
LEARNING DAGS FROM FOURIER-SPARSE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel perspective on learning directed acyclic graphs (DAGs) from
data, leveraging a recently proposed theory of causal Fourier analysis on DAGs.
We build on prior work that learned DAGs from data generated by a structural
equation model (SEM). First, we show that data generated by linear SEMs can be
characterized in the frequency domain as having dense spectra with random coeffi-
cients. Then we propose the new problem of learning DAGs from approximately
Fourier-sparse data, which we solve by minimizing the L1 norm of the spectrum.
We provide a motivation for this problem and compare our method to prior DAG
learning methods, showing superior performance.

1 INTRODUCTION

In this work we study the problem of learning directed acyclic graphs (DAGs) from data using a
Fourier analysis perspective. The DAG learning problem can be stated as learning the edges of an
unknown DAG given data indexed by its nodes. DAGs can represent causal dependencies (edges)
between events (nodes) in the sense that an event only depends on its predecessors. Thus, DAG
learning has applications in causal discovery, which, however, is a more demanding problem that we
do not consider here, as it requires further concepts of causality analysis, like interventions (Peters
et al., 2017). Despite being conceptually simpler than causal learning, learning a DAG from data is
still a very challenging problem and even NP-hard (Chickering et al., 2004). Thus, one has to make
assumptions on the data generating process, to infer information about the underlying DAG.

One common assumption is that the data follow a structural equation model (SEM) (Shimizu, 2014;
Zheng et al., 2018; Gao et al., 2021), meaning that the value of every node is recursively computed as
a function of the values of its direct parents and noise. In this paper we will consider a novel form of
generating data on DAGs that is based on the notion of Fourier-sparsity. In particular, our viewpoint
on DAG learning is based on a recently proposed theory of causal Fourier analysis on DAGs (Seifert
et al., 2022a;b). The theory instantiates all basic Fourier concepts including shift, filters, spectrum
and Fourier transform for signals (or data) on DAGs, following the general approach of the algebraic
signal processing theory (Püschel & Moura, 2006). In particular, the proposed Fourier transform for
DAGs coincides with the weighted version of the Möbius transform from combinatorics (Rota, 1964).
Interestingly, as we will show first, data produced by linear SEMs can then be viewed as having a
dense, random spectrum of causes (in a sense being defined) with the data generation matrix being
the inverse Fourier transform.

With this viewpoint we inherit a particular notion of Fourier-sparsity, i.e., data with an approximately
sparse spectrum of causes. For prior, classical forms of Fourier transforms, Fourier-sparsity has
played a significant role, including of course the discrete Fourier transform (DFT) (Hassanieh, 2018),
the discrete cosine transform (DCT) where it enables JPEG compression (Wallace, 1991), or the
Walsh-Hadamard transform for estimating set functions Stobbe & Krause (2012).

Contributions. In this work we leverage the concept of Fourier-sparsity associated with the Fourier
analysis from (Seifert et al., 2022b) for solving the DAG learning problem. Our contributions consist
of the following:

• We characterize data generated by linear SEMs in the spectral domain. We show that they
cover the whole frequency spectrum and have random Fourier coefficients.

• Motivated by the concept of Fourier-sparsity, we pose the new problem of learning DAGs
from data with approximately sparse Fourier-spectrum.
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• To solve this problem, we propose a novel linear DAG learning method, called Möbius, that
has as minimization objective the L1 norm of the approximated spectrum. Analyzing Möbius
experimentally, in comparison with recent linear DAG learning methods, we conclude that
our method offers significant improvements on Fourier-sparse data.

2 CAUSAL FOURIER ANALYSIS

In this section we provide the necessary background on the causal Fourier analysis on DAGs from
(Seifert et al., 2022b;a) including a motivating example.

2.1 BACKGROUND

DAG. We consider a DAG G = (V,E) with |V | = d vertices and no loops. G induces a partial
order on V : i ≤ j for i, j ∈ V whenever there is a path from i to j. We assume the vertices to be
sorted topologically and for simplicity assume then V = {1, 2, ..., d}. Further, we assume a weighted
adjacency matrix A of the graph:

A = (aij)i,j∈V =

{
aij , if (i, j) ∈ E,

0, else.
(1)

We consider the nodes as events and say that i is a cause of j if i ≤ j. Note that Ad = 0.

Signal. A signal (or data) over G is defined as a vector s = (si)i∈V indexed by the vertices of G,
where si has been measured at i. Further, the model assumes that every si is a linear combination

si =
∑
j≤i

cjwji, for all i ∈ V, (2)

of unknown values cj of its predecessors with associated weights wji. By slight extension of
terminology, cj , for j ≤ i, is called a cause of si and wji captures the associated strength of influence.
In matrix form, Eq. (2) becomes s = W T c with W = (wij)i,j . Note that the weights are present
for all j ≤ i, not just for the edges as in A. Thus, W will be computed through a transitive closure
of A as explained next.

Weighted transitive closure. The computation of W from A first requires a weighted transitive
closure of A, denoted with A. According to the theory in (Abdali & Saunders, 1985) there are
several choices depending on the meaning of the weights in A which could be the shortest path’s
length, level of pollution, most reliable path, or capacity, and they can be computed using a modified
Floyd-Warshall algorithm. Two examples of weighted transitive closures are the following:

Trivial zero closure: A = A

Floyd-Warshall closure: A = A+A2 + ...+Ad−1

The trivial zero closure encodes a Markovian condition: only direct predecessors have an influence.
The Floyd-Warshall closure can be computed by running a modified Floyd-Warshall algorithm
(Lehmann, 1977). One intuitive interpretation of A is a pollution model. Assume G is a river network
and an edge weight aij ∈ [0, 1], (i, j) ∈ E, captures what fraction of a pollutant inserted at i reaches
the neighbour j. Then aij is the total fraction for every i ≤ j, considering all paths from i to j.

It remains to determine the self-loop weights wii, i ∈ V , which are all chosen as = 1. As a result,

W = I +A (3)

is a reflexive-transitive closure of A and invertible. One might ask the question whether there can
exist multiple DAGs A that attain the same Floyd-Warshall transitive closure A. The answer is
negative:

Lemma 1. The Floyd-Warshall transitive closure A 7→ A is a bijective mapping.

Proof. It holds that(
I +A

)
(I −A) =

(
I +A+A2 + ...+Ad−1

)
(I −A) = I, (4)
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Figure 1: (a) A DAG as example of a river network with weights that capture fraction of pollution
transported between adjacent nodes. (b) shows its transitive closure whose weights are fractions
of pollution transported between all pairs of nodes that succeed each other, (c) a possible signal
measuring pollution, and (d) its spectrum, in this case sparse, revealing the causes.

and thus
A = B ⇔ (I −A)−1 = (I −B)−1 ⇔ A = B. (5)

Fourier transform. In summary, the linear relationship (2) between the observed signal s and its
causes c becomes

s = W T c =
(
I +A

T
)
c. (6)

(Seifert et al., 2022a) argues that c can be interpreted as a form of spectrum of s. This is done by
providing a suitable notion of shift and associated shift-equivariant convolution whose eigenvectors
are the columns of I +A

T
. Here, we only need and state the Fourier transform obtained by inverting

(6):

c = W−Ts =
(
I +A

T
)−1

s = (I −AT )s

using the proof of Lemma 1. Within the presented model it computes the causes from the observed
data. c is sparse if s has few causes.

2.2 INTUITIVE EXAMPLE

We expand the pollution in a river network mentioned before for an intuitive example.

DAG. We assume a DAG describing a river network. The acyclicity is guaranteed since flows only
occur downstream. The DAG consists of 6 nodes and is depicted in Fig. 1a. The nodes i ∈ V
represent geographical points of interest, e.g. cities, and edges are rivers connecting them. We
suppose that the cities can cause pollution to the rivers. The edge weight aij ∈ [0, 1] describes what
fraction of a pollutant at i reaches a neighbour j.

Transitive closure. Fig. 1b shows the transitive closure of the DAG in (a). The edge weight
aij ∈ [0, 1] now represents the total fraction of a pollutant at i that reaches j via all connecting paths.

Signal and spectrum. Fig. 1c shows a possible signal s on the DAG, for example the total pollution
measured at each node. Within the model, the associated spectrum c in Fig. 1d then shows the
origin or causes of the pollution. In this case the spectrum is sparse, i.e., there are few causes.
Fourier-sparsity will be the key assumption in our work.

Fourier transform. Fig. 2 shows the matrices associated with the example: the DAG’s adjacency
matrix, its reflexive-transitive closure, and its inverse-transpose, which is the Fourier transform
matrix.

3 LINEAR DATA ON DAGS

In this section we interpret linear SEMs from a causal Fourier analysis perspective. In particular, we
show that they can be interpreted as generating signals with a dense, random spectrum. This will then
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Figure 2: Numerical data for the DAG example. The first matrix is the weighted adjacency matrix of
the DAG. The second is its reflexive-transitive closure, and the third, its inverse, is the Fourier matrix
that computes causes from the signal in the presented model.

allow us to generalize the process of generating causal data to synthetically imposing (approximate)
Fourier-sparsity. First, we recall the definition of a linear SEM.

Linear SEM. Consider a matrix X ∈ Rn×d of n signals of dimension d indexed by the vertices of
the DAG G with weighted adjacency matrix A and N ∈ Rn×d a matrix of independent random noise
values. The data X follow a linear SEM if

X = XA+N

Linear SEMs (Peters et al., 2017) first appeared in the literature of econometrics in 1930’s (Frisch &
Waugh, 1933). Currently, several continuous DAG learning methods are based on the assumption
that data X follow a linear SEM (Shimizu, 2014; Zheng et al., 2018; Ng et al., 2020). They assume
the following data generating process: First, the values at the sources of the DAG are initialized
with random noise. Then, the remaining nodes are processed in topological order and each node is
assigned the linear combination of its parents’ values in addition with independent noise. Formally,
the procedure is described by Algorithm 1. Computationally, Algorithm 1 operates in a similar
manner to the signal model (2) in the sense that the values of a node depend on itself and its ancestors.
However, the main difference is that in the linear SEM only the direct parents are considered, and the
node values occur linearly from signal values instead of spectral ones. The interesting connection
between linear SEMs and the causal Fourier transform is analyzed with Lemma 2.

Algorithm 1: Linear SEM data generation

1. A DAG G(V,E) is given with weighted adjacency matrix A.
2. Initialize the columns i that correspond to sources of the graph G with random noise

X:,i = N:,i.
3. Compute the values for every other vertex in topological order. The value of the column

corresponding to ith vertex is computed based on the values of its direct parents

X:,i = X:,Pa(i)APa(i),i +N:,i

4. Output the synthetic data X that satisfy X = XA+N .

Lemma 2. The linear SEM data generation Algorithm 1 computes data X that satisfy

X = N
(
I +A

)
(7)

Proof. Using
(
I +A

)
(I −A) = I , we derive

X = XA+N ⇔ X (I −A) = N ⇔ X = N (I −A)
−1 ⇔ X = N

(
I +A

)
as desired. In the appendix, we also include a constructive proof of the above statement based on the
iterations of Algorithm 1.

Lemma 2 together with the analysis of the previous section yields the following interpretation of
linear SEMs.
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Theorem 1. The linear SEM data generation Algorithm 1 is equivalent to the inverse causal Fourier
transformation of the noise spectra N , given by (7), when the weights W are computed according to
the Floyd-Warshall closure. In essence, in (7) the rows of the noise matrix N contain the spectra of
the signals that constitute the rows of X .

Fourier-sparse data. Motivated by Theorem 1, we define a novel data generating process for
DAG signals based on the notion of Fourier sparsity. As previously, we consider a topologically
sorted DAG G with weighted adjacency matrix A and transitive closure A. We define the matrices
C,Nf ,Ns ∈ Rn×d that correspond to the signal, spectra and the random noise for the frequency
and signal domain respectively. According to the spectra and the noise, the data X ∈ Rn×d are
generated via the causal Fourier transform

X = (C +Nf )
(
I +A

)
+Ns. (8)

The data are characterized as approximately Fourier-sparse if

min
i,j

{|cij |, cij ̸= 0} ≫max{∥Nf∥∞, ∥Ns∥∞}, and

nd ≫∥C∥0.
(9)

The L0 norm promotes only a few spectral coefficients to be non-zero. Thus, in this context, being
sparse in the Fourier domain simply translates into the signal being generated using only a few causes.
Note that (8) provides an alternative way to express linear SEMs. Namely, for zero spectra C = 0,
zero noise on the signal domain Ns = 0 and Floyd-Warshall closure A = A+A2 + ...+Ad−1,
(8) specializes to (7). Thus, our model (8) generalizes linear SEMs by potentially allowing non-zero
spectra, signal noise, and other notions of transitive closure from (Abdali & Saunders, 1985).
Example. Consider the river network of our previous example. We assume that we take measurement
for all d sensors of the network once in a day for n days and collect them in the matrix X ∈ Rn×d. As
before, the data X represent accumulated pollution in the nodes of the river network. The pollution
is caused at nodes (cities) of the network. Fourier-sparsity means that every day only a small number
of cities pollute, which is captured by C. Negligible pollution from other sources is modeled as the
noise Nf . Ns models the noise in the sensor measurements. Thus, in this scenario we deduce that
C,Nf ,Ns satisfy (9), i.e., the measurements in X are approximately Fourier-sparse.

4 METHOD FOR FOURIER-SPARSE DATA

In this section we present our proposed continuous optimization problem for learning DAGs from
Fourier-sparse data. We assume that the data matrix X ∈ Rn×d is generated as the inverse Fourier
transformation of sparse spectra with noise according to (8). The Fourier-sparsity is ensured when C
and the noise Nf ,Ns satisfy the sparsity criterion (9). Notice that for both noise matrices Nf ,Ns we
do not make any assumption (e.g., on their distribution) other than that the noise has low magnitude.
The general approach for solving the DAG learning problem via continuous optimization consists of
the following objective

min
A∈Rd×d

ℓ (X,A) +R (A)

s.t. h (A) = 0,
(10)

in which ℓ (A,X) is the loss function corresponding to the data, R (A) is a regularizer that promotes
sparsity in the adjacency matrix and h (A) is any continuous constraint for acyclicity. Current
approaches assume that the data are generated via a linear SEM following the equation X = XA+N
and the loss function in that case takes the form

ℓ (X,A) =
1

2n
∥X −XA∥22 =

1

2n

∥∥∥N̂∥∥∥2
2

This loss function is called the mean-squared loss approximation and achieves the minimization of
the L2 norm of the approximated noise N̂ . A popular choice for the regularizer is the L1 norm
R (A) = λ ∥A∥1 to promote sparsity in the adjacency matrix. The acyclicity constraint can be, for
example, the one proposed by (Zheng et al., 2018), namely, h (A) = tr

(
eA⊙A

)
− d, or the one from

(Yu et al., 2021), which is h (A) = tr
(
(I + λA⊙A)

d
)
− d.
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For our case we consider the following instantiation of the optimization problem (10):

min
A∈Rd×d

1

2n

∥∥∥X (
I +A

)−1
∥∥∥
1
+ λ∥A∥1

s.t. h (A) = 0.

(11)

We call this method Möbius due to the fact that the Fourier transform in the causal setting coincides
with the Möbius transformation for posets (Seifert et al., 2022a). Here the acyclicity constraint can
be chosen freely among those previously mentioned. The choice of the L1 norm for minimizing the
approximated spectra X

(
I +A

)−1
is to promote sparsity. If we assume that we have found the

true weighted adjacency matrix A then according to the Eq. (8) the approximated spectra can be
computed explicitly as

1

2n

∥∥∥X (
I +A

)−1
∥∥∥
1
=

1

2n

∥∥∥C +Nf +Ns

(
I +A

)−1
∥∥∥
1
.

This quantity is sparse when assumption (9) holds and Ns

(
I +A

)−1
has entries of low magnitude.

Remark. Notice that, the optimization problem (11) becomes the conventional one in the linear
SEM setting if we use the Floyd-Warshall transitive closure and interchange the L2 with the L1 norm.
For the linear SEM case, the mean-squared loss is a more compatible loss function to consider in
order to minimize the approximated noise. Therefore, our method is an extension of the current DAG
learning literature in order to learn DAGs from Fourier-sparse data. Furthermore, it could also be
used with different notions of transitive closure.

5 RELATED WORK

Graph learning. We build on the idea to utilize Fourier analysis tools to learn graphs that are directed
and acyclic. Related work applies graph signal processing (GSP) (Sandryhaila & Moura, 2013b;
Ortega et al., 2018) concepts to extract the graph structure from data (Xia et al., 2021). Kalofolias &
Perraudin (2017); Kalofolias (2016) learn graphs by applying a GSP smoothness criterion, Dong et al.
(2016) learn the Laplacian of the graph, and Egilmez et al. (2017); Pavez et al. (2018); Koyakumaru
et al. (2021) utilize Gaussian Markov random fields for graph learning. Prior GSP tools are not
applicable to DAGs since the spectrum collapses (all eigenvalues of the adjacency matrix are zero)
and no Fourier transform is available. The Fourier analysis from (Seifert et al., 2022b) that we use is
fundamentally different from prior GSP and specifically designed for DAGs.

DAG learning. The approaches to solve the DAG learning problem fall into two categories, using
combinatorial search or continuous relaxations. In combinatorics terms, DAG learning is an NP-hard
problem, as the space of possible DAGs is super-exponential in the number of vertices (Chickering
et al., 2004). Methods that search on the space of possible DAGs apply heuristic criteria in order
to find the ground truth DAG (Ramsey et al., 2017; Chickering, 2002; Hauser & Bühlmann, 2012;
Tsamardinos et al., 2006). Lately, with the computational advances of deep learning , researchers
have been focusing on continuous optimization methods (Vowels et al., 2021). These methods
model the data generation process using SEMs. Among the first methods to utilize SEMs were
CAM (Bühlmann et al., 2014) and LINGAM (Shimizu, 2014) with the latter specializing in linear
SEMs with Gaussian noise. NOTEARS (Zheng et al., 2018) described the combinatorial constraint
of acyclicity as a continuous one. Despite some vulnerabilities, like lack of scale-invariance (Kaiser
& Sipos, 2022; Reisach et al., 2021), it has inspired many subsequent DAG learning methods. A
continuation of it (Zheng et al., 2020) utilizes neural networks to generalize NOTEARS to non-linear
SEMs. Other nonlinear methods for DAG learning are DAG-GNN (Yu et al., 2019), in which also a
more efficient acyclicity constraint than the one in NOTEARS is proposed, and DAG-GAN (Gao
et al., 2021). DAG-NoCurl (Yu et al., 2021) proposes learning the DAG on the equivalent space
of weighted gradients of graph potential functions. GOLEM (Ng et al., 2020) studies the role of
the weighted adjacency matrix sparsity, the acyclicity constraint, and proposes to directly minimize
the data likelihood. The method DYNOTEARS (Pamfil et al., 2020) implements a variation of
NOTEARS compatible with time series data. A recent line of works consider permutation-based
methods to parametrize the search space of the DAG (Charpentier et al., 2022; Zantedeschi et al.,
2022). Our work considers DAG learning under the new assumption of Fourier-sparsity.

Fourier sparsity. The notion of sparsity in the frequency domain has been widely used in different
forms of Fourier analysis. For the classical DFT (Hassanieh et al., 2012b; Indyk & Kapralov, 2014)
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it enables faster data processing in spectrum sensing (Hassanieh et al., 2014), magnetic resonance
imaging (Shi et al., 2013), or GPS locking (Hassanieh et al., 2012a). For the DCT it enables JPEG
compression. For the WHT and other set function Fourier transforms (Püschel & Wendler, 2020)
it enables estimation from samples (Stobbe & Krause, 2012; Amrollahi et al., 2019; Wendler et al.,
2021). In GSP it has enabled compression or estimation (Sandryhaila & Moura, 2013a; Ortega et al.,
2018; Chen et al., 2015). Our work aims to leverage Fourier-sparsity instantiated for (Seifert et al.,
2022a) for DAG learning.

6 EXPERIMENTS

We experimentally evaluate our novel DAG learning method with both synthetically generated
Fourier-sparse data and real data from (Sachs et al., 2005).1

Baselines. We compare against DAG learning methods suitable for data generated by classical linear
SEMs with additive noise. In particular, we consider the prior NOTEARS (Zheng et al., 2018),
GOLEM (Ng et al., 2020), the trivial baseline sortnregress (Reisach et al., 2021), DAG-NoCurl (Yu
et al., 2021), greedy equivalence search (GES) (Chickering, 2002; Hauser & Bühlmann, 2012), fast
greedy equivalence search (fGES) (Ramsey et al., 2017), max-min hill-climbing (MMHC) (Tsamardi-
nos et al., 2006), and causal additive models (CAM) (Bühlmann et al., 2014).

Metrics. We use the following performance metrics that consider the unweighted approximation Û
of the adjacency matrix: (a) the true positive rate (TPR), computed as the ratio of correct edges found
by Û , (b) the structural Hamming distance (SHD), which is the number of edge insertions, deletions
or reverses needed to get from Û to the ground truth U , and (c) the total number of nonzero edges
(NNZ) proposed by the algorithm. The first two metrics accurately show whether an algorithm yields
a good approximation while the last one only measures whether the algorithm proposes a number of
edges close to the real number. For the weighted matrix approximation we compute the normalized
mean-squared error (NMSE) as ∥Â − A∥2/∥A∥2.

6.1 EVALUATION ON FOURIER-SPARSE DATA

We perform our first evaluation on synthetic Fourier-sparse data on DAGs.

Data generating process. We first generate a random Erdös-Renyi graph with weights sampled
uniformly at random from (−b,−a) ∪ (a, b), where a, b ∈ R+ are fixed. This results in the true
adjacency matrix A. Next, the sparse DAG spectra C are instantiated by setting each entry either
to 0 with probability 1− p or to some random uniform value from (0, 1) with probability p. A low
value of p yields higher sparsity, since p is the expected fraction of non-zero coefficients. Note that
this means that the support (locations of nonzero values) varies between spectra. Finally, the data
matrix X is computed according to Eq. (8) where only one of the noise matrices Nf ,Ns is non-zero.
The non-zero noise is set to have low standard deviation σ = 0.01. This together with low value of p
ensures that the inequalities (9) hold and that the data are truly Fourier-sparse. After executing the
corresponding method on X we get its approximation Â of the true weighted adjacency matrix A.
For the evaluation we take the average and standard deviation over 10 repetitions, for all methods and
all corresponding performance metrics.

Experiment 1: Comparison of the methods. We consider first the experiment with the default
experimental settings shown in the blue column of Table 4. We show the results in Fig. 3, where we
see that Möbius achieves optimal performance and the rest of the methods perform worse. The reason
for this behavior is that Möbius optimization problem (11) is well suited for these settings. Both the
generated data are Fourier-sparse and the DAG is sparse in the sense it has low average degree.

Experiment 2: Challenging the methods. In Fig. 4, we challenge the algorithms by either using a
small number of samples to learn the DAG or by restricting the Fourier spectra to be non-zero always
the same locations (fixed support). While, for a small number of samples, Möbius performance
degrades, it still achieves the best TPR among all methods.

1All of our code is available as supplementary material. We used the repositories of NOTEARS (Zheng et al.,
2018), and DAG-NoCurl (Yu et al., 2021) and the causal discovery toolbox (Kalainathan & Goudet, 2019).
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Hyperparameter Values True positive rate (TPR ↑)

Default Current Möbius GOLEM sortnregress NOTEARS DAG-NoCurl GES fGES MMHC CAM

Default settings 1.00± 0.00 0.95± 0.02 0.90± 0.05 0.95± 0.03 0.77± 0.06 0.85± 0.05 0.78± 0.12 0.85± 0.05 0.43± 0.07
Graph Type Erdös-Renyi Scale-Free 1.00± 0.00 0.97± 0.03 0.98± 0.02 0.97± 0.01 0.91± 0.05 0.80± 0.08 0.91± 0.07 0.71± 0.07 0.26± 0.08
Signal Noise σ = 0.01 σ = 0.1 0.96± 0.01 0.89± 0.04 0.90± 0.06 0.86± 0.05 0.73± 0.08 0.82± 0.07 0.72± 0.10 0.82± 0.06 0.43± 0.05
Low Sparsity 30% 60% 0.55± 0.07 0.97± 0.02 0.92± 0.03 0.96± 0.02 0.78± 0.06 0.82± 0.07 0.75± 0.09 0.83± 0.05 0.51± 0.10
High Sparsity 30% 10% 1.00± 0.00 0.85± 0.06 0.90± 0.03 0.80± 0.06 0.78± 0.07 0.83± 0.05 0.77± 0.08 0.81± 0.04 0.29± 0.05
Small weight bounds (0.4, 0.8) (0.2, 0.4) 0.49± 0.07 0.34± 0.05 0.81± 0.05 0.20± 0.04 0.34± 0.07 0.76± 0.07 0.71± 0.09 0.91± 0.02 0.11± 0.04
Large weight bounds (0.4, 0.8) (0.5, 2) 0.97± 0.03 0.98± 0.02 0.95± 0.03 0.94± 0.06 0.93± 0.03 0.80± 0.06 0.82± 0.09 0.48± 0.03 0.42± 0.08
Edges / Vertices 2 3 1.00± 0.00 0.94± 0.04 0.89± 0.04 0.89± 0.04 0.77± 0.05 0.68± 0.10 0.58± 0.11 0.56± 0.05 0.37± 0.08
Standardization No Yes 0.34± 0.04 0.24± 0.08 0.48± 0.08 0.27± 0.03 0.12± 0.04 0.83± 0.07 0.78± 0.11 0.82± 0.04 0.41± 0.06
Transitive closure Floyd-Warshall Zero 0.69± 0.11 0.86± 0.05 0.83± 0.04 0.75± 0.04 0.73± 0.05 0.78± 0.06 0.61± 0.07 0.88± 0.04 0.44± 0.03
Noise Distribution Gaussian Gumbel 1.00± 0.00 0.94± 0.02 0.91± 0.03 0.93± 0.03 0.78± 0.07 0.82± 0.04 0.80± 0.10 0.81± 0.05 0.39± 0.10
Spectral Noise Nf = 0, Ns ̸= 0 Nf ̸= 0, Ns = 0 1.00± 0.00 0.95± 0.02 0.90± 0.02 0.94± 0.02 0.77± 0.04 0.82± 0.07 0.81± 0.12 0.82± 0.03 0.43± 0.08
Samples 400 20 0.52± 0.09 0.26± 0.09 error 0.34± 0.07 0.49± 0.05 0.36± 0.04 error 0.21± 0.03 time-out
Fixed support No Yes 0.13± 0.05 0.14± 0.04 0.25± 0.10 0.14± 0.06 0.31± 0.10 0.30± 0.09 0.32± 0.07 0.23± 0.07 0.19± 0.07

Table 1: TPR metric for learning graph with 40 nodes. The blue column shows the default value of
the corresponding parameter and the next column the current choice for the experiment, while all
other parameters are set to default. Best results are marked in bold.

(a) TPR ↑ (b) SHD ↓ (c) NMSE ↓

Figure 3: Plots illustrating performance metrics TPR ↑ (higher is better), SHD ↓ (lower is better) and
NMSE ↓ (lower is better) on the default experimental settings.

For fixed Fourier-sparsity support all algorithms fail to learn the DAG for any number of vertices.
One can imagine the fixed sparsity support on the the river pollution example. Fixed support means
that there is only a fixed subset of cities that cause pollution. Intuitively, this will result in only giving
information about the outgoing edges of these cities and not for the rest. This poses the question
whether the problem of learning DAGs from Fourier-sparse data with fixed sparsity support is possible
at all with a suitable algorithm.

Experiment 3: Sensitivity analysis on the hyperparameters. In Table 4, we present an extensive
series of experiments each of which alters a particular hyperparameter indicated in the first column.
For higher standard deviation, we see worse performance on all methods except MMHC and CAM.
Our method still performs best. It is expected that for higher standard deviation the sparsity in the data
breaks and our algorithm will not longer be efficient. Higher sparsity has no effect on our performance,
whereas lower sparsity degrades our performance as expected. In contrast, imposing high sparsity
is harmful for NOTEARS. For smaller weight bounds we see a deterioration in performance on
most algorithms. The best performance in this case is achieved by MMHC. Larger weight bounds
affect our performance only by a small percentage and our method is still the best in this case. For
higher average degree we also achieve the best accuracy. Testing on more dense graphs would have
a negative effect on methods that impose sparsity on the adjacency matrix, like ours. Next, the
standardization of data is something that generally affects negatively algorithms with continuous
objectives (Reisach et al., 2021) and is expected. Moreover, on the zero transitive closure our method
is not the best but has decent performance close to the best MMHC. Finally, applying noise in the
spectrum instead of the signal does not have impact our performance. The last two rows of the table
simply repeat what we saw in the previous experiment, but with higher resolution on the TPR metric.
Overall, our method achieves the best TPR in most scenarios.

6.2 EVALUATION ON REAL DATA

We also execute our method on the causal protein-signaling network provided by (Sachs et al., 2005).
The dataset consists of 7466 samples from a network with 11 nodes that represent proteins and 17
edges showing the interaction between them. Even if the DAG of this network is relatively small, the
task of learning it is rather difficult. This dataset has been a common benchmark for many prior DAG
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(a) TPR ↑ (b) SHD ↓ (c) NMSE ↓

Figure 4: Deterioration of performance. The first row illustrates the performance when using only 20
data samples. The second row considers spectra with fixed sparsity support.

Möbius NOTEARS GOLEM sortnregress DAG-NoCurl GES fGES MMHC CAM

SHD ↓ 15 11 21 18 22 13 17 17 12
TPR ↑ 0.35 0.41 0.35 0.35 0.35 0.26 0.35 0.47 0.35
NNZ 16 15 19 20 23 8 14 16 10

Table 2: Performance on the real dataset of (Sachs et al., 2005). NNZ shows the total number of
non-zero edges proposed by the algorithm. The true number of edges of the unknown DAG is 17.

learning methods Ng et al. (2020); Gao et al. (2021); Yu et al. (2019); Zheng et al. (2018). Among
these methods, the best performance has SHD that does not drop below ≈ 10 which is relatively large
comparing to the 17 edges in total.

We report the performance metrics for all methods in Table 2. As seen in the synthetic experiment our
method works best when the data are Fourier-sparse. However, for this dataset it is not clear whether
this is true. Here, our method has decent performance. Among the other methods the best TPR is
achieved by MMHC, which, however, has higher SHD. NOTEARS together with CAM have the best
SHDs equal to 11 and 12 respectively, which is slightly better than ours which is 15.

7 CONCLUSION

We presented a novel form on learning DAGs from Fourier-sparse data building on a recently
proposed causal Fourier analysis framework. We analyzed linear SEMs from a Fourier analysis
point of view and discovered that the data they generate have random spectra in the Fourier domain.
This observation allowed us to generalize the data generating process of linear SEMs by further
capturing the notion of (approximate) sparsity in the spectral domain. Fourier-sparsity has been a
frequently exploited feature in various types of Fourier domains, and we provide an intuitive example
to demonstrate viability for DAGs.

To learn DAGs from Fourier-sparse data, we build on prior work to enforce acyclicity but propose an
alternative L1-loss on the approximated spectrum. Empirically, we show that our method has the
best performance under the Fourier-sparsity assumption compared to NOTEARS, DAG-NoCurl, and
other DAG learning baselines. Thus we hope that our contribution can serve as a valuable building
block for learning DAGs in real case scenarios where current methods fail.
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A PROOFS

Here we present an additional proof on Lemma 2 that allows us to get a better understanding of how
the values are propagated from parent vertices to their children.

Proof. Consider the total ordering 1, 2, ..., d of the vertices of the graph. For each vertex i we will
show by induction that X:,i = N

(
I:,i +W:,i +W 2

:,i + ...+W k
:,i

)
Starting with the sources, we have that

X:,i = N:,i

= NI:,i

= N
(
I:,i +W:,i +W 2

:,i + ...+W k
:,i

)
since W:,i = 0 and W j

:,i = W j−1W:,i = 0, for all j > 1.

Now assume that the statement is true up to the i−th vertex according to the ordering. Consider, now
the vertex i+ 1. Then Pa(i+ 1) ⊆ {1, 2, ..., i} and according to the update rule of the algorithm.

X:,i+1 = X:,Pa(i+1)WPa(i+1),i+1 +N:,i+1

= N
(
I:,Pa(i+1) +W:,Pa(i+1) + ...+W k

:,Pa(i+1)

)
WPa(i+1),i+1 +NI:,i+1

= N
(
I:,i+1 +W:,i+1 +W 2

:,i+1 + ...+W k
:,i+1 +W k+1

:,i+1

)
= N

(
I:,i+1 +W:,i+1 +W 2

:,i+1 + ...+W k
:,i+1

)
The relation

X:,Pa(i+1) =
(
I:,Pa(i+1) +W:,Pa(i+1) + ...+W k

:,Pa(i+1)

)
holds by induction and

W l
:,Pa(i+1)WPa(i+1),i+1 = W lW:,i+1 = W l+1

:,i+1

because Wj,i+1 = 0 for all j /∈ Pa(i+ 1). Also W k+1 = O since W is nilpotent.

The previous proof leads to conclude that the polynomial W +W 2+ ...+W k works as the transitive
closure W of the weighted adjacency matrix.

A.1 IDENTIFIABILITY

In addition to Lemma 1, we prove the following lemma to provide a condition that works as a
deterministic criterion for the identifiability of the graph from Fourier-sparse data. This lemma simply
states that under assumptions on the spectrum and the noise, the generated data correspond uniquely
to the unknown DAG.
Lemma 3. If the transitive closure of the graph is bijective and the data X are generated with fixed
spectral data C +Nf with full rank and zero signal noise, then any two graphs generating the same
signal data X using zero noise are equal.

Proof. Indeed, let XA be generated by the graph with weighted adjacency matrix A and XB

similarly by B. Then if XA = XB we have that

(C +Nf )
(
I +A

)
= (C +Nf )

(
I +B

)
⇔

(C +Nf )
T
(C +Nf )

(
I +A

)
= (C +Nf )

T
(C +Nf )

(
I +B

)
⇔(

I +A
)
=

(
I +B

)
⇔

A = B
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Notice that the previous criterion doesn’t make any assumption on the variances of the noise variables.
In the special case when the signal noise is zero, our model coincides with the linear SEM formulation
and in that case we can also use standard identifiability criterions from the literature. In that case

X = XA+ (C+Nf ) ⇔ X = (C+Nf )
(
I+A

)
(12)

The way we generate the independent causes is the following. Each data point c in the spectrum is set
to 0 with probability (1− p), otherwise set uniformly at random to a value [0, 1]. Then at each such
point we add the corresponding noise nf . So this means that for each node the variable c+ nf has
the same variance. Therefore, this case falls in the category of equal noise variances for linear SEMs
and is thus identifiable according to (Peters & Bühlmann, 2014). This is supported empirically, by
the fact that our method achieves very high accuracy on discovering the true DAG.

The scenario where we have fixed sparsity support is not generated with equal variances and thus
is not justified to be identifiable. We are currently working towards analyzing the theory for the
identifiability of our model. As preliminary result we may say that when the support of the sparsity is
concentrated on the sink nodes then our model is identifiable due to the conditional variance criterion
(Park, 2020).

B ADDITIONAL EXPERIMENTAL RESULTS

In addition to the TPR metric of Table 4 we provide the computation of SHD in the table below.

Hyperparameter Values Structural Hamming Distance (SHD ↓)

Default Current Möbius GOLEM sortnregress NOTEARS DAG-NoCurl GES fGES MMHC CAM

Default settings 0.00± 0.00 4.20± 2.40 96.80± 33.03 4.30± 2.61 38.50± 9.06 37.50± 14.11 64.50± 23.00 82.90± 1.45 76.60± 9.70
Graph Type Erdös-Renyi Scale-Free 0.00± 0.00 3.40± 4.34 45.10± 15.39 2.10± 0.83 16.60± 9.68 26.60± 9.93 42.70± 23.12 81.70± 2.33 86.10± 9.93
Signal Noise σ = 0.01 σ = 0.1 3.30± 1.19 8.80± 3.63 105.20± 32.66 11.00± 4.29 31.80± 9.66 36.20± 13.70 72.00± 18.78 84.10± 1.64 70.50± 5.78
Low Sparsity 30% 60% 66.80± 10.50 2.60± 1.43 83.10± 24.05 3.40± 1.20 37.90± 8.99 44.30± 19.63 70.10± 29.38 83.00± 2.24 64.00± 11.36
High Sparsity 30% 10% 0.00± 0.00 18.40± 7.76 106.10± 27.46 16.30± 4.65 37.40± 12.55 45.20± 14.03 63.40± 17.97 81.90± 1.22 100.70± 8.75
Small weight bounds (0.4, 0.8) (0.2, 0.4) 41.00± 6.03 52.50± 4.08 48.50± 10.02 63.80± 2.99 53.20± 5.58 23.50± 7.37 43.00± 8.01 85.70± 1.95 99.80± 4.02
Large weight bounds (0.4, 0.8) (0.5, 2) 6.00± 8.28 3.30± 4.82 108.90± 27.25 9.30± 11.26 38.00± 12.54 58.30± 21.65 65.60± 27.25 84.80± 2.23 91.40± 14.30
Edges / Vertices 2 3 0.00± 0.00 6.10± 3.70 116.80± 25.48 11.30± 4.20 39.60± 7.89 86.80± 20.39 108.40± 21.32 94.60± 1.80 84.80± 13.67
Standardization No Yes 83.80± 4.47 71.50± 3.50 243.80± 36.15 85.90± 7.71 101.20± 10.02 38.80± 17.49 61.10± 20.71 82.30± 1.79 77.80± 6.78
Transitive closure Floyd-Warshall Zero 48.00± 13.47 41.00± 9.22 186.50± 26.10 26.70± 4.71 67.00± 16.73 81.10± 11.85 132.40± 19.66 88.00± 3.41 77.50± 5.48
Noise Distribution Gaussian Gumbel 0.00± 0.00 5.90± 3.36 85.20± 17.76 5.90± 2.62 35.90± 12.23 44.60± 12.22 61.50± 22.07 81.80± 0.98 79.90± 14.14
Spectral Noise Nf = 0, Ns ̸= 0 Nf ̸= 0, Ns = 0 0.00± 0.00 4.80± 2.27 96.90± 17.13 5.30± 2.05 39.20± 9.25 40.50± 16.81 56.70± 26.72 82.00± 1.41 77.60± 10.96
Samples 400 20 259.50± 16.95 206.70± 22.77 error 128.90± 13.98 371.50± 25.48 265.40± 27.62 error 86.90± 1.38 time-out
Fixed support No Yes 99.60± 5.85 151.10± 22.13 184.00± 46.03 82.00± 5.40 300.40± 48.12 84.10± 10.90 96.60± 14.44 91.40± 3.80 88.70± 8.86

Table 3: SHD metric for learning graph with 40 nodes. The blue column shows the default value of
the corresponding parameter and the next column the current choice for the experiment, while all
other parameters are set to default. Best results are marked in bold.

Hyperparameter Values Avg.
VarsortabilityDefault Current

Default settings 0.98
Graph Type Erdös-Renyi Scale-Free 0.92
Signal Noise σ = 0.01 σ = 0.1 0.93
Low Sparsity 30% 60% 0.95
High Sparsity 30% 10% 0.95
Small weight bounds (0.4, 0.8) (0.2, 0.4) 0.90
Large weight bounds (0.4, 0.8) (0.5, 2) 0.95
Edges / Vertices 2 3 0.96
Standardization No Yes 0.50
Transitive closure Floyd-Warshall Zero 0.90
Noise Distribution Gaussian Gumbel 0.96
Spectral Noise Nf = 0, Ns ̸= 0 Nf ̸= 0, Ns = 0 0.96
Samples 400 20 0.93
Fixed support No Yes 0.66

Table 4: Average Varsortability measurement for different experimental scenarios.

Varsortability. Moreover, in the table above we compute the varsortability in each different experi-
mental setting. We notice that we have high varsortability in general. However, our measurements
are in general lower than the measurements reported in (Reisach et al., 2021) (Appendix G.1) for
linear SEMs. In some cases is around 5% lower than those of linear SEMs, which is a sign that in our
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experimental setting it is not trivial to learn the DAG. This can also be deduced by the performance
of sortnregress, which has decent performance but is not achieving the best results. It is also worth
mentioning that the fixed sparsity support case, seems like the most interesting one as all the methods
fail in this case and varsortability is very low. Therefore, there is at least one scenario where our
model successfully proposes a hard problem for DAG learning.
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