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Abstract

API sequencing has received significant atten-
tion, leading to the development of datasets
and solutions aimed at generating correct se-
quences of API calls for complex tasks. How-
ever, little work has been done on the task
of API mapping—a novel task that involves
identifying and linking functionally equivalent
endpoints across different tools to accomplish
tasks that require accessing multiple function-
alities, much like performing joins in database
querying. In this work, we focus on map-
ping APIs within the ToolBench dataset. By
leveraging rich annotation resources and a self-
reflection mechanism to iteratively refine map-
ping decisions, our approach identifies com-
mon fields and functional overlaps between
API endpoints, thereby enabling the integration
of multiple tools for multi-faceted tasks. Unlike
existing systems that rely on the function call-
ing capabilities of frontier models and require
meticulously organized API data, our method
demonstrates that effective API mapping can
be achieved with smaller open source models
and more flexible data organization, thereby
providing a more accessible and cost-efficient
solution for real-world applications.

1 Introduction

In recent years, the use of large language models
(LLMs) for task completion through tool sequenc-
ing and subsequent tool invocation has garnered
significant interest. While LLMs excel at tasks like
summarization, sentiment analysis, reasoning, and
even code generation due to their intrinsic knowl-
edge, they are not always up-to-date on current
events and are inherently incapable of interacting
with the outside world to perform real-world tasks.
To harness the full reasoning and problem-solving
capabilities of LLMs, they must be augmented with
tools that either supplement their knowledge—such
as web search or document retrieval systems—or
enable them to perform specific actions (e.g., APIs
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Figure 1: API Mapping can improve API sequencing
performance of Large Language Models.

for booking a table in a restaurant or purchasing a
flight ticket).

To enhance the tool calling capabilities of LLM,
state-of-the-art approaches such as ToolLLM (Qin
et al., 2023) and AnyTool (Du et al., 2024) have
been developed. These methods construct bench-
mark datasets from RapidAPI (RapidAPI, 2023),
where natural language utterances designate tasks
that can be solved using APIs. They also pro-
vide corresponding solution paths obtained using
state-of-the-art LLMs such as ChatGPT (OpenAl,
2023) and GPT-4 (Achiam et al., 2023). To re-
trieve relevant APIs from over 16,000 available
endpoints, ToolLLM employed a specially trained
BERT-based neural API retriever, whereas Any-
Tool leverages GPT-4’s function calling in com-
bination with a hierarchical organization of APIs.
Once relevant APIs are retrieved, the LLM must
discover the correct set of APIs to call to accom-
plish the task—often using prompting strategies



such as ReAct and DFSDT (Qin et al., 2023)—until
the LLM determines that the task has been solved
or deems it unsolvable.

In this work, we introduce a novel task of API
mapping across multiple datasets—a capability that
is not currently available in the literature. Figure
1 describes the API mapping task with an exam-
ple. The API mapping task would map APIs with
alternative equivalent APIs, thereby returning mul-
tiple sequences for the ultimate task. This task
is motivated by the need to build data products
that seamlessly integrate multiple APIs, enabling
users to select alternative endpoints based on crite-
ria such as API availability, latency, and the number
of required processing steps. For instance, when a
user is limited by subscription constraints or per-
formance issues, our approach can identify alter-
native APIs that deliver similar functionality but
with lower cost or faster response times. We argue
that in many cases there may be multiple APIs with
similar or overlapping functionality that can satisfy
a user’s requirements. In such scenarios, it is desir-
able to present the user with alternative APIs and
corresponding solution paths—thus allowing the
selection of a preferred alternative based on factors
such as cost, access, or latency.

In addition, our work leverages rich annota-
tion resources—including detailed annotations on
the ToolLLM dataset—that have not been pub-
licly released. (Du et al., 2024) had explored self-
reflection for the API sequencing task. In a similar
vein, we propose a self-reflection mechanism for
API mapping that allows the model to iteratively
refine its mapping decisions, thereby improving the
accuracy of matching common fields. This stands
in contrast to systems like AnyTool, which rely on
highly organized API data and the function-calling
capabilities of GPT-4. By demonstrating that our
approach can achieve competitive performance us-
ing smaller models and less stringent data organi-
zation requirements, we offer a more cost-effective
and broadly applicable solution for multi-API envi-
ronments.

2 Related Work

ToolLLM (Qin et al., 2023) introduced the Tool-
Bench dataset based on the APIs in RapidAPI Hub.
ToolLLM includes an API Retriever that, given
a natural language instruction, identifies and re-
turns a relevant set of APIs. It introduces solution
path annotation by constructing chains of API calls

using ChatGPT, and enhances the reasoning capa-
bilities of the system through a depth-first search
based decision tree. In addition, the work presents
an evaluation framework, ToolEval that includes
metrics such as pass rate and win rate. ToolLLaMA
is fined tuned on the ToolBench dataset achieving
performance comparable to Gorilla.

AnyTool (Du et al., 2024) incorporates a self-
reflection mechanism to improve the reliability of
its solutions. Upon receiving a user query, the sys-
tem proposes an initial solution that is subsequently
evaluated for feasibility by GPT-4. If the solution is
found impractical, AnyTool re-activates itself, tak-
ing into account the reasons for failure and relevant
historical contexts. This iterative process, typically
involving four to six rounds of self-reflection, is
shown to enhance the pass rate significantly. The
authors claim to have addressed some of the prob-
lems in the evaluation strategy used in ToolLLM.
There are other works like MetaTool (Huang et al.,
2023) concerned with tool calling.

Retrieving APIs for the sequencing task is a well
known problem. (Li et al., 2023), (Patil et al., 2023)
used text embedding based API retrievers while
(Qin et al., 2023) used a method fine tuned with
curated API retrieval data. We believe using tools
and frontier models for this retrieval step is too
expensive and not practical in real world applica-
tions. Hence we propose a cheaper solution based
on indexing and observe that it does not adversely
affect API mapping or even the sequencing task.

(Saha et al., 2024) and (Mandal et al., 2024)
discuss API sequencing. (Basu et al., 2024) intro-
duced a corpora for training LLMs and (Patil et al.,
2023; Abdelaziz et al., 2024) presented different ap-
proaches to function calling. (Mandal et al., 2024)
proposed using an API Graph to guide the sequenc-
ing process. (Chen et al., 2024) discusses API
recommendation. (Moon et al., 2024) presented
API-miner which extracts APIs from the OpenAPI
specifications and finds similar APIs to help de-
sign new APIs. (Song et al., 2023) introduced the
RestBench dataset which consists of python like
function signatures. (Liang et al., 2024) discusses
training foundation models to connect them to APIs
to accomplish tasks.

Mapping API end points predates the advent of
Large Language Models. (Lu et al., 2017) tried to
do API mapping by reading API documents. (Liu
et al., 2023) uses a knowledge graph to recommend
analogical APIs. (Shao et al., 2022) constructs
a API documentation graph using Graph Neural



Networks.

3 API Mapping

To perform API mapping on enterprise datasets, we
receive a set of OpenAPI specifications as input.
For the APIs in the ToolBench dataset, we take
the API details provided in the dataset. We merge
the API endpoints into a combined collection. We
then organize them to allow search, mapping, and
sequencing. The search layer supports queries over
many APIs. The mapping step identifies similar
functionalities across different endpoints. The se-
quencing step produces a plan of API calls in re-
sponse to user utterances. We employ large lan-
guage models (LLMs) for these tasks and include
a self-reflection component.

In order to identify matching APIs for enterprise
datasets, we analyze their response structure in-
cluding fields and descriptions. We then identify
matching fields. If the descriptions of the two APIs
are similar or if there is sufficient overlap between
the fields in the response, then we can conclude that
the APIs are matching alternatives. We then index
the APIs in such a way that if the user’s utterance
matches the description of one API, then we can
also retrieve the alternative APIs in a single call to
the API retriever. We do this by creating clusters
of matching APIs and indexing them together in
a vector database. While generating the API map-
pings, we create a graph of operations within the
same OpenAPI specification. Two operations are
neighbours if they share common fields or schema.
While the operations are being matched, we re-
trieve the neighbours of the candidate operations
and put them in the same cluster. Then the related
operations are mapped at the same time so that the
mapping algorithm considers all operations with
shared fields/schema at the same time.

For generating API mappings from the Tool-
Bench dataset, we use a probing strategy to re-
trieve candidates for matching. We first index all
the 49937 APIs (belonging to 10388 tools from 50
categories) in ToolBench as a single collection in
Milvus using the API name and the API descrip-
tion. We then fire the first 10000 queries from the
train set of ToolBench and retrieve 10 matching
APIs for each query. We then pass these 10 APIs
to an LLM (Mistral Large) in a single prompt to
find mappings between the APIs. In this way, we
generate a variable number of API mappings per
query along with reasoning (this number depends

Mappings Few Shot ICL.  Self-Reflection
Total 24235 27643
Correct 14940 17210
Accuracy 0.6160 0.6226

Table 1: API mappings with annotations in the Tool-
Bench dataset. We annotated 10000 queries covering
49937 APIs from 10388 tools.

on how many mappings the LLM is able to detect
within the 10 APIs). We also include an additional
step of self-reflection where the LLM is asked to
criticize the reasoning behind the mappings and
generate alternative API mappings if necessary. It
is expected that the mappings produced after self-
reflection will be more reasonable (or intuitive)
than the original mappings. Finally we collate all
LLM generated mappings from the 10000 queries.

Annotation

We developed an annotation tool to obtain real-
istic ground truth data for the API mapping task.
Although the tool is capable of supporting anno-
tations for API retrieval and sequencing as well,
our primary focus is on mapping APIs—that is,
identifying and validating relationships between
endpoints based on similarities in their descriptions
and shared fields. For each natural language user ut-
terance, the tool displays a set of candidate API end-
points along with the model-generated mappings
between these endpoints and their corresponding
fields. Annotators review these mapping outputs
to determine if they accurately represent the re-
lationships and functionalities; when they do not,
annotators have the option to provide corrected
mappings. In addition, the tool offers functionality
for the annotation of retrieval and sequencing out-
puts, but these features are only briefly introduced.
The overall goal of our annotation process is to
generate high-quality, expert-verified mapping an-
notations that can be used to evaluate and improve
our API mapping approach.

4 API Sequencing

In our API sequencing experiment, we investigate
the ability of large language models (LLMs) to
generate correct sequences of REST API calls in
response to natural language instructions. Our ap-
proach comprises two main stages: (i) indexing
canonical API lists and (ii) retrieving candidate
APIs from a vector database (Milvus) based on user



Model Prompt Set Metrics Order Metrics
Precision Recall F1 Precision Recall F1
mixtral-8x7b-instruct ICL 0.2208  0.1904 0.2045 0.1650 0.1422 0.1528
mixtral-8x7b-instruct  Self-Reflection  0.2803  0.2735 0.2769 0.2332  0.2276 0.2303
granite-3-1-8b-instruct ICL 0.0964 0.0875 0.0917 0.0771  0.0700 0.0734
granite-3-1-8b-instruct  Self-Reflection  0.1579  0.1904 0.1726  0.1143  0.1379 0.1250

Table 2: Average set and order precision, recall, and F1 scores for API sequencing on the Toolbench dataset.

queries. We experiment with annotated version of
the ToolBench dataset. For each dataset, we first
construct a canonical API list from raw OpenAPI
specifications, which preserves all the original in-
formation (e.g., tool name, API name, description,
and parameter information). These canonical lists
are used to populate vectordb collections.

API Retrieval

Given a set of natural language queries for
ToolBench, our system retrieves candidate APIs
from the corresponding vector database collec-
tion. These candidates—along with the original
query—are used to build few-shot prompt exam-
ples for sequencing.

Prompting Strategies We experimented with
different prompting styles for generating API se-
quences. Few-Shot Prompting uses a simple
prompt that provides a description of the task along
with a few input-output examples. Next, the Chain-
of-Thought (CoT) (Wei et al., 2022) approach en-
courages the model to generate intermediate rea-
soning steps before producing the final sequence.
The ReAct style interleaves explicit Thought, Ob-
servation, and Action steps to guide the model’s
output. The difference in performance between few
shot in-context learning and CoT and ReAct style
prompts were not statistically signficant. Hence
we only report few shot ICL numbers in Table 2.
Similar to the API Mapping task, self-reflection
seems to help models in the API sequencing task.
Here self-reflection strategy instructs the model to
autonomously refine its output until a satisfactory
API sequence is produced.

Evaluation SEAL (Kim et al., 2024) provides a
suite of tools for evaluating LLMs in API related
tasks. (Qin et al., 2023) also introduced ToolE-
val in their work. Given we want to avoid the
use of frontier models and agents merely for the
task of retrieval, we have also used a much sim-
pler evaluation strategy. To evaluate the generated
API sequences, we compute precision, recall, and

F1 scores for each test example by comparing the
API sequence produced by our system against the
corresponding ground truth. For a given example,
precision is defined as the proportion of generated
API endpoints that match those in the ground truth,
while recall is defined as the proportion of ground
truth endpoints that are correctly retrieved by our
system. The F1 score is then calculated as the har-
monic mean of precision and recall. We report both
set and order level metrics. As shown in Table 2,
self-reflection seems to help the smaller models in
our experiments. However, we recognize that the
overall performance of these models on this task
requires lot more improvement.

We aexperimented with incorporating API map-
ping information into the API sequencing task by
expanding the set of candidate APIs available for
the model after retrieval. But as expected, this did
not give promising results since we introduce more
choices rather than reducing them. A more promis-
ing approach seems to be using the API mapping
information to induce the model to self-reflect. As
shown in Appendix A.1.3, we tell the model that
a number of API mappings exist between its out-
put and candidate APIs and the model can make
use of them to refine its answer. This gave us the
improvements reported in Table 2.

Conclusion

We introduced the new API Mapping task that has
so far not been discussed in the literature. We
designed a novel method for API mapping using
Large Language Models that benefits from self-
reflection. This API mapping when used as a pre-
processing step, partly mitigates the need for using
expensive models like GPT4 for API retrieval and
function calling tasks. We conducted experiments
on the ToolBench dataset and showed how differ-
ent open source models using various prompt styles
seem to benefit from API mapping while perform-
ing the API sequencing task.



Limitations

Our work on API mapping has some limitations
that should be acknowledged. While we demon-
strate the effectiveness of API mapping on the Tool-
Bench dataset, our approach currently focuses pri-
marily on functional similarity and field matching.
This may miss more nuanced relationships between
APIs that could be captured through deeper seman-
tic analysis. The self-reflection mechanism, while
effective, still relies on the capabilities of the un-
derlying LLM. As shown in our experiments, the
performance varies significantly across different
models and prompting strategies, indicating room
for improvement in the mapping methodology.

Our evaluation metrics for API mapping could
be expanded to include more real-world considera-
tions such as API performance, cost, and reliability
- factors that may influence API selection. The
current approach does not address versioning or
evolution of APIs over time, which could affect the
stability and reliability of the mappings. Further-
more, while we demonstrate that smaller models
can be effective for API mapping, complex cases
will benefit from larger models.

Ethical Statement

Our work focuses on improving the efficiency and
accessibility of API mapping and sequencing using
publicly available datasets and open-source mod-
els. The ToolBench dataset and associated APIs
are already publicly accessible through Rapid API,
and our work simply helps organize and optimize
their usage. From an ethical perspective, our ap-
proach actually promotes responsible API usage by
enabling users to find legitimate alternative APIs
when primary services are unavailable, reducing
dependency on expensive, proprietary models for
API discovery and mapping, and making API in-
tegration more accessible to developers working
with limited resources.

The API mapping task we introduce is focused
on improving software development efficiency and
does not involve personal data or sensitive infor-
mation. Our work builds upon existing, public
API documentation and specifications, and there-
fore does not introduce new privacy or security
concerns beyond those already addressed by the
API providers themselves. The primary goal is to
enhance developer productivity and system relia-
bility through better understanding and utilization
of available API resources.
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A Appendix

A.1 Prompt Templates for API Sequencing

We provide below the different prompt templates
that we used for the API sequencing task.

A.1.1 Few Shot

This prompt template is used to instruct the lan-
guage model to generate an optimal sequence of
REST API calls based on a user utterance and pro-
vided API details. The template frames the task
by stating that the model is an expert in searching,
sequencing, and mapping REST APIs. It includes
several few-shot examples (labeled as Example 1,
Example 2, and Example 3) to illustrate the ex-
pected input-output behavior. Finally, the template
uses a placeholder «input» where the actual user
query and candidate API details are inserted.

You are an expert in searching, sequencing, and
mapping REST APIs. Your task is to generate the
optimal sequence of API calls based on the user
utterance and the provided API details. Your output
should be a list of API calls that, when executed
in sequence, achieve the desired outcome. Do not
include any extra explanation. Generate only the
API call sequence.

EXAMPLE 1

INPUT:
{input@}

OUTPUT:
{output@}

EXAMPLE 2

INPUT:
{input1}

OUTPUT:
{output1}

EXAMPLE 3

INPUT:
{input2}

OUTPUT:
{output2}

<<Linput>>

A.1.2 Chain-of-Thought

This prompt template is designed to guide the lan-
guage model to generate an optimal sequence of
REST API calls. The template instructs the model
to first think through the problem by generating a
chain-of-thought (CoT) before providing the final
API sequence. In our task, the model receives a
user utterance along with a set of candidate API
details. It is then expected to output the correct se-
quence of API calls by first outlining its reasoning.
The chain-of-thought portion helps ensure that the
model carefully considers the API selection and
ordering before producing the final output. The
output should be in JSON format, consisting of a
list of API calls (each formatted as ["tool_name”,
"api_name"]) that, when executed in sequence,
accomplish the desired task.

Below is the complete text of the Chain-of-
Thought prompt template:

You are an expert in searching, sequencing, and
mapping REST APIs. Your task is to generate the
optimal sequence of API calls based on the user
utterance and the provided API details. Your output
should be a list of API calls that, when executed
in sequence, achieve the desired outcome. Do not
include any extra explanation. Generate only the
API call sequence.

EXAMPLE 1

INPUT:
{input@}

THOUGHT :

- From the user utterance, I understand

that I need to call the following APIs:
- {output@}

OUTPUT:
{output@}

EXAMPLE 2

INPUT:
{input1}

THOUGHT :

- From the user utterance, I understand

that I need to call the following APIs:
- {output1}



OUTPUT:
{output1}

EXAMPLE 3

INPUT:
{input2}

THOUGHT :

- From the user utterance, I understand

that I need to call the following APIs:
- {output2}

OUTPUT:
{output2}

<<input>>
THOUGHT :

A.1.3 Self-Reflection

This prompt template is designed to enable self-
refinement of an initially generated API sequence.
In our task, the language model first produces an
initial API sequence based on a user query and a
list of candidate APIs. This template then instructs
the model to reflect on its initial output by compar-
ing it against the provided API mapping analysis,
ensuring that:

e The output is in the correct JSON for-
mat (i.e., a list of API calls formatted as
[["tool_name"”, "api_name"], ...1).

* The words used in the API calls closely match
those in the user utterance.

* Only API calls from the provided candidate
list are present.

The model is prompted to either confirm its ini-
tial answer or generate a refined sequence, and to
provide an explanation of how it refined its out-
put. This two-step self-reflection process is critical
for enhancing the correctness and reliability of the
final API sequence.

The full content of the self-refine prompt tem-
plate is provided below:

You are an expert in searching, sequencing, and
mapping REST APIs.

Your learnt the task using an example like below.
Notice how the generated API sequence is part of
the API list in the input.

Example Input 1:

{input®@}
Example Output 1:
{outputo}

You had generated the following API sequence
based on the user utterance and list of APIs. Now
do self reflection to confirm your generation or
generate a new API sequence.

User Utterance:
<<input>>

Your initial answer was:
<<output>>

Now, refine your answer to ensure that: 1. The
output is in the correct format. [["tool_name",
"api_name"], ["tool_name", "api_name"], ...] 2.
The words in the API are similar to the words in
the user utterance. 3. The tool_name and api_name
that you output, must be in the given input list of
APIs.

More often than not, the initial output is wrong.
So changing the output could result in correct API
sequence.

For example, see if the following analysis based
on API mapping can help you refine your answer.
«mapping_info»

Provide your refined answer in the same format
as your initial answer.

Then explain how you refined your answer.
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