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1. Introduction 
Alloy design has long been a knowledge-guided 
approach coupled with experimental trial and error. 
However, facing high-entropy alloys (HEAs) with 
complex compositions and large design space, 
traditional experimental methods often fail. In this 
paper, an active learning (AL) framework is proposed 
to achieve the discovery of ultra-high saturation 
magnetization strength (MS) alloys based on limited 
data[1]. 
 
2. Results and discussion 
In order to design an ultra-high MS alloy, we devised a 
research strategy as shown in Fig.1. In this 
framework, we first perform active learning 
validation on the dataset, while comparing different 
ML models and acquisition functions to select the 
combination with the highest active learning 
efficiency[14]. The selected efficient AL engine is 
further used to perform an active learning loop to 
discover high MS alloys through continuous 
iterations. During the AL validation part, we use 20% 
of the dataset to train the surrogate model in AL and 
80% as the search space for model exploration. The 
purpose is to simulate that the real search space is 
much larger than the actual dataset available. In 
addition, to avoid the chance of data allocation, we 
randomly split the data 100 times to calculate the 
average value of AL efficiency. 

 
 

Fig. 1: Overview of the active learning strategy. 

The combination of GPR+EI was further used to form 
an efficient AL engine to carry out high MS alloy 
design. For FexCoyNizAluSiv, the elemental mass 
fraction intervals are set to 20 ≤ x ≤ 100, 0 ≤ y ≤ 50, 0 
≤ z ≤ 35, 0 ≤ u ≤ 10, 0 ≤ v ≤ 10, and the step size is set 
to 1. The final composition space contains 110,198 
alloys. When setting the range of elemental mass 
fraction intervals, the main reference is the upper and 
lower limits of the mass fraction of each element in 
the dataset, and the mass fraction interval of each 
element is adjusted by combining with the knowledge 
of the materials expert. 
The MS values of the 3 recommended alloys for each 
AL iteration are shown in Fig.4(a). The compositions 
and MS of a total of 9 experimental alloys for the 3 
iterations are given in Table S3. The hysteresis loops 
for each iteration of alloy testing are shown in Figure 
S2. Compared to the highest value of 218 emu/g for 
Fe65Co35[2] in the original data set, a new 
composition is greater than this value in each 

iteration: Fe80Co14Ni5Si1 (218.49 emu/g), 
Fe70Co25Ni4Si1 (225.76 emu/g) and Fe66Co28Ni3Al1Si2 
(219.33 emu/g), demonstrating the superior 
compositional design capability of AL. One of the 
formulations 2-3 as shown in Fig.2(a), Fe70Co25Ni4Si1 
achieved an increase of 3.6% compared to the 
maximum value in the data set. We notice that the MS 
of alloy 2-1 is actually unsatisfactory, which could be 
attributed to the component point lying within an 
unexplored interval, where the model predicts with a 
large uncertainty. The EI acquisition function 
includes both the predicted value and their 
uncertainty, leading to a large value of the calculated 
EI, which in turn results in the point being filtered out 
as a recommended point. Fig.2(b) shows the change 
in the RMSE of the model after each iteration with the 
recommended components added to the dataset. It 
reveals that the performance of the surrogate model 
continuously improves as the AL is performed. This is 
also reflected in the results of the third iteration in 
Fig.2(a). As the iteration increases, the model's 
prediction accuracy of the search space improves, the 
uncertainty decreases, and the experimental values of 
the performance of the model's recommended 
component points appear to be concentrated in the 
direction of the maximum. Therefore, the 3 
recommended components are basically high-MS 
alloy formulas in iteration 3, and there is no longer a 
situation similar to that of the No. 2-1 formula. 

 

Fig. 2: (a) The results of 3 AL iterations, and (b) the 
prediction accuracy of the surrogate model after each 

round of AL. 

It turns out that the effectiveness of our framework in 
rapidly designing soft-magnetic HEAs with elevated 
MS. 
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