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Abstract

In this paper, we demonstrate that the per-001
formance of natural language inference (NLI)002
models can be enhanced using a novel adver-003
sarial approach, in which large language mod-004
els (LLMs) are used to systematically address005
NLI models’ weaknesses. We first employ006
the LLMs to adversarially generate challeng-007
ing NLI examples, looking for instances that008
are misclassified by the NLI model, effectively009
creating a dataset. These examples are vali-010
dated by an ensemble of LLMs to ensure their011
correctness and are subsequently used to re-012
train the NLI model, iteratively refining its013
performance. In our evaluation, the proposed014
approach demonstrated substantial accuracy015
improvements on multiple datasets, including016
1.65% on the SNLI dataset, 3.37% on the ANLI017
dataset, and 4.91% on the MultiNLI dataset.018
Our evaluation highlights the utility of LLMs019
in adversarial model improvement, providing a020
pathway toward robust and human-independent021
enhancements for NLI systems. Additionally,022
our LLM-based approach can also be used to023
automate the creation of NLI datasets.024

1 Introduction025

A fundamental task in natural language processing026

(NLP), natural language inference (NLI) is per-027

formed to determine the relationship between two028

sentences, ascertaining whether one sentence en-029

tails, contradicts, or is neutral to the other. While030

NLI models have achieved impressive performance,031

their robustness remains a challenge (Glockner032

et al., 2018; Carmona et al., 2018). Addressing033

these weaknesses is crucial for improving the relia-034

bility of NLI systems.035

Inspired by the methodology used to create the036

adversarial NLI (ANLI) dataset (Nie et al., 2019),037

we propose a novel approach for automatically038

identifying and addressing the weaknesses of NLI039

models. Our approach leverages large language040

models (LLMs) to adversarially generate challeng- 041

ing NLI examples that aim to gather instances that 042

are misclassified by the target NLI model. These 043

examples are validated by an ensemble of LLMs to 044

ensure their correctness before being used to retrain 045

the NLI model. This iterative process focuses on 046

strengthening the model’s ability to handle difficult 047

cases, ultimately improving its performance. 048

To evaluate our approach, we trained a leading 049

NLI model using our approach and another data 050

augmentation method, on the same amount of data, 051

using 10 different sets of hyper-parameters. We 052

then evaluated this model on three popular NLI 053

test-sets and observed consistent improvements. 054

The contributions of our work are as follows: (1) 055

our proposed approach systematically addresses 056

NLI model weaknesses, improving their robustness 057

and accuracy, as demonstrated by performance im- 058

provements on the SNLI (Bowman et al., 2015), 059

ANLI, and MultiNLI (Williams et al., 2018a) 060

datasets; (2) we introduce a fully automated dataset 061

creation process that eliminates the traditional re- 062

liance on human annotators; and (3) our approach 063

can scale to generate complete NLI datasets, en- 064

abling large-scale training of NLI models. 065

By combining automation, adversarial examples, 066

and LLMs, our approach represents a significant 067

step forward in enhancing NLI model performance 068

and reliability. Moreover, by applying our method 069

extensively to generate NLI examples, we can as- 070

semble a dataset that can be used to train NLI mod- 071

els. 072

2 Background and Related Work 073

Improving the robustness and performance of NLI 074

models remains a significant challenge in natural 075

language understanding (Glockner et al., 2018; Car- 076

mona et al., 2018). While traditional approaches 077

heavily relied on manually created datasets, such 078

as the Stanford NLI (SNLI) corpus (Bowman et al., 079
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2015), this labor-intensive process highlighted the080

need for more efficient alternatives.081

Recent advances in LLMs have enabled their use082

in the creation of NLI datasets, offering a more083

automated and scalable alternative to current prac-084

tice. Our methodology leverages state-of-the-art085

LLMs such as Llama-3.1-70B (Touvron, 2023),086

Mistral-Large 2 (Jiang et al., 2023), and Mixtral-087

8x7B (Jiang et al., 2024) to generate and validate088

NLI examples. These models give our approach089

the ability to generate high-quality NLI examples090

and fine-tune NLI models like RoBERTa-Base (Liu091

et al., 2019), enhancing their robustness and perfor-092

mance.093

Several recent studies have explored the use of094

LLMs for data generation. For example, counter-095

factual generation (Li et al., 2023) has been used096

to improve the robustness of the model in vari-097

ous downstream tasks, while paraphrasing (Kle-098

men and Robnik-Šikonja, 2021) has facilitated the099

expansion of existing datasets. TextAttack (Morris100

et al., 2020) is a framework for adversarial attacks101

and data augmentation, which has proven to be102

effective in enhancing models.103

In the domain of NLI datasets, ANLI (Nie et al.,104

2019) used a human-and-model-in-the-loop ap-105

proach to iteratively identify and address model106

weaknesses by manually creating challenging ex-107

amples. Similarly, SNLI, with its 570K manu-108

ally labeled sentence pairs, has become a stan-109

dard benchmark for evaluating NLI models. Build-110

ing on SNLI, the MultiGenre NLI (MultiNLI)111

dataset (Williams et al., 2018b) consists of 433K112

sentence pairs from various text genres, enhancing113

the training and evaluation of the models’ gener-114

alization capabilities and robustness in varied con-115

texts.116

3 Methodology117

In this section, we describe the four stages in our118

suggested approach for improving NLI models.119

The complete flow is presented in Figure 1.120

Automated Hypothesis Generation To create121

diversity in the hypotheses, we begin by inputting122

premises and their corresponding labels into mul-123

tiple LLMs. These models are given examples124

of both correct and incorrect classifications made125

by the target NLI model and are then tasked with126

generating a hypothesis that aligns with the given127

premise, such that the given label reflects the re-128

lation between them. The pseudocode of the hy-129

potheses generation is provided in Appendix A.1. 130

Adversarial Data Filtering Once the hypothesis 131

is generated, it is sent, along with the premise, for 132

classification by the target NLI model, which we 133

try to improve. If the model assigns the correct 134

label for the input pair, both the hypothesis and the 135

premise are discarded. If the model misclassifies 136

the input pair, the pair and its correct label continue 137

to the validation stage. This is done because we 138

want to gather examples that leading NLI models 139

struggle with, in order to address their weaknesses. 140

Automated Validation The validity of a hypoth- 141

esis misclassified by the NLI model is evaluated 142

by an ensemble of three LLMs. These models act 143

as independent judges, using majority voting to 144

ensure robust, unbiased validation. 145

Iterative Refinement and Retraining If, in the 146

previous stage, the LLMs agree on the validity 147

of the misclassified example, the hypothesis and 148

premise are then used for retraining. This iterative 149

loop is aimed at refining the accuracy of the target 150

NLI model. This process also enhances the training 151

dataset by continually challenging the model and 152

increasing its exposure to complex cases, thereby 153

improving its overall robustness. 154

Start

Input Premise
& Label

Few-Shot Hypoth-
esis Generation RoBERTa Eval

Prediction
Correct? Retrain Model

LLMs Agree?

Few-Shot Prompt

Discard

yes no
yes

no

Figure 1: Illustration of our approach for improving an
NLI model.

3.1 Dataset Comparison and Semantic 155

Analysis 156

To gain insights into the relation between the data 157

generated in out experiment and existing datasets, 158

we examined the 10 most common non-stopwords 159

in each dataset. We also assessed the similar- 160

ity between the datasets using the TF-IDF and 161

BERTScore F1 metrics (Zhang et al., 2019). The 162
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TF-IDF metric, employing cosine similarity, mea-163

sures lexical overlap to reveal how much vocabu-164

lary and how many syntactic patterns are shared165

between datasets. The BERTScore metric evaluates166

semantic similarity using contextual embeddings167

from transformer language models.168

3.1.1 Key Findings From the Dataset Analysis169

In the SNLI train dataset, some of the most fre-170

quent words are ’man,’ ’woman,’ and ’people,’ indi-171

cating themes of gender and social interactions. In172

contrast, the ANLI test dataset focuses on media173

and chronology with words like ’film’ and ’first,’174

while the MultiNLI test dataset uses more ab-175

stract language. The Generated dataset, contain-176

ing misclassified examples, consist mainly of spec-177

ulative and gender-focused language.178

We also analyzed the hypotheses’ length and179

word counts in the datasets. The hypotheses in180

the Generated dataset were the longest, whereas181

SNLI train and SNLI test had similar lengths,182

suggesting a consistent style. The ANLI test and183

MultiNLI test datasets had longer hypotheses,184

highlighting their complexity. A comparison of the185

text length and word counts in the hypotheses of186

the examined datasets is provided in Figure 2.187

Figure 2: Average text length and word count in the
hypothesis column for the examined datasets.

As for the similarity between datasets, Figure 3188

presents the TF-IDF cosine similarity between ev-189

ery pair of the datasets’ test sets. As can be seen,190

there is limited lexical overlap, with the greatest191

expected similarity between the SNLI train and192

SNLI test datasets and the least similarity between193

the ANLI test and MultiNLI test datasets. Fig-194

ure 4 presents the BERTScore similarity; as can be195

seen, there are notable semantic alignments, par-196

ticularly between the SNLI train and SNLI test197

datasets. These insights provide further validation198

of our approach, confirming that the data gener-199

ated falls within the range of expected lexical and200

semantic similarities of existing NLI datasets.201

Figure 3: TF-IDF cosine similarity among NLI datasets,
including our generated dataset.

Figure 4: BERTScore F1 similarity among NLI datasets,
including our generated dataset.

3.2 Avoiding Forgetness 202

One of the challenges of fine-tuning existing pre- 203

trained models is ‘forgetness.’ Providing a pre- 204

trained model with many new training examples 205

from a different distribution may cause the model 206

to overfit the new distribution and degrade its per- 207

formance on the original distribution on which it 208

was pretrained. To prevent this adverse effect, we 209

added several examples from the original SNLI 210

training set to the new training set we created with 211

the newly generated examples. We experimented 212

with different ratios of generated to original train- 213

ing samples and selected the ratio that maximized 214

accuracy. The different ratios and their correspond- 215

ing accuracy value are presented in Figure 5. The 216

incorporation of both original and generated train 217

samples also enhances their generalizability. This 218

diversity helps models recognize a broader spec- 219

trum of patterns and scenarios, reducing the risk of 220

overfitting and enabling more reliable performance. 221
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Figure 5: Model performance comparison across
datasets.

4 Evaluation and Results222

In this study, we used the RoBERTa-base-SNLI223

model from Hugging Face (HuggingFace, 2022)224

(125M parameters), a popular, open-source NLI225

model trained on a single dataset. To evaluate226

our approach, we generated, filtered, and vali-227

dated thousands of data samples, ending up with228

2.5K high-quality samples of NLI data according229

to our approach. We used Llama-3.1-70B and230

Mistral-Large 2 (123B) for generation and Gemini-231

2.0-Flash-Lite (Google, 2025), Mixtral-8x7B, and232

Qwen-2.5-72B-Instruct (Qwen, 2024) for valida-233

tion. Then, we fine-tuned the RoBERTa-base-SNLI234

on it, along with another 10K samples from the235

original SNLI train set, to maintain our suggested236

ratio of 1:4. To fine-tune the NLI model, we used a237

single T4 GPU. We conducted experiments using238

10 different sets of hyperparameters to confirm the239

robustness of our approach. This evaluation demon-240

strates notable improvements across three different241

and diverse test sets. In the first experiment, con-242

ducted on the SNLI test set, the model trained on243

our data achieved accuracy of 90.13%, surpassing244

the RoBERTa-base-SNLI’s accuracy of 88.48%.245

This demonstrates that our approach effectively246

boosts performance on the dataset that the base247

model was originally trained on. In the second ex-248

periment, using the ANLI test set, our model again249

outperformed RoBERTa-base-SNLI, achieving an250

accuracy of 78.41% compared to 75.04%. This re-251

sult shows that our approach improved the model’s252

ability to handle challenging adversarial examples.253

Finally, on the MultiNLI dataset, the model trained254

on our data achieved an accuracy of 59.58%, which255

is significantly higher than RoBERTa-base-SNLI’s256

accuracy of 54.67%. This emphasizes the enhanced257

generalization capabilities of our approach across258

diverse data distributions. For comparison, we fine- 259

tuned the same model on the same amount of data 260

taken from the MNLI train set. We also performed 261

paraphrasing to transform the same amount of sam- 262

ples from MNLI. This approach achieved moderate 263

improvements, with accuracies of 84.73% on SNLI, 264

72.39% on ANLI, and 50.01% on MultiNLI, but 265

remained below the performance of our proposed 266

method. These results are summarized in Table 1. 267

Dataset RoBERTa
base-
SNLI

Additional
Data

Para-
phrasing

Our
Approach

SNLI 88.48% 89.42% 84.73% 90.13%
± 0.67

Adversarial
NLI

75.04% 77.07% 72.39% 78.41%
± 0.31

MultiNLI 54.67% 57.61% 50.01% 59.58%
± 0.71

Table 1: Comparison of accuracy on the examined
datasets, for RoBERTa-base-SNLI, RoBERTa-base-
SNLI fine-tuned with additional data from MNLI,
RoBERTa base-SNLI fine-tuned with additional data
generated using paraphrasing based on the SNLI train
set, and RoBERTa-base-SNLI fine-tuned with additional
data generated using our approach.

5 Discussion and Future Research 268

This study demonstrates the effectiveness of em- 269

ploying LLMs to automatically identify and ad- 270

dress NLI models’ weaknesses by generating and 271

validating challenging datasets. By targeting model 272

misclassifications, our approach systematically en- 273

hances NLI model robustness and accuracy, achiev- 274

ing significant performance improvements on di- 275

verse datasets - SNLI, ANLI, and MultiNLI. Our 276

approach represents a major step forward in au- 277

tomating model refinement, reducing reliance on 278

human annotators while preserving data quality 279

and consistency. 280

Using an ensemble of LLMs for hypothesis vali- 281

dation reduces human biases and errors while en- 282

abling a scalable, iterative process for creating com- 283

plete NLI datasets. This scalability supports both 284

retraining existing models and building comprehen- 285

sive datasets for future NLI models. 286

Future research should explore ways to further 287

diversify the data generated by LLMs, incorporat- 288

ing varied linguistic structures and content domains. 289

To explore our approach’s potential to further ad- 290

dress model weaknesses, its performance when 291

employed on a larger scale and with multiple iter- 292

ations should be explored. Additionally, applying 293

these techniques to other NLP tasks could examine 294

our approach’s utility in other domains. 295

4



6 Limitations296

Our approach’s dependence on the initial quality of297

LLMs and the substantial computational resources298

required for training and deploying multiple mod-299

els simultaneously could be prohibitive for some300

applications. This research was conducted with301

low-resource computation, which imposed certain302

constraints, limiting the scale and speed of pro-303

cessing. Additionally, the use of outsourced APIs304

for model generation introduced a bottleneck, as305

API response times delayed the generation of nec-306

essary data. These limitations prevented us from307

generating data at scale and testing our approach by308

generating hundreds of thousands of examples. We309

also have not yet examined our approach cyclically,310

using the model trained with our data as a target311

model for another iteration of data generation. We312

plan to address these limitations in future research.313
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where the target model failed to classify correctly399

and those where it achieved successful classifica-400

tion. By utilizing these examples, the LLM gener-401

ates contextually appropriate, more informed, and402

accurate hypotheses, thereby enhancing efficiency403

and consistency.404

Algorithm 1 Few-Shot Hypothesis Generation
1: Shuffle the SNLI train dataset D
2: Select n observations from D: {

(p1, h1, l1), (p2, h2, l2), . . . , (pn, hn, ln) }
such that there are an equal number of
observations for each label

3: for each (pi, hi, li), where i ∈ {1, . . . , n} do
4: Format the example as:

This is a premise: pi, this is the
hypothesis: hi, and the label between
them is li.

5: end for
6: Provide these n formatted examples as few-

shot inputs to the model
7: After providing the examples, prompt the

model with the following instruction:
You are a language expert that helps
create an NLI dataset. Given a premise
sentence p and a desired label l,
generate a one-sentence hypothesis h
such that the label is relevant to
the relation between the premise and
the generated hypothesis. Keep the
hypothesis short.

8: The model generates a one-sentence hypothe-
sis h for the given premise p and label l

9: return Generated hypothesis h

In Table 2, we present the final prompt structure405

used, which includes detailed instructions, care-406

fully selected examples, and a structured response407

format. This design ensures that the generated hy-408

potheses align with the desired premise-hypothesis409

relationship while maintaining consistency and re-410

ducing ambiguity in the output. The few-shot ex-411

amples are shown in Appendix A.5.412

A.2 Model Prompting Procedure for413

Validation414

In Table 3, we present the final prompt used for415

LLM validation of the NLI dataset. The prompt416

asks the model if the provided label matches the417

premise-hypothesis relationship, with the system418

responding ’Accepted’ or ’Not Accepted.’ This pro-419

Component Content
Few-Shot
Example

Here are cases where the target model made
mistakes:
This is a premise: {premise}
This is the hypothesis: {hypothesis}.
The label between them is {label} (Lincorrect).
(repeat for four incorrect examples)

Now, here are cases where the taget model got it
right:
This is a premise: {premise}
This is the hypothesis: {hypothesis}.
The label between them is {label} (Lcorrect).
(repeat for four correct examples)

(Eight examples are shown to the model in this
format, randomly selected from the correct and
incorrect predictions to ensure balanced rep-
resentation of successful and failed classifica-
tions.)

System
Prompt

You are a language expert that helps create an
NLI dataset. Given a premise and a desired label,
your job is to provide a one-sentence hypothe-
sis such that the label is relevant to the relation
between the given premise and your generated
hypothesis.

Table 2: Prompting procedure used to generate hypothe-
ses for the NLI dataset.

cess is repeated with multiple LLMs to filter chal- 420

lenging and problematic examples. The prompt 421

was designed with detailed instructions, illustra- 422

tive examples, and a structured response format 423

to ensure consistency and accuracy in the valida- 424

tion process, contributing to the overall quality and 425

robustness of the dataset. 426

Component Content
System
Prompt

You are a language expert. Your job is to
filter rows of an NLI dataset, which contain
some data that may not be good enough.
Given a premise and a hypothesis, you
should determine whether the label reflects
the relationship between them or not.

User
Prompt

This is the premise: {premise}.
This is the hypothesis: {hypothesis}.
The relationship between them is {label}.
Do you accept this relationship? Respond
only with ’Accepted’ or ’Not Accepted.’

Table 3: Prompting procedure used to validate the NLI
dataset examples.

A.3 Optimized Hyperparameters for 427

RoBERTa-base-SNLI Model 428

After 10 experiments, the best RoBERTa-base- 429

SNLI hyperparameters were: learning rate 5.31× 430

10−6, batch size 16/8, one epoch, and weight decay 431

0.0093, balancing efficiency and generalization. 432
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A.4 Examples of Generated Hypotheses433

In Table 4, we provide some examples of the hy-434

potheses generated. Each row contains the original435

premise, the generated hypothesis, and the origi-436

nal label, highlighting the model’s generalization437

ability.438

Premise Hypothesis (Generated) Label
A small girl with a
necklace is swim-
ming.

There is unlikely to be a re-
lationship between the ma-
terial composition of the
necklace and the girl’s
swimming proficiency.

1

Swimmers leap
off the starting
blocks into their
race lanes at an
indoor pool.

Athletes jump off the start-
ing blocks into their desig-
nated lanes at the beginning
of a swimming competition.

0

Two women are
sitting at a table
working with clay.

The women are engaged in
a quiet activity.

1

Young man play-
ing darts in a cur-
tained room.

A young man is throwing
darts in a private space.

0

3 people in a small
hut or house.

There are more than 10 peo-
ple in the hut.

2

Table 4: Examples of generated hypotheses with their
corresponding original labels.

A.5 Examples of Correct and Incorrect439

Predictions440

Table 5 presents a set of examples illustrating both441

correct and incorrect classifications made by the442

model when predicting the label for a given premise443

and its corresponding generated hypothesis. The444

first four rows highlight instances where the model445

failed to assign the correct label, showcasing cases446

where the classification was erroneous. In con-447

trast, the last four rows contain examples where448

the model successfully identified the correct label,449

demonstrating its capability to accurately recognize450

the premise-hypothesis relationship. These exam-451

ples were specifically incorporated into the few-452

shot generation process to provide the language453

model with informative guidance during hypoth-454

esis generation. By including both misclassified455

and correctly classified examples, the few-shot ap-456

proach ensures that the model learns from past457

errors while reinforcing successful patterns, ulti-458

mately improving the quality, consistency, and ro-459

bustness of the generated hypotheses.460

Premise Hypothesis Label
A woman with
a green headscarf,
blue shirt and a
very big grin.

The woman appears to be in
distress after a violent inci-
dent.

2

A land rover is be-
ing driven across a
river.

A car is parked on the side
of the road.

2

People are clean-
ing up a street.

A group of individuals are
picking up trash and debris
from the street.

0

Three firefighters
come out of a sub-
way station.

Three people in casual
clothes walk out of an air-
port.

1

This church
choir sings to the
masses as they
sing joyous songs
from the book at a
church.

The church has cracks in the
ceiling.

1

A woman with
a green headscarf,
blue shirt and a
very big grin.

The woman is young. 1

A man playing an
electric guitar on
stage.

A man playing banjo on the
floor.

2

A young family
enjoys feeling
ocean waves lap at
their feet.

A young man and woman
take their child to the beach
for the first time.

1

Table 5: Examples of correct and incorrect model pre-
dictions. The first four rows illustrate cases where the
model misclassified the label, while the last four rows
show cases where the model correctly predicted the la-
bel.

A.6 Ablation Study 461

In this section, we conduct a detailed analysis of 462

each component of our method to better under- 463

stand its contribution and overall impact on the 464

final dataset. A critical aspect of our approach is 465

the multi-stage validation process, which system- 466

atically filters out lower-quality or less adversarial 467

samples. We begin by generating 30K samples, 468

which then undergo an initial filtering phase where 469

the target model classifies them. In this stage, 15K 470

samples are discarded because they are correctly 471

classified by the target model, meaning that only 472

the remaining 50% of the generated data contains 473

sufficiently challenging examples for further vali- 474

dation. 475

Following this initial filtering, we employ a sec- 476

ondary validation step using three large language 477

models (LLMs) to further refine the dataset. These 478

LLMs independently assess the remaining 15K ad- 479

versarial samples, filtering out 12.5K of them. At 480

this stage, only one out of every six examples is 481

approved by the majority voting mechanism of the 482

7



three LLMs, ensuring that only the most adversar-483

ial and informative samples are retained. After this484

rigorous multi-stage filtering process, we are left485

with a final dataset consisting of 2,500 high-quality486

adversarial samples, accounting for just 8.33% of487

the original 30K generated examples.488

Beyond analyzing data filtration, we also inves-489

tigate the impact of each individual component in490

our approach. Table 6 presents an ablation study491

where we assess the accuracy of the SNLI test when492

specific components of our method are included493

or removed. This analysis helps to isolate the ef-494

fectiveness of each component, providing a deeper495

understanding of how various aspects of our ap-496

proach contribute to improving model robustness497

and performance.498

Method SNLI Test
Accuracy

Target Model + Few-Shot Generated exam-
ples

89.25%

Target Model + Few-Shot Generated exam-
ples + Only Adversarial Samples

89.64%

Target Model + Few-Shot Generated exam-
ples + Only Adversarial Samples + LLMs
validation (our approach)

90.13%

Table 6: Ablation study, with the performance of each
component on the SNLI test.
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