
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEST-TIME SCALING IN DIFFUSION LLMS VIA
HIDDEN SEMI-AUTOREGRESSIVE EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based large language models (dLLMs) are trained to model extreme
flexibility/dependence in the data-distribution; however, how to best utilize this at
inference time remains an open problem. In this work, we uncover an interest-
ing property of these models: dLLMs trained on textual data implicitly learn a
mixture of semi-autoregressive experts, where different generation orders reveal
different specialized behaviors. We show that committing to any single, fixed in-
ference time schedule, a common practice, collapses performance by failing to
leverage this latent ensemble. To address this, we introduce HEX (Hidden semi-
autoregressive EXperts for test-time scaling), a training-free inference method that
ensembles across heterogeneous block schedules. By doing a majority vote over
diverse block-sized generation paths, HEX robustly avoids failure modes associ-
ated with any single fixed schedule. On reasoning benchmarks such as GSM8K,
it boosts accuracy by up to 3.56× (from 24.72% to 88.10%), outperforming top-K
margin inference and specialized fine-tuned methods like GRPO, without addi-
tional training. HEX even yields significant gains on MATH benchmark from
16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and
TruthfulQA from 28.36% to 57.46%. Our results establish test-time scaling as
a powerful principle for dLLMs, showing that the sequence in which masking is
done can play a significant role in test-time scaling/inferencing of dLLMs.

1 INTRODUCTION

Diffusion-based large language models (dLLMs) are rapidly emerging as a promising alternative to
traditional autoregressive LLMs generalizing beyond the next token prediction (Nie et al., 2025).
Unlike autoregressive models, dLLMs generate text via an iterative mask-and-unmask process, al-
lowing them to decode tokens in essentially arbitrary order (Kim et al., 2025). This fundamental
change in the generation mechanism during training grants dLLMs remarkable flexibility at infer-
ence time. In fact, recent dLLMs have already demonstrated competitive (and sometimes superior)
performance compared to their autoregressive counterparts on a similar scale (Zhao et al., 2025).
These early successes indicate that the masking strategy during inference plays a crucial role.

Gaps in our understanding about dLLMs. The freedom to choose the generation order, the mask-
ing strategy, is the central advantage of dLLMs. Recent works (Kim et al., 2025; Nie et al., 2025)
have tried to harness this flexibility by relying on prediction confidence, progressively unmasking
high-confidence tokens (top-K margin in Figure 1). However, such an approach often leads to in-
herently biased solutions as they overlook the crucial sequential structure present in the language
training data, which induces implicit biases in the learned masking strategies. As a result, these
methods might perform worse than random unmasking, as shown in Figure 1. Why this happens
and what we can do to avoid such a failure remains an open question, which we address in this
work.

Our key finding: hidden semi-autoregressive experts. We uncover a new dimension of test-time
scaling for diffusion LLMs, centered on the masking strategy. We observe that the central degree
of freedom during inference lies in choosing the masking strategy, which is unique to dLLMs and
critically shapes the generation distribution. The sequential nature of language data causes dLLMs
to implicitly learn a mixture of semi-autoregressive experts during training. Each of these ”experts”
is naturally biased towards distinct masking distributions at test time, with a natural preference

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝐩𝐫𝐨𝐦𝐩𝐭 𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬

𝐟𝐢𝐧𝐚𝐥
𝐨𝐮𝐭𝐩𝐮𝐭

𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐢𝐨𝐧

𝐇𝐢𝐝𝐝𝐞𝐧 𝐄𝐱𝐩𝐞𝐫𝐭 𝟏

𝐦𝐚𝐬𝐤𝐬

𝓜𝛉

𝐇𝐢𝐝𝐝𝐞𝐧 𝐄𝐱𝐩𝐞𝐫𝐭 𝟐

𝐇𝐢𝐝𝐝𝐞𝐧 𝐄𝐱𝐩𝐞𝐫𝐭 𝐁

……

Top-K Top-K
margin

Random Ours20.00

30.00

40.00

50.00

60.00
66.56
70.00

80.00

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

d1 (GRPO)

29.00 31.77

45.91

71.97

Figure 1: Overview of our proposed HEX framework. Left: HEX leverages multiple semi-
autoregressive hidden experts, guided by different masking schedules, to produce concatenated out-
puts and a final answer. Right: HEX outperforms Top-K, Top-K margin (Kim et al., 2025) and
Random expert selection strategies (Nie et al., 2025) on reasoning tasks (GSM8K, MATH, ARC-C),
surpassing the training-based GRPO baseline (d1) (Zhao et al., 2025).

toward semi-autoregressive generation. For the first time, we demonstrate that this latent mixture
can be deliberately accessed during inference. By varying the block size used in semi-autoregressive
decoding, we can activate different experts, mirroring the conditions the model saw during training.
This insight unlocks a novel method for test-time scaling. By marginalizing across these block
schedules, we can exploit the latent ensemble of experts, resulting in significantly more robust and
optimal inference.

Hence, we propose HEX (Hidden semi-autoregressive EXperts), a training-free inference method
that uncovers a new dimension of test-time scaling for dLLMs. HEX marginalizes across block
schedules, treating block size and order as latent variables that define an additional scaling dimen-
sion, and aggregates predictions via majority voting. In doing so, it robustly avoids the pitfalls of
committing to any single decoding path, turning dLLMs’ hidden flexibility into a principled mech-
anism for test-time scaling. We summarize our contributions as follows.

(i) New dimension of test-time scaling in dLLMs. We show that dLLMs implicitly learn a mix-
ture of semi-autoregressive experts, and that block scheduling helps to uncover this latent structure.
(Section 3).

(ii) HEX: Hidden semi-autoregressive EXperts for test-time scaling. We introduce HEX, a
training-free inference algorithm ensembling over semi-autoregressive schedules with majority-vote
aggregation (Algorithm 2), turning ordering into a reliable test-time scaling dimension. (Section 4).

(iii) Comprehensive experimental analysis: matching GRPO-level performance. HEX achieves
GRPO-level results on GSM8K, MATH, ARC-C, and TruthfulQA, without retraining, establishing
test-time scaling as a powerful new paradigm for diffusion LLMs. HEX outperforms existing state-
of-the-art inference methods (Kim et al., 2025) on reasoning tasks, boosting accuracy by up to 3.56×
(from 24.72% to 88.10%.) HEX even produces massive gains on more challenging tasks, including
MATH (Lightman et al., 2023) (from 16.40% to 40.00%), ARC-C (Clark et al., 2018) (from 54.18%
to 87.80%), and TruthfulQA (Lin et al., 2021) (from 28.36% to 57.46%). (Section 5).

1.1 RELATED WORK

Diffusion Large Language Models. Diffusion models have achieved state-of-the-art performance
in image generation (Ho et al., 2020; Song et al., 2020), and recent advances extend them to the
discrete domain of language. The early approaches applied continuous diffusion to latent text rep-
resentations (Austin et al., 2021; Li et al., 2022; Dieleman et al., 2022), but faced challenges with
scalability and discretization. A masked diffusion paradigm soon emerged as a more tractable dis-
crete alternative (Nie et al., 2024), with large-scale implementations such as DiffuLLaMA (Gong
et al., 2024) and LLaDA (Nie et al., 2025) demonstrating that diffusion LLMs (dLLMs) can rival

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

similarly sized autoregressive models, even on complex reasoning (Zhao et al., 2025; Tang et al.,
2025). This potential extends even to multimodal understanding (You et al., 2025; Wen et al., 2025).

Inference-Time Methods for dLLMs. In autoregressive models, inference-time scaling has
been extensively studied, ranging from chain-of-thought prompting (Wei et al., 2022) and self-
consistency (Wang et al., 2022) to scaling the allocation of test-time compute (Snell et al., 2024). In
contrast, inference-time methods for dLLMs remain sparse. Most gains in dLLM performance so
far have come from training-time improvements, such as applying GRPO (Zhao et al., 2025; Tang
et al., 2025) or post-training method Temporal Consistency Reinforcement (Wang et al., 2025).

2 PROBLEM FORMULATION

Masked Diffusion Language Models (MDM). Let x = (x1, . . . , xn) ∈ Vn be a length-n token
sequence over vocabulary V . A masked diffusion large language model (dLLM) specifies a condi-
tional denoiser pθ(x[M] | x[M c]) for any mask M ⊆ [n], where M c = [n] \M . The notation
x[M] is defined as the sequence of tokens from x on the indices of M , i.e. x[M] = (xi)i∈M . In
the forward (corruption) process, a random subset of tokens M ⊆ [n] is masked (replaced by a
special symbol [MASK], and model pθ is tasked with recovering the original tokens in M given the
unmasked tokens in the complement M c := [n] \M . Formally, for a random mask pattern M , the
model produces a conditional distribution pθ(x[M] | x[M c]) on the masked tokens. Here, x[M]
denotes the masked tokens in x. The training objective is to maximize the likelihood of ground-truth
tokens in these masked positions. Hence, the training problem can be written as

θ∗ ∈ argmin
θ

Lmask(θ) := Ex∼DEℓ∼Unif([n])EM⊆[n],|M|=ℓ

[
−

∑
i∈M

log pθ(xi | x[Mc])
]

=
[
−

∑
M⊆[n], i∈M

1

|M |
1(
n

|M|

)Ex∼D
[
log pθ(xi | x[Mc])

] (1)

where D is the data distribution, ℓ ∼ Unif([n]) is a uniformly sampled number of masked tokens
ℓ ∈ {1, . . . , n} and M ⊆ [n] is the randomly selected subset of length |M | = ℓ. The summation in
(1) runs over all masked token positions i ∈ M , and the loss on each such position is the negative
log-likelihood of the true token xi given the remaining context (unmasked) x[M c]. The objective

Algorithm 1 Vanilla MDM Inference
Input: prompt xprompt, output length L, steps T ;

mask schedule {Mt}Tt=1, model pθ(·|·).
Initialize: x(0) ← [MASK]×L;
for t = 1, 2, . . . , T do

Predict all masked tokens simultaneously
via ∼ pθ

(
· | [xprompt, x

(t−1)]
)

x(t) ← Fill with predicted tokens
Fix tokens at location i ∈M c

t

Mask tokens at location i ∈Mt \
(
∪t−1
k=1M

c
k

)
Output: xT

in (1) trains the model to predict randomly
masked-out tokens, and can be viewed as averag-
ing next-token losses over all token permutations,
i.e., an any-order objective (Nie et al., 2025).

Inference as the Core Challenge. After learn-
ing θ∗ from (1), generation happens step by step.
For instance, for a given prompt xprompt, it starts
by selecting the number of tokens to be gener-
ated (say L), and then requires choosing how to
reveal tokens. Let a decoding trajectory be a se-
quence of masks τ = (M1, . . . ,MT) that parti-
tion [n] (such that

⊔T
t=1 M

c
t = [n]), with per-step

sizes ℓt = |Mt|. At step t, the model predicts all
masked tokens conditioned on the currently revealed context x

[
∪t−1
s=1 M

c
s

]
. For a fixed trajectory τ

and prompt xprompt, a functional of natural log-likelihood is

J (τ ; θ | xprompt) =

T∑
t=1

∑
i∈Mt

log pθ∗

(
xi | xprompt, x

[t−1⋃
s=1

M c
s

])
. (2)

We summarize the vanilla inference procedure in Algorithm 1. The ideal (but empirically in-
tractable1) goal is to choose τ such that we obtain a sample which maximizes J (τ ; θ | xprompt).

1Because simply making consecutive greedy choices does not guarantee that the overall J is maximized,
and performing a global search would require evaluating all possible trajectories, which is practically infeasible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Because (1) trains on all mask patterns, many training subproblems are intrinsically ill-posed (e.g.,
extremely large masks with scant context) due to the implicit sequential bias in the language train-
ing distribution. For example, some conditionals are rarely observed or provide little meaningful
context, making them effectively unsolvable. As a consequence, the model ends up learning only
a subset of subproblems or conditionals, while others remain poorly learned or ignored. A uni-
form masking objective forces the model to put equal weight on every subproblem, including those
that confound the masking sequence, resulting in a suboptimal masking strategy overall. This mis-
match creates a gap at inference time: the model’s behavior becomes highly sensitive to the masking
schedule, and strong performance depends on selecting strategies that align with the sequential bi-
ases implicitly learned during training.

Key Open Question. Thus, the central question becomes: how can we design an inference strat-
egy that faithfully reflects what the model has learned during training, given that dLLMs leave the
process fundamentally under-specified and require us to decide the optimal masking trajectory.

3 LIMITATIONS OF SOTA AND OUR KEY INSIGHT

Failure of existing inference methods for reasoning tasks. The existing dLLMs rely on heuristic
inference-time strategies to choose which tokens to unmask at each denoising step. The common ap-
proaches include random sampling (randomly picking masked positions to predict) and confidence-
based selection (choosing the token positions with the high model confidence or probability). For
example, Kim et al. (2025) showed that for Sudoku puzzles a simple confidence-based top-K margin
method can boost accuracy from 7% to nearly 90%. Intuitively, one might expect a similar benefit
for reasoning tasks. Surprisingly, we find the opposite in reasoning benchmarks. In our experi-
ments (see Figure 2) on GSM8K math problems, random unmasking far outperforms top-K margin
(high-confidence) decoding. Instead of guiding generation, high confidence derails the unmasking
trajectory into producing degenerate outputs. In Figure 2, the top-K margin strategy consistently
unmasked the [AfterEoT] (⟨endoftext⟩) token at all positions, proceeding backward from the end to
the front (See B.5 for a detailed explanation). This leads to degenerate outputs (shown in red text)
in Figure 2. This surprising result challenges our intuition built through studying prior work.

15

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (
%

)

50.87

24.72

GSM8K
Random
Top-K margin

0 255Token position

0

127

Un
m

as
ki

ng
 st

ep

pred: 16.0 | gt: 16.0

Random (block size = 256)

 1. Let's assume that Dorothy has \(D \) Facebook
 friends. 2. Charlie

...
 J = 4 \times 4 = 16 \] - Therefore, James

has 16 Facebook friends. </reasoning> <answer>
\boxed{16} </answer><|eot_id|><|endoftext|>

0 255Token position

0

127

Un
m

as
ki

ng
 st

ep

pred: None | gt: 16.0

Top-K margin (block size = 256)

 <|eot_id|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|

...
|><|endoftext|><|endoftext|><|endoftext|><|en
doftext|><|endoftext|><|endoftext|><|endoftex

t|><|endoftext|><|endoftext|><|endoftext|>
blue: Mask red: AfterEoT white: Text green: EoT

Figure 2: Random vs. Top-K margin inference on GSM8K. Left: Random decoding achieves
50.87% accuracy, while Right: Top-K margin only 24.72%. For each method, the text box shows
the result at the last unmasking step. Top-K margin generates output tokens in reverse, from the
end toward the beginning, and exhibits a catastrophic collapse in which all tokens are [AfterEoT]
(shown in red). Over 55.5% of top-K margin runs suffered this collapse, yielding very low accuracy.
These failures cast doubt on methods that rely solely on token confidence.

Unexpected reversal of intuition. Our findings highlight a key limitation of relying on common
heuristics from autoregressive models and prior work (Kim et al., 2025). While one would expect
that “follow the model’s own highest-probability tokens” is a reliable strategy, our results show that
methods relying solely on token confidence are not sufficient for strong performance in complex
reasoning tasks. Our results thus raise basic questions: Why does random sampling outperform
top-K margin? Why does the model overconfidently pick the [AfterEoT] so early? To answer these

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

questions, we propose a new perspective on the dLLM’s internal structure. Our key insight is that
the dLLM can be viewed as an implicit mixture of experts, which allows us to mitigate the risk of
overconfidently predicting [AfterEoT] tokens too early. By aggregating predictions from experts
conditioned on different subsets of tokens, effectively marginalizing over contexts, our approach
avoids prematurely committing to high-confidence tokens like the [AfterEoT] token.

From failure to mechanism. The surprising failure of confidence-based schedules suggests that
local token probabilities are unreliable under many masked contexts induced at inference. Because
the dLLM objective (in (1)) averages over a wide variety of maskings, including ill-posed ones,
some conditionals are poorly learned and disproportionately favor special tokens such as [AfterEoT].
Our view is to treat each semi-AR block schedule as querying a different conditional expert, then
marginalize across experts to recover robust predictions. This replaces brittle confidence-following
with consensus-seeking and is the core rationale behind HEX.

Our Key Insight: dLLM is an implicit mixture of experts. From (2), it is evident that the diffusion
LLM training leads to a model with a family of masked–token conditionals{

pθ(xi | [xprompt, x[U]]) : i ∈ [n], U ⊆ [n] \ {i}
}
,

which we can view as implicit “experts” indexed by the visible/unmasked set of tokens U .
For a fixed target index i at test-time, the goal is to aggregate the relevant experts {pθ(xi |
[xprompt, x[U]])}U⊆[n]\{i} into a single prediction rule. A principled aggregation strategy is the
mixture-of-experts predictor given by

pmix(xi = a | xprompt) =
∑
U

π(U | xprompt) pθ(xi = a | [xprompt, x[U]]), (3)

where π(U | xprompt) denotes the weight or trust placed on expert U for prompt xprompt.

A Toy Example. In our toy example (Figure 3), we examine the model’s answer to the prompt “Who
invented telephone?” (ground truth: “The inventor was Bell.”). We treat each latent conditional
context (or expert) as a separate setting that produces a distribution to predict masked tokens. Figure
3 plots these distributions for a particular position, i = 4 (the token ‘Bell’). As the plot makes clear,
most experts concentrate probability on “Bell” (the correct token), but a few contexts produce flat
or incorrect distributions that never predict “Bell”.

• Correct-Answer Contexts (Experts): The majority of conditionals yield a distribution that peaked
at the correct answer token Bell. These contexts effectively act as “experts” on this question.

• Non-Expert Contexts: Some conditionals do not produce a clear peak in ’Bell’. These contexts fail
to predict the correct answer.

 Edison Alexander Bell Scottish invented telephone Graham unknown
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
nf

id
en

ce

Token Confidence Distributions Over Different Mask Conditions

U {1, 2, 3}, The inventor was [M].
U {2, 3}, [M] inventor was [M].
U {1, 3}, The [M] was [M].
U {1, 2}, The inventor [M] [M].

U {3}, [M] [M] was [M].
U {2}, [M] inventor [M] [M].
U {1}, The [M] [M] [M].
U { }, [M] [M] [M] [M].

prompt:
Who invented telephone?

output:
The inventor was Bell.

Figure 3: The distribution of the 4th token ’Bell’ in the output sequence changes significantly de-
pending on the 23 masking conditions applied to the previous three tokens: ’The’, ’inventor’,
’was’. The star mark indicates the highest confidence for each distribution generated by U .
Some masking conditions (violet and green) produce collapsed distribution: "Bell Bell was
invented." (ungrammatical sentence), "The telephone was invented." (missing tar-
get information), respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We note that even though the model as a whole can answer correctly, not all conditionals are experts.
The figure shows that only a subset of experts “know” the answer, while others do not. Hence,
our toy example shows that identifying which context is the right expert is difficult. We do not
know a priori which conditional context (or expert) will yield the correct token. The hidden gating
distribution π(U) that governs how likely each context knows the answer is unknown. The dLLMs
doesn’t learn the underlying gating distribution.

4 HIDDEN SEMI-AUTOREGRESSIVE EXPERTS FOR TEST-TIME SCALING

 And
rea

 Tim
oth

y
 Jo

hn

 Alex
an

de
r
Dav

id

 Matt
he

w
 Ja

mes

 Anth
on

y

Mich
ae

l
 Marc

 Pe
ter

And
re

w
 Ro

be
rt

 Cyn
thi

a
 Ann

a
 Si

mon
 Aaro

n
 Alan

 Arth
ur th

e
 Alex

 Jo
na

tha
n

 La
wren

ce Er
ic

 Ad
ria

n
 Ad

am
 Allen

0.0

0.2

0.4

0.6

0.8

Co
nf

id
en

ce

Token Confidence Distributions Over Different Block Sizes

Block Size 2
Block Size 4
Block Size 6
Block Size 8

Block Size 10
Block Size 12
Block Size 14
Block Size 16

Block Size 18
Block Size 20
Block Size 22
Block Size 24

Block Size 26
Block Size 28
Block Size 30

Block Size 32
Block Size 64
Block Size 128

prompt:
Please explain briefly who received the 2024 Turing Award.

output:
The 2024 Turing Award was awarded to Andrew G. Barto and Richard S. Sutton, and the content
is their development of the conceptual and algorithmic foundations of reinforcement learning,
through a series of foundational papers since the 1980s that established key ideas,
mathematical constructs, and algorithms pivotal to modern AI.

Figure 4: When asked about the 2024 Turing Award winners, names other than the actual recipients
(such as Michael or David) might be generated due to different block sizes, which in turn risks
producing incorrect information in the subsequent token sequence. However, if we generate outputs
with various block sizes and then select the most frequently produced answer, that answer is more
likely to be correct, since it was probably derived through a valid reasoning (Andrew) during the
inference process.

However, in order to estimate pmix, we would need to estimate the likelihood for dLLM, which is
extremely challenging, as also highlighted in (Tang et al., 2025; Zhao et al., 2025; Nie et al., 2025).
Ideally, we would compute the Bayes-optimal conditional probability pmix(xi = a | xprompt) by fully
marginalizing over all possible sequences of tokens in U . In practice, this is infeasible for diffusion
LLMs, since their likelihood is intractable and must be approximated. To sidestep this, we approx-
imate the ideal mixture by ensemble-averaging over a small set B of “semi-autoregressive,” each
defined by a particular block-schedule b ∈ B. Concretely, we sample several semi-AR decoding
schedules b, each of which queries exactly one expert Ub, and then averaging:

pmix(xi = a | xprompt) ≈ Eb∼B

[
pθ(xi = a | [xprompt, x[Ub]])

]
. (4)

The final prediction can be made using the Bayes rule:

â = argmax
a

pmix(xi = a | xprompt). (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A simple Monte Carlo approximation of this decision rule is majority vote: draw one sample âb
from each queried expert Ub, and return the mode of the sampled values. Thus, either by mixture
averaging or majority vote, test-time aggregation amplifies the correct prediction by combining the
specific conditionals the model actually learned. Based on this insight, we summarize our proposed
approach in Algorithm 2.

For each schedule, we first convert the final generated token sequence x(T) into a natural language
string representation. We then apply numeric parsing to remove LaTeX formatting, whitespace, and
commas. This yields a parsed output f(x(T)) for each schedule, which we store in a list. The final
answer is chosen as the value that occurs most frequently across schedules. If there is a tie (i.e., two
or more values appear with the same highest frequency), we choose the value generated from the
schedule with the smallest block size.

Algorithm 2 Hidden semi-autoregressive EXperts for test-time scaling
Input: prompt xprompt, output length L, output parser f , steps T , experts B; semi-AR mask schedule

{{Ut,b}Tt=1}Bb=1, model pθ(·|·).
Initialize outputs← []
for b = 1, 2, . . . , B do

Initialize: x(0) ← [MASK]×L

for t = 1, 2, . . . , T do
Predict all masked tokens simultaneously via ∼ pθ

(
· | [xprompt, x

(t−1)]
)

x(t) ← Fill with predicted tokens
Fix tokens at location i ∈ U c

t,b

Mask again tokens at location i ∈ Ut,b \
(
∪t−1
k=1U

c
k,b

)
x(T) ← x(T) as a natural language string
Append parsed string output f(x(T)) to outputs

Output: max(outputs, key = lambda x: (outputs.count(x), -outputs.index(x))

Why semi-autoregressive? Diffusion LLMs allow all trajectories to reveal masked tokens, but
uniformly random orders are suboptimal for language: they create unnatural partial contexts that

Table 1: Semi-AR based decoding eliminates
[AfterEoT] collapse and improves accuracy.

Dataset Collapsed (↓, %) Accuracy (↑, %)

Baseline (non–semi-AR)
GSM8K 55.80 22.52
MATH 29.80 16.60

Semi-AR
GSM8K 0.00 76.27
MATH 0.00 32.80

the model was never intended to generate at test
time. A practical restriction is semi-autoregressive
left-to-right decoding (semi-AR): fix a block size
b ∈ {1, . . . , Bmax} (where Bmax = n) and parti-
tion [n] into consecutive blocks

Mt = {(t− 1)b+ 1, . . . ,min(tb, n)},
for t = 1, . . . , T (b) = ⌈n/b⌉, revealing blocks left-
to-right while denoising within each block via diffu-
sion. This preserves a strong prefix structure (natural
for language), yet allows parallel denoising inside a block. Empirically, we find (see Table 1) that
semi-AR decoding avoids pathologies seen in fully parallel decoding. In particular, when using a
single large block (i.e., non-semi-AR parallel decode), we often observe an [AfterEoT] collapse:
the model erroneously floods the tail with [AfterEoT] tokens or repeats (Figure 8). By contrast,
constraining to moderate block sizes (decoding left-to-right) eliminates this collapse and dramati-
cally improves accuracy. (See Table 1: semi-AR has 0% collapse and much higher accuracy than
non-AR decoding.) Intuitively, focusing first on the left part of the output prevents the model from
prematurely committing to a length or drifting with high-confidence tail tokens.

5 EXPERIMENTS

In this section, we empirically validate our claims. (i) Effectiveness: We first demonstrate that
HEX significantly outperforms existing training-free and fine-tuned methods on a suite of reason-
ing benchmarks. (ii) Scaling behavior: We then analyze the performance-computation trade-off,
showing how accuracy scales with more diverse generation paths. (iii) Working mechanism: Finally,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10.0

20.0

30.0

40.0

50.0

60.0

70.0

79.8

90.0

100.0

Ac
cu

ra
cy

 (
%

)

GSM8K

22.52 24.72

50.87

88.10

d1 (GRPO)

5.0

10.0

15.0

20.0

25.0

30.0

35.0
37.2
40.0

45.0
MATH500

16.60 16.40 16.80

40.00
d1 (GRPO)

40.00

50.00

60.00

70.00

80.00
82.68

90.00
ARC-C

47.87

54.18

70.05

87.80

d1 (GRPO)

20

30

40

50

60

TruthfulQA

29.82 28.36

42.40

57.46

Top-K Top-K margin Random Ours

Figure 5: HEX improves reasoning accuracy. On LLaDA-8B-Instruct, HEX outperforms training-
free baselines (Random, Top-k, Top-k-margin) on GSM8K, MATH, ARC-C, and TruthfulQA. In
GSM8K, MATH, ARC-C, it even outperforms the model trained with GRPO without any training.

through a series of ablations and qualitative examples, we explore the mechanisms behind HEX’s
success, confirming that its gain comes from ensembling a latent mixture of semi-AR experts rather
than relying on heuristics like model confidence.

5.1 SETUP

Datasets and Metrics. We follow standard reasoning benchmarks: GSM8K (Cobbe et al., 2021)
consisting of high-quality problems with diverse linguistic expressions, MATH (Lightman et al.,
2023) is a more challenging math benchmark that includes competition-level math problems, ARC-
C (Clark et al., 2018) is the Challenge Set from AI2’s ARC dataset, consisting of science knowledge-
based questions that are difficult to solve with simple keyword matching or retrieval, and Truth-
fulQA (Lin et al., 2021) which evaluates the tendency of language models to generate false infor-
mation by following human misconceptions or false beliefs.2 Primary metric is task accuracy.

Models and Baselines. All experiments with inference methods were performed using the LLaDA-
8B-Instruct model (Nie et al., 2025), and the application of d1 (GPRO) (Zhao et al., 2025) is sub-
sequently based on this model. For all methods, when the output length is 256 tokens, the number
of unmasking steps is 128. At each step, two masked tokens are unmasked, and this process is
repeated until all tokens are revealed. Random unmasks two randomly chosen masked tokens per
step. Top-k margin unmasks, at each step, the two masked tokens with the highest margin defined
as (top-1 confidence − top-2 confidence) at their positions. d1 (GRPO) row uses the reported best
value (Zhao et al., 2025) for GSM8K and MATH, and for ARC-C we report a value reproduced after
1 epoch of training. TruthfulQA trained on d1 (GRPO) is excluded because there is no training data
available, and neither were checkpoints released. HEX draws five samples at temperature = 0.9 for
each of the block sizes [8, 16, 32, 64, 128], yielding 25 samples in total. If a tie occurs for the most
frequent value, the value generated with the smallest block size is selected (Algorithm 2).

5.2 MAIN RESULTS: HEX ESTABLISHES A NEW STATE-OF-THE-ART

Overall performance. Figure 5 shows that HEX achieves the strongest results across all four rea-
soning benchmarks, outperforming both training-free and fine-tuned baselines. Compared to ex-
isting decoding strategies (Nie et al., 2025; Kim et al., 2025), HEX delivers large and consistent
gains. In GSM8K, for example, HEX reaches 88.10% accuracy, far higher than Random decod-
ing (50.87%) and Top-k margin (24.72%). These results show that confidence-based heuristics are
unreliable in diffusion LLMs, whereas consensus-based voting in HEX is robust (Figure 7).

Comparison with GRPO fine-tuned models. Perhaps most strikingly, HEX also surpasses d1
(GRPO), which requires costly reinforcement learning fine-tuning. On GSM8K (88.10% vs.

2We use official evaluation scripts; numeric parsing strips LaTeX wrappers/whitespace/commas.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

79.80%), MATH (40.00% vs. 37.20%), and ARC-C (87.80% vs. 82.68%), HEX sets a new state
of the art without updating model parameters.

Intuitively, fixed inference scheduled in existing techniques sometimes asks the model to guess
hard tokens too early, which leads to mistakes. In contrast, HEX tries several semi-autoregressive
schedules and then picks the answer that many schedules agree on. In practice, answers that show
up across schedules are more reliable than answers from any single schedule.

Takeaway. These results suggest that the reasoning ability of a diffusion LLM remains latent and
can be unlocked at inference time through block-marginalized ensembling, without any fine-tuning.

5.3 ANALYSIS OF SCALING AND COMPUTE TRADE-OFF

Figure 6 shows that HEX’s accuracy improves monotonically as the number of voting samples in-
creases, while the tie rate, an indicator of ambiguity, steadily declines. Intuitively, different semi-AR
schedules make different mistakes but tend to agree on the correct answer; adding schedules can-
cels schedule-specific errors and strengthens consensus, so ties resolve and accuracy improves. This
trend holds consistently across all four benchmarks. Because sampling more trajectories linearly
increases compute cost, HEX effectively exposes a tunable accuracy, compute knob: practitioners
can trade inference cost for accuracy in a predictable way, without retraining.

10 20 30
HEX Inference Cost

82

84

86

88

Ac
cu

ra
cy

 (%
)

GSM8K

10 20 30
HEX Inference Cost

38

39

40

41

Ac
cu

ra
cy

 (%
)

MATH

10 20 30
HEX Inference Cost

75

80

85

Ac
cu

ra
cy

 (%
)

ARC-C

10 20 30
HEX Inference Cost

45

50

55

Ac
cu

ra
cy

 (%
)

TruthfulQA

1

2

3

4

Ti
e

Ra
te

 (%
)

10

15

20

Ti
e

Ra
te

 (%
)

1

2

3

Ti
e

Ra
te

 (%
)

2

4

6

8

Ti
e

Ra
te

 (%
)

Accuracy Tie Rate

Figure 6: As the number of majority voting samples in HEX increases, accuracy improves and the
tie rate decreases. The block sizes used are [8, 16, 32, 64, 128], and sampling was performed while
increasing the number of seeds (1-6).

Takeaway. HEX not only establishes state-of-the-art performance but also provides a principled
mechanism for test-time scaling, ensuring accuracy improves with more inference budget.

5.4 ABLATION STUDIES

Next, we analyze the mechanisms behind the HEX improvements, focusing on two key factors: the
role of block diversity and the role of likelihood versus frequency in candidate selection.

Effect of block diversity. Beyond using a fixed set of block sizes, we test whether ensembling
over more varied (and even randomly generated) block schedules further boosts performance. As
shown in Table 2, increasing the number of dynamic trajectories from 5 to 30 on GSM8K improves

Size Accuracy (↑ %) Tie (↓ %)
5 81.96 3.87
10 82.34 3.18
15 82.49 1.59
20 82.79 1.59
25 83.47 1.52
30 84.15 1.06

Table 2: HEX dynamic block size
results. Accuracy and tie rate (%)
on GSM8K across dynamic block
size. See Figure 9 for details.

accuracy from 81.96% to 84.15% while reducing the tie rate to
less than half. This reinforces our hypothesis that performance
gains come from aggregating diverse “semi-AR experts.” We
note that diversity matters, but structured diversity (fixed block
set with multiple seeds) is even stronger (as in Table 3), yield-
ing the highest overall gains.

Frequency vs. likelihood. We then examine whether HEX’s
gains could simply come from likelihood-based re-ranking.
Table 3 shows that the selection of the lowest negative
log-likelihood candidate (NLL) performs poorly, in some
cases worse than Random decoding (e.g., ARC-C: 70.05%
vs. 60.84%). In contrast, HEX’s frequency-based majority
vote achieves much higher accuracy (74.57%), confirming that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

consensus among diverse trajectories is more reliable than model confidence scores. This shows that
the key driver of HEX’s success is ensemble agreement.

Tie break and Latency. HEX defaults to the smallest block size in tie situations, as Table 4 indicates
that jointly considering frequency and log-likelihood does not bring a clear advantage. In addition,
we present the wall-time latency of HEX and the baseline inference methods in Table 5.

Table 3: Ablations across datasets. NLL selects the candidate with the lowest NLL. HEX’s tie issue
diminishes as the number of samples increases. Block sizes: [8, 16, 32, 64, 128].

GSM8K MATH ARC-C TruthfulQA

Method Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%)

Baselines
Random 50.87 – 16.80 – 70.05 – 42.40 –
top-k 22.52 – 16.60 – 47.87 – 29.82 –
top-k margin 24.72 – 16.40 – 54.18 – 28.36 –
d1 (GRPO) 79.80 – 37.20 – 82.68 – – –

Likelihood-based
NLL 76.72 4.09 34.40 16.00 60.84 2.99 28.07 4.24

HEX
HEX 82.18 4.09 38.40 16.00 74.57 2.99 45.91 4.24
HEX ×5 seeds 88.10 1.36 40.00 10.20 87.80 1.11 57.46 2.78

6 CONCLUSION AND LIMITATION

In this work, we study how diffusion-based language models (dLLMs) generate text. We found
that their performance is fundamentally tied to the decoding schedule, the order in which tokens
are generated. This is because dLLMs implicitly learn a ”set” of semi-autoregressive experts during
training. Different schedules activate different experts, and choosing the right one is crucial for
getting a high-quality answer. This single insight helps explain common dLLM issues, such as
why they sometimes stop generating text too early or fail even when they seem confident. Based
on this insight, we introduced HEX (Hidden semi-autoregressive EXperts), a powerful inference
method that requires no extra training. Instead of relying on a single schedule, HEX tries many
different schedules at once and lets the experts ”vote” on the best final answer. By combining the
strengths of the entire hidden team, HEX turns the model’s flexibility into a reliable tool for boosting
performance. On challenging reasoning benchmarks, HEX doesn’t just beat standard methods; it
even surpasses models fine-tuned with costly techniques like reinforcement learning (GRPO).

HEX has some limitations. It requires more computation at test time, and we have mainly evaluated
it on reasoning tasks. Applying this method to more creative areas like open-ended stories, image
generation, or long conversations remains a promising area for future work. Further, we have not
established any theoretical understanding of HEX, which is a valid scope of future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research aims to reveal the untapped potential of diffusion-based Large Language Model
(dLLMs) and to enhance reasoning performance across comprehensive tasks without additional
training, through test-time scaling. All datasets used in the evaluation are public and widely known,
and to the best of our knowledge, we have thoroughly examined and cited research that is poten-
tially or directly related to our work. We clarify that our use of LLMs was strictly limited to polish
writing, such as grammatical correction and fluent expression, not for generating the main content
of the research.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022. doi: 10.48550/arXiv.2211.15089.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

GSAI-ML. LLaDA-8B-Instruct. https://huggingface.co/GSAI-ML/
LLaDA-8B-Instruct. MIT License, accessed 2025-09-18.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in neural information processing systems, 35:
4328–4343, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

11

https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct
https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. Weighted policy optimization
for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Wen Wang, Bozhen Fang, Chenchen Jing, Yongliang Shen, Yangyi Shen, Qiuyu Wang, Hao Ouyang,
Hao Chen, and Chunhua Shen. Time is a feature: Exploiting temporal dynamics in diffusion
language models. arXiv preprint arXiv:2508.09138, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuqing Wen, Hebei Li, Kefan Gu, Yucheng Zhao, Tiancai Wang, and Xiaoyan Sun. Llada-vla:
Vision language diffusion action models. arXiv preprint arXiv:2509.06932, 2025.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A QUALITATIVE RESULTS

A.1 QUALITATIVE ANALYSIS OF BASELINES VS. HEX

Manolo bought five lollipops and four candies that cost $3.20.
If each lollipop costs $0.40, how much will 10 lollipops and 10 candies cost him?
Ground Truth: 7

Top-K margin:
First, let's determine the cost of
one candy. We know that five
lollipops and four candies cost
$3.20, and each lollipop costs
$0.40.
The total cost of five lollipops is:
\[5 \times 0.40 = 2.00 \]

This means that the total cost of
the four candies is $1.20.
Therefore, the cost of one candy is:
\[\frac{1.20}{4} = 0.00 \]

Now, we need to find the cost of
10 lollipops and 10 candies. The
cost of 10 candies is:
\[10 \times 0.00 = 0.00 \]

The cost of 10 lollipops is:
\[10 \times 0.40 = 4.00 \]

Therefore, the total cost for 10
lollipops and 10 candies is $4.00.
</reasoning>

<answer>
\boxed{4.00}
</answer><|eot_id|><|endoftext|>

Random:
First, we need to determine the
cost of one candy. We know that
Manolo bought five lollipops and
four candies that cost $3.20, and
each lollipop costs $0.40. This can
be expressed as:

\[5 \times 0.400 + 4C = 3.20 \]
\[4C = 2.00 \]
\[C = \frac{2.00}{4} = 0.5000 \]

Now, we know each lollipop costs
$0.40 / 100 = $0.40. Each candy
costs $0.4000.

To find the total cost of 10
lollipops and 10 candies:

\[10 \times 0.4000 + 10 \times
0.5000 \]
\[10 \times 0.400 + 50000 \times
100 = 5.00 \]
</reasoning>

<answer>
\boxed{5.00}
</answer><|eot_id|><|endoftext|>

HEX (Ours):
First, let's determine the cost of one
candy. We know that Manolo bought
five lollipops and four candies for a
total of $3.20, and each lollipop
costs $0.40, so the total cost of five
lollipops is \(5 \times 0.40 = 2.00\).

Therefore, the cost of four candies is
 \(3.20 - 2.00 = 1.20\).

Since four candies cost $1.20, the
cost of one candy is
 \(1.20 \div 4 = 0.30\).

Now, we need to find the cost of 10
lollipops and ten candies. The cost
of 10 lollipops is
 \(10 \times 0.40 = 4.00\)

and the cost of 10 candies is
\(10 \times 0.30 = 3.00\).

So, the total cost is \(4.00 + 3.00 =
7.00\).
</reasoning>

<answer>
\boxed{7.00}
</answer><|eot_id|><|endoftext|>

Figure 7: An instance of generated text responses of different decoding strategies.

A.2 QUALITATIVE ANALYSIS OF SEMI-AR VS. NON-SEMI-AR

As shown in the right side of Figure 8 in confidence based non-semi-AR decoding, the phenomenon
where [AfterEoT] tokens accumulate from the end of the output towards the front indicates that the
model is assigning high confidence to [AfterEoT] token throughout the unmasking steps.

The input to the dLLM consists of the number of tokens that make up the prompt and the number
of tokens in the desired output sequence, and during training it is subject to limits on the input
sequence length for parallel computation. For LLaDA-8B-Instruct (GSAI-ML), this limit is 4,096
tokens. However, in the training of reasoning tasks, most of the output finishes within 256 tokens.
In other words, the majority of ground truth tokens in the output sequence (more than 93.75%) are
[AfterEoT]: Given that the training objective is to maximize the average likelihood, we can infer
that the dLLM is most strongly taught to generate the [AfterEoT] token.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 255Token position

0

127

Un
m

as
ki

ng
 st

ep

pred: 7.0
gt : 7.0

Random (block size = 256)

0 255Token position

0

127

Un
m

as
ki

ng
 st

ep

pred: None
gt : 7.0

Top K margin (block size = 256)

blue: Mask red: AfterEoT white: Text green: EoT

 To determine how many dozens of eggs Claire will eat
in 4 weeks, we need to follow these steps: 1.

Calculate the number of eggs Claire eats in one day. 2.
 Calc

...
 total number of eggs into dozens: \[84 \text{ eggs}

\div 12 \text{ eggs/dozen} = 7 \text{ dozens} \]

 <|endoftext|><|endoftext|><|endoftext|><|endofte
xt|><|endoftext|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endoftext|><|end
oftext|><|endoftext|><|endoftext|><|endoftext|><|e
ndoftext|><|endoftext|><|endoftext|><|endoftext|><
|endoftext|><|endoftext|><|endoftext|><|endoftext|

><|endoftext|><|endoftext|><|endoftext|><|endoftex

Figure 8: Blue denotes mask tokens, red denotes [AfterEoT] tokens, white denotes text tokens,
and green denotes [EoT] tokens (note that in the LLaDA-8-Instruct model, [EoT] and [AfterEoT]
are represented as < |eot id| > and < |endoftext| >, respectively (GSAI-ML)). As unmasking
proceeds, two mask tokens are unmasked at each step (output length = 256, unmasking steps = 128).
Under a semi-AR regime with block size = 32, positional constraints force reasoning to progress
left-to-right while still allowing diffusion-style generation within each block. By contrast, when the
positional constraint is removed with block size = 256 (non-semi-AR), the model starts from the last
token with the highest confidence—[AfterEoT]—and, due to the inertia of repeatedly generating the
same token backward, ultimately collapses into a catastrophic output in which all tokens become
[AfterEoT].

This suggests that confidence-only decoding is fundamentally limited in its ability to prevent such
phenomena during inference, and highlights why the positions of tokens to be unmasked should not
be selected based solely on confidence.

B ADDITIONAL EXAMPLES AND RESULTS WHICH CAN BE USEFUL

B.1 HOW THE SEMI-AR SCHEDULE LEVERAGES LEARNED PREFIX-LIKE CONTEXTS

Let x = (x1, x2, x3, x4). To predict x4, the visible set is a subset of {1, 2, 3}, i.e.

U ∈
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

Suppose (due to sequential bias in the data) the model learns well only the prefix-like contexts

Ŝ =
{
{1}, {1, 2}, {1, 2, 3}

}
. (6)

Then left-to-right semi-autoregressive (semi-AR) schedules realize exactly these conditionals by
changing the block size B:

• B = 1, 1, 1, 1 (blocks {1}, {2}, {3}, {4}): when x4 is predicted, the visible set is U =
{1, 2, 3}, so the model uses pθ(x4 | x1, x2, x3).

• B = 2, 2 (blocks {1, 2}, {3, 4}): when x4 is predicted (with x3 in the same step parellelly),
the visible context is the completed first block, U = {1, 2}, hence pθ(x4 | x1, x2).

• B = 3, 1 (blocks {1, 2, 3}, {4}): when x4 is predicted, U = {1, 2, 3} again, hence pθ(x4 |
x1, x2, x3).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

One can also realize U = {1}, by B = 1, 3 (blocks {1}, {2, 3, 4}): when x4 is predicted (with
x2, x3 in the same step in parallel), the visible context is the completed first block, U = {1},
hence pθ(x4 | x1). Furthermore, if we set additional within-block order constraints3 Corder (e.g.
descending order of confidence), another possible condition of U = {1} can occur by

B = 4 (blocks {1, 2, 3, 4}) ∧ Corder
(
x1 ≺ x4 ≺ x2 ≺ x3 within B

)
,

hence the model uses pθ(x4 | x1).

Key point: By varying the semi-AR block size and within-block order, decoding selects among the
learned conditionals in Ŝ.

B.2 DETAILS OF DYNAMIC HEX BLOCK SETTINGS

Figure 9: Examples of the block sizes and counts used in the dynamic HEX block settings. Block
sizes and counts were randomly chosen and adjusted to match the total output length. The output
length is 256 and the number of unmasking steps is 128, meaning that each step unmasks 2 tokens.
Accordingly, all block sizes are multiples of 2, and decoding was performed in a semi-autoregressive
manner.

B.3 EXPERIMENTAL RESULTS OF HEX’S TIE-BREAKING METHODS

Table 4: Evaluation on tie breaking methods. If the most frequent output is in a tie situation, TIED:
NLL selects the result with the lowest negative log-likelihood in tie situations, TIED: first selects
the result generated from the smallest block size when tied, and TIED: any treats the case as correct
if a correct option exists among the tied candidates. The results of TIED: any clearly highlight that
majority voting of HEX works well across datasets.

GSM8K MATH ARC-C TruthfulQA

Method Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%) Acc (↑%) Tie (↓%)

HEX (tie-breaking rules)
HEX, TIED: NLL 82.18 4.09 38.00 16.00 74.49 2.99 46.20 4.24
HEX, TIED: first 82.18 4.09 38.40 16.00 74.57 2.99 45.91 4.24
HEX, TIED: any 83.09 4.09 41.00 16.00 76.11 2.99 47.66 4.24

3Adding this condition changes the number of unmasking steps within the block size.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 ANALYSIS OF DECODING LATENCY ACROSS INFERENCE METHODS

Table 5: Inference efficiency (in seconds) of HEX on GSM8K, MATH, ARC-C, TruthfulQA. The
numbers in parentheses indicate the number of data points. Random, top-k, and top-k margin use
a single sample with a block size of 32. HEX uses five samples, where each sample is generated
with block sizes of 8, 16, 32, 64, and 128. Across all samples, the output length is set to 256, with 2
tokens being unmasked at each step.

Dataset Method Total test set per batch (8) per datapoint (1) ratio

GSM8K (1319)

random 2775.73 16.76 2.09 ×1.0000
top-k 2921.70 17.64 2.20 ×1.0526
top-k margin 3187.56 19.25 2.41 ×1.1484
HEX 14613.72 88.23 11.03 ×5.2648

MATH (500)

random 1300.62 20.46 2.56 ×1.0000
top-k 1365.98 21.51 2.69 ×1.0503
top-k margin 1477.33 23.28 2.91 ×1.1359
HEX 6823.17 107.50 13.43 ×5.2461

ARC-C (1172)

random 2679.99 18.15 2.27 ×1.0000
top-k 2813.69 19.05 2.38 ×1.0499
top-k margin 3048.49 20.64 2.58 ×1.1375
HEX 14062.59 95.22 11.90 ×5.2473

TruthfulQA (684)

random 1532.40 17.71 2.21 ×1.0000
top-k 1608.77 18.58 2.32 ×1.0498
top-k margin 1739.78 20.12 2.52 ×1.1353
HEX 8038.26 92.90 11.61 ×5.2455

B.5 STRUCTURED PATTERNS INHERENT IN AFTEREOT COLLAPSE

Despite being highly unintuitive and unpredictable, the ordering pattern observed in AfterEoT Col-
lapse exhibits a clear structure: although there is no explicit incentive for the model to unmask
padding tokens in a right-to-left manner during either training or inference, this regularity consis-
tently emerges throughout the entire unmasking process (see Figure 2). This systematic behavior
under collapse suggests that the underlying ordering mechanisms in diffusion LLMs — embedded
within both the training objective and the inference procedure — may play a more active and influ-
ential role than previously recognized.

16

	Introduction
	Related Work

	Problem Formulation
	Limitations of SoTA and Our Key Insight
	Hidden semi-autoregressive EXperts for test-time scaling
	Experiments
	Setup
	Main Results: HEX Establishes a New State-of-the-Art
	Analysis of Scaling and Compute Trade-off
	Ablation Studies

	Conclusion and Limitation
	Qualitative results
	Qualitative analysis of Baselines vs. HEX
	Qualitative analysis of semi-AR vs. non-semi-AR

	Additional Examples and Results Which Can be Useful
	How the semi-AR schedule leverages learned prefix-like contexts
	Details of dynamic HEX block settings
	Experimental results of HEX’s tie-breaking methods
	Analysis of decoding latency across inference methods
	Structured Patterns Inherent in AfterEoT Collapse

