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ABSTRACT

Diffusion-based large language models (dLLMs) are trained to model extreme
flexibility/dependence in the data-distribution; however, how to best utilize this at
inference time remains an open problem. In this work, we uncover an interest-
ing property of these models: dLLMs trained on textual data implicitly learn a
mixture of semi-autoregressive experts, where different generation orders reveal
different specialized behaviors. We show that committing to any single, fixed in-
ference time schedule, a common practice, collapses performance by failing to
leverage this latent ensemble. To address this, we introduce HEX (Hidden semi-
autoregressive EXperts for test-time scaling), a training-free inference method that
ensembles across heterogeneous block schedules. By doing a majority vote over
diverse block-sized generation paths, HEX robustly avoids failure modes associ-
ated with any single fixed schedule. On reasoning benchmarks such as GSM8K,
it boosts accuracy by up to 3.56x (from 24.72% to 88.10%), outperforming top-K
margin inference and specialized fine-tuned methods like GRPO, without addi-
tional training. HEX even yields significant gains on MATH benchmark from
16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and
Truthful QA from 28.36% to 57.46%. Our results establish test-time scaling as
a powerful principle for dLLMs, showing that the sequence in which masking is
done can play a significant role in test-time scaling/inferencing of dLLMs.

1 INTRODUCTION

Diffusion-based large language models (dLLMs) are rapidly emerging as a promising alternative to
traditional autoregressive LLMs generalizing beyond the next token prediction (Nie et al., 2025).
Unlike autoregressive models, dLLMs generate text via an iterative mask-and-unmask process, al-
lowing them to decode tokens in essentially arbitrary order (Kim et al., 2025). This fundamental
change in the generation mechanism during training grants dLLMs remarkable flexibility at infer-
ence time. In fact, recent dLLMs have already demonstrated competitive (and sometimes superior)
performance compared to their autoregressive counterparts on a similar scale (Zhao et al., 2025).
These early successes indicate that the masking strategy during inference plays a crucial role.

Gaps in our understanding about dLLMs. The freedom to choose the generation order, the mask-
ing strategy, is the central advantage of dLLMs. Recent works (Kim et al., 2025; Nie et al., 2025)
have tried to harness this flexibility by relying on prediction confidence, progressively unmasking
high-confidence tokens (top-K margin in Figure 1). However, such an approach often leads to in-
herently biased solutions as they overlook the crucial sequential structure present in the language
training data, which induces implicit biases in the learned masking strategies. As a result, these
methods might perform worse than random unmasking, as shown in Figure 1. Why this happens
and what we can do to avoid such a failure remains an open question, which we address in this
work.

QOur key finding: hidden semi-autoregressive experts. We uncover a new dimension of test-time
scaling for diffusion LLMs, centered on the masking strategy. We observe that the central degree
of freedom during inference lies in choosing the masking strategy, which is unique to dLLMs and
critically shapes the generation distribution. The sequential nature of language data causes dLLMs
to implicitly learn a mixture of semi-autoregressive experts during training. Each of these “experts”
is naturally biased towards distinct masking distributions at test time, with a natural preference
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Figure 1: Overview of our proposed HEX framework. Left: HEX leverages multiple semi-
autoregressive hidden experts, guided by different masking schedules, to produce concatenated out-
puts and a final answer. Right: HEX outperforms Top-K, Top-K margin (Kim et al., 2025) and
Random expert selection strategies (Nie et al., 2025) on reasoning tasks (GSM8K, MATH, ARC-C),
surpassing the training-based GRPO baseline (d1) (Zhao et al., 2025).

toward semi-autoregressive generation. For the first time, we demonstrate that this latent mixture
can be deliberately accessed during inference. By varying the block size used in semi-autoregressive
decoding, we can activate different experts, mirroring the conditions the model saw during training.
This insight unlocks a novel method for test-time scaling. By marginalizing across these block
schedules, we can exploit the latent ensemble of experts, resulting in significantly more robust and
optimal inference.

Hence, we propose HEX (Hidden semi-autoregressive EXperts), a training-free inference method
that uncovers a new dimension of test-time scaling for dLLMs. HEX marginalizes across block
schedules, treating block size and order as latent variables that define an additional scaling dimen-
sion, and aggregates predictions via majority voting. In doing so, it robustly avoids the pitfalls of
committing to any single decoding path, turning dLLMs’ hidden flexibility into a principled mech-
anism for test-time scaling. We summarize our contributions as follows.

(i) New dimension of test-time scaling in dLL.Ms. We show that dLL.Ms implicitly learn a mix-
ture of semi-autoregressive experts, and that block scheduling helps to uncover this latent structure.
(Section 3).

(ii) HEX: Hidden semi-autoregressive EXperts for test-time scaling. We introduce HEX, a
training-free inference algorithm ensembling over semi-autoregressive schedules with majority-vote
aggregation (Algorithm 2), turning ordering into a reliable test-time scaling dimension. (Section 4).

(iii) Comprehensive experimental analysis: matching GRPO-level performance. HEX achieves
GRPO-level results on GSM8K, MATH, ARC-C, and Truthful QA, without retraining, establishing
test-time scaling as a powerful new paradigm for diffusion LLMs. HEX outperforms existing state-
of-the-art inference methods (Kim et al., 2025) on reasoning tasks, boosting accuracy by up to 3.56x
(from 24.72% to 88.10%.) HEX even produces massive gains on more challenging tasks, including
MATH (Lightman et al., 2023) (from 16.40% to 40.00%), ARC-C (Clark et al., 2018) (from 54.18%
to 87.80%), and Truthful QA (Lin et al., 2021) (from 28.36% to 57.46%). (Section 5).

1.1 RELATED WORK

Diffusion Large Language Models. Diffusion models have achieved state-of-the-art performance
in image generation (Ho et al., 2020; Song et al., 2020), and recent advances extend them to the
discrete domain of language. The early approaches applied continuous diffusion to latent text rep-
resentations (Austin et al., 2021; Li et al., 2022; Dieleman et al., 2022), but faced challenges with
scalability and discretization. A masked diffusion paradigm soon emerged as a more tractable dis-
crete alternative (Nie et al., 2024), with large-scale implementations such as DiffuLLaMA (Gong
et al., 2024) and LLaDA (Nie et al., 2025) demonstrating that diffusion LLMs (dLLMs) can rival
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similarly sized autoregressive models, even on complex reasoning (Zhao et al., 2025; Tang et al.,
2025). This potential extends even to multimodal understanding (You et al., 2025; Wen et al., 2025).

Inference-Time Methods for dLLMs. In autoregressive models, inference-time scaling has
been extensively studied, ranging from chain-of-thought prompting (Wei et al., 2022) and self-
consistency (Wang et al., 2022) to scaling the allocation of test-time compute (Snell et al., 2024). In
contrast, inference-time methods for dLLMs remain sparse. Most gains in dLLM performance so
far have come from training-time improvements, such as applying GRPO (Zhao et al., 2025; Tang
et al., 2025) or post-training method Temporal Consistency Reinforcement (Wang et al., 2025).

2 PROBLEM FORMULATION

Masked Diffusion Language Models (MDM). Let x = (z1,...,2,) € V" be a length-n token
sequence over vocabulary V. A masked diffusion large language model (dLLM) specifies a condi-
tional denoiser pg(z[M] | x[M¢]) for any mask M C [n], where M¢ = [n] \ M. The notation
x[M] is defined as the sequence of tokens from x on the indices of M, i.e. x[M] = (x;)ien- In
the forward (corruption) process, a random subset of tokens M C [n] is masked (replaced by a
special symbol [MASK], and model py is tasked with recovering the original tokens in M given the
unmasked tokens in the complement M€ := [n] \ M. Formally, for a random mask pattern M, the
model produces a conditional distribution py(z[M] | 2[M¢]) on the masked tokens. Here, x[M|
denotes the masked tokens in . The training objective is to maximize the likelihood of ground-truth
tokens in these masked positions. Hence, the training problem can be written as

0" € arg mein Linask(0) := EonDEgtmit(n)) Enrcng, | m|=¢ [ - Z log po(; | x[MC])]
ieM

1 1 . ey

= [f Z —————~E.~p[logpe(z; | x[M ])]

MCln],ieM |M]| (\M\)

where D is the data distribution, ¢ ~ Unif([n]) is a uniformly sampled number of masked tokens
¢e{l,...,n}and M C [n]is the randomly selected subset of length |A/| = ¢. The summation in
(1) runs over all masked token positions ¢ € M, and the loss on each such position is the negative
log-likelihood of the true token x; given the remaining context (unmasked) z[M¢]. The objective
in (1) trains the model to predict randomly

masked-out tokens, and can be viewed as averag-  Algorithm 1 Vanilla MDM Inference

ing next-tokendlossle: over all I&qken plerr;(L;;a;tlons, Input: prompt Zpromp:, output length L, steps 7
i.e., an any-order objective (Nie et al., ). mask schedule {17,}7_,, model py(-|-).

Inference as the Core Challenge. After learn- [nitialize: 2(©) + [MASK]*Z;

ing 0" from (1), generation happens step by step.  for¢t =1,2,...,7 do

For instance, for a given prompt prompt, it starts Predict all masked tokens simultaneously
by selecting the number of tokens to be gener- via ~ pg ( | [prompts x(t—l)])

ated (say L), and then requires choosing how to
reveal tokens. Let a decoding trajectory be a se-
quence of masks 7 = (M, ..., Mr) that parti-
tion [n] (such that |_|,§F:1 MF = [n]), with per-step T
sizes 0y = | My|. Atstep ¢, the model predicts all Output: x

masked tokens conditioned on the currently revealed context = [ Uil M SC] . For a fixed trajectory 7
and prompt Zprompt, @ functional of natural log-likelihood is

) « Fill with predicted tokens
Fix tokens at location ¢ € M}
Mask tokens at location i € M, \ (U}_} Mf)

T

t—1
j(T; 0 | xprompt) = Z Z IOgPG* (xz ‘ mpromptal{ U Msc:|> . (2)
s=1

t=1 iecM,

We summarize the vanilla inference procedure in Algorithm 1. The ideal (but empirically in-
tractable') goal is to choose 7 such that we obtain a sample which maximizes 7 (7; 6 | Zprompt)-

'Because simply making consecutive greedy choices does not guarantee that the overall .J is maximized,
and performing a global search would require evaluating all possible trajectories, which is practically infeasible.
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Because (1) trains on all mask patterns, many training subproblems are intrinsically ill-posed (e.g.,
extremely large masks with scant context) due to the implicit sequential bias in the language train-
ing distribution. For example, some conditionals are rarely observed or provide little meaningful
context, making them effectively unsolvable. As a consequence, the model ends up learning only
a subset of subproblems or conditionals, while others remain poorly learned or ignored. A uni-
form masking objective forces the model to put equal weight on every subproblem, including those
that confound the masking sequence, resulting in a suboptimal masking strategy overall. This mis-
match creates a gap at inference time: the model’s behavior becomes highly sensitive to the masking
schedule, and strong performance depends on selecting strategies that align with the sequential bi-
ases implicitly learned during training.

Key Open Question. Thus, the central question becomes: how can we design an inference strat-
egy that faithfully reflects what the model has learned during training, given that dLLMs leave the
process fundamentally under-specified and require us to decide the optimal masking trajectory.

3 LIMITATIONS OF SOTA AND OUR KEY INSIGHT

Failure of existing inference methods for reasoning tasks. The existing dLLMs rely on heuristic
inference-time strategies to choose which tokens to unmask at each denoising step. The common ap-
proaches include random sampling (randomly picking masked positions to predict) and confidence-
based selection (choosing the token positions with the high model confidence or probability). For
example, Kim et al. (2025) showed that for Sudoku puzzles a simple confidence-based top-K margin
method can boost accuracy from 7% to nearly 90%. Intuitively, one might expect a similar benefit
for reasoning tasks. Surprisingly, we find the opposite in reasoning benchmarks. In our experi-
ments (see Figure 2) on GSM8K math problems, random unmasking far outperforms top-K margin
(high-confidence) decoding. Instead of guiding generation, high confidence derails the unmasking
trajectory into producing degenerate outputs. In Figure 2, the top-K margin strategy consistently
unmasked the [AfterBoT] ({endoftext)) token at all positions, proceeding backward from the end to
the front (See B.5 for a detailed explanation). This leads to degenerate outputs (shown in red text)
in Figure 2. This surprising result challenges our intuition built through studying prior work.

55- GSM8K o Random (block size = 256) Top-K margin (block size = 256)
Random
.87
50- 0.8 Top-K margin ? @
] @
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S0 (pred: 16.0 | gt: 16.0) (pred: None | gt: 16.0|
. Let's assume that Dorothy has acebool <[eot_id[><[endoftext[><[endoftext[><[endof
25- 24.72 friends. 2. Charlie text|><|endoftext|><|
J=4\times 4 =16 \] - Therefore, James \><|endoftext|><\endof{ext\><|endoftext|><\en
20- has 16 Facebook friends. </reasoning> <answer> doftext|><|endoftext|><|endoftext|><|endoftex
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Figure 2: Random vs. Top-K margin inference on GSMS8K. Left: Random decoding achieves
50.87% accuracy, while Right: Top-K margin only 24.72%. For each method, the text box shows
the result at the last unmasking step. Top-K margin generates output tokens in reverse, from the
end toward the beginning, and exhibits a catastrophic collapse in which all tokens are [AfterEoT]
(shown in red). Over 55.5% of top-K margin runs suffered this collapse, yielding very low accuracy.
These failures cast doubt on methods that rely solely on token confidence.

Unexpected reversal of intuition. Our findings highlight a key limitation of relying on common
heuristics from autoregressive models and prior work (Kim et al., 2025). While one would expect
that “follow the model’s own highest-probability tokens” is a reliable strategy, our results show that
methods relying solely on token confidence are not sufficient for strong performance in complex
reasoning tasks. Our results thus raise basic questions: Why does random sampling outperform
top-K margin? Why does the model overconfidently pick the [AfterEoT] so early? To answer these
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questions, we propose a new perspective on the dLLM’s internal structure. Our key insight is that
the dLLM can be viewed as an implicit mixture of experts, which allows us to mitigate the risk of
overconfidently predicting [AfterEoT] tokens too early. By aggregating predictions from experts
conditioned on different subsets of tokens, effectively marginalizing over contexts, our approach
avoids prematurely committing to high-confidence tokens like the [AfterEoT] token.

From failure to mechanism. The surprising failure of confidence-based schedules suggests that
local token probabilities are unreliable under many masked contexts induced at inference. Because
the dLLM objective (in (1)) averages over a wide variety of maskings, including ill-posed ones,
some conditionals are poorly learned and disproportionately favor special tokens such as [AfterEoT].
Our view is to treat each semi-AR block schedule as querying a different conditional expert, then
marginalize across experts to recover robust predictions. This replaces brittle confidence-following
with consensus-seeking and is the core rationale behind HEX.

Our Key Insight: dLLM is an implicit mixture of experts. From (2), it is evident that the diffusion
LLM training leads to a model with a family of masked—token conditionals

{po(@i | [wpromp, x[U]]) 0 € [n], U S [n]\ {i} },
which we can view as implicit “experts” indexed by the visible/unmasked set of tokens U.
For a fixed target index 7 at test-time, the goal is to aggregate the relevant experts {pg(z; |
[Zprompt> Z[U]]) Yucn)\qi} into a single prediction rule. A principled aggregation strategy is the
mixture-of-experts predictor given by

pmix(xi =a | mprompl) = ZW(U | xprompl) pQ(xi =a | [-rpromph x[U]])a 3)
U

where 7(U | xpmmpl) denotes the weight or trust placed on expert U for prompt Zprompt-

A Toy Example. In our toy example (Figure 3), we examine the model’s answer to the prompt “Who
invented telephone?” (ground truth: “The inventor was Bell.”). We treat each latent conditional
context (or expert) as a separate setting that produces a distribution to predict masked tokens. Figure
3 plots these distributions for a particular position, ¢ = 4 (the token ‘Bell’). As the plot makes clear,
most experts concentrate probability on “Bell” (the correct token), but a few contexts produce flat
or incorrect distributions that never predict “Bell”.

e Correct-Answer Contexts (Experts): The majority of conditionals yield a distribution that peaked
at the correct answer token Bell. These contexts effectively act as “experts” on this question.

o Non-Expert Contexts: Some conditionals do not produce a clear peak in ’Bell’. These contexts fail
to predict the correct answer.

Token Confidence Distributions Over Different Mask Conditions
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prompt: —— U {1, 2, 3}, The inventor was [M]. —— U {3}, [M] [M] was [M].
Who invented telephone? U {2, 3}, [M] inventor was [M]. —— U {2}, [M] inventor [M] [M].
output: —— U {1, 3}, The [M] was [M]. U {1}, The [M] [M] [M].
The inventor was Bell. —— U {1, 2}, The inventor [M] [M]. —— U {2}, [M] [M] [M] [M].

Figure 3: The distribution of the 4th token ' Be11’ in the output sequence changes significantly de-
pending on the 22 masking conditions applied to the previous three tokens: ’ The’, ’ inventor’,
"was’. The star mark indicates the highest confidence for each distribution generated by U.
Some masking conditions (violet and ) produce collapsed distribution: "Bell Bell was
invented. " (ungrammatical sentence), "The telephone was invented." (missing tar-
get information), respectively.
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We note that even though the model as a whole can answer correctly, not all conditionals are experts.
The figure shows that only a subset of experts “know” the answer, while others do not. Hence,
our toy example shows that identifying which context is the right expert is difficult. We do not
know a priori which conditional context (or expert) will yield the correct token. The hidden gating
distribution 7(U) that governs how likely each context knows the answer is unknown. The dLLMs
doesn’t learn the underlying gating distribution.

4 HIDDEN SEMI-AUTOREGRESSIVE EXPERTS FOR TEST-TIME SCALING

Token Confidence Distributions Over Different Block Sizes
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prompt:
Please explain briefly who received the 2024 Turing Award.

output:

The 2024 Turing Award was awarded to Andrew G. Barto and Richard S. Sutton, and the content
is their development of the conceptual and algorithmic foundations of reinforcement learning,
through a series of foundational papers since the 1980s that established key ideas,
mathematical constructs, and algorithms pivotal to modern AI.

—— Block Size 2 —— Block Size 10 Block Size 18 —— Block Size 26 —— Block Size 32

Block Size 4 —— Block Size 12 —— Block Size 20 —— Block Size 28 Block Size 64
—— Block Size 6 Block Size 14 —— Block Size 22 —— Block Size 30 —— Block Size 128
—— Block Size 8 —— Block Size 16 Block Size 24

Figure 4: When asked about the 2024 Turing Award winners, names other than the actual recipients
(such as Michael or David) might be generated due to different block sizes, which in turn risks
producing incorrect information in the subsequent token sequence. However, if we generate outputs
with various block sizes and then select the most frequently produced answer, that answer is more
likely to be correct, since it was probably derived through a valid reasoning (Andrew) during the
inference process.

However, in order to estimate pnix, we would need to estimate the likelihood for dLLM, which is
extremely challenging, as also highlighted in (Tang et al., 2025; Zhao et al., 2025; Nie et al., 2025).
Ideally, we would compute the Bayes-optimal conditional probability pmix(2; = @ | Zprompt) by fully
marginalizing over all possible sequences of tokens in U. In practice, this is infeasible for diffusion
LLMs, since their likelihood is intractable and must be approximated. To sidestep this, we approx-
imate the ideal mixture by ensemble-averaging over a small set B of “semi-autoregressive,” each
defined by a particular block-schedule b € B. Concretely, we sample several semi-AR decoding
schedules b, each of which queries exactly one expert Up, and then averaging:

Pmix (xz =a | xprompt) ~ EyoB [pa (xz =a | [xprompta x[UbH)] 4)
The final prediction can be made using the Bayes rule:

a = arg max Pmix (Ti = @ | Tprompt)- 5)
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A simple Monte Carlo approximation of this decision rule is majority vote: draw one sample ay
from each queried expert Uy, and return the mode of the sampled values. Thus, either by mixture
averaging or majority vote, test-time aggregation amplifies the correct prediction by combining the
specific conditionals the model actually learned. Based on this insight, we summarize our proposed
approach in Algorithm 2.

For each schedule, we first convert the final generated token sequence z(™) into a natural language
string representation. We then apply numeric parsing to remove LaTeX formatting, whitespace, and
commas. This yields a parsed output f(z(7)) for each schedule, which we store in a list. The final
answer is chosen as the value that occurs most frequently across schedules. If there is a tie (i.e., two
or more values appear with the same highest frequency), we choose the value generated from the
schedule with the smallest block size.

Algorithm 2 Hidden semi-autoregressive EXperts for test-time scaling

Input: prompt Zprompt, output length L, output parser f, steps ', experts B5; semi-AR mask schedule
{Urp}i=1 3521, model py(-[-).
Initialize outputs « [ ]
forb=1,2,...,Bdo
Initialize: 2(©) < [MASK]*~
fort=1,2,...,T do
Predict all masked tokens simultaneously via ~ p (- | [Zprompt, 2 ~1)])

() « Fill with predicted tokens
Fix tokens at location ¢ € Uy,

Mask again tokens at location ¢ € Uy 5 \ (U}Z_:ll U, ﬁ,b)
2T < 2(T) as a natural language string

| Append parsed string output f(2(7)) to outputs
Output: max(outputs, key = lambda x: (output s.count(x), -out put s.index(x))

Why semi-autoregressive? Diffusion LLMs allow all trajectories to reveal masked tokens, but
uniformly random orders are suboptimal for language: they create unnatural partial contexts that
the model was never intended to generate at test ) ) o

time. A practical restriction is semi-autoregressive Table 1: Semi-AR based Qecodlng eliminates
left-to-right decoding (semi-AR): fix a block size [AfterEoT] collapse and improves accuracy.

= {17 o Bmax} (where Bp.x = n) and parti- Dataset  Collapsed (|, %) Accuracy (T, %)
tion [n] into consecutive blocks Baseline (non-semi-AR)

My = {(t = )b+ L. min(th,n)}. MATH 2080 1660
fort =1,...,T(b) = [n/b], revealing blocks left- Semi-AR
to-right while denoising within each block via diffu- GSMB8K 0.00 76.27
sion. This preserves a strong prefix structure (natural MATH Loy 2280

for language), yet allows parallel denoising inside a block. Empirically, we find (see Table 1) that
semi-AR decoding avoids pathologies seen in fully parallel decoding. In particular, when using a
single large block (i.e., non-semi-AR parallel decode), we often observe an [AfterEoT] collapse:
the model erroneously floods the tail with [AfterEoT] tokens or repeats (Figure 8). By contrast,
constraining to moderate block sizes (decoding left-to-right) eliminates this collapse and dramati-
cally improves accuracy. (See Table 1: semi-AR has 0% collapse and much higher accuracy than
non-AR decoding.) Intuitively, focusing first on the left part of the output prevents the model from
prematurely committing to a length or drifting with high-confidence tail tokens.

5 EXPERIMENTS

In this section, we empirically validate our claims. (i) Effectiveness: We first demonstrate that
HEX significantly outperforms existing training-free and fine-tuned methods on a suite of reason-
ing benchmarks. (ii) Scaling behavior: We then analyze the performance-computation trade-off,
showing how accuracy scales with more diverse generation paths. (iii) Working mechanism: Finally,
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Figure 5: HEX improves reasoning accuracy. On LLaDA-8B-Instruct, HEX outperforms training-
free baselines (Random, Top-k, Top-k-margin) on GSM8K, MATH, ARC-C, and Truthful QA. In
GSMSK, MATH, ARC-C, it even outperforms the model trained with GRPO without any training.

through a series of ablations and qualitative examples, we explore the mechanisms behind HEX’s
success, confirming that its gain comes from ensembling a latent mixture of semi-AR experts rather
than relying on heuristics like model confidence.

5.1 SETUP

Datasets and Metrics. We follow standard reasoning benchmarks: GSM8K (Cobbe et al., 2021)
consisting of high-quality problems with diverse linguistic expressions, MATH (Lightman et al.,
2023) is a more challenging math benchmark that includes competition-level math problems, ARC-
C (Clark et al., 2018) is the Challenge Set from AI2’s ARC dataset, consisting of science knowledge-
based questions that are difficult to solve with simple keyword matching or retrieval, and Truth-
fulQA (Lin et al., 2021) which evaluates the tendency of language models to generate false infor-
mation by following human misconceptions or false beliefs.” Primary metric is task accuracy.

Models and Baselines. All experiments with inference methods were performed using the LLaDA-
8B-Instruct model (Nie et al., 2025), and the application of d1 (GPRO) (Zhao et al., 2025) is sub-
sequently based on this model. For all methods, when the output length is 256 tokens, the number
of unmasking steps is 128. At each step, two masked tokens are unmasked, and this process is
repeated until all tokens are revealed. Random unmasks two randomly chosen masked tokens per
step. Top-k margin unmasks, at each step, the two masked tokens with the highest margin defined
as (top-1 confidence — top-2 confidence) at their positions. d1 (GRPO) row uses the reported best
value (Zhao et al., 2025) for GSM8K and MATH, and for ARC-C we report a value reproduced after
1 epoch of training. TruthfulQA trained on d1 (GRPO) is excluded because there is no training data
available, and neither were checkpoints released. HEX draws five samples at temperature = 0.9 for
each of the block sizes [8, 16, 32, 64, 128], yielding 25 samples in total. If a tie occurs for the most
frequent value, the value generated with the smallest block size is selected (Algorithm 2).

5.2 MAIN RESULTS: HEX ESTABLISHES A NEW STATE-OF-THE-ART

Overall performance. Figure 5 shows that HEX achieves the strongest results across all four rea-
soning benchmarks, outperforming both training-free and fine-tuned baselines. Compared to ex-
isting decoding strategies (Nie et al., 2025; Kim et al., 2025), HEX delivers large and consistent
gains. In GSMSK, for example, HEX reaches 88.10% accuracy, far higher than Random decod-
ing (50.87%) and Top-k margin (24.72%). These results show that confidence-based heuristics are
unreliable in diffusion LLMs, whereas consensus-based voting in HEX is robust (Figure 7).

Comparison with GRPO fine-tuned models. Perhaps most strikingly, HEX also surpasses d1
(GRPO), which requires costly reinforcement learning fine-tuning. On GSMSK (88.10% vs.

2We use official evaluation scripts; numeric parsing strips LaTeX wrappers/whitespace/commas.
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79.80%), MATH (40.00% vs. 37.20%), and ARC-C (87.80% vs. 82.68%), HEX sets a new state
of the art without updating model parameters.

Intuitively, fixed inference scheduled in existing techniques sometimes asks the model to guess
hard tokens too early, which leads to mistakes. In contrast, HEX tries several semi-autoregressive
schedules and then picks the answer that many schedules agree on. In practice, answers that show
up across schedules are more reliable than answers from any single schedule.

Takeaway. These results suggest that the reasoning ability of a diffusion LLM remains latent and
can be unlocked at inference time through block-marginalized ensembling, without any fine-tuning.

5.3 ANALYSIS OF SCALING AND COMPUTE TRADE-OFF

Figure 6 shows that HEX’s accuracy improves monotonically as the number of voting samples in-
creases, while the tie rate, an indicator of ambiguity, steadily declines. Intuitively, different semi-AR
schedules make different mistakes but tend to agree on the correct answer; adding schedules can-
cels schedule-specific errors and strengthens consensus, so ties resolve and accuracy improves. This
trend holds consistently across all four benchmarks. Because sampling more trajectories linearly
increases compute cost, HEX effectively exposes a tunable accuracy, compute knob: practitioners
can trade inference cost for accuracy in a predictable way, without retraining.

GSM8K a MATH 20 ARC-C TruthfulQA
88 e o ~— I8
2o 40 g8/ 255
.86 , = 155 < / = 6
9 / 3 9 9
g £39 80/ S /
3 3 o 550 /
ge4 g \/ 10° & |/ g 4
/ 38 /
82’ 75 asl 2
10 20 30 10 20 20 10 20 30
HEX Inference Cost HEX Inference Cost HEX Inference Cost HEX Inference Cost
—— Accuracy Tie Rate

Figure 6: As the number of majority voting samples in HEX increases, accuracy improves and the
tie rate decreases. The block sizes used are [8, 16, 32, 64, 128], and sampling was performed while
increasing the number of seeds (1-6).

Takeaway. HEX not only establishes state-of-the-art performance but also provides a principled
mechanism for test-time scaling, ensuring accuracy improves with more inference budget.

5.4 ABLATION STUDIES

Next, we analyze the mechanisms behind the HEX improvements, focusing on two key factors: the
role of block diversity and the role of likelihood versus frequency in candidate selection.

Effect of block diversity. Beyond using a fixed set of block sizes, we test whether ensembling
over more varied (and even randomly generated) block schedules further boosts performance. As
shown in Table 2, increasing the number of dynamic trajectories from 5 to 30 on GSM8K improves
accuracy from 81.96% to 84.15% while reducing the tie rate to

less than half. This reinforces our hypothesis that performance  ~Sijze  Accuracy (T %) Tie (| %)
gains come from aggregating diverse “semi-AR experts.” We 5 81.96 3.87
note that diversity matters, but structured diversity (fixed block 10 82.34 3.18
set with multiple seeds) is even stronger (as in Table 3), yield- 15 82.49 1.59
ing the highest overall gains. 52 ggzg }gg
Frequency vs. likelihood. We then examine whether HEX’s 30 84.15 1.06

gains could simply come from likelihood-based re-ranking.
Table 3 shows that the selection of the lowest negative
log-likelihood candidate (NLL) performs poorly, in some
cases worse than Random decoding (e.g., ARC-C: 70.05%
vs. 60.84%). In contrast, HEX’s frequency-based majority
vote achieves much higher accuracy (74.57%), confirming that

Table 2: HEX dynamic block size
results. Accuracy and tie rate (%)
on GSMSK across dynamic block
size. See Figure 9 for details.
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consensus among diverse trajectories is more reliable than model confidence scores. This shows that
the key driver of HEX’s success is ensemble agreement.

Tie break and Latency. HEX defaults to the smallest block size in tie situations, as Table 4 indicates
that jointly considering frequency and log-likelihood does not bring a clear advantage. In addition,
we present the wall-time latency of HEX and the baseline inference methods in Table 5.

Table 3: Ablations across datasets. NLL selects the candidate with the lowest NLL. HEXs tie issue
diminishes as the number of samples increases. Block sizes: [8, 16, 32, 64, 128].

GSMS8K MATH ARC-C Truthful QA
Method Acc (1%) Tie ({%) Acc (1%) Tie ([ %) Acc (1%) Tie (1 %) Acc (T%) Tie (1 %)
Baselines
Random 50.87 - 16.80 - 70.05 - 42.40 -
top-k 22.52 - 16.60 - 47.87 - 29.82 -
top-k margin ~ 24.72 - 16.40 - 54.18 - 28.36 -
d1 (GRPO) 79.80 - 37.20 - 82.68 - - -
Likelihood-based
NLL 76.72 4.09 34.40 16.00  60.84 2.99 28.07 4.24
HEX
HEX 82.18 4.09 38.40 16.00  74.57 2.99 4591 4.24

HEX x5 seeds 88.10 1.36 40.00 10.20 87.80 1.11 57.46 2.78

6 CONCLUSION AND LIMITATION

In this work, we study how diffusion-based language models (dLLMs) generate text. We found
that their performance is fundamentally tied to the decoding schedule, the order in which tokens
are generated. This is because dLLMs implicitly learn a ’set” of semi-autoregressive experts during
training. Different schedules activate different experts, and choosing the right one is crucial for
getting a high-quality answer. This single insight helps explain common dLLM issues, such as
why they sometimes stop generating text too early or fail even when they seem confident. Based
on this insight, we introduced HEX (Hidden semi-autoregressive EXperts), a powerful inference
method that requires no extra training. Instead of relying on a single schedule, HEX tries many
different schedules at once and lets the experts “vote” on the best final answer. By combining the
strengths of the entire hidden team, HEX turns the model’s flexibility into a reliable tool for boosting
performance. On challenging reasoning benchmarks, HEX doesn’t just beat standard methods; it
even surpasses models fine-tuned with costly techniques like reinforcement learning (GRPO).

HEX has some limitations. It requires more computation at test time, and we have mainly evaluated
it on reasoning tasks. Applying this method to more creative areas like open-ended stories, image
generation, or long conversations remains a promising area for future work. Further, we have not
established any theoretical understanding of HEX, which is a valid scope of future work.

10
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ETHICS STATEMENT

Our research aims to reveal the untapped potential of diffusion-based Large Language Model
(dLLMs) and to enhance reasoning performance across comprehensive tasks without additional
training, through test-time scaling. All datasets used in the evaluation are public and widely known,
and to the best of our knowledge, we have thoroughly examined and cited research that is poten-
tially or directly related to our work. We clarify that our use of LLMs was strictly limited to polish
writing, such as grammatical correction and fluent expression, not for generating the main content
of the research.
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APPENDIX

A QUALITATIVE RESULTS

Al

QUALITATIVE ANALYSIS OF BASELINES vS. HEX

N
Manolo bought five lollipops and four candies that cost $3.20.

If each lollipop costs $0.40, how much will 10 lollipops and 10 candies cost him?
Ground Truth: 7 )

First, let's determine the cost of
one candy. We know that five
lollipops and four candies cost
$3.20, and each lollipop costs
$0.40.

The total cost of five lollipops is:
\[ 5\times 0.40 =2.00\]

This means that the total cost of
the four candies is $1.20.

Therefore, the cost of one candy is:

\[ \frac{1.20H{4} =0.00\]

Now, we need to find the cost of
10 lollipops and 10 candies. The
cost of 10 candies is:

\[ 10 \times 0.00 =0.00\]

The cost of 10 lollipops is:
\[ 10 \times 0.40 =4.00\]

Therefore, the total cost for 10
lollipops and 10 candies is $4.00.
</reasoning>

<answer>
\boxed{4.00}

</answer><|eot_id|><|endoftext|>

First, we need to determine the
cost of one candy. We know that
Manolo bought five lollipops and
four candies that cost $3.20, and
each lollipop costs $0.40. This can
be expressed as:

\[ 5 \times 0.400 + 4C = 3.20 \]
\[4C =2.00\]
\[ C = \frac{2.00}{4} = 0.5000\]

Now, we know each lollipop costs
$0.40/ 100 = $0.40. Each candy
costs $0.4000.

To find the total cost of 10
lollipops and 10 candies:

\[ 10 \times 0.4000 + 10 \times
0.5000\]

\[ 10 \times 0.400 + 50000 \times
100=5.00\]

</reasoning>

<answer>
\boxed{5.00}

</answer><|eot_id|><|endoftext|>

HEX (Ours):

First, let's determine the cost of one
candy. We know that Manolo bought
five lollipops and four candies for a
total of $3.20, and each lollipop
costs $0.40, so the total cost of five
lollipops is \(5 \times 0.40 = 2.00\).

Therefore, the cost of four candies is
\(3.20 - 2.00 = 1.20\).

Since four candies cost $1.20, the
cost of one candy is
\(1.20 \div 4 = 0.30\).

Now, we need to find the cost of 10
lollipops and ten candies. The cost
of 10 lollipops is

\(10 \times 0.40 = 4.00\)

and the cost of 10 candies is
\(10 \times 0.30 = 3.00\).

So, the total costis \(4.00 + 3.00 =
7.00\).
</reasoning>

<answer>
\boxed{7.00}

</answer><|eot_id|><|endoftext|>

Figure 7: An instance of generated text responses of different decoding strategies.

A.2 QUALITATIVE ANALYSIS OF SEMI-AR VS. NON-SEMI-AR

As shown in the right side of Figure 8 in confidence based non-semi-AR decoding, the phenomenon
where [AfterEoT] tokens accumulate from the end of the output towards the front indicates that the
model is assigning high confidence to [AfterEoT] token throughout the unmasking steps.

The input to the dLLM consists of the number of tokens that make up the prompt and the number
of tokens in the desired output sequence, and during training it is subject to limits on the input
sequence length for parallel computation. For LLaDA-8B-Instruct (GSAI-ML), this limit is 4,096
tokens. However, in the training of reasoning tasks, most of the output finishes within 256 tokens.
In other words, the majority of ground truth tokens in the output sequence (more than 93.75%) are
[AfterEoT]: Given that the training objective is to maximize the average likelihood, we can infer
that the dLLM is most strongly taught to generate the [AfterEoT] token.
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Figure 8: Blue denotes mask tokens, red denotes [AfterEoT] tokens, white denotes text tokens,
and green denotes [EoT] tokens (note that in the LLaDA-8-Instruct model, [EoT] and [AfterEoT]
are represented as < |eot_id| > and < |endoftext| >, respectively (GSAI-ML)). As unmasking
proceeds, two mask tokens are unmasked at each step (output length = 256, unmasking steps = 128).
Under a semi-AR regime with block size = 32, positional constraints force reasoning to progress
left-to-right while still allowing diffusion-style generation within each block. By contrast, when the
positional constraint is removed with block size = 256 (non-semi-AR), the model starts from the last
token with the highest confidence—[AfterEoT]—and, due to the inertia of repeatedly generating the
same token backward, ultimately collapses into a catastrophic output in which all tokens become
[AfterEoT].

This suggests that confidence-only decoding is fundamentally limited in its ability to prevent such
phenomena during inference, and highlights why the positions of tokens to be unmasked should not
be selected based solely on confidence.

B ADDITIONAL EXAMPLES AND RESULTS WHICH CAN BE USEFUL

B.1 HoOW THE SEMI-AR SCHEDULE LEVERAGES LEARNED PREFIX-LIKE CONTEXTS

Let x = (z1, T2, ¥3, 24). To predict x4, the visible set is a subset of {1, 2, 3}, i.e.

U e {o, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.

Suppose (due to sequential bias in the data) the model learns well only the prefix-like contexts

S = {{1}, {12}, {1,2.3}}. ©)

Then left-to-right semi-autoregressive (semi-AR) schedules realize exactly these conditionals by
changing the block size B:

* B =1,1,1,1 (blocks {1}, {2}, {3}, {4}): when z, is predicted, the visible set is U =
{1, 2,3}, so the model uses pg(x4 | 21, T2, T3).

* B =2,2(blocks {1, 2}, {3,4}): when x4 is predicted (with 5 in the same step parellelly),
the visible context is the completed first block, U = {1, 2}, hence pg(x4 | 21, z2).

* B =3,1 (blocks {1, 2,3}, {4}): when x4 is predicted, U = {1, 2, 3} again, hence py(z4 |
T1,%2,23).
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One can also realize U = {1}, by B = 1,3 (blocks {1},{2,3,4}): when z, is predicted (with
Z2, x3 in the same step in parallel), the visible context is the completed first block, U = {1},
hence pg(x4 | x1). Furthermore, if we set additional within-block order constraints® Ciqer (€..
descending order of confidence), another possible condition of U = {1} can occur by

B=14 (blOCkS {]., 273,4}) AN Corder(xl < x4 < Ty < x3 Within B),

hence the model uses py(z4 | 1).

\S|10\12\14\16\18|29\22\24\26\28\4a
\14\15\22\2&\30\3“

4 | 20 | 26 | 32 | 38 | 44 | 36 | 3
\12|15|m\24\25|3z|35\74

| 12 | 20 | 28 | 36 | 44 | 50 | 54

210 | 18 | 26 | 34 | 42 | 50 | 74
12\14|15|1s\m\22\zuza\zsma
8| 16 | 24 | 32 | 40 | 48 | 8i
2\6\12\20\30\42\54\90

16 | 22 ] 26 | 30 | 34 | 38 | 42 | 46
2\9\12\15\24\32\40\122
4|12 | 20|28 | 36|44 |48 | 64

16 | 20 | 24 | 28 | 32 | 36 | 100
6\8\10\12\14\16\18\20\22|24\26\80
50 | 52 | 54 | 1
2\14|1s|22\25\30\34\110

2|4 |6|8]10| 12| 14|16 18 | 20 | 146
12| 20 | 22 | 24 | 26 | 28 | 30 | 94

18 | 20 | 22 | 24 | 26 | 28 | 30 | 32| 56

40 | 42 | 44 | 46 | 84

14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 88

Figure 9: Examples of the block sizes and counts used in the dynamic HEX block settings. Block
sizes and counts were randomly chosen and adjusted to match the total output length. The output
length is 256 and the number of unmasking steps is 128, meaning that each step unmasks 2 tokens.
Accordingly, all block sizes are multiples of 2, and decoding was performed in a semi-autoregressive
manner.

B.3 EXPERIMENTAL RESULTS OF HEX’S TIE-BREAKING METHODS

Table 4: Evaluation on tie breaking methods. If the most frequent output is in a tie situation, TIED:
NLL selects the result with the lowest negative log-likelihood in tie situations, TIED: first selects
the result generated from the smallest block size when tied, and TIED: any treats the case as correct
if a correct option exists among the tied candidates. The results of TIED: any clearly highlight that
majority voting of HEX works well across datasets.

GSMBK MATH ARC-C Truthful QA
Method Acc (1%) Tie (%) Acc (1%) Tie (1%) Acc (%) Tie (%) Acc (1%) Tie (%)

HEX (tie-breaking rules)

HEX, TIED: NLL.  82.18 4.09 38.00 16.00 74.49 2.99 46.20 4.24
HEX, TIED: first 82.18 4.09 38.40 16.00 74.57 2.99 4591 4.24
HEX, TIED: any 83.09 4.09 41.00 16.00 76.11 2.99 47.66 4.24

3 Adding this condition changes the number of unmasking steps within the block size.
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B.4 ANALYSIS OF DECODING LATENCY ACROSS INFERENCE METHODS

Table 5: Inference efficiency (in seconds) of HEX on GSM8K, MATH, ARC-C, TruthfulQA. The
numbers in parentheses indicate the number of data points. Random, top-k, and top-k margin use
a single sample with a block size of 32. HEX uses five samples, where each sample is generated
with block sizes of 8, 16, 32, 64, and 128. Across all samples, the output length is set to 256, with 2
tokens being unmasked at each step.

Dataset Method Total test set  per batch (8) per datapoint (1) ratio
random 2775.73 16.76 2.09 % 1.0000
top-k 2921.70 17.64 2.20 x1.0526

GSMBK (1319) top-k margin 3187.56 19.25 241 x1.1484
HEX 14613.72 88.23 11.03 x5.2648
random 1300.62 20.46 2.56 x1.0000
top-k 1365.98 21.51 2.69 x1.0503

MATH (500) top-k margin  1477.33 2328 291 «1.1359
HEX 6823.17 107.50 13.43 x5.2461
random 2679.99 18.15 2.27 x1.0000
top-k 2813.69 19.05 2.38 x1.0499

ARC-C 172) top-k margin 3048.49 20.64 2.58 x1.1375
HEX 14062.59 95.22 11.90 x5.2473
random 1532.40 17.71 221 % 1.0000
top-k 1608.77 18.58 2.32 x1.0498

TruthfulQA (684) 1 4 margin ~ 1739.78 20.12 2.52 «1.1353
HEX 8038.26 92.90 11.61 x5.2455

B.5 STRUCTURED PATTERNS INHERENT IN AFTEREOT COLLAPSE

Despite being highly unintuitive and unpredictable, the ordering pattern observed in AfterEoT Col-
lapse exhibits a clear structure: although there is no explicit incentive for the model to unmask
padding tokens in a right-to-left manner during either training or inference, this regularity consis-
tently emerges throughout the entire unmasking process (see Figure 2). This systematic behavior
under collapse suggests that the underlying ordering mechanisms in diffusion LLMs — embedded
within both the training objective and the inference procedure — may play a more active and influ-
ential role than previously recognized.
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