action descriptions. The approach offers a high-fidelity mapping between textual descrip-
tions and 3D pose sequences, allowing for scale-, translation-, and viewpoint-invariant gait
representations. At test time, the model evaluates gait clips against generated motions,
producing a robust anomaly score that aligns well with clinician assessments, without re-
quiring task-specific training or annotated datasets. Evaluated in PD, this approach enables
sensitive, scalable, and automated gait assessment for early disease detection in clinical and
real-world settings, and is transferable to other clinical scenarios.

2. Method

Videos of patients walking were collected during an ethically approved prospective dual-site
medical device evaluation study (Jha et al., 2020). We parameterized body movements over
1-1.6 second intervals, indexed by 24 video-derived joint positions sampled at 25Hz, using
axis-angle representation, and converted them into the HumanML3D format (Guo et al.,
2022), neutralizing the effects of body shape. A latent diffusion model (Tevet et al., 2022)
was used to model the distribution of movements, conditioned on their textual descriptions,
providing an index of the anomaly of test movements qualified under a normative descrip-
tion(Li et al., 2023). Instead of evaluating predicted noise(Li et al., 2023), we compared
predicted vs original latent features at each sampled time-step, formulating a subject-level
anomaly measure as the mean squared error across all latent dimensions and feature chan-
nels, and a feature-level anomaly measure as the mean squared error across all latent dimen-
sions. Both measures are normalized using values derived from an empty textual prompt,
then averaged over time (see Figure 1).

3. Experiments and Discussion

Result We evaluated the proposed framework on gait data from 62 patients, divided
into 4 groups based on MDS-UPDRS Part 3 gait scores assessed within normal medical
treatment regime (0–3 in this cohort, where 0 indicates normal gait and higher scores reflect
progressively worsening motor function), using 400 gait clips (100 per group) recorded
with various devices, including smartphones and webcams. The evaluation focused on
the correspondence between our anomaly measure and MDS-UPDRS scores. For both
subject- and feature-level measures, we used the first 900 of the 1000 total time-steps, as
they provided the greatest distinction between prompts. Using the prompt ”Walking”, the
subject-level measure yielded a Spearman correlation coefficient of 0.7011 (p <1e-5). A one-
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way ANOVA comparing between- and within-group variance produced an F-value of 186.14
(p <1e-5). The significance threshold for both tests was 0.05. The parameterized motion
data consisted of 263 dimensions, capturing interpretable features including Cartesian joint
positions, joint rotations (as 6D matrices(Zhou et al., 2019)), and linear velocities, for
which feature-level anomaly measures are derived. In Figure 2, the first three panels show
comparisons of each non-zero MDS-UPDRS score level against normal (MDS-UPDRS=0)
gait, showing that the gaits of MDS-UPDRS > 0 groups exhibit greater errors than those
from the MDS-UPDRS=0 group, with concentrations in the lower limbs and distal joints
such as the feet and hands. Joint position and rotation errors were also prominently affected
in the head and knee regions. Velocity-based errors were larger at the hip and spine, likely
due to rigidity causing greater deviation from typical gait patterns. The right-most panel
shows the correlation between feature-level anomaly measures and MDS-UPDRS scores,
further highlighting that shoulder, lower limb, and head regions are most strongly associated
with MDS-UPDRS when measuring Cartesian position; distal joints (hands, head, feet)
dominate for rotations; and the pelvic region contributes most in the velocity domain.
These results suggest that reduced dexterity, flexibility, and impaired joint coordination
are key contributors to gait abnormalities in PD. The anatomical distribution of error also
indicates imbalanced movement, consistent with PD-related asymmetry.

Conclusion We introduce an interpretable diffusion model-based gait classification frame-
work for quantifying abnormalities of gait that combines expressivity with objectivity, and
is operable within the few-label data regimes clinical scenarios impose. In the context of
PD, our zero-shot approach enables the quantification of abnormalities–both feature- and
subject-level–with good fidelity without explicit training, facilitating implementation, and
broadening access to automated analysis. The high correlation with MDS-UPDRS scores–
obtained zero-shot–leaves room for substantial benefit from fine-tuning as larger volumes
of data become available. Conditioning on highly expressive text labels enables ready ex-
tension of the framework to richly defined classification tasks, with utility across all clinical
scenarios, across movement disorders and beyond, where quantification of body motion is
critical to clinical management.

Figure 2: Anatomical projection of joint-wise error magnitudes across groups, along with
the correlation strength contributed by errors at each joint. Outlined circles
indicate regions below the corrected statistical significance threshold (p = 0.0166),
with correlations computed independently for each data component.

Acknowledgments

This study was funded by Wellcome Trust and supported by the National Institute for
Health and Care Research University College London Hospitals Biomedical Research Center.

3



Guan Gray Jha Nachev

References

Moataz Eltoukhy, Christopher Kuenze, Jeonghoon Oh, Marco Jacopetti, Savannah Wooten,
and Joseph Signorile. Microsoft kinect can distinguish differences in over-ground gait
between older persons with and without parkinson’s disease. Medical engineering &
physics, 44:1–7, 2017.

Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Stebbins, Stan-
ley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio, Matthew B Stern,
Richard Dodel, et al. Movement disorder society-sponsored revision of the unified parkin-
son’s disease rating scale (mds-updrs): scale presentation and clinimetric testing results.
Movement disorders: official journal of the Movement Disorder Society, 23(15):2129–
2170, 2008.

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Gener-
ating diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5152–5161,
June 2022.

Yi Han, Xiangzhi Liu, Ning Zhang, Xiufeng Zhang, Bin Zhang, Shuoyu Wang, Tao Liu,
and Jingang Yi. Automatic assessments of parkinsonian gait with wearable sensors for
human assistive systems. Sensors, 23(4):2104, 2023.

Ashwani Jha, Elisa Menozzi, Rebecca Oyekan, Anna Latorre, Eoin Mulroy, Sebastian R.
Schreglmann, Cosmin Stamate, Ioannis Daskalopoulos, Stefan Kueppers, Marco Luchini,
John C. Rothwell, George Roussos, and Kailash P. Bhatia. The cloudupdrs smart-
phone software in parkinson’s study: cross-validation against blinded human raters.
npj Parkinson’s Disease, 6:36, 2020. doi: 10.1038/s41531-020-00135-w. URL https:

//doi.org/10.1038/s41531-020-00135-w.

Bevish Jinila et al. Vision-based gait analysis for real-time parkinson disease identification
and diagnosis system. Health Systems, 13(1):62, 2022.

Rachneet Kaur, Robert W Motl, Richard Sowers, and Manuel E Hernandez. A vision-based
framework for predicting multiple sclerosis and parkinson’s disease gait dysfunctions—a
deep learning approach. IEEE journal of biomedical and health informatics, 27(1):190–
201, 2022.

Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak.
Your diffusion model is secretly a zero-shot classifier. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2206–2217, 2023.

Caroline Moreau, Tiphaine Rouaud, David Grabli, Isabelle Benatru, Philippe Remy, Ana-
Raquel Marques, Sophie Drapier, Louise-Laure Mariani, Emmanuel Roze, David Devos,
et al. Overview on wearable sensors for the management of parkinson’s disease. npj
Parkinson’s Disease, 9(1):153, 2023.
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