
API Mapping using Self Reflection in Large Language Models

Anonymous ACL submission

Abstract

API sequencing has received significant atten-001
tion, leading to the development of datasets002
and solutions aimed at generating correct se-003
quences of API calls for complex tasks. How-004
ever, little work has been done on the task005
of API mapping—a novel task that involves006
identifying and linking functionally equivalent007
endpoints across different tools to accomplish008
tasks that require accessing multiple function-009
alities, much like performing joins in database010
querying. In this work, we focus on map-011
ping APIs within the ToolBench dataset. By012
leveraging rich annotation resources and a self-013
reflection mechanism to iteratively refine map-014
ping decisions, our approach identifies com-015
mon fields and functional overlaps between016
API endpoints, thereby enabling the integration017
of multiple tools for multi-faceted tasks. Unlike018
existing systems that rely on the function call-019
ing capabilities of frontier models and require020
meticulously organized API data, our method021
demonstrates that effective API mapping can022
be achieved with smaller open source models023
and more flexible data organization, thereby024
providing a more accessible and cost-efficient025
solution for real-world applications.026

1 Introduction027

In recent years, the use of large language models028

(LLMs) for task completion through tool sequenc-029

ing and subsequent tool invocation has garnered030

significant interest. While LLMs excel at tasks like031

summarization, sentiment analysis, reasoning, and032

even code generation due to their intrinsic knowl-033

edge, they are not always up-to-date on current034

events and are inherently incapable of interacting035

with the outside world to perform real-world tasks.036

To harness the full reasoning and problem-solving037

capabilities of LLMs, they must be augmented with038

tools that either supplement their knowledge—such039

as web search or document retrieval systems—or040

enable them to perform specific actions (e.g., APIs041

Figure 1: API Mapping can improve API sequencing
performance of Large Language Models.

for booking a table in a restaurant or purchasing a 042

flight ticket). 043

To enhance the tool calling capabilities of LLM, 044

state-of-the-art approaches such as ToolLLM (Qin 045

et al., 2023) and AnyTool (Du et al., 2024) have 046

been developed. These methods construct bench- 047

mark datasets from RapidAPI (RapidAPI, 2023), 048

where natural language utterances designate tasks 049

that can be solved using APIs. They also pro- 050

vide corresponding solution paths obtained using 051

state-of-the-art LLMs such as ChatGPT (OpenAI, 052

2023) and GPT-4 (Achiam et al., 2023). To re- 053

trieve relevant APIs from over 16,000 available 054

endpoints, ToolLLM employed a specially trained 055

BERT-based neural API retriever, whereas Any- 056

Tool leverages GPT-4’s function calling in com- 057

bination with a hierarchical organization of APIs. 058

Once relevant APIs are retrieved, the LLM must 059

discover the correct set of APIs to call to accom- 060

plish the task—often using prompting strategies 061

1



such as ReAct and DFSDT (Qin et al., 2023)—until062

the LLM determines that the task has been solved063

or deems it unsolvable.064

In this work, we introduce a novel task of API065

mapping across multiple datasets—a capability that066

is not currently available in the literature. Figure067

1 describes the API mapping task with an exam-068

ple. The API mapping task would map APIs with069

alternative equivalent APIs, thereby returning mul-070

tiple sequences for the ultimate task. This task071

is motivated by the need to build data products072

that seamlessly integrate multiple APIs, enabling073

users to select alternative endpoints based on crite-074

ria such as API availability, latency, and the number075

of required processing steps. For instance, when a076

user is limited by subscription constraints or per-077

formance issues, our approach can identify alter-078

native APIs that deliver similar functionality but079

with lower cost or faster response times. We argue080

that in many cases there may be multiple APIs with081

similar or overlapping functionality that can satisfy082

a user’s requirements. In such scenarios, it is desir-083

able to present the user with alternative APIs and084

corresponding solution paths—thus allowing the085

selection of a preferred alternative based on factors086

such as cost, access, or latency.087

In addition, our work leverages rich annota-088

tion resources—including detailed annotations on089

the ToolLLM dataset—that have not been pub-090

licly released. (Du et al., 2024) had explored self-091

reflection for the API sequencing task. In a similar092

vein, we propose a self-reflection mechanism for093

API mapping that allows the model to iteratively094

refine its mapping decisions, thereby improving the095

accuracy of matching common fields. This stands096

in contrast to systems like AnyTool, which rely on097

highly organized API data and the function-calling098

capabilities of GPT-4. By demonstrating that our099

approach can achieve competitive performance us-100

ing smaller models and less stringent data organi-101

zation requirements, we offer a more cost-effective102

and broadly applicable solution for multi-API envi-103

ronments.104

2 Related Work105

ToolLLM (Qin et al., 2023) introduced the Tool-106

Bench dataset based on the APIs in RapidAPI Hub.107

ToolLLM includes an API Retriever that, given108

a natural language instruction, identifies and re-109

turns a relevant set of APIs. It introduces solution110

path annotation by constructing chains of API calls111

using ChatGPT, and enhances the reasoning capa- 112

bilities of the system through a depth-first search 113

based decision tree. In addition, the work presents 114

an evaluation framework, ToolEval that includes 115

metrics such as pass rate and win rate. ToolLLaMA 116

is fined tuned on the ToolBench dataset achieving 117

performance comparable to Gorilla. 118

AnyTool (Du et al., 2024) incorporates a self- 119

reflection mechanism to improve the reliability of 120

its solutions. Upon receiving a user query, the sys- 121

tem proposes an initial solution that is subsequently 122

evaluated for feasibility by GPT-4. If the solution is 123

found impractical, AnyTool re-activates itself, tak- 124

ing into account the reasons for failure and relevant 125

historical contexts. This iterative process, typically 126

involving four to six rounds of self-reflection, is 127

shown to enhance the pass rate significantly. The 128

authors claim to have addressed some of the prob- 129

lems in the evaluation strategy used in ToolLLM. 130

There are other works like MetaTool (Huang et al., 131

2023) concerned with tool calling. 132

Retrieving APIs for the sequencing task is a well 133

known problem. (Li et al., 2023), (Patil et al., 2023) 134

used text embedding based API retrievers while 135

(Qin et al., 2023) used a method fine tuned with 136

curated API retrieval data. We believe using tools 137

and frontier models for this retrieval step is too 138

expensive and not practical in real world applica- 139

tions. Hence we propose a cheaper solution based 140

on indexing and observe that it does not adversely 141

affect API mapping or even the sequencing task. 142

(Saha et al., 2024) and (Mandal et al., 2024) 143

discuss API sequencing. (Basu et al., 2024) intro- 144

duced a corpora for training LLMs and (Patil et al., 145

2023; Abdelaziz et al., 2024) presented different ap- 146

proaches to function calling. (Mandal et al., 2024) 147

proposed using an API Graph to guide the sequenc- 148

ing process. (Chen et al., 2024) discusses API 149

recommendation. (Moon et al., 2024) presented 150

API-miner which extracts APIs from the OpenAPI 151

specifications and finds similar APIs to help de- 152

sign new APIs. (Song et al., 2023) introduced the 153

RestBench dataset which consists of python like 154

function signatures. (Liang et al., 2024) discusses 155

training foundation models to connect them to APIs 156

to accomplish tasks. 157

Mapping API end points predates the advent of 158

Large Language Models. (Lu et al., 2017) tried to 159

do API mapping by reading API documents. (Liu 160

et al., 2023) uses a knowledge graph to recommend 161

analogical APIs. (Shao et al., 2022) constructs 162

a API documentation graph using Graph Neural 163

2



Networks.164

3 API Mapping165

To perform API mapping on enterprise datasets, we166

receive a set of OpenAPI specifications as input.167

For the APIs in the ToolBench dataset, we take168

the API details provided in the dataset. We merge169

the API endpoints into a combined collection. We170

then organize them to allow search, mapping, and171

sequencing. The search layer supports queries over172

many APIs. The mapping step identifies similar173

functionalities across different endpoints. The se-174

quencing step produces a plan of API calls in re-175

sponse to user utterances. We employ large lan-176

guage models (LLMs) for these tasks and include177

a self-reflection component.178

In order to identify matching APIs for enterprise179

datasets, we analyze their response structure in-180

cluding fields and descriptions. We then identify181

matching fields. If the descriptions of the two APIs182

are similar or if there is sufficient overlap between183

the fields in the response, then we can conclude that184

the APIs are matching alternatives. We then index185

the APIs in such a way that if the user’s utterance186

matches the description of one API, then we can187

also retrieve the alternative APIs in a single call to188

the API retriever. We do this by creating clusters189

of matching APIs and indexing them together in190

a vector database. While generating the API map-191

pings, we create a graph of operations within the192

same OpenAPI specification. Two operations are193

neighbours if they share common fields or schema.194

While the operations are being matched, we re-195

trieve the neighbours of the candidate operations196

and put them in the same cluster. Then the related197

operations are mapped at the same time so that the198

mapping algorithm considers all operations with199

shared fields/schema at the same time.200

For generating API mappings from the Tool-201

Bench dataset, we use a probing strategy to re-202

trieve candidates for matching. We first index all203

the 49937 APIs (belonging to 10388 tools from 50204

categories) in ToolBench as a single collection in205

Milvus using the API name and the API descrip-206

tion. We then fire the first 10000 queries from the207

train set of ToolBench and retrieve 10 matching208

APIs for each query. We then pass these 10 APIs209

to an LLM (Mistral Large) in a single prompt to210

find mappings between the APIs. In this way, we211

generate a variable number of API mappings per212

query along with reasoning (this number depends213

Mappings Few Shot ICL Self-Reflection

Total 24235 27643
Correct 14940 17210
Accuracy 0.6160 0.6226

Table 1: API mappings with annotations in the Tool-
Bench dataset. We annotated 10000 queries covering
49937 APIs from 10388 tools.

on how many mappings the LLM is able to detect 214

within the 10 APIs). We also include an additional 215

step of self-reflection where the LLM is asked to 216

criticize the reasoning behind the mappings and 217

generate alternative API mappings if necessary. It 218

is expected that the mappings produced after self- 219

reflection will be more reasonable (or intuitive) 220

than the original mappings. Finally we collate all 221

LLM generated mappings from the 10000 queries. 222

Annotation 223

We developed an annotation tool to obtain real- 224

istic ground truth data for the API mapping task. 225

Although the tool is capable of supporting anno- 226

tations for API retrieval and sequencing as well, 227

our primary focus is on mapping APIs—that is, 228

identifying and validating relationships between 229

endpoints based on similarities in their descriptions 230

and shared fields. For each natural language user ut- 231

terance, the tool displays a set of candidate API end- 232

points along with the model-generated mappings 233

between these endpoints and their corresponding 234

fields. Annotators review these mapping outputs 235

to determine if they accurately represent the re- 236

lationships and functionalities; when they do not, 237

annotators have the option to provide corrected 238

mappings. In addition, the tool offers functionality 239

for the annotation of retrieval and sequencing out- 240

puts, but these features are only briefly introduced. 241

The overall goal of our annotation process is to 242

generate high-quality, expert-verified mapping an- 243

notations that can be used to evaluate and improve 244

our API mapping approach. 245

4 API Sequencing 246

In our API sequencing experiment, we investigate 247

the ability of large language models (LLMs) to 248

generate correct sequences of REST API calls in 249

response to natural language instructions. Our ap- 250

proach comprises two main stages: (i) indexing 251

canonical API lists and (ii) retrieving candidate 252

APIs from a vector database (Milvus) based on user 253

3



Model Prompt Set Metrics Order Metrics

Precision Recall F1 Precision Recall F1

mixtral-8x7b-instruct ICL 0.2208 0.1904 0.2045 0.1650 0.1422 0.1528
mixtral-8x7b-instruct Self-Reflection 0.2803 0.2735 0.2769 0.2332 0.2276 0.2303
granite-3-1-8b-instruct ICL 0.0964 0.0875 0.0917 0.0771 0.0700 0.0734
granite-3-1-8b-instruct Self-Reflection 0.1579 0.1904 0.1726 0.1143 0.1379 0.1250

Table 2: Average set and order precision, recall, and F1 scores for API sequencing on the Toolbench dataset.

queries. We experiment with annotated version of254

the ToolBench dataset. For each dataset, we first255

construct a canonical API list from raw OpenAPI256

specifications, which preserves all the original in-257

formation (e.g., tool name, API name, description,258

and parameter information). These canonical lists259

are used to populate vectordb collections.260

API Retrieval261

Given a set of natural language queries for262

ToolBench, our system retrieves candidate APIs263

from the corresponding vector database collec-264

tion. These candidates—along with the original265

query—are used to build few-shot prompt exam-266

ples for sequencing.267

Prompting Strategies We experimented with268

different prompting styles for generating API se-269

quences. Few-Shot Prompting uses a simple270

prompt that provides a description of the task along271

with a few input-output examples. Next, the Chain-272

of-Thought (CoT) (Wei et al., 2022) approach en-273

courages the model to generate intermediate rea-274

soning steps before producing the final sequence.275

The ReAct style interleaves explicit Thought, Ob-276

servation, and Action steps to guide the model’s277

output. The difference in performance between few278

shot in-context learning and CoT and ReAct style279

prompts were not statistically signficant. Hence280

we only report few shot ICL numbers in Table 2.281

Similar to the API Mapping task, self-reflection282

seems to help models in the API sequencing task.283

Here self-reflection strategy instructs the model to284

autonomously refine its output until a satisfactory285

API sequence is produced.286

Evaluation SEAL (Kim et al., 2024) provides a287

suite of tools for evaluating LLMs in API related288

tasks. (Qin et al., 2023) also introduced ToolE-289

val in their work. Given we want to avoid the290

use of frontier models and agents merely for the291

task of retrieval, we have also used a much sim-292

pler evaluation strategy. To evaluate the generated293

API sequences, we compute precision, recall, and294

F1 scores for each test example by comparing the 295

API sequence produced by our system against the 296

corresponding ground truth. For a given example, 297

precision is defined as the proportion of generated 298

API endpoints that match those in the ground truth, 299

while recall is defined as the proportion of ground 300

truth endpoints that are correctly retrieved by our 301

system. The F1 score is then calculated as the har- 302

monic mean of precision and recall. We report both 303

set and order level metrics. As shown in Table 2, 304

self-reflection seems to help the smaller models in 305

our experiments. However, we recognize that the 306

overall performance of these models on this task 307

requires lot more improvement. 308

We aexperimented with incorporating API map- 309

ping information into the API sequencing task by 310

expanding the set of candidate APIs available for 311

the model after retrieval. But as expected, this did 312

not give promising results since we introduce more 313

choices rather than reducing them. A more promis- 314

ing approach seems to be using the API mapping 315

information to induce the model to self-reflect. As 316

shown in Appendix A.1.3, we tell the model that 317

a number of API mappings exist between its out- 318

put and candidate APIs and the model can make 319

use of them to refine its answer. This gave us the 320

improvements reported in Table 2. 321

Conclusion 322

We introduced the new API Mapping task that has 323

so far not been discussed in the literature. We 324

designed a novel method for API mapping using 325

Large Language Models that benefits from self- 326

reflection. This API mapping when used as a pre- 327

processing step, partly mitigates the need for using 328

expensive models like GPT4 for API retrieval and 329

function calling tasks. We conducted experiments 330

on the ToolBench dataset and showed how differ- 331

ent open source models using various prompt styles 332

seem to benefit from API mapping while perform- 333

ing the API sequencing task. 334

4



Limitations335

Our work on API mapping has some limitations336

that should be acknowledged. While we demon-337

strate the effectiveness of API mapping on the Tool-338

Bench dataset, our approach currently focuses pri-339

marily on functional similarity and field matching.340

This may miss more nuanced relationships between341

APIs that could be captured through deeper seman-342

tic analysis. The self-reflection mechanism, while343

effective, still relies on the capabilities of the un-344

derlying LLM. As shown in our experiments, the345

performance varies significantly across different346

models and prompting strategies, indicating room347

for improvement in the mapping methodology.348

Our evaluation metrics for API mapping could349

be expanded to include more real-world considera-350

tions such as API performance, cost, and reliability351

- factors that may influence API selection. The352

current approach does not address versioning or353

evolution of APIs over time, which could affect the354

stability and reliability of the mappings. Further-355

more, while we demonstrate that smaller models356

can be effective for API mapping, complex cases357

will benefit from larger models.358

Ethical Statement359

Our work focuses on improving the efficiency and360

accessibility of API mapping and sequencing using361

publicly available datasets and open-source mod-362

els. The ToolBench dataset and associated APIs363

are already publicly accessible through RapidAPI,364

and our work simply helps organize and optimize365

their usage. From an ethical perspective, our ap-366

proach actually promotes responsible API usage by367

enabling users to find legitimate alternative APIs368

when primary services are unavailable, reducing369

dependency on expensive, proprietary models for370

API discovery and mapping, and making API in-371

tegration more accessible to developers working372

with limited resources.373

The API mapping task we introduce is focused374

on improving software development efficiency and375

does not involve personal data or sensitive infor-376

mation. Our work builds upon existing, public377

API documentation and specifications, and there-378

fore does not introduce new privacy or security379

concerns beyond those already addressed by the380

API providers themselves. The primary goal is to381

enhance developer productivity and system relia-382

bility through better understanding and utilization383

of available API resources.384

References 385

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, 386
Sadhana Kumaravel, Matthew Stallone, Rameswar 387
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, 388
Chulaka Gunasekara, Shajith Ikbal, Sachin Joshi, 389
Hima Karanam, Vineet Kumar, Asim Munawar, 390
Sumit Neelam, Dinesh Raghu, Udit Sharma, 391
Adriana Meza Soria, Dheeraj Sreedhar, Praveen 392
Venkateswaran, Merve Unuvar, David Cox, Salim 393
Roukos, Luis Lastras, and Pavan Kapanipathi. 2024. 394
Granite-function calling model: Introducing function 395
calling abilities via multi-task learning of granular 396
tasks. Preprint, arXiv:2407.00121. 397

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 398
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 399
Diogo Almeida, Janko Altenschmidt, Sam Altman, 400
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 401
arXiv preprint arXiv:2303.08774. 402

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury, 403
Soham Dan, Maxwell Crouse, Asim Munawar, Ver- 404
non Austel, Sadhana Kumaravel, Vinod Muthusamy, 405
Pavan Kapanipathi, and Luis Lastras. 2024. API- 406
BLEND: A comprehensive corpora for training and 407
benchmarking API LLMs. In Proceedings of the 408
62nd Annual Meeting of the Association for Compu- 409
tational Linguistics (Volume 1: Long Papers), pages 410
12859–12870, Bangkok, Thailand. Association for 411
Computational Linguistics. 412

Yujia Chen, Cuiyun Gao, Muyijie Zhu, Qing Liao, 413
Yong Wang, and Guoai Xu. 2024. Apigen: Gen- 414
erative api method recommendation. arXiv preprint 415
arXiv:2401.15843. 416

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any- 417
tool: self-reflective, hierarchical agents for large- 418
scale api calls. In Proceedings of the 41st Interna- 419
tional Conference on Machine Learning, ICML’24. 420
JMLR.org. 421

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 422
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 423
Neil Zhenqiang Gong, et al. 2023. Metatool bench- 424
mark for large language models: Deciding whether 425
to use tools and which to use. arXiv preprint 426
arXiv:2310.03128. 427

Woojeong Kim, Ashish Jagmohan, and Aditya Vempaty. 428
2024. Seal: Suite for evaluating api-use of llms. 429
Preprint, arXiv:2409.15523. 430

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 431
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 432
and Yongbin Li. 2023. Api-bank: A comprehensive 433
benchmark for tool-augmented llms. In Proceedings 434
of the 2023 Conference on Empirical Methods in 435
Natural Language Processing, pages 3102–3116. 436

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, 437
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji, 438
Shaoguang Mao, et al. 2024. Taskmatrix. ai: Com- 439
pleting tasks by connecting foundation models with 440
millions of apis. Intelligent Computing, 3:0063. 441

5

https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://arxiv.org/abs/2409.15523


Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng,442
Zhong Zhou, Xueying Du, and Tianyong Yang. 2023.443
Recommending analogical apis via knowledge graph444
embedding. In Proceedings of the 31st ACM Joint445
European Software Engineering Conference and Sym-446
posium on the Foundations of Software Engineering,447
ESEC/FSE 2023, page 1496–1508, New York, NY,448
USA. Association for Computing Machinery.449

Yangyang Lu, Ge Li, Zelong Zhao, Linfeng Wen, and450
Zhi Jin. 2017. Learning to infer api mappings from451
api documents. In Knowledge Science, Engineering452
and Management: 10th International Conference,453
KSEM 2017, Melbourne, VIC, Australia, August 19-454
20, 2017, Proceedings 10, pages 237–248. Springer.455

Lakshmi Mandal, Balaji Ganesan, Avirup Saha, and456
Renuka Sindhgatta. 2024. Graph-guided API se-457
quencing with reinforcement learning. In The Third458
Learning on Graphs Conference.459

Sae Young Moon, Gregor Kerr, Fran Silavong, and Sean460
Moran. 2024. Api-miner: an api-to-api specifica-461
tion recommendation engine. In Proceedings of the462
1st IEEE/ACM Workshop on Software Engineering463
Challenges in Financial Firms, pages 9–16.464

OpenAI. 2023. Chatgpt. https://openai.com/465
chatgpt/overview/. Accessed: February 15, 2025.466

Shishir G Patil, Tianjun Zhang, Xin Wang, and467
Joseph E Gonzalez. 2023. Gorilla: Large language468
model connected with massive apis. arXiv preprint469
arXiv:2305.15334.470

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan471
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,472
Bill Qian, et al. 2023. Toolllm: Facilitating large473
language models to master 16000+ real-world apis.474
arXiv preprint arXiv:2307.16789.475

RapidAPI. 2023. Rapidapi hub. https://rapidapi.476
com. Accessed: February 15, 2025.477

Avirup Saha, Lakshmi Mandal, Balaji Ganesan, Sambit478
Ghosh, Renuka Sindhgatta, Carlos Eberhardt, Dan479
Debrunner, and Sameep Mehta. 2024. Sequential480
API function calling using GraphQL schema. In Pro-481
ceedings of the 2024 Conference on Empirical Meth-482
ods in Natural Language Processing, pages 19452–483
19458, Miami, Florida, USA. Association for Com-484
putational Linguistics.485

Yanjie Shao, Tianyue Luo, Xiang Ling, Limin Wang,486
and Senwen Zheng. 2022. Cross platform api map-487
pings based on api documentation graphs. In 2022488
IEEE 22nd International Conference on Software489
Quality, Reliability and Security (QRS), pages 926–490
935. IEEE.491

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,492
Han Qian, Mingbo Song, Hailiang Huang, Cheng493
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-494
necting large language models with real-world restful495
apis. arXiv preprint arXiv:2306.06624.496

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 497
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 498
et al. 2022. Chain-of-thought prompting elicits rea- 499
soning in large language models. Advances in neural 500
information processing systems, 35:24824–24837. 501

6

https://doi.org/10.1145/3611643.3616305
https://doi.org/10.1145/3611643.3616305
https://doi.org/10.1145/3611643.3616305
https://openreview.net/forum?id=svtPejQ35g
https://openreview.net/forum?id=svtPejQ35g
https://openreview.net/forum?id=svtPejQ35g
https://openai.com/chatgpt/overview/
https://openai.com/chatgpt/overview/
https://openai.com/chatgpt/overview/
https://rapidapi.com
https://rapidapi.com
https://rapidapi.com
https://doi.org/10.18653/v1/2024.emnlp-main.1083
https://doi.org/10.18653/v1/2024.emnlp-main.1083
https://doi.org/10.18653/v1/2024.emnlp-main.1083


A Appendix502

A.1 Prompt Templates for API Sequencing503

We provide below the different prompt templates504

that we used for the API sequencing task.505

A.1.1 Few Shot506

This prompt template is used to instruct the lan-507

guage model to generate an optimal sequence of508

REST API calls based on a user utterance and pro-509

vided API details. The template frames the task510

by stating that the model is an expert in searching,511

sequencing, and mapping REST APIs. It includes512

several few-shot examples (labeled as Example 1,513

Example 2, and Example 3) to illustrate the ex-514

pected input-output behavior. Finally, the template515

uses a placeholder «input» where the actual user516

query and candidate API details are inserted.517

You are an expert in searching, sequencing, and518

mapping REST APIs. Your task is to generate the519

optimal sequence of API calls based on the user520

utterance and the provided API details. Your output521

should be a list of API calls that, when executed522

in sequence, achieve the desired outcome. Do not523

include any extra explanation. Generate only the524

API call sequence.525

EXAMPLE 1526

527

INPUT:528

{input0}529

530

OUTPUT:531

{output0}532

533

EXAMPLE 2534

535

INPUT:536

{input1}537

538

OUTPUT:539

{output1}540

541

EXAMPLE 3542

543

INPUT:544

{input2}545

546

OUTPUT:547

{output2}548

549

<<input>>550

A.1.2 Chain-of-Thought 551

This prompt template is designed to guide the lan- 552

guage model to generate an optimal sequence of 553

REST API calls. The template instructs the model 554

to first think through the problem by generating a 555

chain-of-thought (CoT) before providing the final 556

API sequence. In our task, the model receives a 557

user utterance along with a set of candidate API 558

details. It is then expected to output the correct se- 559

quence of API calls by first outlining its reasoning. 560

The chain-of-thought portion helps ensure that the 561

model carefully considers the API selection and 562

ordering before producing the final output. The 563

output should be in JSON format, consisting of a 564

list of API calls (each formatted as ["tool_name", 565

"api_name"]) that, when executed in sequence, 566

accomplish the desired task. 567

Below is the complete text of the Chain-of- 568

Thought prompt template: 569

You are an expert in searching, sequencing, and 570

mapping REST APIs. Your task is to generate the 571

optimal sequence of API calls based on the user 572

utterance and the provided API details. Your output 573

should be a list of API calls that, when executed 574

in sequence, achieve the desired outcome. Do not 575

include any extra explanation. Generate only the 576

API call sequence. 577

EXAMPLE 1 578

579

INPUT: 580

{input0} 581

582

THOUGHT: 583

- From the user utterance, I understand 584

that I need to call the following APIs: 585

- {output0} 586

587

OUTPUT: 588

{output0} 589

590

EXAMPLE 2 591

592

INPUT: 593

{input1} 594

595

THOUGHT: 596

- From the user utterance, I understand 597

that I need to call the following APIs: 598

- {output1} 599

600

601

7



OUTPUT:602

{output1}603

604

EXAMPLE 3605

606

INPUT:607

{input2}608

609

THOUGHT:610

- From the user utterance, I understand611

that I need to call the following APIs:612

- {output2}613

614

OUTPUT:615

{output2}616

617

<<input>>618

THOUGHT:619

A.1.3 Self-Reflection620

This prompt template is designed to enable self-621

refinement of an initially generated API sequence.622

In our task, the language model first produces an623

initial API sequence based on a user query and a624

list of candidate APIs. This template then instructs625

the model to reflect on its initial output by compar-626

ing it against the provided API mapping analysis,627

ensuring that:628

• The output is in the correct JSON for-629

mat (i.e., a list of API calls formatted as630

[["tool_name", "api_name"], ...]).631

• The words used in the API calls closely match632

those in the user utterance.633

• Only API calls from the provided candidate634

list are present.635

The model is prompted to either confirm its ini-636

tial answer or generate a refined sequence, and to637

provide an explanation of how it refined its out-638

put. This two-step self-reflection process is critical639

for enhancing the correctness and reliability of the640

final API sequence.641

The full content of the self-refine prompt tem-642

plate is provided below:643

You are an expert in searching, sequencing, and644

mapping REST APIs.645

Your learnt the task using an example like below.646

Notice how the generated API sequence is part of647

the API list in the input.648

Example Input 1:649

{input0} 650

Example Output 1: 651

{output0} 652

You had generated the following API sequence 653

based on the user utterance and list of APIs. Now 654

do self reflection to confirm your generation or 655

generate a new API sequence. 656

User Utterance: 657

<<input>> 658

659

Your initial answer was: 660

<<output>> 661

Now, refine your answer to ensure that: 1. The 662

output is in the correct format. [["tool_name", 663

"api_name"], ["tool_name", "api_name"], ...] 2. 664

The words in the API are similar to the words in 665

the user utterance. 3. The tool_name and api_name 666

that you output, must be in the given input list of 667

APIs. 668

More often than not, the initial output is wrong. 669

So changing the output could result in correct API 670

sequence. 671

For example, see if the following analysis based 672

on API mapping can help you refine your answer. 673

«mapping_info» 674

Provide your refined answer in the same format 675

as your initial answer. 676

Then explain how you refined your answer. 677

8


	Introduction
	Related Work
	API Mapping
	API Sequencing
	Appendix
	Prompt Templates for API Sequencing
	Few Shot
	Chain-of-Thought 
	Self-Reflection



