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Abstract— Bagging tasks, commonly found in industrial sce-
narios, are challenging considering deformable bags’ compli-
cated and unpredictable nature. This paper presents an auto-
mated bagging system from the proposed adaptive Structure-
of-Interest (SOI) manipulation strategy for dual robot arms.
The system dynamically adjusts its actions based on real-time
visual feedback, removing the need for pre-existing knowledge
of bag properties. Our framework incorporates Gaussian Mix-
ture Models (GMM) for estimating SOI states, optimization
techniques for SOI generation, motion planning via Constrained
Bidirectional Rapidly-exploring Random Tree (CBiRRT), and
dual-arm coordination using Model Predictive Control (MPC).
Extensive experiments validate the capability of our system
to perform precise and robust bagging across various objects,
showcasing its adaptability. This work offers a new solution for
robotic deformable object manipulation (DOM), particularly
in automated bagging tasks. Video of this work is available at
https://youtu.be/6JWjCOeTGiQ.

I. INTRODUCTION

The primary challenges in DOM include the need for
precise control, adaptability to varying material properties,
and real-time responsiveness to complicated changes in the
fabric state. In this paper, we employ a constraint-aware SOI
planning framework to envelop 3D objects with a deformable
fabric bag, as shown in Fig. 1. Our method draws on the
concept of the Region of Interest (ROI) in image processing,
indicating that fully estimating the state of a manipulated
deformable object is not crucial in DOM. Specifically, in
the bagging task, the edge of a fabric bag acts as the
SOI. By focusing on the state estimation of this edge, the
robotic system successfully carries out the bagging operation.
Utilizing dual-arm operations, we represent the SOI as el-
lipses and introduce a two-stage manipulation strategy based
on the object’s bottom shape. An MPC-based controller
ensures both arms accurately follow the planned trajectory.
Our experiments demonstrate that in our framework, it is
adequate to employ the SOI extracted merely from the bag
opening rim to represent the whole fabric states during the
bagging task. Furthermore, the presented system employs
two robot arms working together, directed by an advanced
planning framework that considers the object’s structural
limitations and the intended final configuration. Utilizing 3D-
printed connectors, the robots achieve exceptional precision
and stability in manipulating the bag.
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Fig. 1. The dual-arm system grasps the handles of a fabric bag to control
the SOI for the bagging operation.
o We propose a robotic framework for automated bagging
tasks, covering SOI estimation, bagging SOI generation,
SOI planning, and a local planner for a dual-arm system.
o We introduce a constraint-aware planning strategy for
SOL enabling two robotic arms to successfully handle
bags over various objects and achieve desired bag states.
o We integrate a vision-based control system that operates
without prior knowledge of bag material properties,
improving flexibility and adaptability in practice.

II. PROBLEM STATEMENT

The goal of the bagging task is to manipulate the handles
of a fabric bag and wrap it around the bottom of the object
B, as shown in Fig. 2. The bottom of 5 is represented by a
set of vertices V = {v;}."*;. We assume that all points in V
lie on the same plane, e.g., the gray surface under the apple
in Fig. 2. We consider that the bag’s initial shape should
remain slightly open rather than fully closed. Furthermore,
we assume that all bags involved in this task are of a type
that humans can manage in some way.

In this paper, we propose that a comprehensive estimation
of the entire fabric bag is not requisite for the task at hand.
Rather, our approach emphasizes the real-time identification
and analysis of the SOI, which, in this context, is delineated
as the opening rim of the bag. The set composed of points
that make up SOI at time ¢ is denoted by Q; = {q,+};;.
Furthermore, the Q; can be extracted from the raw point
clouds P; = {pi},*, via our proposed extraction method.
For example, in Fig. 2, in the beginning, blue dots refer to
point clouds Py, and the red curve is formed by points of SOI
Q. Here v;,q;+,Pit € R3 are all 3D point expressed in the
world frame F,,, as shown in Fig. 2. And ™q;, indicates
the point q;; expressed in a frame J,,. Note that unless
otherwise noted, all points are expressed in JF,, and will be
omitted superscript *(-) for simplicity. In this way, the bag
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Fig. 2. Sketch of the proposed two-stage bagging strategy.
state x; is defined by its SOI points, i.e.,:
T 3ng
x¢=[q] ;- .q), ] € R )

So, in the following, the bag state is equivalent to the SOIL.

We partition the bagging task into two distinct phases
based on whether the target object starts to enter the bag,
as depicted in Fig. 2. This critical criterion is defined as the
bagging SOI, denoted by g+. During the packing process, g;
naturally needs to satisfy two requirements. First, the size
of the bag opening must be larger than the maximum cross-
section of the object (i.e., size encircled by V) to ensure
that the object can smoothly pass through the opening and
enter the bag. Second, the size of the bag opening cannot be
arbitrarily large due to the physical constraints of the actual
bag. Therefore, we assume that the size of the bag opening
remains relatively unchanged during the bagging process,
staying close to its initial size (i.e., encircled size of Q)
while satisfying the first condition.

From gy, the goal SOI g., where the bag fully warps
the object, could be determined accordingly. Intuitively, the
bag’s initial SOI is given as gy := X, which can be
specified manually before bagging. Based on (go, g+, 8«),
the bagging process can be separated as pre-bagging and
bagging stages, respectively. Then we employ a sampling-
based motion planner to generate subgoals g; in each stage,
as shown in Fig. 2, and the collision-free bagging path can
be formulated by:
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Given the planned path G, an MPC-based shape servoing
method is utilized to generate the velocity commands uy
from the robotic action space A based on the current SOI
state x; and the corresponding next subgoal g,.,: € G, i.e.,

uy = argénin E(Xta gnext)a 3
where [E is a measurable error function. Thus, the bagging
task can be completed via a sequence of command velocities
U = {u;}L, until x; meets the goal SOI g,.

From a technical perspective, the bagging strategy pre-
sented in this paper is shown in Fig. 3. Firstly, the SOI
extraction (Fig. 3-(b)) from visual perception ((Fig. 3-(a)))
gives the states of the bag rim in a real-time manner. Then it
will generate the bagging SOI according to the object bottom
(Fig. 3-(c)), followed by the goal SOI generation (Fig. 3-
(d)). The SOI planning algorithm (Fig. 3-(e)) will provide

the available and collision-free path from the initial state
to the bagging SOI and finally achieve the goal SOI. After
that, the MPC controller (Fig. 3-(f)) is employed to control
dual manipulators to execute the bagging task following the
planned path (Fig. 3-(g)).

III. EXPERIMENTS

Fig. 1 shows the experimental setup. Two CRS robotic
arms are equipped with custom 3D-printed mounts to grasp
each handle of the bag, secured with zip ties to prevent
slippage. A D455 depth camera (640x480) is fixed in an
eye-to-hand configuration for top-down observation.

A. Dual-arm Bagging Manipulation

Dual-arm bagging experiments assess the effectiveness of
the proposed manipulation method. Four distinct baggable
objects are used in Exp. 1-4: a coffee box, canned pineapple,
a grapefruit, and a 3D-printed triangular prism. The proce-
dure involves the dual-CRS5 robotic system guiding the bag
from different initial positions along the pre-bagging trajec-
tOry Gpre-bagging t0 the intermediate configuration g, followed
by bagging path along Gyagging to reach the final target shape
g, and complete the operation. To evaluate the performance,
we compare two motion planning algorithms, FFG-RRT [1]
and TS-RRT [2], alongside two control strategies, IBVS [3]
and SSVS [4].

Fig. 5 shows the bagging process from Exp. 1-4. For
a quantitative evaluation, we introduce three key metrics:
planning success rate, planning duration, and manipulation
success rate, reflecting the effectiveness of the planning and
control algorithms. A detailed comparison is provided in
Table I. The planning success rate indicates that CBiRRT
outperforms other methods, achieving high reliability with
reasonable computational cost. In contrast, FFG-RRT excels
in speed, offering the shortest planning time due to its direct
forward exploration strategy, while CBiRRT’s bidirectional
approach emphasizes stability, resulting in more search steps.
Regarding manipulation success, the MPC clearly delivers
the best results, surpassing the other control strategies. This
is mainly because conventional shape servoing assumes a
static desired shape, while the bagging task requires tracking
evolving deformation trajectories. MPC’s predictive capabil-
ities align well with this dynamic need, enhancing tracking
stability. These findings highlight MPC’s suitability for com-
plex robotic manipulation tasks. Additionally, g+ serves as an
intermediate buffer, segmenting the bagging process into pre-
bagging and bagging phases, which enhances the robustness
of the manipulation and contributes to a higher success rate.

B. Validations on Different Bags and Objects

To further validate the effectiveness of our method, we
introduced additional bags and numerous objects with dif-
ferent poses. Here we used two bag types: one with color-
contrasting red edges (Exp. 5-7) and another in solid color
(Exp. 8-10). The results in Fig. 4 show that the proposed
method remains effective in new task environments. Table
I also provides a detailed comparison between our method
and baselines. Exp. 5-7 shows a higher planning success
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Fig. 3. Flowchart of our dual-arm manipulation strategy for the bagging task.
TABLE 1
EXPERIMENTS RESULTS (S.R.: SUCCESS RATE. MANIP.: MANIPULATION)
Coffee box (Exp 1) Canned pineapple (Exp 2) Grapefruit (Exp 3) Triangular prism (Exp 4) Tea caddy (Exp 5)
Method Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.
S.R. time (s) SRR. S.R. time (s) S.R. S.R. time (s) S.R. S.R. time (s) S.R. time (s) S.R.
FFG-RRT [1] 6/10 3.87 £1.97 8/8 8/10 2.37 + 0.87 8/8 7/10 3.89 + 1.18 8/8 6/10 3.58 + 1.11 8/8 8/10 493 +£1.23 718
TS-RRT [2] 7/10 6.32 £ 1.08 8/8 8/10 5.58 + 1.13 8/8 9/10 6.85 £ 0.56 8/8 7/10 7324+ 1.34 8/8 8/10 7.46 £+ 0.97 8/8
IBVS [3] - - 418 - - 18 - - 518 - - 6/8 - - 718
SSVS [4] - - 5/8 - - 18 - - 6/8 - - 718 - - 8/8
Ours 9/10 5.13 £1.26 8/8 10/10 4.21 + 098 8/8 10/10 498 +1.93 8/8 9/10 5.32 £1.56 8/8 10/10 6.16 + 1.58 8/8
Work bin (Exp 6) Tea bucket (Exp 7) Plastic packing (Exp 8) Tea bucket (Exp 9) 3D-printed cuboid (Exp 10)
Method Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.  Planning Planning Manip.
S.R. time (s) S.R. S.R. time (s) S.R. S.R. time (s) S.R. S.R. time (s) S.R. S.R. time (s) S.R.
FFG-RRT [1] 7/10 3.88 £0.98 8/8 8/10 3.93 £ 1.06 8/8 7/10 3.67 £ 1.66 6/8 8/10 2.26 £ 0.97 718 7/10 3.76 £ 1.03 6/8
TS-RRT [2] 8/10 6.13 £ 1.21 8/8 9/10 598 £ 0.72 8/8 7/10 596 + 1.23 18 8/10 5.12 £ 098 718 9/10 5.15 4+ 0.83 718
IBVS [3] - - 18 - - 18 - - 518 - - 518 - - 6/8
SSVS [4] - - 778 - - 18 - - 6/8 - - 6/8 - - 6/8
Ours 9/10 4.92 4+ 0.96 8/8 10/10 5.06 £+ 1.36 8/8 8/10 5.68 £ 1.29 718 9/10 4.06 + 1.13 8/8 10/10 531 £ 148 778
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Fig. 5. Dual-arm bagging manipulation. Insets in the 4-th column show
the determined bagging SOIs. The last column displays the planned SOI
trajectories. The animation of the bagging process can be seen in the video.
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rate than Exp. 8-10, likely due to larger bag dimensions.
Notably, our method maintains the highest success rate
among all approaches. In experiments with smaller objects,
all three methods exhibited similar planning times, though
our approach was slightly faster. The larger bags in Exp. 5-7
correspond to higher manipulation success rates, attributed
to two factors: (1) the wider bag openings facilitate easier
expansion, and (2) occlusion issues during manipulation for
the solid-color bags stem from the neural network’s detection
accuracy limitations. In addition, Exp. 11 and 12 demonstrate
the bagging operations for bound objects. From Fig. 4, the
dual-arm system precisely handles the bag into the bottom of
the bound objects (2 objects bundled in Exp. 11 and 3 objects
bundled in Exp. 12) and completely wraps around them.
Notably, in Exp. 6, 11, and 12, the bag successfully envelops

the tilted objects along their bottom axis. In summary,
our system has been validated to accurately and robustly
complete various bagging tasks.

C. Comparison with Baselines

We replicate three dual-arm manipulation approaches, i.e.,
ShakingBot [5], AutoBag [6], and BimaManip. [7] for the
task in Exp. 1. The first two use action primitives, while
BimaManip. and this study employ SOI-based shape servo-
ing. Since the initial state of bags in our paper is already
open, we have ignored the shaking operations originally
employed in [5] and [6]. Results are shown in Table II, where
Error measures the distance between the SOI center and the
object’s center after task completion, indicating alignment
accuracy. From Table II, Ours has the highest success rate
and lowest error, indicating superior reliability and accuracy.
Since ShakingBot and AutoBag use motion primitive-based
action encoding for faster manipulation, AutoBag achieves
the shortest time. In contrast, this study focuses on tracking
transition shapes from CBiRRT, resulting in the slowest
speed but the lowest error. BimaManip. offers balanced
performance with moderate time and accuracy. Overall, Ours
shows the most robust and Erecise bagging performance.

TABLE II

BAGGING COMPARISON ACROSS MULTIPLE APPROACHES.

Manip. S.R.  Manip. Time (s) Error (cm)

ShakingBot [5] 4/8 39.86 + 3.74 647 £ 1.13
AutoBag [6] 6/8 32.54 £ 4.11 5.36 £+ 0.87
BimaManip. [7] 7/8 4421 £+ 5.81 3.50 + 0.93
Ours 8/8 53.09 £+ 2.92 2.10 £ 0.77
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