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Abstract

Movement disorders such as Parkinson’s disease are characterised by complex abnormal-
ities of body motion that resist precise, replicable, and scalable quantification. Subjec-
tive clinical scores—the established standard—are limited in expressivity and vulnerable to
intra-observer variation; wearable sensor-based methods offer objectivity but with limited
anatomical sampling. Remote video-based approaches could deliver both highly expres-
sive and objective quantification of motion, but sufficient labelled samples are hard to
obtain under clinical data regimes. Here we develop a diffusion model-based, zero-shot,
and human-interpretable approach to gait assessment from video-derived pose data and
evaluate it in Parkinson’s Disease. Capable of detecting subtle changes in body motion
without explicit training, it shows potential for an accurate, robust, and scalable solution,
addressing the major limitations of existing methods.
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1. Introduction

Movement disorders such as Parkinson’s Disease (PD) involve complex abnormalities of
body motion that are critical to diagnosis, monitoring, and treatment selection. Gait is
a key aspect here, since it is both frequently affected and of great functional significance.
Clinicians typically use subjective scoring systems such as Performance-Oriented Mobility
Assessment(Tinetti et al., 1986) or Movement Disorder Society-sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)(Goetz et al., 2008), that rely on
observational judgments. However, their subjective nature poses challenges in reproducibil-
ity and precise quantification.

Emerging machine-learning approaches quantify gait parameters through computer-
vision methods, analyzing features such as feet distance(Verlekar et al., 2018), swing ve-
locity (Eltoukhy et al., 2017), 2D body pose(Rupprechter et al., 2021; Jinila et al., 2022;
Tan et al., 2024; Nomm et al., 2016), gait energy images(Ortells et al., 2018), and body
keypoints in Cartesian space(Kaur et al., 2022); or through wearable-device-based feature
extraction(Han et al., 2023; Moreau et al., 2023). Although promisingly performant on
selected test datasets, these methods have limitations such as reliance on specially designed
environments, customized camera setups, tailored sensors, and abundant labelled data.
Moreover, most measurements are conducted in Cartesian or 2D space, lacking translation-
and appearance-invariance, thus contributing to poor generalizability.
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Figure 1: Proposed framework for quantifying the deviation of a test action from its pre-
diction under a given prompt, yielding a measure of movement anomaly.

To address these limitations, here we propose a zero-shot diffusion model pretrained
on diverse human motions, quantifying the deviation of input actions from specific textual
action descriptions. The approach offers a high-fidelity mapping between textual descrip-
tions and 3D pose sequences, allowing for scale-, translation-, and viewpoint-invariant gait
representations. At test time, the model evaluates gait clips against generated motions,
producing a robust anomaly score that aligns well with clinician assessments, without re-
quiring task-specific training or annotated datasets. Evaluated in PD, this approach enables
sensitive, scalable, and automated gait assessment for early disease detection in clinical and
real-world settings, and is transferable to other clinical scenarios.

2. Method

We parameterized body movements over 1-1.6 second intervals, indexed by 24 video-derived
joint positions sampled at 25Hz, using axis-angle representation, and converted them into
the HumanML3D format (Guo et al., 2022), neutralizing the effects of body shape. A hu-
man movement latent diffusion model (Tevet et al., 2022) was used to model the distribution
of movements, conditioned on their textual descriptions, providing an index of the anomaly
of test movements qualified under a normative description(Li et al., 2023). Instead of eval-
uating predicted noise(Li et al., 2023), we compared predicted vs original latent features at
each sampled time-step, formulating a subject-level anomaly measure as the mean squared
error across all latent dimensions and feature channels, and a feature-level anomaly measure
as the mean squared error across all latent dimensions. Both measures are normalized using
values derived from an empty textual prompt, then averaged over time (see Figure 1).

3. Experiments and Discussion

Result We evaluated the proposed framework on gait data from 62 patients, divided
into 4 groups based on MDS-UPDRS Part 3 gait scores assessed within normal medical
treatment regime (0-3 in this cohort, where 0 indicates normal gait and higher scores reflect
progressively worsening motor function), using 400 gait clips (100 per group) recorded
with various devices, including smartphones and webcams. The evaluation focused on
the correspondence between our anomaly measure and MDS-UPDRS scores. For both
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subject- and feature-level measures, we used the first 900 of the 1000 total time-steps, as
they provided the greatest distinction between prompts. Using the prompt ”Walking”,
the subject-level measure yielded a Spearman correlation coefficient of 0.7011 (p <le-5).
A one-way ANOVA comparing between- and within-group variance produced an F-value
of 186.14 (p <le-5). The threshold of significance for both tests was set at 0.05. The
parameterized motion data consisted of 263 dimensions, capturing interpretable features
including Cartesian joint positions, joint rotations (as 6D matrices(Zhou et al., 2019)), and
linear velocities, for which feature-level anomaly measures are derived. In Figure 2, the first
three panels show comparisons of each non-zero MDS-UPDRS score level against normal
(MDS-UPDRS=0) gait, showing that the gaits of MDS-UPDRS > 0 groups exhibit greater
errors than those from the MDS-UPDRS=0 group, with concentrations in the lower limbs
and distal joints such as the feet and hands. Joint position and rotation errors were also
prominently affected in the head and knee regions. Velocity-based errors were larger at the
hip and spine, likely due to rigidity causing greater deviation from typical gait patterns. The
right-most panel shows the correlation between feature-level anomaly measures and MDS-
UPDRS scores, further highlighting that shoulder, lower limb, and head regions are most
strongly associated with MDS-UPDRS when measuring Cartesian position; distal joints
(hands, head, feet) dominate for rotations; and the pelvic region contributes most in the
velocity domain. These results suggest that reduced dexterity, flexibility, and impaired joint
coordination are key contributors to gait abnormalities in PD. The anatomical distribution
of error also indicates imbalanced movement, consistent with PD-related asymmetry.

Conclusion We introduce an interpretable diffusion model-based gait classification frame-
work for quantifying abnormalities of gait that combines expressivity with objectivity, and
is operable within the few-label data regimes clinical scenarios impose. In the context of
PD, our zero-shot approach enables the quantification of abnormalities—both feature- and
subject-level-with good fidelity without explicit training, facilitating implementation, and
broadening access to automated analysis. The high correlation with MDS-UPDRS scores—
obtained zero-shot—leaves room for substantial benefit from fine-tuning as larger volumes
of data become available. Conditioning on highly expressive text labels enables ready ex-
tension of the framework to richly defined classification tasks, with utility across all clinical
scenarios, across movement disorders and beyond, where quantification of body motion is
critical to clinical management.
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Figure 2: Anatomical projection of joint-wise error magnitudes across groups, along with
the correlation strength contributed by errors at each joint. Outlined circles
indicate regions below the corrected statistical significance threshold (p = 0.0166),
with correlations computed independently for each data component.
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