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Abstract

Image feature extractors are rendered substantially more useful if different views
of the same 3D location yield similar features while still being distinct from
other locations. A feature extractor that achieves this goal even under significant
viewpoint changes must recognise not just semantic categories in a scene, but also
understand how different objects relate to each other in three dimensions. Existing
work addresses this task by posing it as a patch retrieval problem, training the
extracted features to facilitate retrieval of all image patches that project from the
same 3D location. However, this approach uses a loss formulation that requires
substantial memory and computation resources, limiting its applicability for large-
scale training. We present a method for memory-efficient learning of location-
consistent features that reformulates and approximates the smooth average precision
objective. This novel loss function enables improvements in memory efficiency by
three orders of magnitude, mitigating a key bottleneck of previous methods and
allowing much larger models to be trained with the same computational resources.
We showcase the improved location consistency of our trained feature extractor
directly on a multi-view consistency task, as well as the downstream task of scene-
stable panoptic segmentation, significantly outperforming previous state-of-the-art.

Figure 1: Our approach—LoCo—offers memory-efficient learning of location-consistent (LoCo)
features. That is, features that backproject to nearby 3D locations are encouraged to have similar
image patch features (illustrated here by the pair of blue stacked cubes and the pair of red stacked
cubes), while those that backproject to well-separated points are trained to have more dissimilar
features (here, the blue vs. red cube stacks). This is achieved via a novel ranking loss that reformulates
and corrects the smooth average precision loss proposed in previous work [4, 26]. This facilitates
the derivation of a close approximation to the loss that is significantly more efficient to compute,
allowing the method to scale to much larger models with the same computational resources.
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1 Introduction

Reasoning in 3D is critical for developing a useful visual understanding of an environment. However,
image-centric approaches, including patch feature extractors like DINO [5, 31], are not 3D-consistent,
as a recent paper by El Banani et al. [12] demonstrates. That is, the same 3D location may yield
significantly different features from different viewpoints in space and time, due to occlusions, self-
occlusion, reflections, lighting variations, and motion. When this occurs, it is challenging to maintain
a spatially and temporally consistent model of the world. Thus, it is useful to first convert visual
observations into a form that is stable across different spatio-temporal viewpoints.

Existing approaches [3, 18, 27, 29, 40] aggregate or distil visual features in 3D, ensuring view-
consistency at the cost of requiring a full 3D reconstruction pipeline. In contrast, recent work [26]
explores a more flexible image-centered representation that encourages similarity between image
patch features that backproject to the same region of 3D space, within a spatial tolerance. It employs
a ranking-based loss function, smooth Average Precision (sAP), to encourage all spatially co-located
features to be similar and all non-colocated features to be dissimilar, as illustrated in Fig. 1.

Like this approach, we formulate the learning problem as one of patch retrieval: given one image
patch, retrieve with high precision and recall all patches in other views that project from the same 3D
region. However, the smooth Average Precision (sAP) loss function requires substantial memory and
computation, precluding its deployment in large-scale training. By rewriting the loss function in terms
of pairs of image patches rather than individual patches, we derive a more general form of the sAP
objective that lends itself to approximation. This novel formulation enables improvements in memory
efficiency by three orders of magnitude, mitigating a key bottleneck and allowing larger models to be
trained with the same computational resources. By applying this novel loss function within a new
training strategy, we obtain a method for memory-efficient learning of location-consistent (LoCo)
features that are semantically-meaningful and stable across viewpoints. Our contributions are:

1. A novel reformulation and approximation of the smooth average precision loss function that can
be computed significantly more efficiently than the original;

2. A training strategy for scalable and memory-efficient learning of location-consistent image fea-
tures; and

3. Applications to pixel correspondence estimation and scene-stable panoptic segmentation.

The approach is evaluated on a recently proposed multi-view consistency task [12] and is tested on
two real-world indoor datasets, significantly outperforming state-of-the-art feature extractors.

2 Related Work

The topics of panoptic image segmentation [25], visual place recognition [20, 23], image retrieval
[2, 4, 13, 32], and visual feature learning [5, 16] are well-studied. Here, we focus on the most recent
and related work.

Image segmentation. Visual features from pre-trained models were shown to be very useful for
panoptic (instance and semantic) image segmentation [5, 25, 43]. Interestingly, location-consistent
visual features unlock the possibility of “scene-stable panoptic segmentation”, where instance IDs
are consistent across multiple views of the same scene [26]. This is related to identity-preserving
video segmentation [24], where object identities are tracked, leveraging temporal smoothness.

Image retrieval. Learning representations that facilitate the ranking of images according to their
relevance to a query has been studied extensively [2, 13, 32]. One class of approaches, metric learning,
uses contrastive losses [8, 42] to encourage positive instances to be close and negative instances to
be further apart, while others optimise ranking-based metrics like Average Precision (AP) directly
[4, 34]. For example, Smooth-AP [4] recommends the use of an approximated AP ranking function,
which targets the correct ranking without being concerned with the absolute feature distances. We
pose our location-consistent feature learning problem as a patch retrieval problem, allowing us to
adapt strategies from the image retrieval literature.

Self-supervised visual feature learning. Self-supervision has emerged as a dominant strategy for
training foundation models in computer vision on large-scale image datasets. Notably, DINO [5]
leveraged a knowledge-distillation framework to learn to extract semantically meaningful feature
maps. Building upon DINO’s foundation, DINOv2 [31] refines the training algorithm and scales up
model sizes on larger datasets, resulting in enhanced performance. Another noteworthy approach
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is the Masked Autoencoder (MAE) [17], which employs an autoencoder architecture to reconstruct
masked-out patches, and demonstrated the scalability of autoencoders to large datasets.

In a similar vein, CroCo [43] and its successor, CroCo-v2 [44], also adopt an encoder–decoder
architecture for reconstructing masked-out patches. However, in these works the decoder reconstructs
the patches based on a feature map extracted from a non-masked image of the same scene but
observed from a different viewpoint. While we also use different viewpoints as the source of the
supervision signal like CroCo, the learning process is quite different and makes more explicit use
of geometric constraints in forming positive and negative pairs of patches (cf . Section 3.2). Most
closely related to our work is LoCUS [26], which uses a similar problem set-up and loss function.
Where they approach the task from the perspective of extracting distinctive landmarks (individual
patches or points in the scene), our areas of interest are pairs of patches. Crucially, this allows us to
massively decrease the algorithm’s memory consumption and unlock significant performance gains.
We provide further detail in Section 3.

Other works [27, 29, 40] distil visual features in 3D in order to ensure location-consistency, the
same goal as our approach. For example, N3F [40] distilled DINO image features into a 3D feature
field using the same rendering loss as NeRF [30]. While the resulting features are 3D-consistent by
design, this comes at the cost of requiring a full 3D reconstruction pipeline. In contrast, our approach
is image-centric and lightweight, predicting location-consistent features from one image at a time
without requiring input poses or re-training for new scenes.

3 Efficiently Learning LoCo Image Features

In this section, we outline our method for learning 3D location-consistent (LoCo) image features in a
scalable, memory-efficient way. We first formalise the problem definition and define the positive and
negative sets, then we reformulate the retrieval objective function and show how this facilitates very
significant reductions in the memory requirements. This allows our method to overcome a critical
bottleneck in the learning process for these features, permitting us to scale up the model size. Sec. 4
shows that this has a large impact on performance, justifying the need for the reformulation.

3.1 Problem Definition

Our goal is to extract feature maps so that the extracted features are similar for sets of image patches
that depict the same region in 3D space. Like Kloepfer et al. [26], we make this task tractable by
recognising that feature maps solving this task can also be used for patch retrieval: given an image
patch and associated feature vector, retrieve all patches that project from the same region in 3D space.
This allows us to adapt methods from the extensive literature on image retrieval.

Formally, given a set I of training images Ii ∈ RH×W×3 drawn from an environment e, we aim to
train a feature extractor ϕ : I → Rh×w×d. Here, h ≤ H and w ≤ W are the height and width of the
extracted feature map, and d is the dimension of the extracted feature vectors, so each feature vector
is associated with an image patch xk ⊆ Ii consisting of H

h × W
w pixels.

We denote an image patch as xk, the associated feature vector as θk, a patch pair as cα = (xi, xj),
and the associated cosine similarity score between the feature vectors of a patch pair as sα =
θ⊤i θj/(∥θi∥∥θj∥). We use Greek subscripts to index pairs of patches, rather than individual patches.

Each patch xk ∈ Ii is also associated with a point pk ∈ R3 in the environment, obtained by
backprojecting the centre coordinates of the patch into the environment using estimated or provided
camera intrinsic and extrinsic parameters and depth [15]. This auxiliary information is only required
at training time; at test time the trained feature extractor ϕ only requires a raw RGB image.

3.2 Positive and Negative Sets

As illustrated in Fig. 2a, we define two patches xi and xj , not necessarily from the same image, as a
‘positive’ pair if and only if they are drawn from images in the same environment and the distance
between their associated 3D points pi and pj is below a threshold ρ. Therefore, given the index of the
environment ei associated to each patch xi, the set of all positive pairs is

P = {(xi, xj) : ∥pi − pj∥ ⩽ ρ ∧ ei = ej}. (1)
Pairs of patches that do not observe the same 3D region form a ‘negative’ pair. As a form of hard
negative mining, we restrict our attention to those negative pairs whose patches depict locations
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(b) Memory-efficient strategy for smooth AP.

Figure 2: (a) The distance between 3D points pi associated with patch pairs (xi, xj) in the positive
set is less than ρ, denoted by the green arrows connecting them. The distance between those in the
negative set is in (ρ, κ], denoted by the red arrows connecting them. All unconnected 3D point pairs
are in neither the positive nor negative set, since they are separated by a distance greater than κ.
(b) When the absolute similarity difference |sβ − sα| between image pair α and pair β is large, the
sigmoid in the loss function (blue curve) becomes saturated and does not impact learning. We can
avoid the memory cost of back-propagation in these cases by separating the positive P and negative
N pairs into 3 subsets: saturated below, unsaturated, and saturated above. We choose the saturation
threshold ∆ such that the sigmoid gradient there is 0.2% of its maximum value.

within a distance of κ > ρ of each other, and define the set of negative pairs as N = {(xi, xj) : ρ <
∥pi − pj∥ ⩽ κ ∧ ei = ej}. For convenience we also define the set of all training pairs Ω = P ∪ N.

For a given patch xi, the thresholds ρ and κ define a positive and a negative region around the
associated 3D point pi. All other patches that observe points inside the radius-ρ sphere centred at
pi will form a positive patch pair with xi. Likewise, all other patches that observe points outside
this sphere but inside the radius-κ sphere centred at pi will form a negative patch pair with xi. The
features of the positive pairs are encouraged to be more similar than those of the negative pairs.

It should also be noted that the finite size of these regions means that the training is robust to noise in
the depth maps and camera poses used to compute the patch locations in 3D. Noisy patch locations
effectively only slightly change the size of these regions and so we expect them not to fundamentally
alter the learning algorithm. This could open the door to using less accurate estimates for depth and
camera poses in future, which may be easier to obtain, in particular for large-scale datasets.

3.3 A Ranking Loss Function for Patch Retrieval

The smooth average precision (AP) loss function, originally introduced in Brown et al. [4], was
adapted to the setting of patch retrieval around “tentative 3D landmarks” by Kloepfer et al. [26],
resulting in a vectorised form of the loss function. We streamline this setting by eliminating the need
for these landmarks, and instead focus exclusively on retrieving positive pairs of patches.

The aforementioned vectorised smooth AP loss function can be rewritten in terms of patch pairs as

L(Ω; τ, ρ, κ) = − 1

|P|
∑
cα∈P

1 +
∑

cβ∈P\{cα} στ (sβ − sα)

1 +
∑

cγ∈Ω\{cα} στ (sγ − sα)
(2)

= − 1

|P|
∑
cα∈P

1 +
∑

cβ∈P\{cα} στ (sβ − sα)

1 +
∑

cβ∈P\{cα} στ (sβ − sα) +
∑

cγ∈N στ (sγ − sα)
,

where στ (x) = (1 + exp(−x/τ))−1 is the sigmoid function with temperature τ .

This loss function computes a differentiable approximation to the average precision of a binary
classifier that classifies pairs of patches as positive or negative based on the similarity of each pair.
This approximation becomes exact as τ → 0 and the sigmoid approaches the indicator function. For
each positive pair cα, Eq. (2) calculates the ratio of the rank of cα among all positive pairs and its
rank among all pairs (positive and negative) when ranking the pairs by decreasing similarity. More
details can be found in Brown et al. [4].

Compared with standard contrastive losses, like a triplet loss [19] or SimCLR [7], the gradient
∂L/∂sα of this ranking loss with respect to the similarity of a positive pair cα will disappear as
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soon as sα is higher than the similarities of all negative pairs. That is, it does not force sα → +1
for positive pairs and sα → −1 for negative pairs, it merely encourages some boundary to exist
somewhere between positive and negative pair similarities. This “gentler” contrastive characteristic
greatly aids training convergence [26].

3.4 Correction Terms for the Batched Loss Function

The sums in Eq. (2) run over all pairs of (positive) patches in the training set. Clearly, computing the
exact loss function is completely infeasible for large datasets. However, when sampling batches of
positive and negative pairs, correction terms are needed to make the expectation value of the batched
loss equal to the exact (unbatched) loss. In particular, some care needs to be taken since each term
in the loss function depends on multiple different samples within the batch. Using the subscript B
to refer to the batched versions of the sets PB ⊂ P and NB ⊂ N of positive and negative pairs, the
batched version of our loss function becomes

LB = − 1

|PB |
∑

cα∈PB

1+ |P|
|PB |

∑
cβ∈PB\{cα} στ (sβ − sα)

1+ |P|
|PB |

∑
cβ∈PB\{cα} στ (sβ−sα)+

|N|
|NB |

∑
cγ∈NB

στ (sγ−sα)
. (3)

The correction factors |P|
|PB | and |N|

|NB | are necessary to ensure that the expectation value of the batched
loss is as close as possible to the loss computed across the entire dataset. This is automatically
the case for standard loss functions that average over a per-sample loss, due to the linearity of the
expected value. However, since the ranking loss computes the (non-linear) ratio of expectations
over samples, this linearity is lost. Each loss term depends on multiple pairs, and the +1 terms in
numerator and denominator introduce additional complications for finding an unbiased estimator. For
a detailed derivation of Eq. (3) we refer the reader to Appendix B, where we show that it is a ratio
estimator [37] that is simple to calculate and consistent, but has a bias of order O(1/|ΩB |).
We note here that neither Brown et al. [4] nor Kloepfer et al. [26] include these correction factors,
which cause the losses in those works to deviate even further from the desired average precision
approximation. We quantify this deviation in the appendix.

3.5 Improving the Memory Efficiency

A key bottleneck of the loss in Eq. (3) is the memory consumption of the |PB |× (|PB |+ |NB |) matrix
containing all the values of sβ − sα and sγ − sα, and the associated computation graph. Since each
occurrence of the similarity of a particular patch pair in the loss function only provides a supervision
signal for the feature vectors of two individual patches, the batches of positive and negative patch
pairs need to be quite large (Kloepfer et al. [26] use |PB | ≈ 13, 000 and |NB | ≈ 100, 000).

To alleviate this problem, we design two ways to significantly reduce the memory consumption of
this matrix. First, we observe that the positive pairs cα in Eq. (3) do not need to be drawn from the
same subset of all positive pairs as the ones in cβ . As long as both are sampled uniformly from the
set of all positive pairs, the expected value of the batched loss continues to equal the non-batched loss
of Eq. (2). Sampling cα from a small set of positive pairs P′

B ⊂ P and cβ from a large set PB ⊂ P,
with |P′

B | ≪ |PB |, reduces the size of the matrix of similarity differences to |P′
B | × (|PB |+ |NB |):

only the second dimension is large, while previously both dimensions were large and of comparable
size. At the same time, this still retains a supervision signal for a large number of feature vectors,
namely those used to construct the larger sets PB and NB .

Second, we observe that, in practice, a large number of the computed similarity differences saturate
the sigmoid function. That is, when |sβ − sα| ≫ 0, the gradient of the sigmoid ∇στ (sβ − sα)
vanishes: these terms make no material difference to the loss gradient. We can use this fact to
significantly reduce the number of similarity differences in the computation graph. To do so, we set a
threshold ∆ > 0 and use the approximation, visualised in Fig. 2b,

στ (sµ − sν) ≈


1 if sµ − sν > ∆

στ (sµ − sν) if |sµ − sν | ≤ ∆

0 if sµ − sν < −∆

(4)
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to divide the uniformly sampled sets of patch pairs PB and NB into three subsets for each cα ∈ P′
B ,

NB = Nα
B ∪ Nα

B ∪ Nα

B (5)

Nα

B = {cβ ∈ NB : sβ − sα > ∆}, (6)
Nα

B = {cβ ∈ NB : |sβ − sα| ≤ ∆}, (7)
Nα

B = {cβ ∈ NB : sβ − sα < −∆}, (8)

and similarly for PB . We can now significantly reduce the number of similarity differences in
the computation graph by only including patch pairs from Nα

B and Pα
B in the loss computation, to∑

cα∈|P′
B |(|Pα

B |+ |Nα
B |) in total. Computing these subsets for each cα still requires us to calculate

all |P′
B | × (|PB |+ |NB |) similarity differences, but because most pairs’ gradients are close to 0 they

are not used to compute the loss or any gradients, so these parts of the computational graph can be
deleted, leading to substantial memory savings.

To compensate for the non-uniform sampling of Pα
B and Nα

B , we also need to add additional correction
terms to our loss function. Our final memory-efficient, batched loss function is given by

LB = − 1

|P′
B |

∑
cα∈P′

B

1 + |P|
|PB |

∑
cβ∈Pα

B
στ (sβ − sα) + δ+α

1 + |P|
|PB |

∑
cβ∈Pα

B

στ (sβ−sα) +
|N|
|NB |

∑
cγ∈Nα

B

στ (sγ−sα) + δ+α+ δ−α
(9)

with the correction terms given by

δ+α = |Pα

B |
|P|
|PB |

, and δ−α = |Nα

B |
|N|
|NB |

. (10)

For a detailed derivation of these correction terms, as well as a derivation of an upper bound on the
error due to the approximation in Eq. (4), we refer the reader to Appendix C.

Restricting our sampling of patch pairs to those whose similarities fall within a certain range is
reminiscent of hard negative mining, as previously employed in the context of contrastive learning by,
e.g., Robinson et al. [33]. However, standard approaches are not easily applicable to our loss function
since it operates on pairs rather than individual samples. Furthermore, both motivation and effect
of our approach differs from hard negative mining methods. We discuss this further in Appendix E,
where we also compare empirically with standard contrastive learning and hard negative mining.

4 Experiments

In this section, we present our experiments, where we evaluate the performance of LoCo features at a
multi-view consistency task and at scene-stable panoptic segmentation.

4.1 Experimental Setup

The training dataset we use comprises 59 environments of the Matterport3D dataset, resizing the
images to 256×320 pixels. The Matterport3D dataset is particularly suitable for our task of enforcing
multi-view consistency due to its diversity and the way it captures varied viewpoints of the same
scene through panorama cropping. Datasets such as ScanNet [10] provide less viewpoint variation
per scene due to their trajectory-based data collection. Contrary to Kloepfer et al. [26], we use all
available images in the Matterport3D training scenes instead of restricting to images taken in the
horizontal plane.

Due to limited computational resources, we were unable to use our loss function to train a full
foundation model from scratch. Instead, we adapt the architecture used by DINO-Tracker [41],
keeping pre-trained DINO [5] features frozen and training a convolutional neural network to learn
additive residuals to those features. We use values of ρ = 0.5m for the positive radius, κ = 5.0m
for the negative radius, τ = 0.01 for the sigmoid temperature, and ∆ = 0.076 for the saturation
threshold. With these values, στ (∆) = 0.9995 and the gradient is 0.2% of the maximum gradient of
the sigmoid function, making this a conservative choice with little impact on the training dynamics.
The threshold ∆ is a hyperparameter that can be decreased to obtain further memory savings, at the
expense of some performance decrease. We provide further implementation details regarding the
efficient sampling of patch pairs in Appendix D, and will publicly release our training code.
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Table 1: Results on the pixel correspondence task on the Paired split [36] of ScanNet [10], as
introduced by El Banani et al. [12]. We report the recall of accurate pixel correspondences at a
reprojection error threshold of 10 pixels, for image pairs with the respective viewpoint changes. We
also report the GPU Memory required for training LoCUS-based and LoCo models (for LoCUS we
use the authors’ values). † uses 64-dimensional feature vectors.

Model GPU
Memory

0◦–15◦ 15◦–30◦ 30◦–60◦ 60◦–180◦

LoCUS† [26] 11GB 23.5 18.8 13.5 7.5
DINO [5] 45.0 34.3 22.6 10.7
DINOv2 [31] 37.0 27.5 19.7 11.2
DINOv2 [31], Blocks 1–6 47.1 36.4 22.4 8.4
CroCo-v2 [44] 16.8 12.4 7.4 3.7

LoCo (∆ = 0.076) (Ours) 48GB 61.8 52.7 31.8 10.3
LoCo (∆ = 0.053) 42GB 59.9 49.8 29.1 9.5
LoCo (∆ = 0.029) 40GB 57.9 47.5 28.1 9.6
LoCo (w/ DINOv2 backbone) 38GB 58.2 49.2 30.0 10.5
LoCo (w/ LoCUS architecture)† 6GB 27.8 18.0 12.1 6.9

4.2 Baselines

We compare our LoCo features to those from several state-of-the-art feature extractors, as well as
models specialised to the downstream segmentation task.

DINO [5]. We use the pre-trained ViT-base model and extract 768-dimensional features for each
patch of 8× 8 pixels by discarding the class token and reshaping the output of the final Transformer-
Block into a feature map.

DINOv2 [31]. We use the pre-trained ViT-base model and extract 768-dimensional features for each
patch of 14 × 14 pixels by again discarding the class token and reshaping the output of the final
Transformer-Block. We generally use higher-resolution images as inputs for this model to extract
feature maps of the same shape as for LoCo and DINO features.

CroCo-v2 [44]. We use the ViT-base encoder that was pre-trained with the Base-Decoder and extract
768-dimensional features for each patch of 16× 16 pixels, again using higher-resolution as inputs.

LoCUS [26]. We use the pre-trained LoCUS weights that are publicly available for a landmark-radius
of 0.2m. We use it to extract 64-dimensional feature vectors for each patch of 8× 8 pixels.

MaskDINO [28]. For the scene-stable object segmentation task (cf . Section 4.4) we also compare
with MaskDINO, a state-of-the-art specialised panoptic segmentation algorithm. It however is not
designed to recognise the same object in different images. We therefore match the per-image object
indices produced by the algorithm to the ground-truth per-scene object index whose mask has the
highest IoU with the object mask in question.

4.3 Multi-View Consistency

We first directly evaluate the location consistency of the features extracted by different models across
different views. To do so, we follow the protocol introduced by El Banani et al. [12] to test the
multi-view consistency of feature extractors on a pixel correspondence estimation task. Briefly,
given a pair of images, we extract a fixed number of pixel matches by filtering the nearest neighbour
matches using a ratio test. For more details, the reader is referred to the original paper [12].

Like El Banani et al., we evaluate on the Paired ScanNet [10] split proposed by Sarlin et al. [36],
reporting the recall at a reprojection error threshold of 10 pixels for different viewpoint changes in
Table 1. As we can see, our model outperforms the baselines by a significant margin. We also see
that DINOv2 [31] performs worse than the original DINO [5]. This situation is somewhat reversed
when sourcing the features from the first six Transformer blocks (instead of the final feature map).
This suggests that while earlier layers of DINOv2 are still reasonably location-consistent, later layers
create more semantically meaningful features that accordingly do not vary much by the patches’
location in 3D space, explaining why they perform worse in this setting. CroCo-v2 [44] performs
relatively poorly on this task, despite its training objective being explicitly designed for multi-view
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Table 2: Scene-stable panoptic segmentation results on unseen Matterport3D [6] and ScanNet [10]
environments. Except for MaskDINO, each method extracts d-dimensional feature vectors for 30×40
patches that are then classified into a scene-wide object index using a linear probe. The feature
dimension is d = 768, except for LoCUS (d = 64) due to its high memory consumption. ⋆Per-image
instance indices are matched to the ground-truth per-scene indices based on mask IoU.

Matterport3D ScanNet
Model d Jac IoU AP Jac IoU AP

LoCUS [26] 64 28.6 29.6 40.5 68.9 59.2 68.7
DINO [5] 768 65.2 65.5 81.6 81.8 73.7 84.9
DINOv2 [31] 768 65.9 60.0 80.5 79.7 71.1 82.1
CroCo-v2 [44] 768 65.5 67.0 87.0 81.5 73.8 89.4
MaskDINO⋆ [28] 768 54.8 38.3 35.0 58.7 39.7 36.5

LoCo (Ours) 768 66.5 67.5 84.5 83.5 76.3 88.8
LoCo (w/ DINOv2 backbone) 768 61.1 58.5 80.4 80.4 71.0 83.8
LoCo (w/ LoCUS architecture) 64 10.5 7.3 11.2 58.9 47.3 58.1

tasks. However, when training CroCo, the encoder features are first used by a transformer-based
decoder module before a loss function is applied. This means that there is no incentive for CroCo
features to be location-consistent under a simple and interpretable cosine-similarity operation, and
would require a more complex adapter to support similarity-based operations.

4.4 Scene-Stable Panoptic Segmentation

The task of scene-stable panoptic segmentation was originally introduced by Kloepfer et al. [26].
Given a set of images of a single scene, the goal is to create a segmentation mask for the objects
in each of these images, where, crucially, different views of the same individual object are labelled
consistently with the same identity.

Formally, for a set I = {Ii} of images of the same scene, a set C = {0, . . . , L− 1} = Cst ∪ Cth of
semantic classes that is split into ‘stuff’ (amorphous classes such as floor, walls, etc) and ‘things’
(clearly distinct objects) subsets Cst and C th respectively. The latter are also split into a set O =
{0, . . . , N − 1} of object instance IDs within the scene. The goal is to map each pixel pj to its
semantic class cj if cj ∈ Cst, and to its scene-wide object instance oj if cj ∈ Cth. This is similar to the
standard panoptic segmentation task [25] with the crucial difference that the object instance indices
are consistent across different images of the same scene.

This task requires the algorithm to not just differentiate between multiple object instances of the same
object class as in the conventional instance segmentation task, but also to recognise when different
images show the same object, which requires a broader understanding of the scene geometry. The
need to retain consistent object identities across different images is reminiscent of panoptic video
segmentation [24]. However, in our task the images are unordered and have much larger viewpoint
changes, so methods cannot rely on pixel tracking or optical flow to keep object identities consistent.

As is standard in self-supervised learning [5, 16, 26, 31], we train a linear probe to predict class labels
from the feature vectors for every image patch.

4.4.1 Datasets.

Both the Matterport3D [6] and ScanNet [10] datasets provide 3D-mesh reconstructions of their
constituent environments, segmented into individual objects. This allows us to generate ground-truth
segmentation masks for scene-consistent object segmentation by finding the individual objects in
each scene that a ray through a given pixel intersects. Scripts to generate this data will be included in
our code release. For the Matterport3D dataset, we evaluate on 18 unseen scenes, and for ScanNet
we evaluate on 21 unseen scenes selected to show a range of different types of environments.

4.4.2 Results.

We report our results on the Matterport3D dataset and on the ScanNet dataset in Section 4.4.1. We
measure the scene-stable panoptic segmentation performance using three metrics, which we calculate
for each object instance individually (for each object instance treating the segmentation masks as
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Figure 3: Scene-stable object segmentations for three images drawn from the Matterport3D [6]
dataset. Ground-truth segmentations in the top row, predicted segmentations in the bottom row. The
object identities and segmentation masks remain stable across significant viewpoint changes.

binary) and then average first across object instances in each scene and then across scenes. The
Jaccard index (Jac) for each object instance is calculated by TP/(FP+ FN), given the counts for True
Positive (TP), False Positive (FP), and False Negative (FN) predictions. The Intersection-over-Union
(IoU) is the intersection-over-union with the ground-truth masks. The Average Precision (AP) is that
of the linear classifier in a one-vs-all mode, taking all other pixels as negative labels.

Our LoCo-trained features perform better than all baselines, and have comparable performance
to CroCo-v2 [44], which also makes use of multi-view supervision. However, ours has far fewer
trainable parameters (only 28.9 million), since we only train a comparatively small CNN. In contrast,
CroCo trains the entire network (85 million parameters) with a multi-view loss and on significantly
larger datasets with greater computational resources (8 A100 GPUs vs. 1 RTX8000 GPU). We note
also the strong performance of the original DINO compared to the newer DINOv2 method. As in
the pixel correspondence task, this might be due to the final DINOv2 features focusing on semantic
meaning, and so struggling to differentiate between, e.g., different chairs.

4.5 Ablations

DINOv2 Backbone. We also train our method using a frozen DINOv2 [31] backbone, again training
a convolutional neural network to learn additive residuals and keeping other hyperparameters the
same.

The resulting features significantly outperform the original pre-trained DINOv2 features for finding
accurate pixel correspondences (Table 1), showing the advantage of LoCo-training in tasks that
require location-consistent features. However, it slightly underperforms the LoCo model trained with
the DINO-ViT-Base8 backbone. We hypothesize that this arises from the coarser feature map of the
DINOv2-ViT-Base14 backbone (with a patch size of 14 instead of 8).

On the panoptic scene-stable segmentation task (Section 4.4.1), the LoCo model trained with the
DINOv2 backbone only outperforms the original DINOv2 feature extractor on some of the metrics.
This is likely attributable to the coarser feature map of this backbone, which leads to less fine-grained
patch-level supervision during training.
LoCUS Architecture. To further investigate the impact of our alterations to the loss function and
training algorithm compared to Kloepfer et al. [26], we train the original LoCUS architecture with
the LoCo loss function and algorithm.

On the multi-view consistency task (Table 1), this model outperforms the original LoCUS model for
small viewpoint changes, but underperforms for image pairs with larger viewpoint changes.

In fact, the LoCUS architecture trained with the LoCo-algorithm performs worse than the original
LoCUS model on the panoptic scene-stable segmentation task (Section 4.4.1).

For this ablation, we trained for the same number of epochs as our other LoCo models, so it is possible
that the vision transformer blocks in the LoCUS architecture require longer training times than the
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convolutional layers of the LoCo models. In any case, this ablation illustrates that the improvements
in memory efficiency do not by themselves lead to improvements in performance. Their advantage is
that they allow for the training of larger models and higher-dimensional feature vectors with the same
computational budget, the effect of which far outweighs any performance decrease due to our loss
function and training algorithm changes.

Effect of ∆. We analyse the impact of restricting further the range of similarities from which Nα
B

and Pα
B are sampled by decreasing the saturation threshold ∆. The results of are shown in the last

two rows of Table 1. We see that while there is a small decrease in performance as the threshold
decreases, overall, the training is remarkably robust to more aggressive filtering of patch pairs. This
confirms the intuition that only a small number of patch pairs contribute meaningfully to the gradient
and that most patch pairs can be discarded without significantly impacting the training behaviour.

4.6 Memory Efficiency Analysis

Using their training code, we find that the hyperparameters used in Kloepfer et al. [26] result in
positive and negative pair set sizes of |PB | ≈ 13, 000 and |NB | ≈ 98, 000. The resulting matrix
size, using single-precision floating point numbers, of |PB | × (|PB |+ |NB |) ≈ 51GB exceeds most
computational limits, so the authors subsample 10% of the negative pairs to reduce the matrix size to
5.7GB for a matrix with 1.4 billion entries. We instead use a value of |P′

B | = 32 and find empirically
that even with the conservative value ∆, roughly 80% of the pair differences are well-approximated as
having zero-gradient. This means that |Pα

B | ≈ (1− 0.8)|PB | and |Nα
B | ≈ (1− 0.8)|NB |. Assuming

the same computational budget of 5.7GB, our method can therefore use batches PB and NB that are
larger by a factor of ∼ 2000. In our experiments, we limit |Pα

B | < 800 and |Nα
B | < 3, 000, resulting

in the matrix occupying only 500KB of memory, thereby freeing up GPU memory to train models
with more parameters and with substantially larger feature vectors.

5 Conclusion

In this paper, we have proposed a method for the memory-efficient learning of location-consistent
features. In particular, we present a reformulation of the smooth average precision ranking loss that
corrects for biases induced by batching, and introduce an approximation that facilitates significant
memory reductions without distorting the training signal. This mitigated a key memory bottleneck,
allowing larger models to be trained with the same computational resources. Equipped with this
novel retrieval-based objective function, we are able to efficiently learn to modulate DINO [5, 31]
ViT features towards location-consistency.

Our feature extractor demonstrates compelling performance on the downstream tasks of scene-stable
panoptic segmentation and visual place recognition, outperforming previous state-of-the-art feature
extractors. This work goes some way towards scaling up the training pipeline; however, there is
significant scope for applying these techniques on truly large scale image or video data in an entirely
self-supervised manner by estimating depth maps and camera poses using off-the-shelf methods.

Acknowledgements. The authors acknowledge the generous support of the Royal Academy of
Engineering (RF\201819\18\163), and EPSRC (VisualAI, EP/T028572/1).
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Table 3: Hyperparameters of the convolutional layers of the residual network used for the pixel-
correspondence task in Section 4.3.

Layer Kernel Size Output Dimension Dilation Downsample Factor

1 5 64 1 2
2 5 128 1 2
3 5 256 1 2
4 5 512 2 1
5 5 768 2 1
6 5 768 2 1

A Architecture of Residual Network

In Table 3 we describe in more detail the architecture of our fully convolutional network that we
use to compute residuals to frozen DINO [5] features. For the respective layers we downsample the
resolution by the given factor using a BlurPool layer.

B Correction Factors for Batched Loss

B.1 Derivation of Correction Factors

In the following we will derive the batch correction factors |P|/|PB | and |N|/|NB | from Sec. 3.4 in
the main paper. We will also retain all notation conventions used in the main paper.

We can re-write the Eq. (2) as

L = − 1

|P|
∑
cα∈P

Lα (11)

with Lα =
1 +

∑
cβ∈P\{cα} στ (sβ − sα)

1 +
∑

cβ∈P\{cα} στ (sβ − sα) +
∑

cγ∈N στ (sγ − sα)
.

and similarly Eq. (3) as

LB = − 1

|PB |
∑
cα∈P

LBα (12)

with LBα =
1 + fP

∑
cβ∈PB\{cα} στ (sβ − sα)

1 + fP
∑

cβ∈PB\{cα} στ (sβ − sα) + fN
∑

cγ∈NB
στ (sγ − sα)

,

where fP and fN are the as of yet unknown batch correction factors.

We want to choose fP and fN such that

L = E[LB ]. (13)

From the linearity of the expected value we have

E[LB ] = − 1

|PB |
∑
cα∈P

E[LBα]. (14)

Computing the expectation value of LB exactly is challenging, as numerator and denominator are
not independent. We can approximate ELBα using the ratio estimator [37], which for two random
variables X and Y approximates

E
[
X

Y

]
≈ E[X]

E[Y ]
. (15)

This estimator can be shown to be consistent, though biased. If the expectation values E[X] and E[Y ]
are estimated using n samples, the bias can be shown to decrease as O(n−1) [9].
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Applying this estimator to Eq. (14) with

X = 1 + fP ·
∑

cβ∈PB\{cα}

στ (sβ − sα) (16)

and
Y = 1 + fP ·

∑
cβ∈PB\{cα}

στ (sβ − sα) + fN ·
∑

cγ∈NB

στ (sγ − sα), (17)

we get

E [LB ] =
1 + fP · E

[∑
cβ∈PB\{cα} στ (sβ − sα)

]
1 + fP · E

[∑
cβ∈PB\{cα} στ (sβ − sα)

]
+ fN · E

[∑
cγ∈NB

στ (sγ − sα)
] . (18)

Since for uniform sampling of pairs from P

E [στ (sβ − sα)] =
1

|P|
∑

cβ∈P\{cα}

στ (sβ − sα), (19)

we obtain

E

 ∑
cβ∈PB\{cα}

στ (sβ − sα)

 =
|PB |
|P|

∑
cβ∈P\{cα}

στ (sβ − sα) (20)

and similarly for E[
∑

cβ∈NB
στ (sβ − sα)]. Plugging this into Eq. (14) and Eq. (13), immediately

results in

fP =
|P|
|PB |

(21)

fN =
|N|
|NB |

. (22)

We now investigate the bias due to the approximation Eq. (15). By Taylor expanding Eq. (15) around
X = E[X] = µX and Y = E[Y ] = µY to second order we get

X

Y
=

µX

µY
+ (X − µX) · 1

µY
− (Y − µY ) ·

µx

µ2
y

(23)

+
1

2
(X − µX)2 · 0 + (Y − µY )

2 · µX

µ3
Y

− (X − µX)(Y − µY ) ·
1

µ2
Y

+ higher order terms.

Applying the expectation value operator results in

E
[
X

Y

]
=

µX

µY
+ E

[
(Y − µY )

2
]
· µX

µ3
Y

(24)

− E [(X − µX)(Y − µY )] ·
1

µ2
Y

+ higher order terms.

Using our definitions of X and Y from Eq. (16) and Eq. (17) we get

(X − µX) =
|P|
|PB |

∑
cβ∈PB\{cα}

στ (sβ − sα)− |P| · Ecβ∈P\{cα}[στ (sβ − sα)] (25)

= O

(
1√
|PB |

)
(26)
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because the standard error of the sample mean decreases with the inverse square root of the number
of samples.

Analogously, we have

(Y − µY ) = O

(
1√
|PB |

)
+O

(
1√
|NB |

)
= O

(
1√
|ΩB |

)
, (27)

which then results in

E
[
X

Y

]
=

E[X]

E[Y ]
+O

(
1

|ΩB |

)
. (28)

The bias therefore decreases with the inverse of the batch size.

B.2 Error of Prior Loss Functions

Previous uses of the Smooth Average Precision loss function in Brown et al. [4] and Kloepfer et
al. [26] did not use batch correction factors.

The additional bias that results from this grows as the batch size decreases, because the batch
correction factors decrease for larger batch sizes, and also because for larger batch sizes the sums in
numerator and denominator grow and the additional +1 term that is unaffected by the batch correction
factors becomes less and less relevant.

In our experiments, the sums would generally have magnitudes of at least O(104), so the main
function of the batch correction factors is to correctly balance the effect of positive and negative
pairs in the denominator if fP ̸= fN. This is the case in our experiments, where our hyperparameter
choices mean that we generally sample a larger fraction of positive than of negative pairs so that
fP/fN ≈ 0.1. Without the batch correction factors, the loss function would place excessive weight
on increasing the similarity of positive pairs.

Since these correction factors are simple to calculate, it is therefore valuable to use the loss function
that includes them and that is built on a stronger theoretical foundation.

C Correction Terms for Memory Efficiency Improvements

C.1 Derivation

We derive here the exact form of the correction term δ−α in Eq. (9) of the main paper. The derivation
for δ+α proceeds entirely analogously.

Using the notation from the main paper, we can write

|N|
|NB |

∑
cβ∈NB

στ (sβ − sα) =
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα) (29)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα).

Using the approximation from Eq. (4) in the main paper, we have
∀cβ ∈ Nα

B : στ (sβ − sα) ≈ 0 (30)
and

∀cβ ∈ Nα

B : στ (sβ − sα) ≈ 1. (31)
Plugging into Eq. (29) yields

|N|
|NB |

∑
cβ∈NB

στ (sβ − sα) ≈
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα) +
|N|
|NB |

· |Nα

B |, (32)

with the second term exactly the correction term δ−α = |Nα

B |
|N|
|NB | .
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C.2 Approximation Error

Using the sum expansion of Eq. (29) in Eq. (12) results in

LBα =

(
1 +

|P|
|PB |

∑
cβ∈Pα

B

στ (sβ − sα) (33)

+
|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)

+
|P|
|PB |

∑
cβ∈Pα

B

στ (sβ − sα)

)

/

(
1 +

|P|
|PB |

∑
cβ∈Pα

B

στ (sβ − sα)

+
|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)

+
|P|
|PB |

∑
cβ∈Pα

B

στ (sβ − sα)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα)

)
.

In the worst case, the inequalities defining Nα
B ,N

α

B ,P
α
B ,P

α

B are tight, so

∀cβ ∈ Nα
B ∪ Pα

B : στ (sβ − sα) = −∆ (34)

∀cβ ∈ Nα

B ∪ Pα

B : στ (sβ − sα) = ∆. (35)
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Plugging in and using στ (∆) = 1− στ (−∆) yields

LBα =

(
1 +

|P|
|PB |

|Pα
B |στ (−∆) (36)

+
|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)

+ δ+α (1− στ (−∆))

)
/

(
1 +

|P|
|PB |

|Pα
B |στ (−∆) (37)

+
|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)

+ δ+α (1− στ (−∆))

+
|N|
|NB |

|Nα
B |στ (−∆)

+
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα)

+ δ−α (1− στ (−∆))

)
.

Taking a Taylor expansion with respect to z ≡ στ (−∆) ≈ 0 around z = 0 to first order gives

LBα =
1 + |P|

|PB |
∑

cβ∈Pα
B\{cα} στ (sβ − sα) + δ+α

1 + |P|
|PB |

∑
cβ∈Pα

B\{cα} στ (sβ − sα) +
|N|
|NB |

∑
cβ∈Nα

B
στ (sβ − sα) + δ+α + δ−α

(38)

+ z ·
[

|N||P|
|NB ||PB |

(|Pα
B | − |Pα

B |)
∑

cβ∈Nα
B

στ (sβ − sα)

+ δ−α

1 +
|P|
|PB |

|Pα
B |+

|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)


− |N|

|NB |
|Nα

B |

1 + δ+α +
|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα)

]

/

(
1 +

|P|
|PB |

∑
cβ∈Pα

B\{cα}

στ (sβ − sα) +
|N|
|NB |

∑
cβ∈Nα

B

στ (sβ − sα) + δ+α + δ−α

)2

+O(z2)

We see that the loss function used in the main paper (Eq. (9)) re-appears as the zeroth order term of this
expansion, while the higher order term(s) provide an upper bound for the error due to approximating
the sigmoids in the worst case.

D Implementation Details for Efficient Patch-Pair Sampling

We pre-compute the 3D world coordinates of each patch in the dataset by backprojecting the centre
coordinate into the scene using information about camera pose and depth values at that patch.

During training, we sample the positive patch-pairs cα ∈ P by uniformly randomly sampling a patch
from a scene and then using the highly efficient FAISS [11] library to find and sample a patch within
the positive region of the original patch. This approach does not uniformly sample from all positive
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patch-pairs since patches that are part of a larger number of positive pairs are not more likely to
be chosen, but computing the number of positive pairs that include a given patch to correct for this
would be computationally unfeasible. This also does not change our derivations, since all pairs are
still sampled from the same (even though non-uniform) distribution.

In each training step, we extract feature maps for only those images that contain the patches for the
cα pairs. This is to use our limited computational budget in a way that maximises |P′

B |. The pairs
cβ ∈ P and cγ ∈ N are then sampled from among the patches in the images for which feature maps
have been extracted. This samples using the same distribution as the cα pairs, since for each cα the
other images in the batch represent merely a uniformly random restriction of the patches that can be
sampled.

E Comparison with Hard Negative Mining

E.1 Discussion

One of the contributions of this paper, selecting pairs of patches that do not saturate a sigmoid
function in the loss function (cf . sec. 3.5), is reminiscent of the better-known technique of hard
negative mining in self-supervised learning [21, 22, 33].

However, there are three important differences:

Firstly, our method selects pairs of samples rather than individual hard (negative) samples, a result of
our general reformulation of the problem of learning location-consistent features. In hard negative
mining, given a single anchor sample, other samples are selected based on their features, whereas
in our case, given a pair of samples (patches), other pairs of patches are selected based on their
similarity.

Secondly, while hard negative mining is a one-sided filter, our method is two-sided. We do not just
filter out ‘too easy’ pairs like hard negative mining, i.e. pairs that are easily and correctly classified
into positive or negative pairs, but also ‘too difficult’ pairs, i.e. pairs that are confidently but incorrectly
classified. Both kinds of sample pairs saturate the sigmoid function and do not contribute to the
gradient. Most standard contrastive learning loss functions do not contain a sigmoid function, so such
a two-sided filter is not appropriate there.

Thirdly, hard negative mining approaches aim to improve downstream model performance by placing
more weight on difficult samples. The hard negative sampling changes the loss function to learn more
useful features. In contrast, our method aims exclusively to reduce the training algorithm’s memory
consumption without impacting the loss landscape.

E.2 Performance of NCE with Hard Sample Mining

We also trained a model using a more standard contrastive learning loss together with hard mining.
We again use a modified version of the model architecture of DINO-Tracker [41], training a fully
convolutional neural network to learn residual features to frozen DINO [5] features.

Instead of our loss, we train using the noise contrastive estimation (NCE) loss function [14]. From a
batch of 24 images, we sample 256 query patches, for each of which we sample 128 positive and 384
negative patches.

We use hard sample mining for both positive and negative samples. Inspired by Robinson et al. [33],
we sample the negative samples randomly from among the patches in the negative region with
a probability ∝ exp(βsij), where sij is the similarity between the query patch and the potential
negative patch. The coefficient β is a hyperparameter that we set to β = 0.1. Similarly, we sample
the positive patches from among the patches in the positive region with a probability ∝ exp(−βsij .
This means that we over-sample negative patches with high similarities and positive patches with low
similarities, as these are the worst-performing samples.

The results of this model on the pixel correspondence estimation task are shown in Table 4. Though
it outperforms the baseline models and does comparatively well at large viewpoint changes, our loss
is more suitable for learning multi-view consistent features.
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Table 4: Results on the pixel correspondence task on the Paired split [36] of ScanNet [10], as
introduced by El Banani et al. [12]. We report the recall of accurate pixel correspondences at a
reprojection error threshold of 10 pixels, for image pairs with the respective viewpoint changes.

Model 0◦–15◦ 15◦–30◦ 30◦–60◦ 60◦–180◦

LoCUS† [26] 23.5 18.8 13.5 7.5
DINO [5] 45.0 34.3 22.6 10.7
DINOv2 [31] 37.0 27.5 19.7 11.2
DINOv2 [31], Blocks 1–6 47.1 36.4 22.4 8.4
CroCo-v2 [44] 16.8 12.4 7.4 3.7

LoCo (Ours) 61.8 52.7 31.8 10.3

NCE + Hard Mining 50.6 40.8 26.7 11.4

F Visual Place Recognition

We also demonstrate the utility of location-consistent features on the task of Visual Place Recognition
(VPR). Given a set R of reference images and a set Q of query images with Q∩R = ∅, a ground
truth function g : Q → 2R maps a query image to the subset of reference images that show the
same ‘place’ as the query image. Since the reference set is typically large, here we focus on global
descriptor methods, which compute a global descriptor for each image and for each query image
retrieve the most similar reference images.

Recently, Keetha et al. [23] demonstrated that excellent place recognition performance can be
achieved using a simple recipe: extract patch-level feature maps using a pre-trained feature extractor,
then aggregate these into a global image descriptor using the VLAD [20] algorithm. We follow this
approach and report the results for different feature extractors. We use 128 clusters for VLAD and
construct the VLAD vocabulary only from the respective set of reference images.

F.1 Datasets.

The indoor datasets that are typically used to evaluate VPR methods (e.g. Baidu Mall [38], Gardens
Point [39], and 17Places [35]) tend to suffer from one of two defects. For some, like Gardens Point,
the development of large-scale pre-trained image models means that VPR performance is strong
enough that these datasets can no longer resolve small performance differences, with Keetha et
al. [23] reporting 99.5% Recall@5 for three variants of their method. Others, like Baidu Mall and
17Places, suffer from poor ground truth. Reference images labelled as ‘ground truth’ frequently have
no image overlap with the query image or do not include images with significant overlap as ground
truth. We therefore use the pose and depth information available with the Matterport3D and ScanNet
datasets to construct VPR datasets for which the IoU between query and ground-truth images falls
between 0.2 and 0.4. This ensures that the place recognition task is challenging while remaining
tractable for purely vision-based systems. The code to deterministically generate the datasets will be
released publicly.

The images that comprise these datasets are drawn from environments that were unseen during
training. For Matterport3D, using images from 18 unseen scenes results in 8637 reference and 2194
query images, and for ScanNet, using images from 21 unseen scenes results in 4295 reference and
239 query images.

F.2 Results.

We give Visual Place Recognition results in Table 5, quoting the Recall@1 and Recall@5. While the
performance of our LoCo features remains respectable, it does not outperform the baseline feature
extractors by as much as in the scene-stable panoptic segmentation task. This is potentially due to the
VLAD feature aggregation discarding information about the relative arrangement of different feature
vectors in the image, thereby removing a significant advantage of location-stable features compared
to feature extractors focused more on semantic information like DINO.
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Table 5: Visual Place Recognition Results on VPR datasets constructed from unseen images in
Matterport3D [6] and ScanNet [10]. MixVPR produces global image descriptors directly, all other
methods extract d-dimensional feature vectors for 30 × 40 patches that are then aggregated into
global descriptors using VLAD. LoCUS† [26] uses d = 64, rather than d = 768.

Matterport3D ScanNet
Model R@1 R@5 R@1 R@5

LoCUS† [26] 20.8 38.4 61.1 79.9
DINO [5] 45.7 77.8 81.0 92.9
DINOv2 [31] 25.0 52.0 59.4 78.2
CroCo-v2 [44] 26.6 51.6 63.6 81.1
MixVPR [1] 26.9 51.4 72.4 84.5

LoCo (Ours) 46.8 79.1 81.2 92.5

G Qualitative Visualisations

In Fig. 4, we show point-cloud reconstructions obtained by projecting the pixel patches of a set of
images showing a living room into 3D, and colouring the each point by the similarity of its patch’s
feature vector with a query feature vector taken from a query patch. The query patch looks at a point
on the wall to the top left of the picture hanging on the wall. The upper image shows the similarities
as reconstructed using our LoCo method, the lower as reconstructed using DINO [5] features.

The region of space where feature vectors have a high similarity with the query feature is much more
localised for our method than for the DINO features.

H Limitations

The training algorithm described in the paper assumes the availability of camera poses and depth
maps for each RGB image. While a number of datasets exist for whom this information is available,
this may not always be the case. There exist a number of comparatively accurate algorithms to
estimate this information, but the paper does not investigate whether such methods are sufficiently
accurate to reproduce the stated performance.

The paper also limits itself to training comparatively small convolutional networks, or finetuning
only a small number of layers of a pre-trained foundation model rather than training a similarly sized
model from scratch. There is therefore the possibility that the training algorithm described requires
an initialisation with relatively high-quality features and is not entirely appropriate for training visual
foundation models from scratch.

Thirdly, the paper only runs experiments training on a comparatively small dataset only containing a
few dozen different environments. While all testing is performed on unseen environments, the paper
does not investigate the existence of scaling laws as available training data increases.

I Broader impacts

This work, on memory-efficient learning of 3D-consistent image features, has potential positive and
negative social impacts. On the positive side, reducing the memory and compute requirements of a
common type of self-supervised loss (a ranking loss) permits a wider pool of researchers and interest
groups to investigate and train models that use such losses, on restricted compute budgets. In addition,
self-supervised learning reduces the need for often exploitative human labour practices associated
with obtaining cheap labelled data.

On the negative side, training large self-supervised models has considerable environmental impacts
due to carbon emissions that lead to significant societal impacts, including direct consequences
(displacement, damage from extreme weather events, etc.) and indirect consequences. Moreover,
location-consistent image features are likely to be useful for tracking, which can be invasive of privacy
and can be used for malicious purposes.
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(a) Similarities of the features of patches taken from a set of images with a query feature vector, using our LoCo
features, projected into 3D. The query feature vector’s location is to the top left of the picture on the wall.

(b) Similarities of the features of patches taken from a set of images with a query feature vector, using DINO [5]
features, projected into 3D. The query feature vector’s location is to the top left of the picture on the wall.

Figure 4: 3D visualisation coloured by the similarity with respect to a query feature vector.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claim of a novel memory-efficient loss function and training strategy
accurately reflect the contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are briefly discussed in the conclusion and in greater
detail in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Every theoretical result has an associated proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: While some details regarding the training setup will only be released to-
gether with the documented code-base, the main claims of memory efficiency and general
performance can be reproduced with the information provided in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: At time of submission, we have not released the code or data, however we will
do so before publication for reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide this information either in the Experiments section or in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not provided in the paper, due to the significant time cost
associated with re-training from different initialisations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required GPU resources are outlined in the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper, on a new technique for self-supervised learning of 3D-consistent
image features, poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the original creators of other’s assets and respect their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The assets introduced in this paper (code and model weights) will be released
before publication with full documentation. Since they are not released at the time of
submission, this question is answered as NA.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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