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Abstract
Few-shot image classification remains challeng-
ing due to the scarcity of labeled training exam-
ples. Augmenting them with synthetic data has
emerged as a promising way to alleviate this is-
sue, but models trained on synthetic samples often
face performance degradation due to the inher-
ent gap between real and synthetic distributions.
To address this limitation, we develop a theoreti-
cal framework that quantifies the impact of such
distribution discrepancies on supervised learning,
specifically in the context of image classification.
More importantly, our framework suggests practi-
cal ways to generate good synthetic samples and
to train a predictor with high generalization abil-
ity. Building upon this framework, we propose a
novel theoretical-based algorithm that integrates
prototype learning to optimize both data partition-
ing and model training, effectively bridging the
gap between real few-shot data and synthetic data.
Extensive experiments results show that our ap-
proach demonstrates superior performance com-
pared to state-of-the-art methods, outperforming
them across multiple datasets.

1. Introduction
Deep learning models often require extensive annotated
datasets to achieve excellent performance. However, cre-
ating such datasets is both labor-intensive and costly. To
address this challenge, many recent studies has explored
synthetic data as an alternative approach to training deep
learning models.

In this paper, we focus on a specific scenario: How to effi-
ciently use a synthetic dataset along with few real samples to
train a predictor in a downstream task? A naive way of us-
ing synthetic data can degrade performance on downstream
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tasks (Van Breugel et al., 2023). The main reason comes
from the distribution gap, which is the discrepancy between
the real and synthetic data distributions, due to the imperfect
nature of the generator for a downstream task. Overcom-
ing this gap is crucial for ensuring effective utilization of
synthetic data in this training scenario.

Some recent methods minimize this gap by fine-tuning gen-
erative models. Notable examples include RealFake (Yuan
et al., 2024) and DataDream (Kim et al., 2024) which focus
on full dataset and few-shot image classification, respec-
tively. These approaches emphasize pixel-space distribution
matching. The importance of feature-space alignment has
been demonstrated in dataset distillation (Wang et al., 2018),
where condensed datasets are created to approximate the
performance of models trained on full datasets (Wang et al.,
2022; Zhao & Bilen, 2023; Zhao et al., 2023). An issue of
distribution matching is the potential for incorrect associa-
tions between samples from different classes. DataDream
(Kim et al., 2024) partially mitigates this by fine-tuning gen-
erators for each class independently, yet its results remain
suboptimal. A promising direction to address this issue is
prototype learning, which emphasizes local class-specific
behavior. Prototype-based approaches have been shown to
enhance performance in various applications, such as robust
classification (Yang et al., 2018), data distillation (Su et al.,
2024), and dataset representation (Tu et al., 2023; van No-
ord, 2023). While such recent methods have shown promise
in narrowing the distribution gap, they predominantly rely
on heuristics, lacking theoretical guarantees.

In more detail, for a downstream task, we are interested in
these questions:

1. What properties can indicate the goodness of a synthetic
dataset?
2. How to generate a good synthetic dataset?
3. How to efficiently train a predictor from a training set of
both real and synthetic samples?
4. How can the quality of a generator affect the generaliza-
tion ability of the trained predictor?

From the theoretical perspective, existing studies typically
have preliminary answers to simple models only. Indeed,
Yuan et al. (2024) proposed a framework that generates
synthetic samples by training/finetuning a generator to min-
imize the distribution gap, addressing the second question.
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Räisä & Honkela (2024) and Zheng et al. (2023) investi-
gated the first question and suggested that synthetic data
should be close to real data samples. Recently, Ildiz et al.
(2025) provided a systematic study about the role of surro-
gate models which create the synthetic labels for training
linear models. However, as they only focus on linear mod-
els, their study cannot provide a reasonable answer to the
four above-mentioned questions of interest.

Against this background, in this paper we make a systematic
step towards understanding the role of synthetic data and
distribution for training a predictor in a few-shot setting.
Specifically, our contributions are as follows:

• Theory: We analyze the generalization ability of a pre-
dictor, trained with both synthetic and real data. A novel
bound on the test error of the predictor is presented. It
suggests that a good synthetic set not only should be close
to the real samples, but also should be diverse so that the
trained predictor can be locally robust around the training
samples. This bound also suggests a theoretical principle
to generate good synthetic samples, and a practical way
to train a predictor that generalizes well on unseen data.

• We further present two novel bounds on the test error.
Those bounds encloses the discrepancy between the true
and synthetic distributions into account. It theoretically
shows that the closer the synthetic distribution, the bet-
ter the trained predictor becomes. Hence our analyses
provide theoretical answers to the four questions above.

• Methodology: Guided by our theoretical bounds, we intro-
duce a novel loss function and training paradigm designed
to jointly optimize data partitioning and model training,
effectively minimizing generalization errors.

• Empirical Validation: We evaluated our method in the
context of few-shot image classification using synthetic
data. Experimental results demonstrate that our method
consistently outperforms state-of-the-art methods across
multiple datasets.

Organization: The next section summarizes the related
work. In Section 3, we investigate the theoretical benefits
of synthetic data and the quality of a synthetic distribution
to train a model. Those investigations suggest explicit an-
swers to the four questions mentioned above. Section 4
discusses how to train a good few-shot model, while Sec-
tion 5 reports our main experimental results. Mathematical
proofs and additional experimental results can be found in
the appendices.

2. Related Works
2.1. Generative Data Augmentation

With the rapid advancements in generative models, train-
ing with synthetic data has gained significant attention. In
the context of image classification, recent studies have em-
ployed text-to-image models, aligning conditional distri-
butions through text-prompt engineering. These efforts
have explored class-level descriptions (He et al., 2023),
instance-level descriptions (Lei et al., 2023), and lexical
definitions (Sariyildiz et al., 2022). While text-based con-
ditioning offers flexibility, it often overlooks intrinsic vi-
sual details, such as exposure, saturation, and object-scene
co-occurrences. To address these shortcomings, RealFake
(Yuan et al., 2024) attempts to reduce the distribution mis-
alignment with a model-agnostic method that minimizes
the maximum mean discrepancy between real and synthetic
distributions by fine-tuning the generator. This discrepancy
naturally becomes a lower bound for the training loss of
diffusion models under certain conditions. GenDataAgent
(Li et al., 2025) further improves diversity by perturbing
image captions and quality by filtering out with the Variance
of Gradient (VoG) score.

Beyond empirical findings, theoretical frameworks have
been also developed to validate the use of synthetic data.
Zheng et al. (2023) employed algorithmic stability to derive
generalization error bounds based on the total variation dis-
tance between real and synthetic image distributions. Addi-
tionally, Gan & Liu (2025) analyzed the impact of synthetic
data on post-training large language models (LLMs) using
information theory. However, none of these results can be
adopted to the few-shot learning domain.

2.2. Few-shot Image Classification with
Vision-Language Models

The rising performance of vision-language models, such as
CLIP (Radford et al., 2021), has sparked interest in apply-
ing them to few-shot image classification. Initial methods
focused on leveraging visual or textual prompting (Jia et al.,
2022; Zhou et al., 2022; Khattak et al., 2023; Li et al., 2024;
Yao et al., 2024; Zheng et al., 2024). Another simultaneous
line of research focused on leveraging parameter-efficient
fine-tuning methods with shared Adapter modules (Yang
et al., 2024; Yao et al., 2025). With the advent of more
powerful generative models, attention shifted toward syn-
thesizing additional data to complement real few-shot sam-
ples, forming a joint data pool for model fine-tuning. CaFo
(Zhang et al., 2023) enhances diversity of training dataset by
combining prior knowledge of four large pretrained models.

The central challenge for this approach lies in guiding the
synthesis process to generate data closely aligned with
the real few-shot samples. IsSynth (He et al., 2023)
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generates images by adding noise to real samples, while
DISEF (da Costa et al., 2023) extends this approach by pro-
moting diversity through image captioning and fine-tune
CLIP models using LoRA (Hu et al., 2022) to reduce com-
putational overhead. Both methods employ CLIP filtering
to remove incorrectly classified samples. DataDream (Kim
et al., 2024) advances this line of work by fine-tuning the
generator with few-shot data, further aligning synthesized
images with the real data distribution.

3. The Theoretical Benefits of Synthetic Data
for Few-Shot Models

In this section, we theoretically analyze the role of synthetic
data when being used to train a predictor. We derive a novel
bound on the test error of a model, that explicitly reveals the
role of a synthetic distribution, the discrepancy of the true
and synthetic distribution, and the robustness of a predictor
around the training (real and synthesized) samples. This
bound provides novel insights and idea to train a predictor
with synthetic data.

3.1. Preliminaries

Notations: A bold character (e.g., z) denotes a vector, while
a bold capital (e.g., S) denotes a set. We denote by ∥ · ∥
the ℓ2-norm. |S| denotes the size/cardinality of S, and [K]
denotes the set {1, 2, ...,K} for K ≥ 1. We will work with
a model (or hypothesis) class H, an instance set Z , and a
loss function ℓ : H×Z → R. Given a distribution P defined
on Z , the quality of a model h ∈ H can be measured by
its expected loss F (P,h) = Ez∼P [ℓ(h, z)]. In practice, we
typically collect a training set S = {z1, ...,zn} ⊆ Z and
work with the empirical loss F (S,h) = 1

|S|
∑

z∈S ℓ(h, z).

Problem setting: Let S denotes a real dataset consisting
of n independent and identically distributed samples from
the true data distribution P0. Denote G as a generator that
induces a synthetic data distribution Pg. We can use G to
generate a synthetic dataset G with g samples. We are inter-
ested in training a classification model from the union S∪G
of the real and synthetic datasets. This training problem is
particularly important in many applications, especially for
the cases that only few real samples can be collected.

To understand the role of synthetic data for training a pre-
dictor, we will use the following concepts:

Definition 3.1 (Model-based discrepancy). Let S and G
be two datasets and h be a predictor. The h-based dis-
crepancy between S and G is denoted as d̄h(G,S) =

1
|G|.|S|

∑
u∈G,s∈S ∥h(s)− h(u)∥.

This quantity can be seen as the model-dependent distance
(through h) between two sets of real and synthetic samples
(G,S). One can easily extend this concept to measure the

discrepancy between a real distribution P0 and a synthetic
one Pg. Let d̄h(Pg, P0) = Eu∼Pg,s∼P0∥h(u) − h(s)∥
be the h-based discrepancy for the whole data space, and
d̄h(Pg, P0|A) = Eu∼Pg,s∼P0

[∥h(u) − h(s)∥ : u, s ∈ A]
be the discrepancy for a local area A.

This concept is closely related to distribution matching,
which has become a prominent technique for generating
informative data for supervised learning. The idea of dis-
tribution matching has been applied extensively on dataset
distillation (Zhao & Bilen, 2021; Zhao et al., 2023) where
we generate a small dataset from a larger one, and has been
used in large-scale image classification (Yuan et al., 2024).

Let Γ(Z) :=
⋃K

i=1Zi be a partition of Z into K disjoint
nonempty subsets. Denote TS = {i ∈ [K] : S ∩ Zi ̸= ∅}.
In more details, TS is the collection of all valid areas (i.e.,
local areas which contain real data samples from S). Denote
Si = S∩Zi, and ni = |Si| as the number of samples falling
into Zi, meaning that n =

∑K
j=1 nj .

Definition 3.2. The local robustness of a predictor h
at a data instance s ∼ P in the area A is defined as
Rh(s,A|P ) = Ez∼P [∥h(z)− h(s)∥ : z ∈ A].

By definition,Rh measures how robust a model is at a spe-
cific data point. A small local robustness suggests that the
model should be robust in a small area around a point. Other-
wise, the model may not be robust. Note that this definition
uses the outputs from a model to define robustness.

We denote Rh(S,Zi|P0) = 1
|S|
∑

s∈SRh(s,Zi|P0) and
Rh(G,Zi|Pg) =

1
|G|
∑

g∈GRh(g,Zi|Pg) as the local ro-
bustness of model h on a real dataset S and synthetic dataset
G, respectively. Those quantities can be understood as a
measurement of a model robustness with respect to a dataset.

3.2. Main Theorem

Given these two concepts, we now have the technical tools
to provide a theoretical analysis for generalization ability of
a model h trained on both real and synthetic data (S ∪G).
The following theorem presents an upper bound on the test
error of a model, whose proof appears in Appendix A.1.

Theorem 3.3. Consider a model h, a dataset S containing
n i.i.d. samples from a real distribution P0, and a synthetic
dataset G which contains i.i.d. samples from distribution Pg ,
so that gi = |Gi| > 0 for each i ∈ TS , where Gi = G∩Zi.
Let Ch = supz∈Z ℓ(h, z), g =

∑
i∈TS

gi. Assume that the
loss function ℓ(h, z) is Lh-Lipschitz continuous w.r.t h. For
any δ > 0, with probability at least 1− δ, we have:

F (P0,h) ≤ Lh

∑
i∈TS

gi
g

[
d̄h(Gi,Si)+Rh(Gi,Zi | Pg)

]
+A

(1)
where A = F (Pg,h) +

∑
i∈TS

[
ni
n

− gi
g

]
F (Si,h) +
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Lh

∑
i∈TS

ni
n
Rh(Si,Zi|P0) +Ch(

1√
n
+ 1√

g
)
√

2K ln 2 + 2 ln 2
δ

.

This theorem implies that we can bound the population loss
F (P0,h) with synthetic data. This bound demonstrates
that synthetic data can be leveraged to enhance the model’s
overall generalization performance. In particular, various
implications can be inferred from (1):

1. The discrepancy term
∑

i∈TS

gi
g d̄h(Gi,Si) theoretically

reveals that the quality of the synthetic samples plays a
crucial role for h. When those synthetic samples are close
to the real ones, each d̄h(Gi,Si) would be small, suggesting
that those synthetic samples can help improve generalization
ability of h. Otherwise, if there are some samples of G that
are far (different) from the real samples, the bound (1) will
be high, and not be optimal to train h.

2. The local robustness of h is also important to the gen-
eralization ability of h. Indeed, a decrease in robustness
quantities of synthetic and real data (Rh(Gi,Zi | Pg) and
Rh(Si,Zi|P0)) can lead to a decrease in the population
loss, leading to better generalization. Furthermore, they
also reveal a connection between the local behavior and the
generalization capability of the model.

3. The upper bound (1) suggests an amenable way to gener-
ate synthetic samples. Assume that we only have the real
samples S which may be small. We can use a generator
G to generate a synthetic set G that minimizes the upper
bound (1). This amounts to optimize the synthetic samples
to minimize the test error of predictor h. It suggests that
the generated samples not only need to be close to the real
ones, but also need to ensure better robustness of the trained
model at different local areas of the input space.

4. Theorem 3.3 also indicates that, for strong generaliza-
tion on unseen data, the model h must not only accurately
predict both real and synthetic samples, but also keep the
discrepancy between real and synthetic predictions low and
maintain local robustness for both data types. This reveals
novel ways to train h from both real and synthetic data.

Remark 3.1 (Tightness). Though providing interesting in-
sights, our bound (1) is not very tight for some aspects. For
instance, it is O(

√
K) which can be not optimal when K

is large. Luckily, the few-shot setting does not allow us to
choose a large K, since bound (1) mostly concerns on areas
containing real samples. Furthermore, for the extreme cases
with only one real sample, the “local” behavior of model h
cannot be captured in our bound anymore, and hence our
bound can be loose. On the other hand, the sample com-
plexity of our bound seems to be optimal for both real and
synthetic data. The reason is that the error of the best model
is at least O(g−0.5) + const for a hard learning problem,
according to Theorem 8 in (Than et al., 2025).

3.3. Asymptotic Case

Next we consider the asymptotic cases, which can help us
to understand the roles of increasing the size of synthetic
datasets and the quality of synthetic distribution. The fol-
lowing theorem reveals some new insights.
Theorem 3.4. Using the same notations and assumptions
of Theorem 3.3, and let pgi = Pg(Zi) as the measure of area
Zi according to distribution Pg, for each i ∈ TS . For any
δ > 0, with probability at least 1− δ, we have:

F (P0,h) ≤ Lh

∑
i∈TS

[
pgiRh(Si,Zi|Pg)+

ni

n
Rh(Si,Zi|P0)

]
+A1

where A1 = F (Pg,h) +
∑

i∈TS

[
ni
n

− pgi
]
F (Si,h) +

Ch√
n

√
2K ln 2− 2 ln δ.

This result suggests that by using a sufficiently large num-
ber of synthetic samples to train h, we are making model
h locally robust (w.r.t. both distributions) in every region
containing the real samples, and hence improving general-
ization ability of the trained models. It also further explains
the benefits of scaling the number of synthetic samples that
have been observed empirically in prior studies.

Finally, we consider how well the quality of the synthetic
distribution Pg can estimate the quality of model h. To
this end, we assume that n → ∞. In this case, it is
easy to see that Rh(Si,Zi|Pg) → d̄h(P0, Pg|Zi) and
ni

n → pi = P0(Zi). This suggests
[
ni

n − pgi
]
F (Si,h) →[

pi − pgi
]
Fi(P0,h), where Fi(P0,h) = Ez∼P0

[ℓ(h, z) :
z ∈ Zi] is the expected loss of h in the area Zi. Further-
more, Rh(Si,Zi|P0) → d̄h(P0, P0|Zi) as n → ∞, and
d̄h(P0, Pg) =

∑
i p

g
i d̄h(P0, Pg|Zi). Therefore, the follow-

ing result is a consequence of Theorem 3.4.

Corollary 3.5. Given the notations and assumptions from
Theorem 3.4, we have

∑K
i=1 p

g
iFi(P0,h) ≤ F (Pg,h) +

Lh

∑K
i=1

[
pgi d̄h(P0, Pg|Zi)+pid̄h(P0, P0|Zi)

]
. Moreover,

K∑
i=1

pgiFi(P0,h) ≤ F (Pg,h)+Lh

[
d̄h(P0, Pg)+d̄h(P0, P0)

]
This corollary provides a theoretical support for the intuition
that a better synthetic distribution Pg should be closer to
the true one P0. This can be derived from the discrepancy
d̄h(P0, Pg) in our bound: The smaller this discrepancy is,
the tighter bound on the test error of h we will get. Note that
the left-hand side of the bound in Corollary 3.5 represents
the macro-level average loss of h.

It is worth highlighting an important implication of Corol-
lary 3.5: it suffices for the model h to perceive a small
distance between P0 and Pg . This perspective differs fun-
damentally from traditional assumptions, which require the
two distributions to be objectively close in some metric
space. Our result suggests that even if P0 and Pg are far
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apart in reality, strong generalization can still be achieved
as long as the model h treats them as similar and incurs a
low synthetic loss.

4. Algorithmic Design
This section presents how to use our theoretical bound on
the generalization error to design an efficient algorithm to
train a few-shot model, using synthetic data. We first discuss
the main idea, and then the implementation details. While
our discussion here focuses on classification problems, we
believe that it is general enough to be applied to many other
settings including regression.

4.1. Minimizing the Generalization Bound

To guarantee the performance of models trained with syn-
thetic data on real data distribution to be small, we aim to
minimize the R.H.S. of the bound (1). If we use a Lipschitz
loss function for supervised learning problem such as abso-
lute loss, the Lipschitz constant Lh will not change. So we
can ignore it from the bound above (e.g., by rescaling) from
optimization perspective. For the sake of clarity, we rewrite
the bound as the sum of the following terms:

A1 =
∑
i∈TS

gi
g
d̄h(Gi,Si) (2)

A2 =
∑
i∈TS

[
gi
g
Rh(Gi,Zi|Pg) +

ni

n
Rh(Si,Zi|P0)] (3)

A3 =F (S,h)−
∑
i∈TS

gi
g
F (Si,h) (4)

A4 =CH(n−0.5 + g−0.5)
√

2K ln 2 + 2 ln(2/δ) (5)
A5 =F (Pg,h) (6)

Note that we use
∑

i∈TS

ni

n F (Si,h) = F (S,h) here.
Three components play a central role in our optimization
problem: the partition Γ; the synthetic distribution Pg and
generated data G; and the classifier h. Because the gener-
ated data components will be partly addressed with a fine-
tuning step for the generator (see Section 5.4 for empirical
evidence), we focus on formalizing the other two.

4.1.1. PARTITION OPTIMIZATION

In the previous bound, given a fixed real dataset S and a
fixed generated dataset G, we will minimize over the set of
partitions A2 (the quantity of distance between data point
and its own regions) which depends on the partition the most
in all of the above quantities. This optimization problem
can be formalized as:

min
Γ(Z)

[
∑
i∈TS

gi
g
Rh(Gi,Zi|Pg) +

∑
i∈TS

ni

n
Rh(Si,Zi|P0)]

If we assume that in each region i, the amount of real and
synthetic data (ni and gi) are sufficiently large so that the

empirical distributions of the real and synthetic data can
approximate well the true real and synthetic distributions
P0 and Pg on that region, then the partition optimization
objectives can be upper bounded by K-means clustering
optimization objectives on prediction space. It serves as
motivation for our choice of K-means clustering to solve
the partitioning optimization. The proof appears in Ap-
pendix A.4.

4.1.2. MODEL OPTIMIZATION

Utilizing the few-shot learning setting. The other com-
ponent that heavily affects our generalization bound is the
classifier h itself. Because the classifier affects all terms
mentioned above except A4, so we can formulate them as
minimizing the sum of the remaining expression. Moreover,
since we are focusing on few-shot real data, the intra-region
distance term for real data (Rh(Si,Zi|P0)) could be ig-
nored as it becomes negligibly small in this setting, and may
not affect much to the model optimization.

By minimizing the classification losses on real and synthetic
data (A3 and A4), we fine-tune the pretrained models on
the target datasets. Optimizing the discrepancy term (A1)
then aligns the model’s predictions between real and syn-
thetic samples within each region, reducing any mismatch.
Finally, minimizing the robustness term (A2) ensures that
the model maintains stable predictions on synthetic data,
thereby enhancing overall predictive quality and improving
generalization.

4.2. Algorithmic Details

We propose an algorithm (Algorithm 1) to address the two
interrelated optimization problems discussed earlier through
a two-phase optimization process. In the first phase, the
algorithm optimizes data partitioning to address the initial
optimization problem. In the second phase, it refines the
classifiers to tackle the subsequent problem. This two-phase
strategy is designed to minimize the loss function L, which
is formulated as a combination of distribution matching,
robustness terms, and classification loss. Figure 1 visually
demonstrates this general pipeline. The convergence of
the loss function and the associated regularization terms is
empirically demonstrated in Section 5.4.

Loss function:

L = λF (S,h) + F (G,h)

+ λ1

∑
i∈TS

∑
s∈Si,g∈Gi

gi
g

1

|Gi||Si|
∥h(s)− h(g)∥

+ λ2
1

g

∑
i∈TS

∑
g1,g2∈Gi

1

gi
∥h((g1)− h(g2)∥ (7)

This loss function is directly inspired by the R.H.S. of Eq. 1
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Algorithm 1 Fine-tuning few-shot models with synthetic
data
Input: Real dataset S, number g of synthesis samples,
(conditional) Pretrained generator models G

1: Initialize centroids z for every local area
2: Fine-tuning generator G by real dataset S with LoRA
3: Generate g synthetic images from generator G
4: Use K-means clustering on both real and synthetic im-

ages to obtain partition Γ(Z)
5:
6: for each mini-batch A do
7: Assign datapoints to their nearest clusters
8: Train the model h using the loss function L on the

combined dataset SA ∪GA that includes both real data
and synthetic data. ▷ Refer to equation 7.

9: end for

and model optimization problem. To minimize A3 and
A5, we substitute them with the empirical loss on real and
synthetic data. To address A1 and A2, we include them as
regularization components in the loss function. Note that
the expectation part in robustness term A2 was calculated
with its empirical version, utilizing other synthetic data in
the same region to compute.

Our loss function is then defined as the sum of the empirical
loss in real and synthetic data along with two regularization
terms. We introduced hyper-parameters λ, λ1, and λ2 to
control the influence of these terms in the optimization
process. The empirical loss is modeled using the traditional
cross-entropy loss, while the discrepancy and robustness
terms are calculated using the ℓ2-norm to ensure smoother
optimization.

We now describe the details of our algorithm:

1. Initialization: We begin with initializing the partitions
and noise vectors essential for the iterations. Each iteration
is one iteration of training the classifier. We fine-tune the
generator with LoRA (Hu et al., 2022), with the same loss
and procedure in DataDream (Kim et al., 2024). Then, we
use this generator attached with LoRA module to generate
synthetic data.

2. Main Optimization process:

• Partition Optimization: In part due to reasons mentioned
in Section 4.1 and due to the simplicity of the K-means
clustering algorithm, we decided to use it as a partition
optimization algorithm. Furthermore, to save computa-
tion, we decided to perform clustering on data space avoid
recomputing the clustering at each iteration.

• Model Optimization: With a stabilized partition, we opti-
mize the classifier based on loss function L. Forward real
and synthetic data through models and compute necessary

components for loss computation (the terms h(s) with
real data s ∈ Si, and h(g) with synthetic data g ∈ Gi).
These terms are computed as the softmax outputs of clas-
sification models.

• Loss Computation and Gradient Descent: We calculate
the loss function L based on computed components. We
update model h via gradient descent.

Although this implementation achieves impressive re-
sults—thanks to the high-quality data produced by the fine-
tuned generator—it also incurs computational costs, both
for fine-tuning and for generating large volumes of synthetic
data. As an alternative, we introduce a lightweight version
that requires no generator fine-tuning phase and uses only
about one-eighth as much synthetic data. The corresponding
pseudocode and detailed description appear in Appendix C
(Algorithm 2). As shown in the next section, even this
streamlined approach provides competitive performance,
compared to the state of the art.

5. Experiments
In this section, we validate the effectiveness of our pro-
posed algorithm on few-shot image classification problems.
First, we describe the experimental settings, including the
baselines, datasets, and implementation details. Then, the
main results of fine-tuning models are provided, followed
by ablation studies and some additional analysis.

5.1. Experimental Settings

Baselines. We compared our solutions with other
state-of-the-art methods in Few-shot Image classification:
DataDream (Kim et al., 2024), DISEF (da Costa et al., 2023),
and IsSynth (He et al., 2023). All of the results of the base-
line methods were obtained from the DataDream paper,
except for the DTD (Cimpoi et al., 2014) dataset, where we
reproduced the results due to an erroneous implementation
in their training/evaluation data split.

Datasets. Similar to baselines methods, we evaluate our
method on 10 common datasets for few-shot image clas-
sification: FGVC Aircraft (Russakovsky et al., 2015) and
Caltech101 (Li et al., 2022) for general object recognition,
FGVC Aircraft (Maji et al., 2013) for fine-grained aircraft
data, Food101 (Bossard et al., 2014) for common food ob-
jects, EuroSAT (Helber et al., 2019) for satelittle images,
Oxford Pets (Parkhi et al., 2012) for discrimination of cat
and dog types, DTD (Cimpoi et al., 2014) for texture images,
SUN397 (Xiao et al., 2010) for scene understanding, Stan-
ford Cars(Krause et al., 2013) for cars data, and Flowers102
(Nilsback & Zisserman, 2008) for flower classes.

Experimental details. We fine-tuned the CLIP ViT-B/16
image encoder with LoRA (Hu et al., 2022). To be consis-
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Figure 1. Illustration of the overall algorithm pipeline outlined in Algorithm 1. First, we generate synthetic images using the labels of
real images. Subsequently, both real and synthetic images are clustered. Finally, the images are fed into the classifier. The final loss is
calculated based on the model’s predictions for the samples that belong to the same cluster, thereby reducing the prediction discrepancy
between real and synthetic images and between synthetic images themselves within the same cluster.

Table 1. Few-shot image classification with CLIP ViT-B/16. All experiments are conducted with 16 real shots and 500 synthetic images
per-class, except our lightweight version, where only 64 synthetic images per class were utilized. R/S columns denoted whether to use
real or synthetic data, respectively. Each result of a method was averaged from 3 random seeds, except our full version, where we fixed
the same seed 0 for all datasets.

Method R S IN CAL DTD EuSAT AirC Pets Cars SUN Food FLO Avg
CLIP (zero-shot) 70.2 96.1 46.1 38.1 23.8 91.0 63.1 72.2 85.1 71.8 64.1
Real-finetune ✓ 73.4 96.8 73.9 93.5 59.3 94.0 87.5 77.1 87.6 98.7 84.2
IsSynth ✓ ✓ 73.9 97.4 75.1 93.9 64.8 92.1 88.5 77.7 86.0 99.0 84.8
DISEF ✓ ✓ 73.8 97.0 74.3 94.0 64.3 92.6 87.9 77.6 86.2 99.0 84.7
DataDreamcls ✓ ✓ 73.8 97.6 73.1 93.8 68.3 94.5 91.2 77.5 87.5 99.4 85.7
DataDreamdset ✓ ✓ 74.1 96.9 74.1 93.4 72.3 94.8 92.4 77.5 87.6 99.4 86.3
Ours (lightweight) ✓ ✓ 73.7 97.9 75.5 94.2 71.5 94.5 90.2 77.6 90.0 99.0 86.4
Ours (full) ✓ ✓ 73.8 97.3 74.5 94.7 74.3 94.6 93.1 77.7 90.4 99.3 87.0

tent with the baselines, the generator used is Stable Diffu-
sion (SD) (Rombach et al., 2022) version 2.1. Similarly to
the baselines, the guidance scale of SD is set to be 2.0 to
enhance diversity. In the lightweight version, only 64 im-
ages per class were generated without the need to fine-tune
the generator, and in the full version 500 images per class
were synthesized from LoRA-attached fine-tuned Stable
Diffusion. For the lightweight version, inspired by Real-
Fake (Yuan et al., 2024), we improved the quality of the
synthesized data using negative prompts "distorted,
unrealistic, blurry, out of frame".

The clustering phase was performed with the FAISS library
(Douze et al., 2024). The hyperparameters to be tuned are:
λ1, λ2 to control the discrepancy and robustness terms, num-
ber of clusters, learning rates, and weight decay. The values
of λ1, λ2 vary between the data sets, but consistently main-
tain the ratio of 1/10, since we observe that this ratio brings
the best balance between them and yields the best results.
The hyperparameter λ was chosen at 4 for all datasets except
Stanford Cars, where we set it at 1. This choice resembles
the choice in DataDream, where they select the weight for
cross-entropy loss of real and synthetic data to be 0.8 and

0.2, respectively. For the number of clusters, we generally
choose it twice as the number of classes of each dataset, ex-
cept for ImageNet, where we set it to half of them. Analysis
on the optimal choice of this hyperparameter can be found
in the next section of Ablation Studies. More details of the
hyperparameter settings can be found in Appendix B.

5.2. Main Results

Table 1 presents the main experimental results in ten datasets.
Our method (in both lightweight and full variants) con-
sistently outperforms existing state-of-the-art approaches,
ranking first on 7 of the 10 datasets and second on 2 others.
In the datasets where we do not achieve the top score, our
results are within 0.1–0.3% of the best-performing method.
On average, our lightweight variant performs on par with
the strongest baseline (DataDream), while our full variant
surpasses it by an additional 0.6%. The most notable gains
are on datasets Food101 and challenging FGVC Aircraft,
where our method improves performance by more than 2%.
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Table 2. Ablation of the loss function components.

Discre. Rob. EuroSAT DTD AirC Cars

93.5 74.1 72.5 92.6
✓ 94.6 74.4 73.1 93.1

✓ 94.3 74.3 74.8 93.0
✓ ✓ 94.7 74.5 74.3 93.1

Table 3. Methods performance on CLIP-Resnet50.

Methods AirC Cars Food CAL

Real fine-tune 61.57 78.86 63.52 93.29
IsSynth 70.94 90.82 68.77 94.54
DISEF 65.99 79.18 70.10 94.34
DataDreamcls 79.21 92.99 66.70 94.37
DataDreamdset 81.46 93.30 66.63 94.62

Ours 82.67 93.71 70.35 94.17

5.3. Ablation Studies

Effectiveness of Regularization Terms. We present results
of ablation studies on the regularization terms in Table 2.
There are four settings: no regularization, adding two terms
of discrepancy and robustness subsequently, and adding
both of them. As we can see from the results, adding the
introduced regularization terms has positive effects on the
results, with most of them have lead to increased perfor-
mance.

Analysis of partitioning. We investigate how the number
of clusters affects performance by varying it from a single
cluster (where all data lie in one partition) to multiples of
the total number of classes. We observe that the optimal
choice is typically around twice the number of classes. We
hypothesize that fewer clusters produce ambiguous decision
boundaries, while too many clusters overly disperse the data,
weakening regularization and degrading results. Based on
these findings, we set the number of clusters to twice the
number of classes in all main experiments, except for Ima-
geNet, where we choose half of the classes as the number
of clusters to reduce computational overhead. The detail of
experiments can be found in Figure 3, Appendix D.

Results on different architectures. We provide additional
results of our methods compared to other different methods
on fine-tuning of the pre-trainedCLIP-Resnet50 in Table
3. We select 4 datasets of FGVC Aircraft, Stanford Cars,
Food101, and Caltech101 as in additional experiments in
(Kim et al., 2024). Our method outperforms others on 3 out
of 4 datasets, while being competitive on the last one. This
additional experiment shows the robustness of our method in
different architectures, further demonstrating its superiority
over existing current approaches.

5.4. Loss Convergence, Influence of Fine-Tuning, and
Correlation with Discrepancy and Robustness

To further investigate the behavior of our algorithm and
empirically validate the correctness of our generalization
error bound, we compare four settings: using either our
proposed loss function or the DataDream cross-entropy loss,
each with or without a generator fine-tuning step. We focus
on two challenging datasets: DTD, where fine-tuning the
generator (as in DataDream and our full approach) unexpect-
edly degrades performance compared to methods without
fine-tuning (IsSynth, DISEF, and our lightweight variant),
and FGVC Aircraft, where Stable Diffusion is known to
produce lower-quality images. We track the discrepancy and
robustness terms (two regularization terms without multi-
plying by hyperparameters) throughout the training process
of full version (measured twice per epoch for a total of 100
steps) and record the accuracy of each method. Our key
observations from Figure 2 are:

• Effective optimization and performance gains. Our
proposed algorithm successfully minimizes both the dis-
crepancy and robustness terms, showing smoother and
lower values compared to settings that do not incorporate
these terms. Moreover, it achieves superior accuracy in
both scenarios (with and without generator fine-tuning).

• Impact of generator fine-tuning. Fine-tuning the gener-
ator can substantially boost performance when the initial
generative model is poorly suited to the domain (e.g., im-
proving accuracy by up to 7% on FGVC Aircraft). Across
most other datasets, methods that include this fine-tuning
step (DataDream and our full version) also demonstrate
improved results comparing to ones without them. Results
validate our claim that fine-tuning can partially reduce the
discrepancy and robustness terms in Section 4.1.

• Empirical support for our theoretical framework.
Models that achieve smaller discrepancy and robustness
values generally exhibit better accuracy, indicating that
these metrics serve as reliable indicators of performance
and generalization ability. Our ablations suggest that
the robustness term, which has been overlooked in prior
studies, seem to be really important to ensure high gener-
alization of the trained model.

6. Conclusion
In this paper, we introduce a theoretically guided method
for training few-shot models with synthetic data. We begin
by deriving a generalization bound that reveals how the
misalignment between real and synthetic data, as well as
model robustness, affects performance and generalization.
Building directly on these theoretical insights, we propose
the first algorithm with theoretical guarantees to minimize
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Figure 2. Visualization of Discrepancy and Robustness Terms Across Settings for DTD and FGVC Aircraft Datasets. The top row shows
results for the DTD dataset, with discrepancy (left) and robustness (right) terms, while the bottom row shows results for the FGVC
Aircraft dataset. Accuracy values are annotated at the end of each corresponding line.

this bound, thereby maximizing the performance of few-shot
models. Extensive experiments on ten benchmark datasets
demonstrate that our method consistently outperforms the
state-of-the-art.

Future works can come from additional analysis to fully
solve the partition and model selection problems, and find
an efficient way to directly use this theoretical framework for
optimizing synthetic data through fine-tuning generator or
filtering by using our loss function as a criterion. Moreover,
thanks to the versatility and simplicity of this generaliza-
tion bound, one can use them for enhancing performance
of related domains such as adversarial training or domain
adaptation with or without additional synthetic data.

Impact Statement
This work aims to leverage synthetic data for improving
few-shot classification models, which holds promise for

expanding machine learning applications in real-world sce-
narios with limited labeled data. In most cases, by reducing
reliance on large-scale annotated datasets, our approach can
potentially democratize access to high-performance models.
However, when dealing with synthetic data, the method, if
being misused, may facilitate malicious activities such as
model poisoning or creation of deceptive content. Further-
more, part of the ideas can be extended to related topics in
Machine Learning such as adversarial training and domain
adaptation, thus sharing the same societal impact on those
fields.
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A. Proofs
A.1. Proof of Theorem 3.3

Proof. In the following analysis, we will denote F (∅,h) = 0. We first observe that:
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where we have used the fact that ℓ(h, s)− ℓ(h,u) ≤ Lh∥h(s)− h(u)∥, due to the Lipschitz continuity of ℓ.

By Theorem A.1, for any δ > 0, we have each of the followings with probability at least 1− δ/2:

F (G,h)− F (Pg,h) ≤ Lh

∑
i∈TS

gi
g
Rh(Gi,Zi|Pg) + C

√
2K ln 2 + 2 ln(2/δ)

g
(16)
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n
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Combining (8) with (15,16,17) will complete the proof.

A.2. Proof of Theorem 3.4

Proof. Using the same arguments as before, we first observe that:

F (P0,h) = F (P0,h)− F (S,h) + F (S,h)−
∑
i∈TS

gi
g
F (Si,h) +

∑
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gi
g
F (Si,h)− F (G,h) + F (G,h) (18)
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1

g

∑
i∈TS

∑
u∈Gi

ℓ(h,u) (19)

=
1

g

∑
i∈TS

∑
u∈Gi

[F (Si,h)− ℓ(h,u)] (20)

=
1

g

∑
i∈TS

∑
u∈Gi

1

ni

∑
s∈Si

[ℓ(h, s)− ℓ(h,u)] (21)

≤ 1

g

∑
i∈TS

∑
u∈Gi

1

ni

∑
s∈Si

Lh∥h(s)− h(u)∥ (22)

=
Lh

g

∑
i∈TS

∑
u∈Gi

1

ni

∑
s∈Si

∥h(s)− h(u)∥ (23)

=
Lh

g

∑
i∈TS

∑
u∈Gi

d̄h(u,Si) (24)

= Lh

∑
i∈TS

gi
g
d̄h(Gi,Si) (25)

where we have used the fact that ℓ(h, s)− ℓ(h,u) ≤ Lh∥h(s)− h(u)∥, due to the Lipschitz continuity of ℓ.

By Theorem A.1, for any δ > 0, we have the following with probability at least 1− δ:

F (P0,h)− F (S,h) ≤ Lh

∑
i∈TS

ni

n
Rh(Si,Zi|P0) + C

√
2K ln 2 + 2 ln(1/δ)

n
(26)

Combining (18) with (25,26), we have the following with probability at least 1− δ:

F (P0,h) ≤ Lh

∑
i∈TS

ni

n
Rh(Si,Zi|P0) + C

√
2K ln 2 + 2 ln(1/δ)

n
+ F (S,h)−

∑
i∈TS

gi
g
F (Si,h)

+Lh

∑
i∈TS

gi
g
d̄h(Gi,Si) + F (G,h) (27)

As g → ∞, observe that d̄h(Gi,Si) → Rh(Si,Zi|Pg) and F (G,h) → F (Pg,h) and gi
g → pgi . Combining those facts

with (27) completes the proof.

A.3. Some necessary bounds

Theorem A.1. Consider a model h learned from a dataset S with n i.i.d. samples from distribution P . Let C =
supz∈Z ℓ(h, z). Assume that the loss function ℓ(h, z) is Lh-Lipschitz continuous w.r.t h. For any δ > 0, the following
holds with probability at least 1− δ:

F (P,h) ≤ F (S,h) + Lh

∑
i∈T

ni

n
Rh(Si,Zi|P ) + C

√
2K ln 2− 2 ln δ

n
(28)

F (S,h) ≤ F (P,h) + Lh

∑
i∈T

ni

n
Rh(Si,Zi|P ) + C

√
2K ln 2− 2 ln δ

n
(29)

Proof. Firstly, we make the following decomposition:

F (P,h) = F (P,h)−
K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi] (30)

+

K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi]− F (S,h) + F (S,h) (31)

13
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Secondly, observe that

F (P,h)−
K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi] =

K∑
i=1

P (Zi)Ez∼P [ℓ(h, z)|z ∈ Zi]

−
K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi] (32)

=

K∑
i=1

Ez∼P [ℓ(h, z)|z ∈ Zi]
[
P (Zi)−

ni

n

]
(33)

≤ C

K∑
i=1

∣∣∣P (Zi)−
ni

n

∣∣∣ (34)

Note that (n1, ..., nK) is an i.i.d multinomial random variable with parameters n and (P (Z1), ..., P (ZK)). Bretag-
nolle–Huber–Carol inequality, shows the following for any ϵ > 0:

Pr

(
K∑
i=1

∣∣∣P (Zi)−
ni

n

∣∣∣ ≥ 2ϵ

)
≤ 2n exp(−2nϵ2)

In other words, for any δ > 0, the following holds true with probability at least 1− δ:

F (P,h)−
K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi] ≤ C

K∑
i=1

∣∣∣P (Zi)−
ni

n

∣∣∣
≤ C

√
2K ln 2− 2 ln δ

n
(35)

Furthermore,

K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi]− F (S,h) =

K∑
i=1

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi]−

1

n

∑
s∈S

ℓ(h, s) (36)

=
∑
i∈TS

ni

n
Ez∼P [ℓ(h, z)|z ∈ Zi]−

1

n

∑
i∈TS

∑
s∈Si

ℓ(h, s) (37)

=
1

n

∑
i∈TS

[
niEz∼P [ℓ(h, z)|z ∈ Zi]−

∑
s∈Si

ℓ(h, s)

]
(38)

=
1

n

∑
i∈TS

∑
s∈Si

Ez∼P [ℓ(h, z)− ℓ(h, s) : z ∈ Zi] (39)

≤ 1

n

∑
i∈TS

∑
s∈Si

Ez∼P [Lh∥h(z)− h(s)∥ : z ∈ Zi] (40)

=
Lh

n

∑
i∈TS

∑
s∈Si

Ez∼P [∥h(z)− h(s)∥ : z ∈ Zi] (41)

= Lh

∑
i∈T

ni

n
Rh(Si,Zi|P ) (42)

Where (40) comes from (39) since ℓ is Lh-Lipschitz continuous w.r.t h. Combining the decomposition (30) with (35) and
(42) will arrive at (28). One can use the same arguments as above with reverse order of empirical and population loss to
show (29), completing the proof.
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A.4. Proof of property in partition optimization 4.1.1

Lemma A.2. If xi and xj are vectors from the same clusters, x̄ is the mean of that cluster, and n is the number of data
points in that cluster we have the following expression

∑
i,j

∥xi − xj∥2 =
∑
i̸=j

∥(xi − x̄)− (xj − x̄)∥2 = 2n

n∑
i=1

∥xi − x̄∥2

Proof: If we extract the inside of the 2nd expression above:

∥(xi − x̄)− (xj − x̄)∥2 = ∥xi − x̄∥2 + ∥xj − x̄∥2 − 2(xi − x̄)T (xj − x̄)

Due to symmetry, we can evaluate the first two expressions easily:

∑
i̸=j

∥xi − x̄∥2 =
∑
i ̸=j

∥xj − x̄∥2 = (n− 1)

n∑
i=1

∥xi − x̄∥2

The last expression is:

(Note that
∑
j ̸=i

(xj − x̄) =

n∑
j=1

(xj − x̄)− (xi − x̄) = nx̄− nx̄− (xi − x̄) = −(xi − x̄))

∑
i̸=j

−2(xi − x̄)T (xj − x̄) = −2
n∑

i=1

(xi − x̄)T
∑
j ̸=i

(xj − x̄) = 2

n∑
i=1

(xi − x̄)T (−(xi − x̄))

= 2

n∑
i=1

∥xi − x̄∥2

Finally, combining all, we have (2(n− 1) + 2)
∑n

i=1 ∥xi − x̄∥2 = 2n
∑n

i=1 ∥xi − x̄∥2

Main Proof Now, coming back to the main results, we rewrite here the partition optimization problem:

min
Γ(Z)

[
∑
i∈TS

gi
g
Rh(Gi,Zi|Pg) +

∑
i∈TS

ni

n
Rh(Si,Zi|P0)] (43)

= min
Γ(Z)

[
∑
i∈TS

gi
g

1

gi

∑
g∈Gi

Rh(g,Zi|Pg) +
∑
i∈TS

ni

n

1

ni

∑
s∈Si

Rh(s,Zi|P0)] (44)

= min
Γ(Z)

[
1

g

∑
i∈TS

∑
g∈Gi

Ez∼Pg
[∥h(z)− h(g)∥ : z ∈ Zi] +

1

n

∑
i∈TS

∑
s∈Si

Ez∼P0
[∥h(z)− h(s)∥ : z ∈ Zi]] (45)

Next we deal with each term in above expression separately. We approximate the expectation term by its empirical version
as follows:

≈ min
Γ(Z)

1

g

∑
i∈TS

∑
g∈Gi

∑
z∈Gi

1

gi
∥h(z)− h(g)∥ (46)

For easier derivation, we will minimize the sum of squares of distance. Note that the square of the sum of positive number is
always smaller than or equal to sum of their respective square multiply with a constant. So basically we are minimizing an
upper bound of the problem. Denote µi as the average of all the output of generated samples in the region i (average of all
h(z) with z ∈ Gi), and our optimization problem becomes:

min
Γ(Z)

1

g

∑
i∈TS

∑
g∈Gi

∑
z∈Gi

1

gi
∥h(z)− h(g)∥2 (47)

= min
Γ(Z)

2

g

∑
i∈TS

∑
z∈Gi

∥h(z)− µi∥2 (48)
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Note that the quantity inside the sum of (47) is called the within-cluster variation of the K-means problem and is equivalent
to the traditional variation in (48). The proof is provided in Lemma A.2. Our bound now becomes the lower bound of the
K-means optimization problem, and if we ignore the term of summing only over the region containing real samples, it
becomes a K-means problem and can be solved easily. The same argument can be applied for the second term.

B. Hyperparameters settings
We adopt the same data preprocessing pipeline as in the baseline DataDream (Kim et al., 2024), applying standard augmen-
tations including random horizontal flipping, random resized cropping, random color jitter, random grayscale, Gaussian
blur, and solarization. Our main difference is to use CutMix (Yun et al., 2019) and Mixup (Zhang et al., 2018) by default
on all datasets to reduce the amount of hyperparameter tuning. We train our models using AdamW (Loshchilov & Hutter,
2019), searching the learning rate in {2e−4, 1e−4, 1e−5, 1e−6} and the weight decay in {1e−3, 5e−4, 1e−4} for the full
approach. For the lightweight approach, we adopt the learning rate and weight decay settings from DISEF(da Costa et al.,
2023). We run the K-means clustering step for 300 iterations using the FAISS library (Douze et al., 2024) in the full approach.
For the classifier tuning phase, we train for 50 epochs for the full approach and 150 epochs for the lightweight approach. The
λ1, λ2 values are fixed to be (0.1,1) for the lightweight version and search inside {(0.1, 1), (2, 20), (20, 200), (50, 500)} for
the full version. In general, we find that our method is quite robust with this choice of values, no substantial performance
difference observed when changing these values inside the defined set.

C. Lightweight version

Algorithm 2 Lightweight version
Input: Real dataset S, number g of synthesis samples, (conditional) Pretrained generator models G, Learning rate schedule
η
Output: Set of g generated data samples G

1: Initialize centroids z for every local area
2: Initialize noise vectors (u1,u2, . . . ,ug) randomly
3: for each iteration do ▷ In each epoch
4: for mini-batch A do
5: Sample real data set SA, and take their labels as conditional inputs for generator
6: if iteration = 1 then ▷ Start optimize partition
7: Generate set GA = G(uA) based on labels condition of SA

8: else
9: Take set GA from stored generated set.

10: end if
11: Assign data points GA to their nearest clusters, indexed by i and centered at zi
12: Update learning rate η ← 1

|zi|
13: Update the center: zi ← (1− η)zi + ηGk

14: Update TS and the counts gi
15: Use own generated data to compute second term of loss function
16: Compute loss function L
17: Train model h with loss function L and set of real data SA and GA

18: end for

The loss function differs slightly from the full version, where we compute regularization terms in all data instead of each
batch. The reason for this is because the number of generated data is much smaller, so this computation ensures that the
regularization is big enough to be meaningful. Initially, the algorithm optimizes with respect to data partitions (addressing
the partition optimization problem) and subsequently refines classifiers . This is achieved using an alternate optimization
strategy in each epoch to minimize the loss function L which was constructed as a combination of distribution matching,
robustness terms, and classification loss. Note that in this version, the LoRA modules are also attached to the generator,
without tuning them.

Algorithm Overview:
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Figure 3. Results with increasing number of clusters on 4 datasets

1. Initialization:Begin with initializing the partitions and noise vectors essential for the iterations. Each iteration is one
epoch of training classifier.

2. Iterative Optimization:

• Partition Optimization: Utilize the MiniBatch K-means algorithm to optimize the partition (lines 11-13). Following
partition updates, recalibrate dependent quantities (line 14) and monitor changes in regions to optimize memory
usage when calculating L.

• Model Optimization: Forward real and synthetic data through models and update by loss function

• Loss Computation and Gradient Descent: Calculate the loss function L based on computed components: output of
real and synthetic data and their discrepancy. Finally, update model h via gradient descent by backpropagating.

D. Partitioning Experiments
In this section, we show the detailed figure of the analysis on number of clusters (Figure 3). The experiments were conducted
on 4 datasets: EuroSAT, Oxford-IIIT Pets, DTD, and FGVC Aircraft, with the number clusters increased from 1 (all data
belong to the same partition) to 1,2 and 4 times the number of classes in each dataset. The results validate our claim in the
main text that the optimal choice of number of clusters typically about twice as the number of classes.

E. More extreme few-shot scenarios
We conduct experiments on 3 datasets that were also used for DataDream (DD) (Kim et al., 2024). The results are shown in
Table 4.

Overall, our method underperforms the baseline in the extreme 1-shot scenario. With only one real sample, the regularization
terms in our loss function become small, reducing model robustness and possibly causing performance drops. However, our
method significantly outperforms the baseline in 4-shot and 8-shot settings. Thus, extremely limited real data case remains a
limitation of our approach.
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No. of real shots AirC Cars FLO
DD Ours DD Ours DD Ours

1 31.1 25.3 72.9 72.1 88.7 86.1
4 38.3 51.6 82.6 86.9 96.0 96.9
8 54.6 63.9 87.4 91.3 98.4 98.7

Table 4. Results for more extreme few-shot conditions

F. Adaptation to synthetic data only
In this section, we investigate a possible adaptation of our method to the case of synthetic data only. In order to do it,
one can remove the discrepancy term and loss on real data from the loss function and compute the robustness loss on
all regions that contains at least 2 synthetic samples. Overall, the loss function can be rewritten as follows: F (G,h) +
λ2

1
g

∑
i

∑
g1,g2∈Gi

1
gi
∥h((g1)− h(g2)∥. We conduct experiments to test the effectiveness of this loss function in some

small and medium-sized datasets. The results are shown in Table 5.

Dataset DD Ours
EuSAT 80.3 80.6
Pets 94.0 94.0
AirC 71.2 70.6
CAL 96.2 96.8
Food 86.7 89.2

Table 5. Results if only synthetic data were used.

Our method outperforms the baseline on 3 out of 5 datasets, comparable in 1 and worse in 1 dataset. On average, our
methods still perform better than the baseline, showcasing the necessity of the robustness regularization. However, these
increases are marginal, and much less significant compared to our full method, which takes into account both discrepancy
and robustness terms.

G. Varying the number of synthetic data
To further investigate the effect of the number of synthetic samples, we conduct more experiments varying the number of
them in Table 6. The results confirmed that our method consistently outperform baselines when varying synthetic data sizes.

No. synth. samples EuSAT DTD AirC
DD Ours DD Ours DD Ours

100 93.4 94.2 73.4 73.9 68.5 69.6
200 93.5 94.5 73.1 74.0 69.3 71.9
300 93.7 94.4 73.5 73.8 70.9 73.0
400 93.8 94.4 74.1 74.2 70.8 73.3
500 93.5 94.7 74.1 74.5 72.3 74.3

Table 6. The impact of the number of synthetic samples per class. Results of only the 16-shot real data
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