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ABSTRACT

Dataset distillation (DD) has emerged as a technique for compressing large
datasets into smaller synthetic counterparts, facilitating downstream training
tasks. In this paper, we study the impact of bias within the original dataset on
the performance of dataset distillation. With a comprehensive empirical evalua-
tion on datasets with color, corruption and background biases, we found that color
and background biases in the original dataset will be amplified through the distil-
lation process, resulting in a notable decline in the performance of models trained
on the synthetic set, while corruption bias is suppressed through the distillation
process. To reduce bias amplification in dataset distillation, we introduce a sim-
ple yet highly effective approach based on a sample reweighting scheme utilizing
kernel density estimation. Empirical results on multiple datasets demonstrated the
effectiveness of the proposed method. Notably, on CMNIST with 5% bias-conflict
ratio and IPC 50, our method achieves 91.5% test accuracy compared to 23.8%
from vanilla DM, boosting the performance by 67.7%, whereas applying state-
of-the-art debiasing method on the same synthetic set only achieves 53.7%. Our
findings highlight the importance of addressing biases in dataset distillation and
provide a promising avenue to mitigate bias amplification in the process.

1 INTRODUCTION

Dataset plays a central role in the performance of machine learning models. With advanced data col-
lection and labeling tools, it becomes easier than ever to construct large-scale datasets. The rapidly
growing size of contemporary datasets not only poses challenges to data storage and preprocessing,
but also makes it increasingly expensive to train machine learning models and design new methods,
such as architectures, hyperparameters, and loss functions. As a result, dataset distillation (Wang
et al., 2018) (also known as dataset condensation) emerges as a promising direction for solving this
issue. Dataset Distillation aims at compressing the original large-scale dataset into a small subset
of information-rich examples, enabling models trained on them to achieve competitive performance
compared with training on the whole dataset. The distilled dataset with a significantly reduced
size can therefore be used to accelerate model training and reduce data storage. Dataset distilla-
tion has been shown to benefit a wide range of machine learning tasks, such as Neural Architecture
Search (Wang et al., 2021), Federated Learning (Xiong et al., 2023), Continual Learning (Wiewel &
Yang, 2021), Graph Compression (Jin et al., 2021), and MultiModal training (Wu et al., 2023).

Recent dataset distillation methods (Loo et al., 2023; Zhao et al., 2023; Du et al., 2023; Cui et al.,
2023) mainly target performance enhancement on standard datasets like MNIST (Deng, 2012) and
CIFAR-10 (Krizhevsky et al., 2009). Despite their focus, dataset bias (Tommasi et al., 2017), a sig-
nificant issue in machine learning, is often overlooked in the context of dataset distillation. Dataset
bias emerges when collected data unintentionally reflects existing biases, leading to skewed predic-
tions and potential ethical concerns. Although bias detection and mitigation strategies have been
extensively studied in the past few years (Sagawa et al., 2019; Li & Vasconcelos, 2019; Nam et al.,
2020; Lee et al., 2021; Hwang et al., 2022), the impact of dataset bias on data distillation remains
unexplored. Since a biased synthetic set can result in inaccurate or unfair decisions, it is important
to understand the role of bias in dataset distillation and how to mitigate bias in such processes.

This paper provides a novel study of how biases in the original training set affect dataset distillation
process. Specifically, we are interested in the following questions: 1). How does bias propagate

from the original dataset to the distilled dataset? 2). How do we mitigate biases present in the

distilled dataset?
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To answer the first question, we assess existing dataset distillation algorithms across several bench-
mark datasets. Our findings reveal that the distillation process is significantly influenced by the type
of bias, with color and background biases being amplified and noise bias suppressed. For datasets ex-
hibiting amplified biases, we found even state-of-the-art de-biasing training methods are insufficient
in restoring the original performance. This highlights the urgency of developing a bias-mitigating
dataset distillation algorithm.

To counter bias in distilled datasets, we propose a simple yet effective debiasing algorithm based
on data point reweighting. Leveraging the insight that biased data points cluster in the model’s
embedding space, we down-weight samples within such clusters using kernel density estimation.
This re-weighting rebalances the significance of biased and unbiased samples, mitigating biases
in the distillation process. Empirical results on diverse bias-injected datasets demonstrate that the
proposed reweighting scheme significantly reduces bias in the distilled datasets. For example, on
Colored MNIST with a 5% bias in conflicting samples and 50 images per class, the original Distri-
bution Matching (DM) method leads to a biased synthetic set. A model trained on such a synthetic
set achieves only 23.8% accuracy. In contrast, our reweighting method produces a more unbiased
dataset, resulting in 91.5% accuracy, representing a 67.7% performance improvement over DM.

In summary, our contributions are: 1) We provide the first study on the impact of biases in dataset
distillation process. 2) We propose a simple yet effective re-weighting scheme to mitigate biases in
two types of DD methods. 3) Through extensive experiments and ablation studies, we demonstrate
the effectiveness of our methods.

2 RELATED WORK

2.1 DATASET DISTILLATION

Dataset Distillation (DD) aims to compress a large dataset into a small but informative one to achieve
competitive performances compared to the whole dataset. Due to the greatly reduced dataset size
and competitive performance, it can also be used for many downstream tasks as mentioned in Sec-
tion 1. There are mainly two lines of work in dataset distillation including ones that directly operate
at pixel level (non-parameterization) (Wang et al., 2018; Zhao & Bilen, 2021a; Wang et al., 2022;
Zhou et al., 2022; Loo et al., 2022; Cazenavette et al., 2022; Liu et al., 2023) and the other ones
that utilize parameterization to compress images into more compact forms (Kim et al., 2022; Deng
& Russakovsky, 2022; Liu et al., 2022; Lee et al., 2022; Cazenavette et al., 2023). Since most of
the parameterization methods can be used as an add-on module to non-parameterization methods,
we focus on non-parameterization methods to study the effect of bias in this paper. Among the
recent methods, we study 3 methods specifically including DSA, DM and MTT which are the ba-
sis for many following state-of-the-art (SOTA) methods. Dataset Condensation with Differentiable
Siamese Augmentation (DSA) (Zhao & Bilen, 2021b) is a bi-level optimization process to distill
dataset by matching the model gradients generated by real data and the distilled dataset. Dataset
Condensation With Distribution Matching (DM) (Zhao & Bilen, 2021a) identifies the huge com-
putation cost in bi-level optimizations and generates synthetic datasets by directly matching the
distribution of real data and distilled dataset in the embedding space. Dataset Distillation by Match-
ing Training Trajectories (MTT) (Cazenavette et al., 2022) tries to match the training trajectories
between models trained using synthetic dataset and models trained using the whole training dataset.

2.2 DATASET AND MODEL BIAS

Deep neural networks (DNNs) have exhibited remarkable capacity in discovering strong correlations
present within datasets, which often contributes to their success in various machine learning tasks.
However, when applied to datasets where simple and spurious correlations coexist with complex and
intrinsic correlations, DNNs may inadvertently lean towards the shortcuts. The generalization ability
of DNNs will be greatly hindered when these spurious relations are learned instead of the intrinsic
ones. Following previous works (Hwang et al., 2022), we refer to samples strongly correlates with
bias feature as bias-aligned and samples that don’t align with bias features as bias-conflicting. The
most commonly studied bias types include color, background, noise, texture etc (Nam et al., 2020;
Lee et al., 2021; Hwang et al., 2022). In this paper, we study how the bias in the original data affects
the small synthetic set through the dataset distillation process and try to mitigate this phenomena.
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Figure 1: Examples of original images (top) and synthetic images (bottom) from biased dataset.
See Section A.9 for more examples.

The evaluations are done by testing whether models trained on synthetic datasets can effectively
generalize to unbiased test datasets.

2.3 DE-BIASING METHODS

While prior research has explored de-biasing methods on entire datasets, our work is the first, to
the best of our knowledge, to investigate the impact of biases on dataset distillation results in this
emerging field. Below, we discuss several state-of-the-art de-biasing methods designed to train de-
biased models on entire datasets.

LfF (Nam et al., 2020) debiases by training a biased and debiased model together. It uses generalized
cross entropy (GCE) (Zhang & Sabuncu, 2018) loss to amplify bias and computes a difficulty score
for debiased model loss weighting. DFA (Lee et al., 2021) disentangles bias and intrinsic attributes,
creating unbiased samples by swapping bias embeddings among training samples to train a debiased
model. SelectMix (Hwang et al., 2022) shares the same idea of creating more unbiased samples by
using mixup augmentation on contradicting pairs selected by a biased model.

Note that, although some prior de-biasing methods involve reweighting (Sagawa et al., 2019; Li &
Vasconcelos, 2019; Nam et al., 2020), our approach differs for the following reasons: 1) Previous
methods (Li & Vasconcelos, 2019; Nam et al., 2020) integrate the reweighting scheme into the final
de-biased model’s training, either as a loss or using an auxiliary model, optimizing it alongside the
de-biased model. This process does not apply to dataset distillation methods since a well-trained
model is not required in the process (e.g., DM uses randomly initialized models, and MTT only
matches part of the training trajectories). 2) Methods like Sagawa et al. (2019) require explicit bias
supervision, which may be challenging or infeasible, while our method has no such requirement.

3 THE IMPACT OF BIAS IN DATASET DISTILLATION

In this section, we conduct comprehensive experiments to answer the following question: how does

a biased training set influence the distilled data? Will the bias be amplified or suppressed through

the dataset distillation process?

In line with prior studies (Nam et al., 2020; Lee et al., 2021; Hwang et al., 2022), we explore three
datasets: Colored MNIST (CMNIST), Background Fashion-MNIST (BG FMNIST), and Corrupted
CIFAR-10. CMNIST introduces a color bias, causing classes to share specific colors, potentially
confusing training. BG FMNIST combines MiniPlaces (Zhou et al., 2017) with Fashion-MNIST,
creating background biases, e.g. T-shirts in bamboo forests. Corrupted CIFAR-10 introduces pertur-
bations and image distortions like Gaussian noise, blur, brightness, contrast changes, and occlusions.
See Figure 1 for examples and Section 5.1 for detailed descriptions.

For each dataset, we use D to denote the unbiased set (e.g., randomly distributed colors in CM-
NIST), while Db represents the bias-injected dataset. In Db, 95% of the samples are aligned with
the bias, meaning, for example, 95% of the digit ’0’ may be red, while the remaining 5% of the digit
’0’ possess random colors. Let F be a dataset distillation algorithm that maps the original dataset
into a distilled synthetic set, and let M denote the model training procedure that maps a dataset to
a model. By comparing M(F(D)) (model trained with distilled unbiased dataset) and M(F(Db))
(model trained with distilled biased dataset), we evaluate these two models’ performance on un-
biased test samples and compute the following measurement to reveal how the bias in the source
dataset degrades the performance of the model trained on distilled synthetic samples:

Acc(M(F(D)))� Acc(M(F(Db))).
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Figure 2: The left most 2 bars indicate the model performance on full dataset with no distillation.
For DSA/DM/MTT, the blue bar shows the model performance on the unbiased dataset and the red
bar shows the performance of the corresponding dataset distillation method on that biased dataset
with 5% bias-conflicting samples. The distillation performances are measured under IPC 10.

We conduct experiments on three representitive dataset distillation algorithms: DSA (Zhao & Bilen,
2021b), DM (Zhao & Bilen, 2021a) and MTT (Cazenavette et al., 2022) as lots of SOTA methods
can be used as an add-on module to these methods (Wang et al., 2022; Kim et al., 2022; Liu et al.,
2022; Lee et al., 2022; Liu et al., 2023). Additionally, we include a baseline approach without
dataset distillation, which is equivalent to the case when F represents an identity transformation.
The visualization of bias impacts in dataset distillation can be found in Figure 2.

For CMNIST, the results presented on the left panel of Figure 2 reveal a strong bias amplification
effect – while the bias injected into the original dataset leads to a mere 4% performance drop in
regular training, it results in over 50% performance decline when employing any of the three dataset
distillation methods. This observation can be attributed to the following factors. Since the original
set comprises 95% biased samples, with a selection of IPC 10, it is highly possible that all of the
chosen images are biased. As a result, the unbiased signal totally diminishes through the distillation
process. Another critical factor is that since color is a discriminative feature that can be easily learned
by neural networks, dataset distillation algorithms will focus on distilling this color feature into
the synthetic images in order to achieve good performance, leading to bias amplification. Similar
impacts are also seen on the BG FMNIST dataset.

Interestingly, results from Corrupted CIFAR-10 show a reverse trend. The right panel of Fig-
ure 2 shows that the performance degradation is actually more substantial in the traditional training
pipeline compared to the ones incorporating dataset distillation. This observation indicates the bias
suppression effect for corruption biases, and dataset distillation is helpful for mitigating bias in this
setting. Since corruption biases include several different perturbation effects such as Gaussian noise
and blurring, we assume that the distillation process naturally blends information from multiple im-
ages, and the resulting images are already blurred in nature where noisy effects tend to cancel out,
so it is harder to capture the corruption bias. Sampled distilled images are visualized in Figure 1.

For datasets exhibiting amplified biases (CMNIST and BG FMNIST), we found even state-of-the-
art de-biasing training methods such as SelectMix (Hwang et al., 2022) and DFA (Lee et al., 2021)
are not able to obtain an unbiased model from the biased synthetic set. See more details in the first
subsection of Section 6. This finding also highlights the urgency of developing a bias-mitigating DD
algorithm to obtain unbiased synthetic sets.

4 MITIGATING BIAS IN DATASET DISTILLATION

In this section, we propose a simple yet effective re-weighting method to mitigate bias in several
dataset distillation algorithms.

4.1 BIAS MITIGATION THROUGH RE-WEIGHTING

In dataset distillation methods such as DM (Zhao & Bilen, 2021a; Zhao et al., 2023), the objective
is to match the embeddings generated by the synthetic dataset (S) with the ones generated by the
real images (T ). The objective function is formulated as below

min
S

Ev⇠Pv,!⇠⌦ k 1

|T |

|T |X

i=1

 v(A(xi,!))�
1

|S|

|S|X

i=1

 v(A(sj ,!)) k2, (1)
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where  is usually a surrogate model that maps the data into an embedding space and A is a differen-
tiable augmentation function. By solving equation 1, DM learns the synthetic set to match the mean

embedding of the original set. If the dataset is highly biased, the first term 1
|T |

|T |P
i=1
 v(A(xi,!))

will be dominated by bias-aligned samples, thus causing distribution matching based methods to
synthesize more images that’s also bias-aligned.

In order to mitigate bias, we propose to compute a weighted sum of the real image embeddings in-
stead of simply using the mean of all data points. For data points that exhibit a strong correlation with
the spurious (bias) feature, they should be assigned lower weights. Conversely, data points that have
limited association with the bias feature should be afforded higher weights. This adjustment ensures
that the distillation process effectively captures the intrinsic features. Let W (T ) = [w0, w1, ..., wn]
with n equals |T | in Equation 1 be the normalized weight of each training sample, the weighted loss
can be written as

min
S

Ev⇠Pv,!⇠⌦ k W (T ) ·  v(A(T ,!))� 1

|S|

|S|X

i=1

 v(A(sj ,!)) k2, (2)

where W (T )· v(A(T ,!)) is the re-weighted embeddings where the bias feature has been balanced.

4.2 BIAS ESTIMATION USING KERNEL DENSITY ESTIMATION

The key problem of this reweighting scheme is how to compute W (X) which is unknown. In
order to compute it, we propose to use Kernel Density Estimation (KDE), which is a non-parametric
technique used to estimate the probability density function (PDF) of a random variable based on
observed data points. Mathematically, given a set of n data points x1, x2, ..., xn, the kernel density
estimate f̂(x) at any point x is given by:

f̂(x) =
1

n

nX

i=1

K (k�(x)� �(xi)k) , (3)

where K(·) is the kernel function that determines the shape and width of the kernel placed on
each data point. The most commonly used kernel function is the Gaussian kernel: K(u) =

1
�
p
2⇡

e�
1
2 ·(

u
� )2 . � is a mapping function that maps the data points into an embedding space for

distance computation. By summing the contributions of the kernel functions centered at each data
point, KDE provides an estimate of the PDF at any given point x. The estimate f̂(x) represents
the density of the underlying distribution at that point. Since a biased dataset is usually dominated
by bias-aligned samples which should be given a lower weight, we propose to use the normalized
inverse of the kernel density function N( 1

f̂(x)
) as the new weights, and N is a normalization function

such as softmax so that
|T |P
i=1

N( 1
f̂(xi)

) = 1. Eventually we have W (T ) = [N( 1
f̂(x1)

), ..N( 1
f̂(xn)

)].

4.3 DISTANCE COMPUTATION IN KDE

The aforementioned KDE reweighting scheme requires a feature mapping �(·) to map images from
raw pixel space to a more meaningful hidden space. Moreover, an optimal mapping for �(·) would
be one that transforms images into biased features, enabling KDE to accurately represent the density
of bias. Consequently, our reweighting scheme can effectively mitigate bias. To obtain bias features
without external knowledge, Lee et al. (2021); Nam et al. (2020) both utilize the generalized cross
entropy (GCE) loss to train an auxiliary bias model. However, neither of them directly work with
latent spaces that can be utilized in KDE. Following the recent SOTA de-biasing method (Hwang
et al., 2022), we utilize a supervised constrastive learning (Chen et al., 2020; Khosla et al., 2020)
model, which is trained with generalized supervised contrastive (GSC) loss to produce image em-
beddings that can be used to measure distances between data points. The model is proven to produce
high quality similarity matrix regarding bias features (Hwang et al., 2022).
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4.4 APPLY TO OTHER DATASET DISTILLATION METHODS

In addition to DM, our method can also be easily applied to other DD methods. Here we use
DSA (Zhao & Bilen, 2021b; 2023; Kim et al., 2022) as an example which synthesizes data by
matching gradients. Generally, gradient matching based methods can be formulated as:

min
S

D(r✓LT
c (A(T ,!T ), ✓t),r✓LS

c (A(S,!S), ✓t)), (4)

where LT
c = 1

|T |
P

x,y `(�✓t(A(T ,!T )). We denote the re-computed weights as W (T ), then the
first term in Equation 4 can simply be replaced with W (T ) ·r✓LT

c (A(T ,!T ), ✓t). We demonstrate
that the proposed method works well with both DSA and DM in the following section.

5 EXPERIMENTS

5.1 DATASETS

We conduct experiments on 3 datasets, two of which are widely used in SOTA de-biasing methods to
assess color and noise biases, while also introducing a novel dataset to evaluate background biases.

Colored MNIST (CMNIST): Nam et al. (2020) introduces the Colored MNIST dataset by injecting
color with random perturbation into the MNIST dataset (Deng, 2012). Each digit will be associated
with a specific color as its bias such as digit 0 being red and digit 4 being green. We evaluate
our method under 3 bias conflicting ratios with 1% (54,509 bias aligned, 491 bias conflicting),
2% (54,014 bias aligned, 986 bias conflicting) and 5% (52,551 bias aligned, 2,449 bias conflicting)1.

Corrupted CIFAR-10: Generated from the regular CIFAR-10 dataset (Krizhevsky et al., 2009),
Corrupted CIFAR-10 applies different corruptions (Hendrycks & Dietterich, 2019) to the images
in CIFAR-10 so that images from one class are associated with one type of corruption such as
GaussianNoise or MotionBlur. We also evaluate our method under 3 bias conflicting ratios with
1% (44,527 bias aligned, 442 bias conflicting), 2% (44,145 bias aligned, 887 bias conflicting) and
5% (42,820 bias aligned, 2,242 bias conflicting).

Background Fashion-MNIST (BG FMNIST): Background bias, which results in an over-reliance
on the background for predicting foreground objects, has been employed to assess interpretability
methods in various prior studies Yang & Kim (2019); Zhou et al. (2017). Following this idea,
we construct a new dataset biased in backgrounds by using Fashion-MNIST (Xiao et al., 2017) as
foregrounds which include a training set of 60,000 examples and a test set of 10,000 examples. And
MiniPlaces (Zhou et al., 2017) is used as backgrounds to introduce background biases such as T-shirt
is associated with bamboo forest background, trouser is associated with livingroom background, etc.
Similar to other biased datasets, we also conduct experiments in 3 settings including 1%, 2% and
5% bias conflicting samples.

5.2 EXPERIMENTAL SETUP

Following previous dataset distillation methods (Zhao & Bilen, 2021a; Cazenavette et al., 2022), we
use ConvNet as the model architecture. It has 128 filters with kernel size of 3⇥3. Then it’s followed
by instance normalization, RELU activation, and an average pooling layer. We use SGD as the
optimizer with 0.01 learning rate. For the supervised contrastive model, we use ResNet18 (He et al.,
2016) following Hwang et al. (2022) with a projection head of 128 dimensions. Same as previous
de-biasing works (Nam et al., 2020; Lee et al., 2021; Hwang et al., 2022), we evaluate our results
by training a DNN model (same as distillation) on the synthetic dataset and measure its accuracy
using the unbiased test set. The results are evaluated with IPC 1, 10 and 50 on CMNIST, Corrupted
CIFAR-10 and BG FMNIST dataset. See Section A.2 in Appendix for more experiment details.

1Bias-conflicting samples are samples in a class that have different bias properties from the majority of the
samples in that class. For example, a yellow 0 is a bias conflicting sample when the majority of 0s are red.
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Table 1: Test accuracy of distribution matching based method on three biased datasets.

Dataset Method Bias-conflict Ratio (1.0%) Bias-conflict Ratio (2.0%) Bias-conflict Ratio (5.0%)
1 10 50 1 10 50 1 10 50

CMNIST DM 25.4±0.1 18.6±0.2 22.6±0.5 24.8±0.4 18.5±0.6 23.6±0.8 25.3±0.3 19.6±0.9 23.8±1.3
DM+Ours 28.0±0.5 64.9±0.3 75.4±1.1 26.4±0.7 50.6±1.2 75.7±1.0 32.2±1.0 86.5±1.2 91.5±0.9

BG FMNIST DM 41.0±0.3 42.2±0.8 43.9±0.4 40.1±0.6 40.1±0.9 44.4±0.5 41.7±0.5 42.0±1.2 44.6±0.9
DM+Ours 44.6±0.5 50.6±0.2 57.2±0.6 51.4±0.7 62.3±0.4 63.0±1.0 49.4±0.2 61.8±0.6 65.0±0.8

Corrupted CIFAR-10 DM 25.1±0.4 32.9±0.3 37.6±0.8 25.0±0.1 32.9±0.1 37.7±0.2 24.6±0.4 33.5±0.8 38.7±0.4
DM+Ours 24.2±1.2 33.4±0.9 39.4±0.8 25.3±0.5 34.2±0.5 39.7±0.4 26.6±0.5 33.5±0.6 40.2±0.4

5.3 EXPERIMENTAL RESULTS

5.3.1 PERFORMANCE BOOST ON DM

First of all, we investigate if the proposed method can mitigate biases in distribution matching based
methods and choose DM (Zhao & Bilen, 2021a) as the representative algorithm. The evaluation
results are shown in table 1. It can be seen from the table that as the number of IPCs increases, the
vanilla DM has little to no performance gain on bias amplifying datasets CMNIST and BG FMNIST.
When IPC increases from 1 to 10 on CMNIST with 1, 2 and 5 percent bias-conflicting samples, there
is even a performance degradation. After reweighting the samples according to Equation 2, we are
able to mitigate the biases in synthetic datasets. Under the settings of IPC 50, we are able to boost
the performance from 22.6% to 75.4% on CMNIST dataset with 1% bias conflicting samples. With
2% and 5% bias conflicting samples, the accuracy also increased from 23.6% to 75.7% and 23.8%
to 91.5% respectively. The complete results can be found in table 1. Similar performance boosts are
also observed on BG FMNIST, e.g. with IPC 10, the performance gains are 8.4%, 22.2% and 19.8%
with 1, 2 and 5 percent bias conflicting samples. On Corrupted CIFAR-10, we only observe a slight
performance boost which aligns with the intuition described in Section 3.

5.3.2 PERFORMANCE BOOST ON DSA

Next, we investigate whether the proposed method can improve gradient matching based methods
and choose DSA as the representative algorithm. Similar to DM, we also observe a strong perfor-
mance boost on CMNIST. Under the settings of IPC 50, with 1, 2 and 5 percent bias conflicting
samples, the performance increases from 14.5% to 81.4%, 30.9% to 83.0% and 68.5% to 94.0%.
On BG FMNIST, the performances increase from 40.7% to 58.3%, 48.4% to 65.1% and 59.3% to
71.2% for 1, 2 and 5% bias conflicting samples with IPC 50. Complete results are shown in table 2.

Table 2: Test accuracy of gradient matching based method on three biased datasets.

Dataset Method Bias-conflict Ratio (1.0%) Bias-conflict Ratio (2.0%) Bias-conflict Ratio (5.0%)
1 10 50 1 10 50 1 10 50

CMNIST DSA 26.1±0.3 16.5±0.2 14.5±0.2 25.2±0.3 16.8±0.3 30.9±0.4 25.9±0.5 27.3±0.4 68.5±1.2
DSA+Ours 27.9±0.4 76.7±1.1 81.4±0.8 26.4±0.2 75.3±0.3 83.0±1.2 32.6±0.1 91.9±0.7 94.0±0.8

BG FMNIST DSA 43.4±0.4 45.8±0.5 40.7±0.9 43.7±0.5 47.6±0.3 48.4±0.8 44.7±0.6 52.8±0.5 59.3±0.6
DSA+Ours 44.4±0.6 57.0±1.0 58.3±0.8 48.5±1.2 64.4±0.9 65.1±0.8 46.2±0.6 66.4±0.6 71.2±1.1

Corrupted CIFAR-10 DSA 25.5±0.3 31.9±0.8 34.1±0.5 25.1±0.2 32.0±0.1 34.2±0.3 25.7±0.5 32.8±0.6 35.6±0.5
DSA+Ours 26.0±0.1 32.6±0.8 35.0±0.6 25.2±0.8 33.2±0.2 35.8±0.6 26.0±0.3 32.5±0.7 36.6±0.3

5.3.3 COMPARE TO OTHER METHODS

We then compare our methods to other DD methods beyond distribution and gradient matching, and
use MTT as the representative algorithm which is one of the recent SOTA methods. We show the
performance of random selection, MTT and DM+ours in table 3. MTT outperforms vanilla DM
and DSA, achieving better results on CMNIST and BG FMNIST. For instance, on BG FMNIST
with 5% bias-conflicting samples and IPC 50, MTT achieves 62.3% accuracy compared to DM’s
44.6% under the same settings. We think the reason is that MTT doesn’t use real images during
distillation phase but the trajectories from teacher models. Thus its performance is determined
by both the teacher model trajectories (directly through trajectory matching) and biased original
dataset (indirectly through teacher models trained using the biased original dataset). However, it also
struggles with biases on general, whereas our proposed method is able to mitigate biases effectively
on bias-amplifying datasets CMNIST and BG FMNIST.
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Table 3: Test accuracy compared with other methods.
Dataset Method Bias-conflict Ratio (1.0%) Bias-conflict Ratio (2.0%) Bias-conflict Ratio (5.0%)

1 10 50 1 10 50 1 10 50

CMNIST

Random 22.6±1.0 13.5±0.3 16.0±0.1 22.8±1.0 16.2±0.1 20.7±0.1 19.9±0.5 17.4±0.4 27.2±0.2
MTT 24.2±0.3 27.6±0.4 18.1±0.6 28.3±0.3 42.0±0.4 26.0±0.5 29.2±0.9 47.7±0.8 33.9±1.2

DM+Ours 28.0±0.5 64.9±0.3 75.4±1.1 26.4±0.7 50.6±1.2 75.7±1.0 32.2±1.0 86.5±1.2 91.5±0.9

BG FMNIST

Random 40.0±0.2 40.4±1.6 35.2±0.4 30.2±0.6 43.2±0.2 33.5±1.0 36.2±1.3 44.6±1.2 41.2±1.1
MTT 39.0±1.2 48.0±1.5 45.3±0.9 38.9±1.4 59.2±1.1 59.3±0.8 48.1±1.4 45.2±1.3 62.3±0.8

DM+Ours 44.6±0.5 50.6±0.2 57.2±0.6 51.4±0.7 62.3±0.4 63.0±1.0 49.4±0.2 61.8±0.6 65.0±0.8

Corrupted CIFAR-10

Random 16.4±0.6 26.9±0.2 32.7±0.3 19.1±0.1 23.2±0.2 33.5±0.1 11.8±0.1 26.4±0.3 34.2±0.4
MTT 23.5±0.4 25.4±1.5 33.3±0.5 24.1±0.3 36.3±0.4 35.7±0.2 24.2±0.8 39.0±0.3 39.5±0.4

DM+Ours 24.2±1.2 33.4±0.9 39.4±0.8 25.3±0.5 34.2±0.5 39.7±0.4 26.6±0.5 33.5±0.6 40.2±0.4

5.4 QUALITATIVE ANALYSIS

Figure 3: Synthetic images from vanilla DM
(left) vs Ours (right) distilled from CMNIST
with 5% bias-conflicting samples.

Here we visualize the synthetic datasets produced
by vanilla DM and DM+Ours on CMNIST with 5%
bias-conflicting samples and IPC 10 in Figure 3. As
shown, images synthesized by the vanilla DM com-
pletely ignores the unbiased samples due to the rea-
sons explained in Section 4.1, causing the bias to be
even more amplified than the original dataset (the
original dataset has 5% unbiased samples such as
green 0s or yellow 1s, the distilled dataset has 0%).
When combined with our method, DM is able to
identify and synthesize unbiased samples into the fi-
nal synthetic dataset. Similar results can also be seen
with the vanilla DSA and DSA+Ours in Appendix Figure A.9.

6 ABLATION STUDY

In this section, we perform ablation studies to answer the following key questions: (1) Can existing
de-biasing methods effectively train unbiased models from a biased synthetic dataset? (2) What’s
the performance of applying existing de-biasing methods to the surrogate models used in the dataset
distillation process? (3) How do hyper-parameters like kernel variance and temperature impact the
performance of the proposed method? More ablation studies can be found in the appendix.

Apply de-biasing methods to synthetic dataset. Do we really need to mitigate bias in the DD
process? Even though vanilla dataset distillation methods result in the biased synthetic set, can we
still obtain an unbiased model from such a biased set using existing de-biasing training algorithms?

Table 4: Ablation study test accuracy (%) on syn-
thetic datasets from DM, assessed under 5% bias-
conflicting samples and IPC 10 and 50.

CMNIST BG FMNIST
IPC 10 50 10 50

DM 19.6±0.9 23.8±1.3 42.0±1.2 44.6±0.9
DFA 25.8±1.0 43.3±1.3 11.0±2.1 17.6±1.9

SelecMix* 43.3±1.3 53.7±1.5 57.2±1.1 58.7±0.9
DM+Ours 86.5±1.2 91.5±0.9 61.8±0.6 65.0±0.8
* SelectMix has two versions; we choose the LfF-based (Nam et al.,

2020) version for its superior performance

In order to answer this question, we apply two
SOTA de-biasing methods, SelectMix (Hwang
et al., 2022) and DFA (Lee et al., 2021) on the
synthetic dataset generated by DM and present
the results in table 4. The experiments are con-
ducted on CMNIST and BG FMNIST with 5%
bias-conflicting samples and IPC 10 and 50.
We have the following observations from the
experiments: 1) DFA can slightly improve the
performance on CMNIST but suffers from se-
vere performance degradation on BG FMNIST.
We think the reason is that DFA relies on a bias model to split embeddings, which suffers from per-
formance degradation when the dataset becomes more complex, thus causing the overal performance
drop. This aligns with the observations in Hwang et al. (2022). 2) While SelectMix consistently mit-
igates bias to some extent, it cannot fully rectify biases in synthetic datasets. For instance, SelectMix
improves performance from 23.8% to 53.7% on CMNIST IPC 50. However, under the same bias
conditions, standard training without dataset distillation achieves approximately >85% accuracy.
This indicates that even state-of-the-art methods struggle to recover from biases amplified synthetic
sets. This observation aligns with Figure 3, which illustrates the severe bias amplification to the
point where there isn’t a single unbiased sample (in this case, a digit with a different color) in the
synthetic set. Consequently, de-biasing becomes impossible in such a scenario. In contrast, our
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method achieves 91.5% accuracy in this case, demonstrating the critical importance of debiasing
during the dataset distillation procedure.

Applying de-biasing methods to surrogate models. Many dataset distillation methods use
surrogate models to distill information into synthetic sets. To mitigate bias, applying existing
de-biasing methods to these surrogate models is another straightforward idea. Here, we ex-
plore the impact of applying de-biasing methods to surrogate models in DM and MTT. The
experiments are conducted on CMNIST with 5% bias conflicting sample. Since DM tries to
match the distribution in the embedding space, we first apply DFA (Lee et al., 2021) to sep-
arate the embedding into intrinsic (shape of the digits) and bias (color of the digits) parts.

Table 5: Ablation study test accuracy (%)
for applying de-biasing methods to surro-
gate models on CMNIST with 5% bias-
conflicting samples and IPC 1, 10 and 50.

IPC
Method 1 10 50

DM 25.3±0.3 19.6±0.9 23.8±1.3
DM+DFA 26.1±0.3 20.5±0.5 25.4±0.4

MTT 29.2±0.9 47.7±0.8 33.9±1.2
MTT+SelecMix 18.1±0.5 29.9±0.8 52.1±0.3

DM+Ours 32.2±1.0 86.5±1.2 91.5±0.9

Then we have DM match only the intrinsic part. For
MTT, we first generate the de-biased expert train-
ing trajectories using SelecMix (Hwang et al., 2022).
Then we have MTT match the de-biased training tra-
jectories. The results are shown in Table 5. We ob-
serve that there is a slight performance increase for
DM+DFA compared to the vanilla DM which vali-
dates that the embeddings matched includes less bi-
ases. However, as Hwang et al. (2022) points out,
fully separating intrinsic and bias parts is challeng-
ing. Thus biases will still be distilled into the syn-
thetic dataset even if we only perform DM on the
intrinsic embeddings. For MTT+SelecMix, we see mixed results such as a 17.8% drop on IPC 10
and an 18.2% increase on IPC 50. We think the reason is because the de-biased expert training
trajectories are not stable due to the use of auxiliary models. Although the final de-biased teacher
model performs well, the intermediate training trajectories are hard for MTT to match.

Figure 4: Ablation study on Ker-
nel variance and temperature on
CMNIST with 5% bias-conflicting
samples and IPC 10.

Ablation study on hyper-parameters We assess two hyper-
parameters in our method, the kernel variance and temperature
of N, on CMNIST with 5% bias-conflicting samples and IPC
10 and present the results in Figure 4. We use DM as the base
method which achieves similar results but runs much faster
than DSA. In our observation, a very small variance introduces
noise to the estimation, while a large value prevents the al-
gorithm from assigning more weight to bias samples, leading
to degraded performances. In general, choosing �2 to be 0.1
works well, so we fix it in all of our experiments.

We also study the impact of softmax temperature when nor-
malizing scores in Equation 3. When the temperature goes up,
the weights are more evenly distributed among all samples.
When the temperature goes down, more weights are given to
samples that are further away from the rest of the samples. As shown in the figure, best performances
are achieved around 0.1 which is the default settings in the paper.

7 CONCLUSION

This paper conducts the first analysis of dataset bias in dataset distillation. Our findings show that
bias type greatly influences distillation behavior (amplification vs. suppression). Then we introduce
a debiasing method using re-weight and kernel density estimation which substantially reduces re-
tained bias in synthetic datasets. We assess our debiasing method on various benchmark datasets
with different bias ratios and IPC values and empirically verify the effectiveness of our method. In
summary, our study offers insights into bias in dataset distillation, presents a practical algorithm for
better performance and paves the way for future research on bias mitigation.

Limitations. Although many dataset distillation methods rely on the matching of real and synthetic
dataset through carefully designed objective functions, there are methods such as MTT that only
relies on expert model training trajectories where our method cannot be applied. As shown in Sec-
tion 5.3.3, simply applying de-biasing methods on the expert models also doesn’t work well. This
remains one of our future research directions.
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