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Seed: Bridging Sequence and Diffusion Models for Road
Trajectory Generation

ABSTRACT
Road trajectory generation creates synthetic yet realistic trajecto-
ries to tackle data collection costs and privacy concerns. Existing
methods generate a trajectory either segment-by-segment using
sequence models or holistically in one step using diffusion models.
Sequence-based models have good regularity and consistency (i.e.,
resemble the input trajectories) but lack diversity, while diffusion-
based models enhance diversity but sacrifice regularity and con-
sistency. To combine the merits of existing methods, we propose
Seed, by bridging sequence and diffusion models for trajectory gen-
eration. In particular, Seed adopts a conditional diffusion structure,
where a Transformer models the movement of each trajectory along
the road segments, and conditioned on the Transformer’s output, a
diffusion model recovers the next road segment from random noise.
The rationale is that the Transformer captures sequential move-
ment patterns for regularity and consistency, while the diffusion
model introduces diversity by recovering from noise. To train Seed,
we adopt Node2vec to learn embeddings for the road segments to
prepare model inputs, supervise learning using the task of trajec-
tory reconstruction, and design a curriculum learning strategy to
accelerate convergence. We compare Seed with 8 state-of-the-art
trajectory generation methods on 3 datasets, and the results show
that Seed improves the best-performing baseline by over 50%.
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1 INTRODUCTION
With the popularization of GPS devices, the movement of vehicles
and individuals can be easily recorded as trajectories, and trajectory
data facilitates many important applications, such as urban traffic
planning [13, 29], vehicle navigation [15, 16], and route recommen-
dation [6, 19]. However, obtaining real-world trajectories presents
several challenges, including high data collection costs [23, 42],
privacy concerns [33, 41], and proprietary restrictions [2, 35]. Tra-
jectory generation [9, 14, 22, 25, 37, 39, 40] emerges as a solution
to these challenges by creating synthetic yet realistic trajectories
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Table 1: Comparing SOTA trajectory generation methods
with our Seed. Type indicates a method adopts recurrent (R)
or holistic (H) generation. Consistency is quantified by the di-
vergence between real and synthetic trajectories. Regularity
is the percentage of trajectories that maintain connectivity.
Diversity measures the portion of unique trajectories. For
each metric, the top-3 methods are marked in bold.

Methods Type Metrics
Consistency (↓) Regularity (↑) Diversity (↑)

SeqGAN [39] R 0.0063 0.2549 0.8661
SVAE [12] R 0.1188 1.0000 0.0001
TrajVAE [3] R 0.0070 0.9994 0.2469
MoveSim [7] R 0.0194 0.9916 0.1528

TS-TrajGen [14] R 0.0026 0.6012 0.8697
DiffTraj [43] H 0.0128 0.0000 1.0000

Diff-RNTraj [37] H 0.0420 0.0000 1.0000
Seed (Ours) R 0.0018 1.0000 0.9929

based on a reference trajectory dataset. To benefit the downstream
applications, the synthetic trajectories are expected to resemble
the reference trajectories (i.e., consistency) [7, 14], obey trajectory
movement patterns (i.e., passing connected road segments, called
regularity) [9, 37], differ from each other (i.e., diversity) [34, 43].

Existing methods for trajectory generation can be classified into
two categories based on their methodology, i.e., recurrent and holis-
tic. Recurrent methods utilize sequence models, such as Long Short-
Term Memory (LSTM) [4] and Transformer [32], to generate trajec-
tories in an auto-regressive manner (i.e., a road segment at a time).
For instance, SeqGAN [39] trains an LSTM and a Generative Ad-
versarial Network (GAN) using the policy gradient algorithm. Traj-
VAE [3] learns trajectory representations and reconstructs trajecto-
ries using LSTM and Variational Autoencoder (VAE). TS-TrajGen
[14] uses Transformer and two GANs to generate each trajectory
from coarse to fine granularity. Holistic methods generate a com-
plete trajectory in a single step. For example, TrajGAN [25] utilizes
a GAN based on Convolution Neural Network (CNN) to generate a
virtual trajectory image, which is then converted to trajectory. To
harness the power of diffusion models [11, 18, 20, 27, 31], DiffTraj
[43] and Diff-RNTraj [37] integrate diffusion models into U-Net
[28] and WaveNet [18] for trajectory generation.

As shown in Table 1, recurrent methods excel in consistency and
regularity. This is because sequence models are good at capturing
the movement patterns of the reference trajectories along the road
segments. However, their diversity is not high because identical
trajectories may be sampled following such movement patterns.
In contrast, the two holistic methods that utilize diffusion models
have high diversity but low consistency and regularity. This is
because diffusion models recover trajectories from random noises,
and thus it is unlikely to generate identical trajectories in different
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runs. However, the diffusion models cannot capture the sequential
movement patterns of trajectories along the road segments.

To tackle the limitations of existing researches, we aim to design
Seed as a trajectory generation method that achieves consistency,
regularity, and diversity simultaneously. The idea is to jointly utilize
sequence and diffusion models to enjoy their merits while avoid-
ing their defects. Although the idea sounds natural, two technical
challenges need to be resolved as follows.

➊ How to combine a sequence model with a diffusion model? Seed
utilizes a conditional diffusion structure, which generates a trajec-
tory segment-by-segment like the recurrent methods and condi-
tions the diffusion model on the sequence model when predicting
the next road segment based on the previous road segments. In
particular, Seed uses Transformer as the sequence model to en-
code the previous road segments passed by a trajectory. Different
from standard diffusion models that take only random noise as
input, Seed’s diffusion model also uses the Transformer’s output
when recovering the next road segment. The idea is that the
Transformer’s output can guide the diffusion model to follow the
movement patterns of the trajectories (e.g., prefer road segments
that are related to the previous ones) while still injecting ran-
domness during recovery. Besides, to transform the discrete road
trajectories into continuous representations for model inputs, we
adopt Node2vec to learning embeddings for the road segments.

➋ How to train the two models effectively? We utilize the trajectory
reconstruction task for model training, which comprises a next-
segment prediction task and a denoising task. The next-segment
prediction task uses the cross-entropy loss and encourages the
Transformer and diffusion model to work together and accurately
predict the next road segment of a trajectory. We incorporate a
spatial bias to enforce that the diffusion model can only sample
road segments that are adjacent to the current road segment.
The denoising task employs a noise-level loss and a sample-level
loss to train the diffusion model. The noise-level loss minimizes
the discrepancy between the added and model estimated noises,
while the sample-level loss reduces error between the original
and recovered road segment embeddings. Moreover, we utilize
curriculum learning to train Seed from easy to more challenging
tasks, which accelerates convergence and enhances consistency.

We conduct extensive experiments to evaluate Seed, employing 3
datasets and comparingwith 8 state-of-the-art trajectory generation
methods. The results show that Seed significantly outperforms all
baselines in terms of consistency and matches the best-performing
baselines in regularity and diversity. In particular, the consistency
improvements of Seed over the best-performing baseline are 95.38%
in the best case, 50.55% on average, and 9.09% in the worst case.
We also conduct ablation study for our model designs and check
the utility of the generated trajectories for downstream tasks. The
results suggest that our designs contribute to performance, and the
generated trajectories are effective for downstream tasks.

To summarize, we make the following contributions:

• We observe that existing trajectory generation methods cannot
achieve consistency, regularity, and diversity at the same time
due to the inherent limitations of their model designs.

• We propose Seed, which jointly utilizes sequence and diffusion
models via a conditional diffusion structure, to combine themerits
of existing methods while avoiding their defects.
• We design an effective procedure to train Seed, which includes
preparing quality input embeddings, learning via next segment
prediction, and utilizing curriculum learning for acceleration.

2 RELATEDWORK
Existing solutions to the trajectory generation problem can be
classified into two categories, i.e., recurrent and holistic.
Recurrent methods. They typically use sequence models, such as
LSTM and Transformer, as a generator to generate trajectories in
an auto-regressive manner. In particular, SeqGAN [39] employs an
LSTM as the generator and a CNN-based discriminator, and trains
them within a GAN framework using the policy gradient algorithm.
MoveSim [7] uses Transformer as the generator and incorporates
the sequential transition regularities of trajectories as prior knowl-
edge into SeqGAN. SVAE [12] and TrajVAE [3] utilize two LSTMs
or GRUs as the encoder and decoder, and train them within a VAE
framework. The encoder learns trajectory representations, and the
decoder uses the representations to reconstruct trajectories. TSG
[36] and TS-TrajGen [14] generate trajectories from coarse to fine
granularity in two-stages and train within a GAN framework. They
first identify the regions passed by the trajectories, which are then
used as conditions to generate the final trajectories. Using LSTM
and Transformer as generators, DP-TrajGAN [41] and PateGail
[33] adopt differential privacy techniques and a federated learn-
ing framework to generate privacy-preserving trajectories within
the GAN framework. MobilityGPT [9] uses Generative Pre-trained
Transformer (GPT) to generate trajectories and adopts a Reinforce-
ment Learning from Trajectory Feedback (RLTF) mechanism for
fine-tuning. ActSTD [40] and Volunteer [22] use Temporal Point
Processes (TPP) to capture the spatial-temporal dynamics. ActSTD
adopts generative adversarial imitation learning (GAIL) and the pol-
icy gradient algorithm to train the model, while Volunteer designs
a two-layer VAE to extract user and trajectory information.
Holistic methods. They generate one trajectory in a single step.
TrajGAN [25] and TrajGen [2] utilize standard CNN as both the
generator and discriminator, training them within a GAN frame-
work. They first generate a virtual trajectory image, which is then
converted into trajectory. To incorporate the sequential transition
patterns of trajectories, TrajGen also adopts a Seq2Seq model to
assign movement order to the generated trajectories. To harness
the powerful capabilities of diffusion models [11, 18, 20, 27, 31],
recent studies propose to employ diffusion model for trajectory
generation. DiffTraj [43] integrates a diffusion model into the U-
Net [28] and uses trajectory attributes as extra conditions to achieve
conditional generation. ControlTraj [44] uses Masked Autoencoder
(MAE) to pretrain a road segment information extractor and in-
corporates road segment information into the condition used in
DiffTraj. Diff-RNTraj [37] employs a diffusion model into WaveNet
[18] to simultaneously generate road and GPS trajectories.

Existing trajectory generation methods cannot achieve consis-
tency, regularity, and diversity simultaneously. Recurrent methods
generate trajectories with high consistency and regularity but low
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Figure 1: An overview of Seed, where the numbers indicate the key steps.

diversity, while holistic methods achieve high diversity at the ex-
pense of consistency and regularity. In contrast, our Seed excels
in all three aspects by jointly utilizing the diversification capabil-
ity of diffusion models and the movement modeling capability of
sequence models.

3 PROBLEM DEFINITION
Here, we introduce the trajectory generation problem and relevant
preliminary concepts.
Definition 1: (Road Network). A road network is a directed un-
weighted graph R = (V, E), whereV is the set of |V| = 𝑁 road
segments, and E is the set of |E | = 𝑀 intersections among the road
segments. The spatial connectivity between the road segments can
also be modeled by an adjacency matrix 𝐴, where 𝐴𝑖, 𝑗 = 1 if and
only if road segments 𝑣𝑖 and 𝑣 𝑗 are connected. □

Definition 2: (Road Trajectory). A GPS trajectory T𝑔𝑝𝑠 is a se-
quence of temporally ordered points. A road trajectory T = {𝑣𝑖 |𝑖 =
1, 2, · · · , 𝑛} is a sequence of road segments with length 𝑛, which is
derived from T𝑔𝑝𝑠 using a map matching algorithm [38]. □

Definition 3: (Trajectory Generation). Given a real-world tra-
jectory dataset 𝐷 , trajectory generation aims to learn a generative
model to produce a synthetic road trajectory dataset 𝐷′. □

The main performance metrics for road trajectory generation
are consistency, regularity, and diversity. Consistency measures
the distribution divergence between the synthetic and real trajecto-
ries, regularity measures the percentage of synthetic trajectories
that maintain connectivity, and diversity measures the portion of
unique synthetic trajectories. For consistency, we use five metrics,
i.e., Radius, G-rank, Density, Flow, and Location, following previous
researches [7, 14, 37], with lower values indicating better consis-
tency. Regularity is measured by two connectivity metrics, i.e., full
connectivity (FC) and partial connectivity (PC), where higher val-
ues indicate better regularity. Diversity is quantified by one metric,
i.e., the percentage of unique trajectories (UN), with higher values
indicating greater diversity. More details about the performance
metrics are provided in Appendix D.

4 SEED
In this part, we present our trajectory generation model Seed. As
shown in Figure 1, Seed comprises three main components: i) a road

segment embedding module that provides a high-quality road seg-
ment embedding dictionary to convert the discrete road trajectories
into continuous representations, ii) a Transformer that captures
the transition patterns and provides meaningful guidance, and iii)
a conditional diffusion module that learns the data distribution and
generates road trajectories in an auto-regressive manner.

4.1 Road Segment Embedding

Motivation. To leverage the power of diffusion models, discrete
trajectories must be transformed into continuous representations.
A simple method uses a random road embedding dictionary 𝑬 ∈
R𝑁×𝑑 , where each road segment in a trajectory is retrieved from 𝑬 .
However, this approach overlooks the road network topology and
user travel patterns . To overcome this, we propose a pre-training
strategy to learn a more effective road embedding dictionary.
Pre-training strategy. To capture road network topology, we at-
tempt to employ the Node2vec algorithm [8] on the road network
R to learn the road segment embedding dictionary 𝑬 ∈ R𝑁×𝑑 .
However, R treats each pair of road segments (𝑣𝑖 , 𝑣 𝑗 ) as equally
important (i.e., unweighted graph), ignoring user preferences for
these transitions. To overcome this limitation, we construct a tran-
sition frequency graph G = (V, E𝑡 ), where E𝑡 represents the set of
edges that capture transition frequencies between road segments.
In this way, our learned road segment embeddings based on G not
only preserve the topology of the road network but also capture
the transition regularities between road segments. An alternative
to using the graph G is to employ graph neural networks (GNNs)
[10, 17, 26] to reflect the road network’s topology and refine the
road segment embeddings. However, we find that this approach
incurs significant computational overhead and negatively affects
model performance, prompting us to discard it.

4.2 Conditional Diffusion Structure
In this section, we provide a detailed explanation of how the diffu-
sion model is employed to learn the data distribution and generate
road trajectories in an auto-regressive manner.
Preliminary ondiffusionmodel.Unlike standard diffusionmodel
that operates on entire trajectory representations, we apply it to
individual road segment embedding in an auto-regressive manner,
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enhancing diversity during the generation process. The diffusion
model mainly consists of the forward diffusion process and the re-
verse denoising process. The forward process adds Gaussian noise
N(·) to a road segment embedding 𝒗0 over 𝑇 step: 𝑞(𝒗1:𝑻 |𝒗0) =
𝑇∏
𝑡=1

𝑞(𝒗𝒕 |𝒗𝒕−1); 𝑞(𝒗𝒕 |𝒗𝒕−1) = N(𝒗𝒕 ;
√︁

1 − 𝛽𝑡𝒗𝒕−1, 𝛽𝑡 𝑰 ). Here, {𝛽𝑡 ∈

(0, 1)}𝑇
𝑡=1 (𝛽1 < 𝛽2 < . . . < 𝛽𝑇 ) represents the variance schedule

that controls the level of noise added at each forward step, and 𝑰
denotes the identity matrix. We can simplify the above equations
to derive the distribution of 𝒗𝒕 conditioned on 𝒗0 for each step as:

𝑞(𝒗𝒕 |𝒗𝒕−1) = N(𝒗𝒕 ;
√
𝛼𝑡𝒗0; (1 − 𝛼𝑡 )𝑰 ) . (1)

We adopt a re-parameterization trick to ensure the gradient remains
differentiable [11]. Consequently, 𝒗𝒕 can be expressed as:

𝒗𝒕 =
√
𝛼𝑡𝒗0 +

√
1 − 𝛼𝑡𝝐, (2)

where 𝝐 ∼ N(0, 𝑰 ) and 𝛼𝑡 =
𝑡∏
𝑖=1
(1 − 𝛽𝑖 ). The reverse process aims

to recover the original road segment embedding from the noisy

data 𝒗𝑻 , which is formulated as: 𝑝𝜃 (𝒗0:𝑻 ) = 𝑝 (𝒗𝑻 )
𝑇∏
𝑡=1

𝑝𝜃 (𝒗𝒕−1 |𝒗𝒕 );

𝑝𝜃 (𝒗𝒕−1 |𝒗𝒕 ) = N(𝒗𝒕−1; 𝝁𝜽 (𝒗𝒕 , 𝒕),𝝈𝜽 (𝒗𝒕 , 𝒕)2𝑰 ) . Here, 𝝁𝜽 (𝒗𝒕 , 𝒕) and
𝝈𝜽 (𝒗𝒕 , 𝒕) are the mean and variance predicted by a neural network
with parameters 𝜽 . We re-parameterize 𝝁𝜽 (𝒗𝒕 , 𝒕) as follows:

𝝁𝜽 (𝒗𝒕 , 𝒕) =
1
√
𝛼𝑡
(𝒗𝒕 −

𝛽𝑡√
1 − 𝛼𝑡

𝝐𝜽 (𝒗𝒕 , 𝒕)), (3)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝝐𝜽 (𝒗𝒕 , 𝒕) represents the estimated noise
at the current step 𝑡 based on the noised data 𝒗𝒕 . The predicted
variance is defined as 𝝈𝜽 (𝒗𝒕 , 𝒕) = 1−𝛼𝑡−1

1−𝛼𝑡 𝛽𝑡 .

Guidance condition.We use Transformer as sequence model to
capture transition patterns, guiding the conditional diffusion model
in denoising the corrupted next road segment embedding. Given
a road trajectory T = {𝑣 𝑗 | 𝑗 = 1, 2, · · · , 𝑛} and a road embedding
dictionary 𝑬 , we can obtain the continuous trajectory representa-
tion X ∈ R𝑛×𝑑 . The last element 𝑣𝑛 in T is removed and a start
road segment < 𝐶𝐿𝑆 > is prepended, forming the inputs X̄ to the
Transformer. Formally, each road segment representation 𝒗𝒊 ∈ X̄ is
feed into the attention layer to aggregate influences from relevant
road segments: 𝒛𝒊 =

∑𝑖
𝑗=1 𝛼𝑖 𝑗 (𝒗𝒋𝑾𝑽 + 𝒑𝒋).

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝛽𝑖 𝑗 )∑𝑖
𝑘=1 𝑒𝑥𝑝 (𝛽𝑖𝑘 )

, 𝛽𝑖 𝑗 =
𝒗𝒊𝑾𝑸 (𝒗𝒋𝑾𝑲 + 𝒑𝒋)√

𝑑
, (4)

where𝑾𝑸 ,𝑾𝑲 ,𝑾𝑽 ∈ R𝑑×𝑑 are weight matrices, and 𝒑𝒋 denotes
positional embedding of 𝑗-th position. Here, we use relative po-
sitional encodings [30] because we find that relative positional
encodings outperform absolute and learnable ones in our experi-
ments. Subsequently, we employ feed-forward networks to capture
non-linearity characteristics, which is computed as follows:

𝒛𝒊 = 𝜙 (𝒛𝒊𝑾1 + 𝒃1)𝑾2 + 𝒃2, (5)

where𝑾1,𝑾2 ∈ R𝑑×𝑑 are weight matrices, and 𝜙 is activation func-
tion. The remaining technical details, such as residual connections,
layer normalization, and block stacking, are entirely in line with
the principles of the Transformer. The combination of Transformer
and the one-position offset introduced by the start road segment en-
sures that the road segment generated at the current position only

receives information from preceding road segments. This provides
meaningful guidance for the auto-regressive generation.
Road decoder.As mentioned above, the output 𝒛 of Transformer at
each step is treated as a condition, while the road decoder takes the
corrupted target (next) road segment embedding 𝒗𝒕 , produced by
Equation 2, as input and predicts the clean one. Thus, the decoder
effectively performs a denoising task and can be regarded as a
conditional diffusionmodel. Formally, the reverse denoising process
from the Equation 3 can be reformulated as:

𝝁𝜽 (𝒗𝒕 , 𝒕 |𝒛) =
1
√
𝛼𝑡
(𝒗𝒕 −

𝛽𝑡√
1 − 𝛼𝑡

𝝐𝜽 (𝒗𝒕 , 𝒕 |𝒛)),

𝝈𝜽 (𝒗𝒕 , 𝒕 |𝒛) = 𝝈𝜽 (𝒗𝒕 , 𝒕) .
(6)

Here, we implement 𝝐𝜽 (𝒗𝒕 , 𝒕 |𝒛) using a Multi-Layer Perceptron
(MLP), with the concatenation of 𝒛 and the corrupted target 𝒗𝒕
serving as the input. Since 𝝐𝜽 (·) is responsible for predicting the
added noise, it is necessary to recover the original road segment
embedding to generate the corresponding discrete road segment:

𝒗0 = (𝒗𝒕 −
√

1 − 𝛼𝑡𝝐𝜽 (𝒗𝒕 , 𝒕 |𝒛))/
√
𝛼𝑡 (7)

In order to convert the sampled road segment embedding 𝒗0 into
the discrete road trajectory, we use an MLP to project 𝒗0 into the
road segment space. An alternative is to calculate the similarity
between the road segment dictionary 𝑬 and 𝒗0, and then select the
road segment with the highest similarity. However, this method is
time-consuming and yields worse performance in our experiments,
so we have discarded it. To ensure the regularity in movement
within a generated road trajectory, we refine the output of the
projection MLP by a spatial bias. Formally, for the generation of
𝑖-th road segment, we have

𝑣𝑖 = arg max
v∈V

(
sigmoid(MLP(𝒗0)) +𝐴𝑖−1,:

)
, (8)

where sigmoid(·) ensures that the probability is non-negative, and
𝐴𝑖−1,: reflects the connectivity of the 𝑖−1 road segment between oth-
ers. In this way, we ensure that only the connections between actu-
ally connected roads are considered. Although other auto-regressive
models, such as TrajVAE [3] and MoveSim [7], can also use this
technique, they lead to deterministic outputs when given the same
partial trajectory, thereby generating identical trajectories. Note
that one row and one column, filled with 1 and 0s, are added to the
matrix 𝐴 to accommodate the start road segment < 𝐶𝐿𝑆 >.

4.3 Model Training
In this section, we use the trajectory reconstruction task for training
and employ curriculum learning to accelerate model convergence
and enhance model performance.
Loss functions. During the training phase, we adopt the cross-
entropy function as our loss function for road segment prediction
task, which is computed as follows:

L𝐶𝐸 = −
𝑛∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑣𝑖, 𝑗 log 𝑣𝑖, 𝑗 , (9)

where 𝑣𝑖, 𝑗 equals to 1 if 𝑣 𝑗 is ground-truth road segment at the
𝑖-th time step and 0 otherwise. Additionally, DDPM [11] employs a
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Figure 2: The effect of curriculum learning. Lower is better
for Flow, and higher is better for connectivity.

noise-level loss function to minimize the error between the added
noise 𝝐 and the estimated noise, which is defined as:

L𝑁𝐿 = E𝑡,𝑣0,𝜖 | |𝝐 − 𝝐𝜽 (
√
𝛼𝑡𝒗0 +

√
1 − 𝛼𝑡𝝐, 𝒕 |𝒛) | |2 . (10)

To further incorporate the structure information of samples, we
use a sample-level loss function to minimize the error between the
original and the recovered sample representations:

L𝑆𝐿 = | |𝒗0 − 𝒗0 | |2 . (11)

Combined with the noise-level loss and sample-level loss, our multi-
task learning objective is defined as follows:

L = L𝐶𝐸 + L𝑁𝐿 + 𝜆L𝑆𝐿, (12)

where 𝜆 = 1 × 10−3 is used to balance the magnitudes of the three
losses, due to the large scale ofL𝑆𝐿 . The detailed training algorithm
is outlined in Algorithm 1 of Appendix.
Curriculum learning. As mentioned previously, given a road
trajectory T and a road embedding dictionary 𝑬 , the forward dif-
fusion process randomly selects a noise level 𝑡 ∈ [0,𝑇 ] for each
road segment embedding 𝒗, producing noisy data 𝒗𝒕 according
to Equation 2. However, when the noise level 𝑡 is large, the data
𝒗𝒕 becomes excessively noisy, obscuring useful information and
making model training more difficult, slowing convergence, and
negatively impacting model performance. To address this issue,
we adopt a curriculum learning paradigm [1], which suggests that
in the early stages of training, models are more sensitive to noise
and difficult samples, and thus can benefit from a staged training
approach. Specifically, in the first epoch, we set the noise level 𝑡 to
1, and then for the subsequent 𝐾 − 1 epochs, we gradually increase
the noise level each epoch according to:

𝑡 = min(𝑘 ∗ 𝑐,𝑇 ),
where 𝑘 = 1, 2, · · · , 𝐾 − 1 and 𝑐 is an adjustable parameter that
controls the rate of difficulty increase. This approach accelerates
model convergence by allowing the model to first learn the basic
sequential patterns with lower noise. More importantly, it enhances
model performance by providing a strong foundation during the
early stages of training. To provide an intuitive illustration, we
demonstrate the effectiveness and efficiency of curriculum learning
on the Porto and Shenzhen datasets in Figure 2. As we can see,
the dotted lines, representing the model with curriculum learning,
achieve full connectivity of the generated road trajectories more
quickly than the solid lines, which represent the model without cur-
riculum learning. Additionally, the model with curriculum learning

exhibits better accuracy in consistency with the original dataset
under the flow metric.

4.4 Model Inference

Sampling. The generation process can be summarized as follows:
begin by initializing a partially generated trajectory with < 𝐶𝐿𝑆 >.
Then, sample the noisy data 𝒗𝑻 ∼ N(𝒗𝑻 ; 0, 𝑰 ) and iteratively sample
based on 𝒗𝒕−1 ∼ 𝑝𝜃 (𝒗𝒕−1 |𝒗𝒕 , 𝒛) to obtain the next road segment 𝑣 ,
which is appended to the partial trajectory. This process continues
in an auto-regressive manner until the final trajectory is generated.
The algorithm is outlined in Algorithm 2 of Appendix.
Sampling speed up. Although our denoising network 𝝐 (·) is more
efficient than methods using more complex architectures, , such
as DiffTraj [43] with UNet [28], Diff-RNTraj [37] with WaveNet
[18], the auto-regressive generation process requires O(𝑛𝑇 ) denois-
ing steps to obtain the discrete road trajectories, which remains
time-consuming. To address this issue, we adopt a non-Markov
diffusion process following [31, 43], enabling more efficient reverse
computations. Specifically, we sample every 𝑆 steps (e.g., 𝑆 = 5)
using the skip-step method from [24], which significantly reduces
the number of sampling steps from 𝑇 to ⌈𝑇 /𝑆⌉ during road trajec-
tory generation. Compared to standard diffusion models [11], this
approach can generate samples with fewer steps.

5 EXPERIMENTAL EVALUATION
In this section, we present our experimental results on three real-
world datasets that demonstrate the effectiveness of our approach.
We experiment to answer the following research questions:
• RQ1: How do the trajectory generation quality of Seed compare

with those of state-of-the-art algorithms?
• RQ2: How do Seed’s key components contribute to its performance?
• RQ3: How do the hyperparameters affect the performance of Seed?
• RQ4: How efficient are the training and inference processes of Seed?
• RQ5: How do the performances of Seed on downstream tasks com-

pare with those of state-of-the-art algorithms?

5.1 Experiment Settings

Datasets.We evaluate our Seed on three widely used real-world
datasets: Porto1, Shenzhen2, and Chengdu3. We download the road
networks from OpenStreetMap [5] and then apply the map match-
ing algorithm [38] to convert GPS trajectories into road trajectories.
For each dataset, we randomly select 80% of the trajectories for
training and the remaining 20% for testing. The data statistics and
more details are provided in Appendix A.
Baselines. We consider the following 8 representative methods as
the baselines, including traditional method (Node2vec) that gener-
ates a random walk from a source road segment according to the
probability, recurrent methods (SeqGAN, SVAE, TrajVAE, MoveSim,
and TS-TrajGen) that adopt classical GAN and VAE frameworks

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
2https://www.cs.rutgers.edu/∼dz220/data.html
3https://js.dclab.run/v2/cmptDetail.html?id=175

2024-10-15 06:56. Page 5 of 1–12.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Performance of Seed and the baselines on the experiment datasets. In each column, the best and second-best methods
are marked with boldface and underline, respectively. We use ↓ to indicate lower is better and ↑ to indicate the opposite.

Datasets Methods Consistency Regularity Diversity

Radius (↓) Location (↓) Density (↓) Flow (↓) G-rank (↓) FC (↑) PC (↑) UN (↑)

Porto

Node2vec 0.0115 0.0840 0.0266 0.1236 0.4731 0.3202 0.8782 0.0559

SeqGAN 0.1045 0.0131 0.0063 0.0273 0.6175 0.2549 0.8759 0.8661
SVAE 0.0115 0.1079 0.1188 0.1235 0.6931 1.0000 1.0000 0.0001

TrajVAE 0.0024 0.0136 0.0070 0.0571 0.4590 0.9994 1.0000 0.2469
MoveSim 0.0062 0.0299 0.0194 0.0725 0.6620 0.9916 0.9996 0.1528
TS-TrajGen 0.1011 0.0011 0.0026 0.0248 0.0796 0.6012 0.8890 0.8697

DiffTraj 0.6885 0.0183 0.0128 0.0125 0.2204 0.0000 0.0020 1.0000
Diff-RNTraj 0.6868 0.1215 0.0420 0.0878 0.6931 0.0000 0.0003 1.0000

Seed (Ours) 0.0002 0.0010 0.0018 0.0020 0.0293 1.0000 1.0000 0.9929
Improvement (%) 91.67 9.09 30.77 84.00 63.19 -

Shenzhen

Node2vec 0.0332 0.0592 0.0222 0.0811 0.6329 0.4316 0.9150 0.0408

SeqGAN 0.1858 0.0053 0.0004 0.0091 0.4568 0.2497 0.8732 0.9499
SVAE 0.0341 0.0619 0.0239 0.0834 0.6931 1.0000 1.0000 0.0001

TrajVAE 0.0017 0.0118 0.0012 0.0432 0.6774 0.9998 1.0000 0.5542
MoveSim 0.0084 0.0085 0.0006 0.0665 0.6755 0.9938 0.9997 0.5527
TS-TrajGen 0.0620 0.0006 0.0003 0.0018 0.0077 0.7516 0.9427 0.8679

DiffTraj 0.6919 0.0007 0.0018 0.0019 0.0391 0.0000 0.0002 1.0000
Diff-RNTraj 0.6902 0.0146 0.0035 0.0032 0.5789 0.0000 0.0002 1.0000

Seed (Ours) 0.0004 0.0005 0.0002 0.0004 0.0030 1.0000 1.0000 0.9826
Improvement (%) 76.47 16.67 33.33 77.78 61.04 -

Chengdu

Node2vec 0.0327 0.0444 0.0146 0.0525 0.3765 0.3541 0.7915 0.1400

SeqGAN 0.0121 0.0028 0.0006 0.0035 0.5126 0.9139 0.9930 0.8958
SVAE 0.0059 0.0522 0.0199 0.0558 0.6931 1.0000 1.0000 0.0000

TrajVAE 0.0011 0.0159 0.0021 0.0324 0.6931 0.9992 1.0000 0.1971
MoveSim 0.0046 0.0092 0.0009 0.0241 0.6931 0.9921 0.9996 0.1787
TS-TrajGen 0.2495 0.0009 0.0003 0.0065 0.0303 0.4103 0.8118 0.8814

DiffTraj 0.6767 0.0132 0.0020 0.0133 0.6931 0.0000 0.0070 1.0000
Diff-RNTraj 0.6931 0.0111 0.0036 0.0069 0.5616 0.0000 0.0002 1.0000

Seed (Ours) 0.0008 0.0005 0.0002 0.0003 0.0261 1.0000 1.0000 0.9977
Improvement (%) 27.27 44.44 33.33 95.38 13.86 -

to train sequence models, and holistic methods (DiffTraj and Diff-
RNTraj) that harness the powerful capabilities of diffusion models.
The details of baselines are introduced in Appendix B.

5.2 Main Results (RQ1)

Effectiveness study. Table 2 shows the experiment results on
Porto, Shenzhen, and Chengdu datasets. Based on these results, we
have the following observations and corresponding analyses:

• The results from Porto, Shenzhen, and Chengdu datasets demon-
strate that our proposed Seed significantly outperforms all other
state-of-the-art baselines across all consistency evaluation met-
rics. Specifically, on the Porto dataset, Seed outperforms the
second-best method with improvements of 91.76%, 9.09%, 30.77%,
84.00%, and 63.19% in Radius, Location, Density, Flow, and G-rank,

respectively. Additionally, Seed achieves average improvements
of 53.06% and 42.86% compared to the second-best method on
the Shenzhen and Chengdu datasets, respectively.
• Our Seed also achieves an excellent trade-off between regularity
and diversity compared to other methods4. This can be attributed
to several key factors: 1) By explicitly considering road connec-
tivity and utilizing the Transformer’s output as a condition for
the diffusion model, Seed effectively captures important mobility
patterns while ensuring diversity in the generated trajectories.
2) Both the pretrained road segment dictionary and the curricu-
lum learning paradigm help mitigate training difficulties, thereby

4Since regularity and diversity should be considered together, it is unreasonable to
calculate improvements for each metric separately; thus, we do not report individual
metric improvements in Table 2.
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Figure 3: The trajectories generated by representative methods for the Porto dataset. Disconnected trajectories are plotted
using more transparent lines, while connected trajectories are matched with the road network and plotted with opaque lines.

enhancing model performance. Overall, these findings clearly
demonstrate the superiority of our proposed Seed.
• Traditional method Node2vec maintains movement regularity
but fails to capture real travel patterns, resulting in significant de-
viations from the original trajectories. This shows the challenge
of representing complex human mobility with simple rules. Re-
current methods, such as SeqGAN and TS-TrajGen, demonstrate
better regularity than holistic methods and outperform them
across most consistency evaluation metrics. These advantages
can be attributed to their ability to capture important mobility
patterns between road segments in an auto-regressive manner.
However, they exhibit lower diversity compared to holistic meth-
ods, as this generation manner may lead to deterministic outputs
when given the same partial trajectory, resulting in the genera-
tion of identical trajectories.

Geographic visualization. To intuitively illustrate how our Seed
outperforms the baselines, we depict the trajectory distributions
generated by Seed and four representative baselines—SeqGAN, Tra-
jVAE, MoveSim, and TS-TrajGen—on the Porto dataset. These base-
lines are selected for their ability to effectively capture regularity.
Results from the holistic methods DiffTraj and Diff-RNTraj are
omitted due to their poor regularity. All methods, including Seed,
generate an equal number of road trajectories as the real test dataset.
As shown in Figure 3, the visualizations indicate that all the gener-
ated trajectories accurately reflect the topology of the road network.
Specifically, MoveSim and TrajVAE generate trajectories aligned
with the road network, capturing regularity but lacking diversity,
which limits their ability to fully reflect the original dataset. In con-
trast, SeqGAN and TS-TrajGen offer better diversity, capturingmore
dataset characteristics but suffer from lower regularity, leading to
disconnected trajectories. Notably, Seed exhibits a clear representa-
tion of geographic density in the generated trajectories compared
to the real test trajectories. Visualizations for the Shenzhen and
Chengdu datasets are presented in Figure 7 and Figure 8.

5.3 Micro Results and Analysis

Ablation study (RQ2). There are three main components in our
framework: (i) road embedding module, (ii) conditional diffusion
model, and (iii) curriculum learning paradigm. To show the effects
of these components, we conduct an ablation experiment on the
Porto and Shenzhen datasets. To evaluate consistency, regularity,

Table 3: Ablation study on Porto and Shenzhen. In each col-
umn, the best and second-best variants aremarked with bold-
face and underline, respectively. We report only one metric
for each aspect due to the space limit.

Variants Porto Shenzhen
Location (↓) FC (↑) UN (↑) Location (↓) FC (↑) UN (↑)

Seed 0.0010 1.0000 0.9929 0.0004 1.0000 0.9826
w/o Diffusion 0.1079 1.0000 0.0001 0.0834 1.0000 0.0001

w/o Transformer 0.0183 0.00001.0000 0.0007 0.00001.0000
w/o Pretrain 0.0184 1.0000 0.8244 0.0083 1.0000 0.8179
w/o TGraph 0.0018 1.0000 0.9893 0.0014 1.0000 0.9702

w/o Curriculum 0.0038 1.0000 0.9848 0.0029 1.0000 0.9549
w/o SL 0.0265 1.0000 0.4521 0.0082 1.0000 0.7932

and diversity, we select one metric for each, with the results shown
in Table 3 (full results are provided in Appendix E). The base model
is Seed and we form the different variants as follows:

• 𝑤/𝑜 Diffusion: This variant removes the diffusion model and uses
the output of Transformer to predict next road segment.
• 𝑤/𝑜 Transformer : This variant removes the Transformer and uses
diffusion model to predict overall trajectory in a single step.
• 𝑤/𝑜 Pretrain: This variant uses an initially randomized road em-
bedding that fails to capture the road network’s topology.
• 𝑤/𝑜 TGraph: This variant replaces the transition graph with the
road network to learn the road embedding dictionary.
• 𝑤/𝑜 Curriculum: This variant removes the curriculum learning.
• 𝑤/𝑜 SL: This variant removes the loss L𝑆𝐿 , i.e., 𝜆 = 0.

Based on the statistics from Table 3, we have the following findings:

• We observe that the diffusion model and Transformer are the
most critical components. Without Diffusion, the method de-
grades to vanilla autoregressive approaches like SVE, producing
many identical trajectories and missing crucial mobility patterns.
Without Transformer, it reverts to standard diffusion models like
DiffTraj, failing to capture the regularity.
• We notice that both𝑤/𝑜 Pretrain and𝑤/𝑜 TGraph exhibit a sig-
nificant performance drop compared to Seed, with the former
performing worse than the latter. This indicates that utilizing the
transition graph is beneficial for simultaneously capturing the
topology structure and user travel patterns.
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Figure 4: Impact of Seed’s hyper-parameters on consistency.

• We find that the curriculum learning plays a crucial role in guid-
ing the training of our Seed from easier to more challenging tasks,
significantly accelerating model convergence speed and enhanc-
ing the overall model performance. Additionally, the sample-level
loss L𝑆𝐿 helps to capture the structure information of samples,
providing more supervision signals for effective training.

Hyper-parameters (RQ3). We conduct experiments to analyze
the impacts of two critical hyper-parameters on the Porto and Shen-
zhen datasets: embedding dimension 𝑑 , and diffusion steps 𝑇 . The
results are presented in Figure 4. Specifically, Figure 4a demon-
strates that consistency improves as 𝑑 increases and then stabilizes.
This indicates a large dimension may adequately represent the
topology of the road network. Therefore, we choose 𝑑 = 256 and
𝑑 = 128 for the Porto and Shenzhen datasets. Figure 4b shows that
consistency improves as𝑇 increases; however, further increasing𝑇
can negatively impact the curriculum learning process, leading to
ineffective model training. The impacts of more hyper-parameters
on the Porto and Shenzhen datasets are presented in Appendix F.
Efficiency analysis (RQ4). Table 4 compares the average train-
ing and test time of Seed against five representative methods on
the Porto and Chengdu datasets, including GAN-based methods
(SeqGAN, MoveSim, TS-TrajGen), a VAE-based method (TrajVAE),
and a diffusion model-based method (DiffTraj). During training,
we measure the average time per trajectory by dividing the total
time by the number of trajectories. In the test phase, we compute
the average time for generating a single trajectory. GAN-based
methods require iterative generation of synthetic trajectories to
train a discriminator, leading to higher time consumption com-
pared to VAE-based method TrajVAE. MoveSim and TS-TrajGen
take considerably more time than SeqGAN, as MoveSim employs
GNN-like matrix multiplication operations, and TS-TrajGen uses
the A* algorithm for road segment search. Although DiffTraj gen-
erates trajectories in a single step, its complex model design make
it less efficient than TrajVAE. In contrast, while Seed generates
trajectories step-by-step, its simple MLP-based diffusion model sig-
nificantly reduces the time consumption. In summary, the results
show that the training and test time of Seed is not long and ranks
in the middle among the baselines.
Case study: Next location prediction (RQ5). The next location
prediction task aims to forecast the subsequent location in a mo-
bility trajectory by mining mobility patterns. We can leverage this
task to assess whether real mobility patterns exist in the generated
trajectories. Specifically, we use the gated recurrent unit (GRU) [4]

Table 4: The average training and test time (in ms) of each
trajectory on the Porto and Chengdu datasets.

Methods Porto Chengdu
Train Test Train Test

SeqGAN 11.16 0.023 33.69 0.033
TrajVAE 0.135 0.023 0.313 0.033
MoveSim 38.71 1.031 82.73 3.395
TS-TrajGen 1117 317.7 4398 407.0
DiffTraj 0.223 1.018 0.282 1.013
Seed 0.165 0.739 0.363 1.926

Table 5: Next location prediction accuracy using the synthetic
trajectories produced by different methods. In each column,
we use boldface and underline to indicate the best and second-
best methods, respectively.

Methods Porto Shenzhen
Hit@5 Hit@10 Hit@5 Hit@10

SeqGAN 0.881 0.891 0.859 0.861
TrajVAE 0.008 0.010 0.004 0.008
MoveSim 0.585 0.587 0.605 0.607
TS-TrajGen 0.915 0.922 0.845 0.846
DiffTraj 0.001 0.002 0.000 0.001
Seed 0.926 0.927 0.895 0.895
Real 0.945 0.946 0.944 0.944

as the prediction model and employ Hit Ratio (HR) as the accuracy
metric. We randomly sample an equal number of trajectories from
the training set as those in the test dataset to train the model and
evaluate its accuracy on the test dataset, which can be considered
an upper bound.We then train the model using the generated trajec-
tories from various baselines and evaluate its accuracy on the same
test dataset. As shown in Table 5, the accuracy of our Seed is closer
to that of the real training set, indicating that more mobility pat-
terns are captured in the generated trajectories. Additionally, most
baselines achieve higher accuracy on the Porto dataset compared to
the Shenzhen dataset, due to the greater sparsity of the Shenzhen
dataset. The another case study on trajectory outlier detection can
be found in Appendix G.

6 CONCLUSION
In this paper, we propose a conditional diffusion model framework
(Seed) for road trajectory generation task. We use Transformer
to extract the movement pattern between road segments, which
is regarded as the guidance condition of an MLP-based diffusion
model. To train the two models effectively, we propose a trajectory
reconstruction task and design a curriculum learning paradigm.
Additionally, we propose a pre-training strategy to learn a high-
quality road embedding dictionary. Experimental results on three
real-world datasets show the superiority of our Seed.
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A DATASETS.
Table 6 shows the statistics of the three datasets used in our experi-
ments, detailing the number of trajectories, road segments, and the
average trajectory distance. Each dataset comprises original GPS
trajectories, defined as a sequence of temporally ordered points,
with each point including latitude, longitude, and timestamp, re-
spectively. Specifically, the Porto dataset contains GPS trajectories
of 442 taxis in Porto, Portugal, recorded between January 2013
and June 2014, with points sampled every 15 seconds. The Shen-
zhen dataset includes trajectories from 11,100 taxis in Shenzhen,
China, with an average sampling rate of every 15 seconds. The
Chengdu dataset contains over 1.4 billion trajectory points from
approximately 14,000 taxis in Chengdu, China, collected from Au-
gust 3 to August 30, 2014, with points sampled every 30 seconds
on average. For our experiments, we use a two-day subset of the
Chengdu dataset. Each dataset’s road network is downloaded from
OpenStreetMap [5], and we apply a map matching algorithm [38]
to convert GPS trajectories into road trajectories. We divide each
road trajectory of length𝑚 into multiple sub-trajectories of length
𝑛, provided that𝑚 ≥ 𝑛; otherwise, the trajectory is discarded. Ad-
ditionally, we filter out duplicated trajectories. Finally, for each
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dataset, we randomly select 80% of the trajectories for training and
reserve the remaining 20% for testing.

B BASELINES
We provide the details of baseline methods in our experiments.
• Node2vec [8]: It randomly selects an origin, then performs the
random walk on the road network according to the probability.
• SeqGAN [39]: It is a sequential generative model that trains
trajectories in discrete sequences with policy gradient algorithm.
• SVAE [12] & TrajVAE [3]: They learn the trajectory representa-
tion using LSTM and VAE, and reconstruct the road trajectory
through a LSTM-based decoder.
• MoveSim [7]: It is a state-of-the-art method that incorporates
transition regularities as prior knowledge into the SeqGANmodel.
• TS-TrajGen [14]: It is a state-of-the-art method that designs a
two-stage training procedure and a modified𝐴∗ search algorithm.
• DiffTraj [43]: It is a state-of-the-art method that employs a
diffusion model into U-Net for continuous trajectory generation.
• Diff-RNTraj [37]: It is a state-of-the-art method that employs a
diffusion model into WaveNet for discrete trajectory generation.

C IMPLEMENTATION DETAILS
We use the Adam optimizer with default betas and a learning rate
of 0.0001. The embedding dimension 𝑑 , the number of epochs 𝐾
for curriculum learning, and the difficulty level 𝑐 are set to 256,
50, and 3 for the Porto dataset; 128, 60, and 5 for the Shenzhen
dataset; and 256, 3, and 5 for the Chengdu dataset. Additionally, we
set the number of the diffusion steps T to 500, and adopt a linear
schedule for the variance schedule 𝛽 , with a minimum noise level
of 𝛽1 = 0.0001 and a maximum noise level of 𝛽𝑇 = 0.05. Our code is
available at https://anonymous.4open.science/r/Seed-AD52.

D EVALUATION METRICS
The main performance metrics for road trajectory generation are
consistency, regularity, and diversity. For consistency, we use five
metrics—Radius, G-rank, Density, Flow, and Location—following
previous works [7, 14, 37], employing Jensen-Shannon divergence
(JSD) to evaluate distribution divergence between 𝑝 and 𝑞:

JSD(𝑝, 𝑞) = 1
2
KL(𝑝 | | 𝑝 + 𝑞

2
) + 1

2
KL(𝑞 | | 𝑝 + 𝑞

2
),

where KL(·| |·) denote the Kullback-Leibler (KL) divergence. The
detailed descriptions of five metrics are as follows:
• Radius: The spatial range distribution, which is calculated as the
root mean square distance of all points from the central one.
• Location: The distribution of road segment, which is calculated
as the frequency of each road segment.
• Density: The distribution of grid, which is calculated as the
frequency of each grid mapped by each road segment.
• Flow: The distribution of end road segment, which is calculated
as the frequency of each end road segment.
• G-rank: The number of visits per road segment, which is calcu-
lated as the visiting frequency of top-100 road segments.

For regularity, we use two connectivity metrics to quantify the
percentage of trajectories that maintain regularity in movement:
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Shenzhen Porto Chengdu
Datasets

0.0

0.2

0.4

0.6

PR
-A

U
C

SeqGAN
TrajVAE
MoveSim
TS-TrajGen
Seed (Ours)

Figure 6: Trajectory outlier detection on all three datasets.

• FC: FC quantifies the percentage of the generated trajectories
that are fully connected from origin to destination.
• PC: PC measures the percentage of adjacent road segments
within generated trajectories are reachable in the road network.
For diversity, we use one metric to quantify the percentage of

trajectories that are unique in the generated trajectories T𝑔 :
• UN: UN quantifies the portion of the unique trajectories, which
is calculated as𝑈𝑁 = |Unique(T𝑔) |/|T𝑔 |.

E ABLATION STUDY
We conduct an ablation experiment on the Porto, Shenzhen, and
Chengdu datasets. The results are shown in Table 7.

F PARAMETER STUDY
We conduct experiments to analyze the impacts of another two
critical hyper-parameters on the Porto and Shenzhen datasets: dif-
ficulty level 𝑐 , and number of epochs 𝐾 . As shown in Figure 5, the
consistency first decreases then increases. This behavior arises be-
cause both parameters influence the curriculum learning process.
Too few epochs or a low difficulty level cause the model to pri-
marily encounter easy samples, while too many epochs or a high
difficulty level expose it to many difficult samples, both of which
hinder effective training.

G TRAJECTORY OUTLIER DETECTION.
Trajectory outlier detection is another crucial task in trajectory
mining, aiming to identify trajectories that significantly deviate
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Table 7: Overall ablation study on three experiment datasets.

Datasets Methods Consistency Regularity Diversity

Radius (↓) Location (↓) Density (↓) Flow (↓) G-rank (↓) FC (↑) PC (↑) UN (↑)

Porto

Seed 0.0002 0.0010 0.0018 0.0020 0.0293 1.0000 1.0000 0.9929
w/o Diffusion 0.0115 0.1079 0.1185 0.1235 0.6931 1.0000 1.0000 0.0001

w/o Transformer 0.6885 0.0183 0.0128 0.0125 0.2204 0.0000 0.0020 1.0000
w/o Pretrain 0.0007 0.0184 0.0161 0.0156 0.6013 1.0000 1.0000 0.8087
w/o TGraph 0.0003 0.0018 0.0021 0.0030 0.0446 1.0000 1.0000 0.9893

w/o Curriculum 0.0003 0.0038 0.0048 0.0053 0.2964 1.0000 1.0000 0.9848
w/o SL 0.0028 0.0265 0.0241 0.0277 0.6628 1.0000 1.0000 0.4521

Shenzhen

Seed 0.0004 0.0005 0.0002 0.0004 0.0030 1.0000 1.0000 0.9826
w/o Diffusion 0.0341 0.0619 0.0240 0.0834 0.6931 1.0000 1.0000 0.0001
w/o Trans 0.6919 0.0007 0.0018 0.0019 0.0391 0.0000 0.0002 1.0000
w/o Pretrain 0.0032 0.0110 0.0029 0.0083 0.6931 1.0000 1.0000 0.8179
w/o TGraph 0.0006 0.0013 0.0004 0.0014 0.0610 1.0000 1.0000 0.9702

w/o Curriculum 0.0009 0.0029 0.0005 0.0029 0.2789 1.0000 1.0000 0.9549
w/o SL 0.0013 0.0082 0.0018 0.0044 0.6700 1.0000 1.0000 0.7932

Chengdu

Seed 0.0008 0.0005 0.0002 0.0003 0.0261 1.0000 1.0000 0.9977
w/o Diffusion 0.0059 0.0524 0.0201 0.0558 0.6931 1.0000 1.0000 0.0000

w/o Transformer 0.6767 0.0132 0.0020 0.0133 0.6931 0.0000 0.0070 1.0000
w/o Pretrain 0.0008 0.0069 0.0013 0.0055 0.6691 1.0000 1.0000 0.9869
w/o TGraph 0.0008 0.0007 0.0004 0.0007 0.1266 1.0000 1.0000 0.9967

w/o Curriculum 0.0008 0.0042 0.0009 0.0037 0.4409 1.0000 1.0000 0.9907
w/o SL 0.0010 0.0045 0.0012 0.0028 0.4996 1.0000 1.0000 0.9867

Algorithm 1: The training processes of Seed
Input: Trajectories dataset T𝐷 = {T1, . . . ,T|𝐷 | }; Forward

diffusion step 𝑇 ; Pretrained road segment dictionary
𝑬 ; Variable schedule {𝛽1, . . . , 𝛽𝑇 }.

Output:Model 𝚯.

1 while model not converged do
2 Sample a set of real data samples X from T𝐷 ;
3 Retrieve 𝑬 to obtain the representations X;
4 Sample 𝑡 ∼ [0,𝑇 ], and 𝜖 ∼ N(0, 𝑰 );
5 Obtain noisy data 𝒗𝒕 based on Equation 2;
6 Calculate the condition 𝒛 using Equation 4;
7 Calculate the estimated noise 𝝐𝜽 (𝒗𝒕 , 𝒕 |𝒛);
8 Calculate the recovered representations 𝒗0;
9 Calculate the loss L according to Equation 12;

10 Back-propagate and update parameters;
11 Return Model;

Algorithm 2: The inference processes of Seed
Input: Forward diffusion step 𝑇 ; Pretrained road segment

dictionary 𝑬 ; Trained model 𝚯; the length of
trajectory 𝑛; Variable schedule {𝛽1, . . . , 𝛽𝑇 }.

Output: A generated road trajectory.

1 Initialize road trajectory T ← [< 𝐶𝐿𝑆 >];
2 for 𝑖 ← 1 to 𝑛 do // trajectory length
3 Sample noisy data 𝒗𝑻 ∼ N(𝒗𝑻 ; 0, 𝑰 );
4 Calculate the condition 𝒛 using Equation 4;
5 for 𝑡 = 𝑇,𝑇 − 𝑆, . . . , 1 do // Sampling speed up
6 Calculate the estimated noise 𝝐𝜽 (𝒗𝒕 , 𝒕 |𝒛);
7 Sample data 𝒗𝒕−1 ∼ 𝑝𝜃 (𝒗𝒕−1 |𝒗𝒕 , 𝒛);
8 Calculate the recovered representations 𝒗0;
9 Obtain the road segment 𝑣𝑖 based on Equation 8;

10 Append 𝑣𝑖 into the road trajectory T ;
11 Return the road trajectory T ;

from normal patterns. This task requires high-quality trajectories
to accurately capture the characteristics of normal trajectories and
effectively distinguish anomalous ones. Specifically, we use GM-
VSAE [21] as the detectionmodel, randomly generate 5% anomalous
trajectories, and use the PR-AUC as the evaluation metric. To con-
struct anomalous trajectories, we use a parameter 𝛼 to control the
proportion of road segments that are required to change their order
in the original trajectories. For example, 𝛼 = 0.1 means that 10% of
the road segments in a trajectory will have their order changed. In
our experiments, we set 𝛼 to 0.2 and follow the official implemen-
tation of GM-VSAE [21]. The road segment embedding dimension
is set to 128, while the hidden sizes of the encoder and decoder are
both set to 512. The number of Gaussian components is set to 10. As
shown in Figure 6, the model trained on trajectories generated by
Seed achieves best performance, indicating that the characteristics
of normal trajectories are effectively captured.
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(a) Real Trajectory (b) Seed (c) SeqGAN

(d) TS-TrajGen (e) MoveSim (f) TrajVAE

Figure 7: Visualization of the different methods on Shenzhen dataset. The disconnected trajectories are shown with more
transparent lines, while the connected trajectories are matched with the road network and displayed with opaque lines.

(d) TS-TrajGen

(a) Real Trajectory (b) Seed (c) SeqGAN

(e) MoveSim (f) TrajVAE

Figure 8: Visualization of the different methods on Chengdu dataset. The disconnected trajectories are shown with more
transparent lines, while the connected trajectories are matched with the road network and displayed with opaque lines.
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