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ABSTRACT

AI agents are commonly trained with large datasets of demonstrations of human
behavior. However, not all behaviors are equally safe or desirable. Desired char-
acteristics for an AI agent can be expressed by assigning desirability scores, which
we assume are not assigned to individual behaviors but to collective trajectories.
For example, in a dataset of vehicle interactions, these scores might relate to the
number of incidents that occurred. We first assess the effect of each individual
agent’s behavior on the collective desirability score, e.g., assessing how likely an
agent is to cause incidents. This allows us to selectively imitate agents with a
positive effect, e.g., only imitating agents that are unlikely to cause incidents. To
enable this, we propose the concept of an agent’s Exchange Value, which quan-
tifies an individual agent’s contribution to the collective desirability score. The
Exchange Value is the expected change in desirability score when substituting
the agent for a randomly selected agent. We propose additional methods for es-
timating Exchange Values from real-world datasets, enabling us to learn desired
imitation policies that outperform relevant baselines. The project website can be
found at https://tinyurl.com/select-to-perfect.

1 INTRODUCTION

Imitating human behaviors from large datasets is a promising technique for achieving human-AI
and AI-AI interactions in complex environments (Carroll et al., 2019; , FAIR; He et al., 2023; Shih
et al., 2022). However, such large datasets can contain undesirable human behaviors, making direct
imitation problematic. Rather than imitating all behaviors, it may be preferable to ensure that AI
agents imitate behaviors that align with predefined desirable characteristics. In this work, we assume
that desirable characteristics are quantified as desirability scores given for each trajectory in the
dataset. This is commonly the case when the evaluation of the desirability of individual actions
is impractical or too expensive (Stiennon et al., 2020). Assigning desirability scores to collective
trajectories may be the only viable option for complex datasets that involve multiple interacting
agents. For instance, determining individual player contributions in a football match is difficult,
while the final score is a readily-available measure of team performance.

We develop an imitation learning method for multi-agent datasets that ensures alignment with de-
sirable characteristics – expressed through a Desired Value Function1 (DVF) that assigns a score to
each collective trajectory. This scenario is applicable to several areas that involve learning behavior
from data of human groups. One example is a dataset of vehicle interactions, desirability scores in-
dicating the number of incidents in a collective trajectory, and the aim to imitate only behavior that
is unlikely to result in incidents (e.g., aiming to imitate driving with foresight). Similarly – given
a dataset of social media conversation threads and desirability scores that indicate whether a thread
has gone awry – one may want to only imitate behavior that reduces the chance of conversations
going awry Chang & Danescu-Niculescu-Mizil (2019).

∗frtim@robots.ox.ac.uk †equal supervision
1The DVF itself is not sufficient to describe desired behavior completely, as it possibly only covers a subset

of behavior, e.g., safety-relevant aspects. It is complementary to the more complex and nuanced behaviors that
are obtained by imitating human demonstrations, providing guardrails or additional guidance.
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Figure 1: We are given a dataset composed of multi-agent trajectories generated by many individual
agents, e.g., a dataset of cars driving in urban environments. In addition, the Desired Value Function
(DVF) indicates the desirability score of a collective trajectory, e.g., the number of incidents that
occurred. We first compute the Exchange Value (EV) of each agent, where a positive EV indicates
that an agent increases the desirability score (e.g. an agent driving safely). We reformulate imitation
learning to take into account the computed EVs, and achieve an imitation policy that is aligned with
the DVF (e.g. only imitating the behavior of safe drivers).

Assessing the desirability of an individual agent’s behavior involves gauging its impact on the col-
lective desirability score. For instance, it requires evaluating whether a driver’s behavior increases
the likelihood of accidents, or whether a user’s behavior increases the likelihood of a conversation
going awry. This is termed the credit assignment problem (Shapley, 1953), akin to fairly dividing
the value produced by a group of players among the players themselves. The credit assignment
problem proves complex in real-world scenarios due to three main factors (see Figure 2 for details):
First, many scenarios only permit specific group sizes.This makes Shapley Values (Shapley, 1953)
– a concept commonly used in Economics for credit assignment – inapplicable, as it relies on the
comparisons of groups of different sizes (e.g., Shapley Values are not applicable to football players,
as football is a game of 11 players and a group of 12 is never observed.) Second, real-world datasets
for large groups are almost always incomplete, i.e., they do not contain trajectories for all (com-
binatorially many) possible groups of agents. Third, datasets of human interactions may be fully
anonymized by assigning one-time-use IDs. In this case, if an agent is present in two trajectories, it
will appear in the dataset as if it is two different agents, making the credit assignment problem de-
generate. This requires incorporating individual behavior information in addition to the information
about collective outcomes.

To address these challenges, we propose Exchange Values (EVs), akin to Shapley Values, which
quantify an agent’s contribution as the expected change in desirability when substituting the agent
randomly. The EV of an agent can be understood as the expected change in value when substituting
the agent with another randomly selected agent – or as comparing the average value of all groups
that include the agent to that of all groups not including the agent (see Step 1 in Figure 1). EVs
are applicable to scenarios with fixed group sizes, making them more versatile. We introduce EV-
Clustering that estimates EVs from incomplete datasets by maximizing inter-cluster variance. We
show a theoretical connection to clustering by unobserved individual contributions and adapt this
method to fully-anonymized datasets, by considering low-level behavioral information.

We introduce Exchange Value based Behavior Cloning (EV2BC), which imitates large datasets by
only imitating the behavior of selected agents with EVs higher than a tuneable threshold (see Fig-
ure 1). This approach allows learning from interactions with agents with all behaviors, without
necessarily imitating them. This is not possible when simply excluding all trajectories with a low
collective desirability score, i.e., selectively imitating based on collective scores instead of individual
contributions. We find that EV2BC outperforms standard behavior cloning, offline RL, and selective
imitation based on collective scores in challenging environments, such as the StarCraft Multi-Agent
Challenge (Samvelyan et al., 2019). Our work makes the following contributions:

• We introduce Exchange Values (Def. 4.1) to compute an agent’s individual contribution to a col-
lective value function and show their relation to Shapley Values.

• We propose EV-Clustering (Def. 4.4) to estimate contributions from incomplete datasets and show
a theoretical connection to clustering agents by their unobserved individual contributions.

• We empirically demonstrate how EVs can be estimated from fully-anonymized data and employ
EV2BC (Def. 4.5) to learn policies aligned with the DVF, outperforming relevant baselines.
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Figure 2: Overview of different characteristics of real-world datasets, and whether Shapley Values
and Exchange Values (EVs) are applicable to compute contributions of individual agents to the DVF.

2 RELATED WORK

Most previous work on aligning AI agents’ policies with desired value functions either relies on
simple hand-crafted rules (Xu et al., 2020; , FAIR), which do not scale to complex environments, or
performs postprocessing of imitation policies with fine-tuning (Stiennon et al., 2020; Ouyang et al.,
2022; Glaese et al., 2022; Bai et al., 2022), which requires access to the environment or a simulator.
In language modeling, Korbak et al. (2023) showed that accounting for the alignment of behavior
with the DVF already during imitation learning yields results superior to fine-tuning after-the-fact,
however, their approach considers an agent-specific value function. In contrast, we consider learning
a policy aligned with a collective value function, and from offline data alone.

Credit assignment in multi-agent systems was initially studied in Economics (Shapley, 1953). Sub-
sequently, Shapley Values (Shapley, 1953) and related concepts have been applied in multi-agent
reinforcement learning to distribute rewards among individual agents during the learning pro-
cess (Chang et al., 2003; Foerster et al., 2018; Nguyen et al., 2018; Wang et al., 2020; Li et al.,
2021; Wang et al., 2022). Outside of policy learning, Heuillet et al. (2022) used Shapley Values to
analyze agent contributions in multi-agent environments, however this requires privileged access to
a simulator, in order to replace agents with randomly-acting agents. In contrast to Shapley Values,
the applicability of EVs to all group sizes allows us to omit the need to simulate infeasible coalitions.

In contrast to this work, existing work in multi-agent imitation learning typically assumes observa-
tions to be generated by optimal agents, as well as simulator access (Le et al., 2017; Song et al.,
2018; Yu et al., 2019). Similar to our framework, offline multi-agent reinforcement learning (Jiang
& Lu, 2021; Tseng et al., 2022; Tian et al., 2022) involves policy learning from multi-agent demon-
strations using offline data alone, however, it assumes a dense reward signal to be given, while the
DVF assigns a single score per collective trajectory.

In single-agent settings, a large body of work investigates estimating demonstrator expertise to en-
hance imitation learning (Chen et al., 2021; Zhang et al., 2021; Cao & Sadigh, 2021; Sasaki &
Yamashina, 2021; Beliaev et al., 2022; Yang et al., 2021). However, these methods do not translate
to the multi-agent setting due to the challenge of credit assignment.

To the best of our knowledge, no prior work has considered the problem of imitating multi-agent
datasets containing mixed behaviors, while ensuring alignment with a collective value function.

3 BACKGROUND AND NOTATION

Markov Game. We consider Markov Games (Littman, 1994), which generalize Markov Decision
Processes (MDPs) to multi-agent scenarios. In a Markov Game, agents interact in a common envi-
ronment. At time step t, each agent (the ith of a total of m agents) takes the action ati and the environ-
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ment transitions from state st to st+1. A reduced Markov game (without rewards) is then defined by
a state space S (st ∈ S), a distribution of initial states η, the action space Ai (ati ∈ Ai) of each agent
i, an environment state transition probability P (st+1|st, a1, . . . , am) and the episode length T . We
denote this Markov Game as M = (S,A, P, T ), with collective trajectories τ = (s0,a0, . . . , sT ).

Set of multi-agent demonstrations generated by many agents. We consider a Markov game M
of m agents and a set of demonstrator agents N = {1, ..., n} where n ≥ m. The Markov Game
is further assumed to be symmetric (we can change the ordering of players without changing the
game). The demonstration set D captures interactions among various groups of agents in M. Every
entry Di = (si, τsi) contains a trajectory τsi for a group of agents si ⊆ N . Notably, τsi contains
the collective trajectory of all agents in the group si.

Shapley Values. We now define the concept of the Shapley Value of an agent (Shapley, 1953),
which is commonly used to evaluate the contributions of individual agents to a collective value
function in a characteristic function game. Definition 3.2 below is somewhat unconventional but can
be easily seen to be equivalent to the standard definition.
Definition 3.1 (Characteristic function game). A characteristic function game G is given by a pair
(N, v), where N = {1, . . . , n} is a finite, non-empty set of agents and v : 2N → R is a characteristic
function, which maps each group (sometimes also referred to as coalition) C ⊆ N to a real number
v(C); it is assumed that v(∅) = 0. The number v(C) is referred to as the value of the group C.

Given a characteristic function game G = (N, v), let ΠN\{i} denote the set of all permutations
of N\{i}, i.e., one-to-one mappings from N\{i} to itself. For each permutation π ∈ ΠN\{i}, we
denote by Sπ(m) the slice of π up until and including position m; we think of Sπ(m) as the set of
all agents that appear in the first m positions in π (note that Sπ(0) = ∅). The marginal contribution
of an agent i with respect to a permutation π and a slice m in a game G = (N, v) is given by

∆G
m,π(i) = v(Sπ(m) ∪ {i})− v(Sπ(m)).

This quantity measures the increase in the value of the group when agent i joins them. We can now
define the Shapley Value of an agent i: it is simply the agent’s average marginal contribution, where
the average is taken over all permutations of the set of all other agents N\{i} and all slices.
Definition 3.2 (Shapley Value). Given a characteristic function game G = (N, v) with |N | = n,
the Shapley Value of an agent i ∈ N is denoted by SVi(G) and is given by

SVi(G) = 1/n! ·∑n−1
m=0

∑
π∈ΠN\{i}

∆G
m,π(i). (1)

Def. 3.2 is important in the context of credit assignment, as a possible solution for distributing
collective value to individual agents. It also has several consistency properties (Shapley, 1953).

4 METHODS

Problem setting. Given a dataset D of trajectories generated by groups of interacting agents and
a Desired Value Function (DVF), the goal of our work is to learn an imitation policy for a single
agent that is aligned with the DVF. We assume that a fraction of the demonstrator agents’ behavior
is undesirable; specifically, their presence in a group significantly reduces the DVF. Further, we
assume that the number of demonstrator agents is much larger than the group size.

Overview of the methods section. To evaluate agents’ contributions in games that only permit
specific group sizes, we first define the concept of EVs (Def. 4.1) for regular characteristic function
games (Def. 3.1). We then show that our definition extends naturally to characteristic function
games with constraints on permitted group sizes. We finally derive methods to estimate EVs from
real-world datasets with limited observations (see Figure 2 for an overview).

4.1 EXCHANGE VALUES TO EVALUATE AGENTS’ INDIVIDUAL CONTRIBUTIONS

Note that each term of the Shapley Value, denoted ∆G
m,π(i), requires computing the difference in

values between two groups of different sizes, with and without an agent i (see Def. 3.2). If we wish
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to only compare groups with the same size, then a natural alternative is to compute the difference in
values when the agent at position m is replaced with agent i:

ΓG
m,π(i) = v(Sπ(m− 1) ∪ {i})− v(Sπ(m)). (2)

We call this quantity the exchange contribution of i, given a permutation of agents π sliced at posi-
tion m. It represents the added value of agent i in a group. Importantly it does not require values of
groups of different sizes.

We now define the EV analogously to the Shapley Value as the average exchange contribution over
all permutations of N\{i} and all non-empty slices.
Definition 4.1 (Exchange Value). Given a characteristic function game G = (N, v) with |N | = n,
the Exchange Value of an agent i ∈ N is denoted by EVi(G) and is given by

EVi(G) = ((n− 1)! · (n− 1))−1 ·∑n−1
m=1

∑
π∈ΠN\{i}

ΓG
m,π(i). (3)

In words, the EV of an agent can hence be understood as the expected change in value when substi-
tuting the agent with another randomly selected agent, or as comparing the value of all groups that
include the agent to that of all groups that do not include the agent (see Step 1 in Figure 1).

Relationship between Shapley Value and Exchange Value. It can be shown that the Exchange
Values of all agents can be derived from their Shapley Values by a simple linear transformation:
we subtract a fraction of the value of the grand coalition N (group of all agents) and scale the
result by n/n−1: EVi(G) = n

n−1 (SVi(G) − 1/n · v(N)). The proof proceeds by computing the
coefficient of each term v(C), C ⊆ N , in summations (1) and (3) (see Appendix A). Hence, the
Shapley Value and the Exchange Value order the agents in the same way. Now, recall that the
Shapley Value is characterized by four axioms, namely, dummy, efficiency, symmetry, and linearity
(Shapley, 1953). The latter two are also satisfied by the Exchange Value: if v(C∪{i}) = v(C∪{j})
for all C ⊆ N \ {i, j}, we have EVi(G) = EVj(G) (symmetry), and if we have two games G1

and G2 with characteristic functions v1 and v2 over the same set of agents N , then for the combined
game G = (N, v) with the characteristic function v given by v(C) = v1(C) + v2(C) we have
EVi(G) = EVi(G1) + EVi(G2) (linearity). The efficiency property of the Shapley Value, i.e.,∑

i∈N SVi(G) = v(N) implies that
∑

i∈N EVi(G) = 0. In words, the sum of all agents’ EV is
zero. The dummy axiom, too, needs to be modified: if an agent i is a dummy, i.e., v(C∪{i}) = v(C)
for every C ⊆ N \ {i} then for the Shapley value we have SVi(G) = 0 and hence EVi(G) =
−1/n−1 · v(N), In each case, the proof follows from the relationship between the Shapley Value and
the Exchange Value and the fact that the Shapley Value satisfies these axioms (see Appendix A).

4.1.1 COMPUTING EXCHANGE VALUES IF ONLY CERTAIN GROUP SIZES ARE PERMITTED

For a characteristic function game G = (N, v) the value function v can be evaluated for each possible
group C ⊆ N . We now consider the case where the value function v is only defined for groups of
certain sizes m ∈ M , i.e. v is only defined for a subset of groups of certain sizes.
Definition 4.2 (Constrained characteristic function game). A constrained characteristic function
game Ḡ is given by a tuple (N, v,M), where N = {1, . . . , n} is a finite, non-empty set of agents,
M ⊆ {0, . . . , n − 1} is a set of feasible group sizes and v : {C ∈ 2N : |C| ∈ M} → R is a
characteristic function, which maps each group C ⊆ N of size |C| ∈ M to a real number v(C).

Note that both the Shapley Value and the EV are generally undefined for constrained characteristic
function games, as the value function is not defined for groups C of size |C| /∈ M . The definition
of the Shapley Value cannot easily be adapted to constrained characteristic function games, as its
computation requires evaluating values of groups of different sizes. In contrast, the definition of the
EV can be straightforwardly adapted to constrained characteristic function games by limiting the
summation to slices of size m ∈ M+, where M+ = {m ∈ M : m > 0}. Hence, we define the
Constrained EV as the average exchange contribution over all permutations of N\{i} and over all
slices of size m ∈ M+.
Definition 4.3 (Constrained Exchange Value). Given a constrained characteristic function game
Ḡ = (N, v,M) with |N | = n, the Constrained Exchange Value of an agent i ∈ N is denoted by
EVi(Ḡ) and is given by EVi(Ḡ) = ((n− 1)! · |M+|)−1 ·∑m∈M+

∑
π∈ΠN\{i}

ΓḠ
m,π(i).
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We refer to the Constrained EV and EV interchangeably, as they are applicable to different settings.
If some groups are not observed, we can achieve an unbiased estimate of the EV by sampling groups
uniformly at random. The expected EV is EVi(Ḡ) = Em∼U(M+),π∼U(ΠN\{i})

[
ΓḠ
m,π(i)

]
. This

expectation converges to the true EV in the limit of infinite samples.

As outlined in Step 1 in Figure 1, the EV of an agent is a comparison of the value of a group that
includes the agent and a group that does not include the agent, considering all permitted group sizes.

4.2 ESTIMATING EXCHANGE VALUES FROM LIMITED DATA

The EV assesses the contribution of an individual agent and is applicable under group size limita-
tions in real-world scenarios (see Group-Limited in Figure 2). However, exactly calculating EVs
is almost always impossible as real-world datasets likely do not contain observations for all (combi-
natorially many) possible groups (Low-Data in Figure 2). We first show a sampling-based estimate
(Section 4.2) of EVs, which may have a high variance for EVs of agents that are part of only a few
trajectories (outcomes). Next, we introduce a novel method, EV-Clustering (Section 4.2.1), which
clusters and can be used to reduce the variance. When datasets are anonymized with one-time-use
IDs, each demonstrator is only observed as part of one group (see Degenerate in Figure 2), ren-
dering credit assignment degenerate, as explained in Section 4.2.1. We address this by incorporating
low-level behavior data from the trajectories τ .

4.2.1 EV-CLUSTERING IDENTIFIES SIMILAR AGENTS

In the case of very few agent observations, the above-introduced sampling estimate has a high vari-
ance. One way to reduce the variance is by clustering: if we knew that some agents tend to contribute
similarly to the DVF, then clustering them and estimating one EV per cluster (instead of one EV per
agent) will use more samples and thereby reduce the variance. Note that, as our focus is on accu-
rately estimating EVs, we do not consider clustering agents by behavior here, as two agents may
exhibit distinct behaviors while still contributing equally to the DVF.

We propose EV-Clustering, which clusters agents such that the variance in EVs across all agents
is maximized. In Appendix A we show that EV-Clustering is equivalent to clustering agents by
their unobserved individual contribution, under the approximation that the total value of a group
is the sum of the participating agents’ individual contributions, an assumption frequently made for
theoretical analysis (Lundberg & Lee, 2017; Covert & Lee, 2021), as it represents the simplest non-
trivial class of cooperative games. Intuitively, if we choose clusters that maximize the variance in
EVs across all agents, all clusters’ EVs will be maximally distinct. An example of poor clustering
is a random partition, which will have very similar EVs across clusters (having low variance).

Specifically, we assign n agents to k ≤ n clusters K = {1, . . . , k − 1}, with individual cluster
assignments u = {u0, ..., un−1}, where ui ∈ K. We first combine the observations of all agents
within the same cluster by defining a clustered value function ṽ(C) that assigns a value to a group
of cluster-centroid agents C ⊆ K by averaging over the combined observations, as ṽ(C) = 1/η ·∑n−1

m=0

∑
π∈ΠN

v(Sπ(m)) · 1({uj | j ∈ Sπ(m)} = C), where η is a normalization constant. The
EV of an agent i is then given as EVi(G̃), with G̃ = (K, ṽ), thereby assigning equal EVs to all
agents within one cluster.

Definition 4.4 (EV-Clustering). We define the optimal cluster assignments u∗ such that the variance
in EVs across all agents is maximized:

u∗ ∈ argmaxuVar([EV0(G̃), . . . , EVn−1(G̃)]). (4)

We show in Appendix B.1 that this objective is equivalent to clustering agents by their unobserved
individual contributions, under the approximation of an additive value function.

4.2.2 DEGENERACY OF THE CREDIT ASSIGNMENT PROBLEM FOR FULLY-ANONYMIZED DATA

If two agents are observed only once in the dataset and as part of the same group, equal credit must
be assigned to both due to the inability to separate their contributions. Analogously, when all agents
are only observed once, credit can only be assigned to groups, resulting in the degenerate scenario
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Table 1: Resulting performance with re-
spect to the DVF for different imitation
learning methods in different Starcraft sce-
narios.

Method 2s3z 3s vs 5z 6h vs 8z

BC 12.14 ± 1.8 13.10 ± 2.0 8.56 ± 0.6
Group-BC 15.41 ± 2.4 16.63 ± 1.9 9.10 ± 0.9
EV2BC (Ours) 17.38 ± 1.6 20.31 ± 2.4 10.0 ± 0.91
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Figure 3: Mean error in estimating EVs with decreas-
ing number of observations. ‘Deg.’ refers to the fully
anonymized degenerate case. Error decreases signif-
icantly if agents are clustered (green-shaded area).

that all agents in a group are assigned the same credit (e.g. are assigned equal EV). We solve this by
combining low-level behavior information from trajectories τ with EV-Clustering (see Sec. 5.1).

4.3 EXCHANGE VALUE BASED BEHAVIOR CLONING (EV2BC)

Having defined the EV of an individual agent and different methods to estimate it, we now define a
variation of Behavior Cloning (Pomerleau, 1991), which takes into account each agent’s contribution
to the desirability value function (DVF). We refer to this method as EV2BC. Essentially, EV2BC
imitates only actions of selected agents that have an EV larger than a tunable threshold parameter.

Definition 4.5 (EV based Behavior Cloning (EV2BC)). For a set of demonstrator agents N , a
dataset D, and a DVF, we define the imitation learning loss for EV2BC as

LEV 2BC(θ) = −∑
n∈N

∑
(si,an

i )∈D log(πθ(ani |si)) · 1(EV DV F
n > c) (5)

where EV DV F
n denotes the EV of agent n and where c is a tunable threshold parameter that trades

off between including data of agents with higher contributions to the DVF and reducing the total
amount of training data used.

5 EXPERIMENTS

The environments that we consider only permit certain group sizes, hence we use constrained EVs
(see Def. 4.3). We run all experiments for five random seeds and report mean and standard deviation
where applicable. For more details on the implementation, please refer to the Appendix. In the
following experiments, we first evaluate EVs as a measure of an agent’s contribution to a given DVF.
We then assess the average estimation error for EVs as the number of observations in the dataset D
decreases and how applying clustering decreases this error. We lastly evaluate the performance of
Exchange Value based Behaviour Cloning (EV2BC, see Definition 4.5) for simulated and human
datasets and compare to relevant baselines, such as standard Behavior Cloning (Pomerleau, 1991)
and Offline Reinforcement Learning (Pan et al., 2022).

In Tragedy of the Commons (Hardin, 1968) (ToC) multiple individuals deplete a shared resource. It
is a social dilemma scenario often studied to model the overexploitation of common resources (Di-
etz et al., 2003; Ostrom, 2009). We model ToC as a multi-agent environment and consider three
DVFs representing different measures of social welfare: the final pool size vfinal, the total resources
consumed vtotal, and the minimum consumption among agents vmin.

Overcooked (Carroll et al., 2019) is a two-player game simulating a cooperative cooking task requir-
ing coordination and is a common testbed in multi-agent research. Within Overcooked, we consider
the configurations Cramped Room and Coordination Ring (displayed in Figure 4). For each envi-
ronment configuration, we generate two datasets by simulating agent behaviors using a near-optimal
planning algorithm, where we use a parameter λ to determine an agent’s behavior. For λ = 1 agents
act (near)-optimal, for λ = −1 agents act adversarially. We refer to λ as the agent’s trait, as it acts as
a proxy for the agent’s individual contribution to the collective value function. Each demonstration
dataset D is generated by n = 100 agents, and trajectories τ are of length 400. The adversarial
dataset Dadv is comprised of 25% adversarial agents with λ = −1 and 75% (near)-optimal agents
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with λ = 1, while for the dataset Dλ agents were uniformly sampled between λ = −1 and λ = 1.
The Dhuman dataset was collected from humans playing the game (see Carroll et al. (2019)); it is
fully anonymized with one-time-use agent identifiers, hence is a degenerate dataset (see Figure 2
bottom row). We consider the standard value function given for Overcooked as the DVF, i.e. the
number of soups prepared by both agents over the course of a trajectory.

The StarCraft Multi-Agent Challenge (Samvelyan et al., 2019) is a cooperative multi-agent en-
vironment that is partially observable, involves long-term planning, requires strong coordination,
and is heterogeneous. We consider the settings 2s3z, 3s_vs_5z and 6h_vs_8z, which involve
teams of 3-6 agents. For each, we generate a pool of 200 agents with varying capabilities by extract-
ing policies at different epochs, and from training with different seeds. We generate a dataset that
contains simulated trajectories of 100 randomly sampled groups (out of 109 possible groups) and
use the environment’s ground truth reward function to assign DVF scores according to the collective
performance of agents.

Exchange Values assess an agent’s individual contribution to a collective value function. To
analyze EVs as a measure for an agent’s individual contribution to a DVF, we consider full datasets
that contain demonstrations of all possible groups, which allows us to estimate EVs accurately.
In ToC, we find that the ordering of agents broadly reflects our intuition: Taking more resources
negatively impacts the EVs, and agents consuming the average of others have less extreme EVs. The
color-coded ordering of agents under different DVFs in shown in Figure 7 in App. C. In Overcooked,
we consider the two simulated datasets (Dadv and Dλ) but not the human dataset, as the individual
contribution is unknown for human participants. We find that EVs of individual agents are strongly
correlated with their trait parameter λ, which is a proxy for the agent’s individual contribution, and
provide a plot that shows the relationship between λ and EV in Figue 5 in App. B.

5.1 ESTIMATING EVS FROM INCOMPLETE DATA

Estimation error for different dataset sizes. We now turn to realistic settings with missing data,
where EVs must be estimated (Sec. 4.2). For both ToC and Overcooked, we compute the mean
estimation error in EVs if only a fraction of the possible groups is contained in the dataset. As
expected, we observe in Fig. 3 that the mean estimation error increases as the fraction of observed
groups decreases, with the largest estimation error for fully anonymized datasets (see Fig. 3 – Deg.).

Estimating EVs from degenerate datasets with EV-Clustering. To estimate EVs from degen-
erate datasets, we first obtain behavior embeddings from the low-level behavior information given
in the trajectories τ in D. Specifically, in Overcooked and ToC, we concatenate action frequencies
in frequently observed states. In Starcraft, we use TF-IDF (Spärck Jones, 1972) to obtain behav-
ior embeddings. We then compute a large number of possible cluster assignments for the behavior
embeddings using different methods and hyperparameters. In accordance with the objective of EV-
Clustering, we choose the cluster assignment with the highest variance in EVs. We observe in
Figure 3 that clustering significantly decreases the estimation error (see Deg. clustered).

5.2 IMITATING DESIRED BEHAVIOR BY UTILIZING EVS

We now evaluate EV2BC in all domains. In accordance with the quantity of available data, we set
the threshold parameter such that only agents with EVs above the 90th, 67th, and 50th percentile
are imitated in ToC, Starcraft, and Overcooked, respectively. We replicate the single-agent EV2BC
policy for all agents in the environment and evaluate the achieved collective DVF score. As base-
lines, we consider (1) BC, where Behavior Cloning (Pomerleau, 1991) is done with the full dataset
without correcting for EVs, (2) offline multi-agent reinforcement OMAR (Pan et al., 2022) with the
reward at the last timestep set to the DVF’s score for a given trajectory (no per-step reward is given
by the DVF) and (3) Group BC, for which only collective trajectories with a DVF score larger than
the relevant percentile are included. While EV2BC is based on individual agents’ contributions, this
last baseline selectively imitates data based on group outcomes. For instance, if a collective trajec-
tory includes two aligned agents and one unaligned agent, the latter baseline is likely to imitate all
three agents. In contrast, our approach would only imitate the two aligned agents.
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Table 2: Resulting performance with respect to the DVF for different imitation learning methods in
the Overcooked environments Cramped Room (top) and Coordination Ring (bottom). In Tragedy of
Commons: 12 agents experiment at the top, 120 agents experiment at the bottom.

Overcooked Tragedy of Commons

Imitation method Dλ Dadv Dhuman vfinal vtotal vmin

BC (Pomerleau, 1991) 10.8 ± 2.14 40.8 ± 12.7 153.34 ± 11.5 2693.6 ± 139.1 50.6 ± 2.4 ± 0.45
Group-BC 54.2 ± 5.45 64.8 ± 7.62 163.34 ± 6.08 5324.2 ± 210.8 100.01 ± 20.08 4.60 ± 1.01
OMAR (Pan et al., 2022) 6.4 ± 3.2 25.6 ± 8.9 12.5 ± 4.5 - - -
EV2BC (ours) 91.6 ± 12.07 104.2 ± 10.28 170.89 ± 6.8 10576.8 ± 307.4 342.8 ± 49.36 44.2 ± 6.4

BC (Pomerleau, 1991) 15.43 ± 4.48 10.4 ± 6.8 104.89 ± 12.44 2028.8 ± 60.9 38.9 ± 10.4 1.8 ± 0.4
Group-BC 24 ± 4.69 14.6 ± 2.48 102.2 ± 6.19 3400.5 ± 100.9 77.1 ± 14.1 3.51 ± 1.6
OMAR (Pan et al., 2022) 12.43 ± 3.35 9.5 ± 3.5 12.4 ± 6.0 - - -
EV2BC (ours) 30.2 ± 6.91 12.4 ± 2.65 114.89 ± 5.08 8123.4 ± 600.8 270.0 ± 50.0 33.1 ± 7.1

ToC results. We imitate datasets of 12 agents and 120 agents, with group sizes of 3 and 10, re-
spectively, evaluating performance for each of the three DVFs defined for the ToC environment. We
do not consider the OMAR baseline as policies are not learned but rule-based. Table 1 demonstrates
that EV2BC outperforms the baselines by a large margin.

Overcooked results. We now consider all datasets Dadv, Dλ and Dhuman in both Overcooked
environments. We evaluate the performance achieved by agents with respect to the DVF (the envi-
ronment value function of maximizing the number of soups) when trained with different imitation
learning approaches on the different datasets. EVs are computed as detailed in Section 5.1. Table 1
shows that EV2BC clearly outperforms the baseline approaches. We further note that EV2BC sig-
nificantly outperforms baseline approaches on the datasets of human-generated behavior, for which
EVs were estimated from a fully-anonymized real-world dataset. This demonstrates that BC on
datasets containing unaligned behavior carries the risk of learning wrong behavior, but it can be
alleviated by weighting the samples using estimated EVs.

Starcraft Results. We observe in Table 1 that EV2BC outperforms the baselines by a substantial
margin, underlining the applicability of our method to larger and more complex settings. We omitted
the OMAR baseline, which is implemented as offline MARL with the DVF as the final-timestep
reward, as it performed significantly worse than BC.

6 CONCLUSION

Our work presents a method for training AI agents from diverse datasets of human interactions
while ensuring that the resulting policy is aligned with a given desirability value function. However,
it must be noted that quantifying this value function is an active research area. Shapley Values and
Exchange Values estimate the alignment of an individual with a group value function (which must be
prescribed separately) and, as such, can be misused if they are included in a larger system that is used
to judge those individuals in any way. Discrimination of individuals based on protected attributes
is generally unlawful, and care must be taken to avoid any discrimination by automated means.
We demonstrated a novel positive use of these methods by using them to train aligned (beneficial)
agents, that do not imitate negative behaviors in a dataset. We expect that the benefits of addressing
the problem of unsafe behavior by AI agents outweigh the downsides of misuse of Shapley Values
and Exchange Values, which are covered by existing laws.

Future work may address the assumption that individual agents behave similarly across multiple tra-
jectories and develop methods for a more fine-grained assessment of desired behavior. Additionally,
exploring how our framework can more effectively utilize data on undesired behavior is an inter-
esting avenue for further investigation, e.g., developing policies that are constrained to not taking
undesirable actions. Lastly, future work may investigate applications to real-world domains, such as
multi-agent autonomy scenarios.

Reproducibility. To help reproduce our work, we publish code on the project website at https:
//tinyurl.com/select-to-perfect. We provide detailed overviews for all steps of the exper-
imental evaluation in the Appendix, where we also link to the publicly available code repositories
that our work used. We further provide information about computational complexity at the end of
the Appendix.
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A APPENDIX TO METHODS

A.1 AXIOMATIC PROPERTIES OF THE EXCHANGE VALUE AND ITS RELATIONSHIP WITH THE
SHAPLEY VALUE

Fix a characteristic function game G with a set of players N . It is well-known that the Shapley Value satisfies
the following axioms (Shapley, 1953):

(1) Dummy: if an agent i satisfies v(C ∪ {i}) = v(C) for all C ⊆ N \ {i} then SVi(G) = 0;
(2) Efficiency: the sum of all agents’ Shapley Values equals to the value of the grand coalition, i.e.,∑

i∈N SVi(G) = v(N);

(3) Symmetry: for every pair of distinct agents i, j ∈ N with v(C ∪ {i}) = v(C ∪ {j}) for all C ⊆ N \ {i, j}
we have SVi(G) = SVj(G);

(4) Linearity: for any pair of games G1 = (N, v1) and G2 = (N, v2) with the same set of agents N , the game
G = (N, v) whose characteristic funciton v is given by v(C) = v1(C) + v2(C) for all C ⊆ N satisfies
SVi(G) = SVi(G1) + SVi(G2) for all i ∈ N .

Indeed, the Shapley Value is the only value for characteristic function games that satisfies these axioms (Shap-
ley, 1953). It is then natural to ask which of these axioms (or their variants) are satisfied by the Exchange
Value.

To answer this question, we first establish a relationship between the Shapley Value and the Exchange Value.
Proposition A.1. For any characteristic function game G = (N, v) and every agent i ∈ N we have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
. (6)

Proof. Fix an agent i and consider an arbitrary non-empty coalition C ⊊ N \ {i}.

In the expression for the Shapley Value of i the coefficient of v(C) is

− 1

n!
(|C|)!(n− 1− |C|)! :

we subtract the fraction of permutations of N where the agents in C appear in the first |C| positions, followed
by i. By the same argument, the coefficient of v(C ∪ {i}) is

1

n!
(|C|)!(n− 1− |C|)!.

Similarly, in the expression for the Exchange Value of i the coefficient of v(C) is

− 1

(n− 1)!(n− 1)
(|C|)!(n− 1− |C|)! :

each permutation of N \ {i} where agents in C appear in the first |C| positions contributes with coefficient
− 1

(n−1)!(n−1)
. By the same argument, the coefficient of v(C ∪ {i}) is

1

(n− 1)!(n− 1)
(|C|)!(n− 1− |C|)!

Now, if C = N \ {i}, in the expression for SVi(G) the coefficient of v(C) is − 1
n

and the coefficient of
v(C ∪ {i}) = v(N) is 1

n
. In contrast, in the expression for EVi(G) the coefficient of v(C) is − 1

n−1
: for each

of the (n − 1)! permutations of N \ {i} we subtract v(C) with coefficient 1
(n−1)!(n−1)

when we replace the
last agent in that permutation by i. On the other hand, v(N) never appears.

It follows that, for every coalition C ⊊ N , if the value v(C) appears in the expression for SHi(G) with weight
ω then it appears in the expression for EVi(G) with weight n

n−1
· ω. Hence

EVi(G) =
n

n− 1

(
SHi(G)− 1

n
· v(N)

)

Example A.2. Consider a characteristic function game G = (N, v), where N = {1, 2} and v is given by
v({1}) = 2, v({2}) = 4, v({1, 2}) = 10. We have

SH1(G) = (2 + (10− 4))/2 = 4, SH2(G) = (4 + (10− 2))/2 = 6

and
EV1(G) = 2− 4 = −2, EV2(G) = 4− 2 = 2.

Note that EV1(G) = 2(SH1(G)− 1
2
v(N)), EV2(G) = 2(SH2(G)− 1

2
v(N)).
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We can use Proposition A.1 to show that the Exchange Value satisfies two of the axioms satisfied by the Shapley
Value, namely, linearity and symmetry.

Proposition A.3. The Exchange Value satisfies symmetry and linearity axioms.

Proof. For the symmetry axiom, fix a characteristic function game G = (N, v) and consider two agents
i, j ∈ N with v(C ∪ {i}) = v(C ∪ {j}) for all C ⊆ N \ {i, j}. We have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
=

n

n− 1

(
SVj(G)− 1

n
· v(N)

)
= EVj(G),

where the first and the third equality follow by Proposition A.1, and the second equality follows because the
Shapley Value satisfies symmetry.

For the linearity axiom, consider a pair of games G1 = (N, v1) and G2 = (N, v2) with the same set of agents
N and the game G = (N, v) whose characteristic funciton v is given by v(C) = v1(C) + v2(C) for all
C ⊆ N . Fix an agent i ∈ N . We have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· (v1(N) + v2(N))

)
=

n

n− 1

(
SVi(G1)−

1

n
· v1(N)

)
+

n

n− 1

(
SVi(G2)−

1

n
· v2(N)

)
= EVi(G1) + EVi(G2).

Again, the first and the third equality follow by Proposition A.1, and the second equality follows because the
Shapley Value satisfies linearity.

While the Exchange Value does not satisfy the dummy axiom or the efficiency axiom, it satisfies appropriately
modified versions of these axioms.

Proposition A.4. For every characteristic function game G it holds that
∑

i∈N EVi(G) = 0. Moreover, if i is
a dummy agent, i.e., v(C ∪ {i}) = V (C) for all C ⊆ N \ {i} then EVi(G) = − v(N)

n−1
.

Proof. We have∑
i∈N

EVi(G) =
∑
i∈N

n

n− 1

(
SVi(G)− 1

n
· v(N)

)
=

∑
i∈N

n

n− 1
SVi(G)− n

n− 1
· v(N)

=
n

n− 1
· v(N)− n

n− 1
· v(N) = 0,

where we use Proposition A.1 and the fact that the Shapley Value satisfies the efficiency axiom.

Now, fix a dummy agent i. We have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
= − 1

n− 1
· v(N);

again, we use Proposition A.1 and the fact that the Shapley Value satisfies the dummy axiom.

A.2 DERIVATION OF CLUSTERING OBJECTIVE STATED IN EQ. 4

Inessential games and EVs. The assumption of an inessential game is commonly made to compute Shap-
ley Values more efficiently2. In an inessential game, the value of a group is given by the sum of the individual
contributions of its members, denoted as v(C) =

∑
i∈C vi, where vi is an individual agent’s unobserved

contribution vi. The EV (see Definition 4.1) of an individual agent i in an inessential game is given as

EV i(G) = vi − 1/|N|−1 ·
∑

j∈N\{i}

vj = (1 + 1/|N|−1) · vi − 1/|N|−1 ·
∑
j∈N

vj ,

This expression represents the difference between the individual contribution of agent i, vi, and the average
individual contribution of all other agents. The second term is independent of i and remains constant across all
agents.

2see, e.g., Covert, I. and Lee, S.I., 2020. Improving kernelshap: Practical shapley value estimation via linear
regression. arXiv preprint arXiv:2012.01536.
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Figure 4: In the Overcooked environments Cramped Room (left) and Coordination Ring (right),
agents must cooperate to cook and deliver as many soups as possible within a given time.

Derivation of equivalent clustering objective. We now consider the optimization problem defined by
Equation 4, which defines optimal cluster assignments u∗ such that the variance in EVs is maximised

u∗ ∈ argmaxuVar([ẼV 0(G̃), . . . , ẼV n−1(G̃)]).

Further, the clustered value function is defined as

ṽ(C) = 1/η ·
∑n−1

m=0

∑
π∈ΠN

v(Sπ(m)) · 1({uj | j ∈ Sπ(m)} = C),

where the normalisation constant is defined as η =
∑n−1

m=0

∑
π∈ΠN

1({uj | j ∈ Sπ(m)} = C). We denote by
ki the individual contribution of the agent that represents the agents in cluster i. The value ki is defined as the
average individual contribution of all agents assigned to the cluster, i.e. ki = 1/ϵ ·

∑
j∈Nvj · 1(u(i) = u(j)).

Here, the normalization constant is given as ϵ =
∑

j∈N 1(u(i) = u(j)).

Using the concept of the clustered value function ṽ, we can express the EV for all agents assigned cluster i as

EV i(G̃) = (1 + 1/|K|−1) · ki − 1/|K|−1 ·
∑
j∈K

kj .

The second term, which is cluster-independent, can be omitted when computing the variance
Var([EV 0(G̃), . . . , EV n−1(G̃)]), as the variance is agnostic to a shift in the data distribution. We will omit
the scaling factor (1 + 1/|K|−1) from here onwards.

Let nj denote the number of agents assigned to cluster j ∈ K, with
∑K−1

i=0 ni = N . By simplifying Equa-
tion 4, we obtain:

Var([EV 0(G̃), . . . , EV n−1(G̃)]) =

K−1∑
i=0

ni ·
(
ki −

∑K−1
j=0 nj ·kj/N

)2

.

This allows us to express the objective stated in Equation 4 as

u∗ ∈ argmaxuVar([k0, . . . , kn−1]).

The objective stated in Equation 4 is therefore equivalent to assigning agents to clusters such that the variance
in cluster centroids (centroids computed as the mean of the unobserved individual contributions vi of all agents
assigned to a given cluster) is maximized.

Table 3: Dataset statistics in Overcooked.

Imitation method Cramped Room Dλ Coordination Ring Dλ Cramped Room Dadv Coordination Ring Dadv

Minimum 0 0 0 0
Mean 20.6± 33.58 12± 19.39 16.91± 40.64 3± 11.15
Maximum 150 80 160 80

B OVERCOOKED EXPERIMENTS

We generate the simulated datasets using the planning algorithm given in Carroll et al. (2019)3. To be able to
simulate agents with different behaviors (from adversarial to optimal), we first introduce a latent trait parameter,

3https://github.com/HumanCompatibleAI/overcooked_ai
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ing methods shown (Behavior clustering and Variance
Clustering). In the case of random cluster assignments,
the within-cluster variance is 5.11± 0.11, while under
optimal cluster assignments, the variance is 0.156. See
section B.1 for discussion.

λ, which determines the level of adversarial or optimal actions for a given agent. A value of λ = 1 represents
a policy that always chooses the best action with certainty. As λ decreases, agents are more likely to select
non-optimal actions. For λ < 0, we invert the cost function to create agents with adversarial behavior. Notably,
we assign a high cost (or low cost when inverted) to occupying the cell next to the counter in the Overcooked
environment. Occupying the cell next to the counter enables adversarial agents to block other agents in the
execution of their tasks.

For human gameplay datasets, we utilized the raw versions of the Overcooked datasets.4 These datasets were
used as-is, without manual pre-filtering.

EVs. To estimate agents’ EVs according to Section 4.2, we used either the full set of all possible groups or a
fraction of it (see Figure 3 for the relationship between dataset size and EV estimation error). For each observed
grouping, we conducted 10 rollouts in the environment and calculated the average score across these rollouts
to account for stochasticity in the environment.

Imitation learning. For EV2BC, BC, and group-BC, we used the implementation of Behavior Cloning in
Overcooked as given by the authors of (Carroll et al., 2019)5. We implement the offline multi-agent reinforce-
ment learning method OMAR (Pan et al., 2022) using the author’s implementation.6 For the OMAR baseline,
we set the reward at the last timestep to the DVF’s score for a given trajectory, as our work assumes that no per-
step reward signal is given, in contrast to the standard offline-RL framework. We conducted a hyperparameter
sweep for the following parameters: learning rate with options {0.01, 0.001, 0.0001}, Omar-coe with options
{0.1, 1, 10}, Omar-iters with options {1, 3, 10}, and Omar-sigma with options {1, 2, 3}. The best-performing
parameters were selected based on the evaluation results.

B.1 CLUSTERING OF AGENTS IN OVERCOOKED

Behavior clustering. The behavior clustering process in the Overcooked environment involves the follow-
ing steps. Initially, we identify the 200 states that are most frequently visited by all agents in the given set
of observations. As the action space in Overcooked is relatively small (≤ 7 actions), we calculate the empir-
ical action distribution for each state for every agent. These 200 action distributions are then concatenated to
form a behavior embedding for each agent. To reduce the dimensionality of the embedding, we apply Principal
Component Analysis (PCA), transforming the initial embedding space into three dimensions. Subsequently, we
employ the k-means clustering algorithm to assign agents to behavior clusters. The number of clusters (3 for
Overcooked) is determined using the ELBOW method (Thorndike, 1953), while linear kernels are utilized for
both PCA and k-means. It is noteworthy that the results are found to be relatively insensitive to the parameters
used in the dimensionality reduction and clustering steps, thus standard implementations are employed for both

4https://github.com/HumanCompatibleAI/human_aware_rl/tree/master/human_
aware_rl/data/human/anonymized

5https://github.com/HumanCompatibleAI/overcooked_ai/tree/master/src/
human_aware_rl/imitation

6https://github.com/ling-pan/OMAR
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Figure 7: Colour-coded ordering of EVs for agents with varying behaviors in Tragedy of the Com-
mons. The brighter, the higher an agent’s contribution to a given value function.

methods (Pedregosa et al., 2011). Importantly, this clustering procedure focuses exclusively on the observed
behavior of agents, specifically the actions taken in specific states, and is independent of the scores assigned to
trajectories by the DVF.

EV-Clustering. In contrast to behavior clustering, EV-Clustering (see Section 4.2.1) focuses solely on the
scores assigned to trajectories by the DVF and disregards agent behavior. The objective of variance clustering
is to maximize the variance in assigned EVs, as stated in Equation 4. To optimize this objective, we utilize the
SLSQP non-linear constrained optimization introduced by Kraft (1988).

We use soft cluster assignments and enforce constraints to ensure that the total probability is equal to one for
each agent. The solver is initialized with a uniform distribution and runs until convergence or for a maximum of
100 steps. Given that the optimization problem may have local minima, we perform 500 random initializations
and optimizations, selecting the solution with the lowest loss (i.e. the highest variance in assigned EVs).

Combining Behavior Clustering and EV Clustering. As described in Sections 4.2.2 and 5.1, behavior
clustering (which utilizes behavior information but disregards DVF scores) and variance clustering (which
utilizes DVF scores but disregards behavior information) are combined to estimate EVs for degenerate datasets.
We initialize the SLSQP solver with the cluster assignments obtained from behavior clustering and introduce a
small loss term in the objective function of Equation 4. This additional loss term, weighted by 0.1 (selected in
a small sensitivity analysis), penalizes deviations from the behavior clusters. Similar to before, we perform 500
iterations while introducing a small amount of noise to the initial cluster assignments at each step. The solution
with the highest variance in assigned EVs is then selected.

Ablation study. We present an ablation study to examine the impact of different components in the cluster-
ing approach discussed in Section 5.1. We proposed two sequential clustering methods: behavior clustering and
variance clustering. This ablation study investigates the performance of both clustering steps when performed
independently, also under the consideration of the fraction of the data that is observed. We assess performance
as the within-cluster variance in the unobserved agent-specific latent trait variable λ, where lower within-cluster
variance indicates higher performance. It is important to note that λ is solely used for evaluating the clustering
steps and not utilized during the clustering process. The results of the ablation study are depicted in Figure 6.

We first discuss EV-Clustering. EV-Clustering as introduced in Seciton 4 generally leads to a significant de-
crease in within-cluster variance in the unobserved variable λ. More specifically, the proposed variance clus-
tering approach (when 50% of data is observed), results in a ∼ 89% reduction of the within-cluster variance
in λ, which validates the approach of clustering agents by their unobserved individual contributions by maxi-
mizing the variance in estimated EVs. However, we observe in Figure 6 that as the fraction of observed data
decreases, the within-cluster variance increases, indicating a decrease in the quality of clustering. The highest
within-cluster variance is observed when using only a single observation (’single-obs’), which corresponds to
a fully-anonymized dataset. This finding is consistent with the fact that a fully-anonymized dataset presents a
degenerate credit assignment problem, as discussed in Section 4.2.2.

We now discuss behavior clustering. Figure 6 shows that behavior clustering generally results in a very low
within-cluster variance. However, it is important to note that these results may not directly translate to real-
world data, as the ablation study uses simulated trajectories. Note that such an ablation study cannot be con-
ducted for the given real-world human datasets, as these are fully anonymized.
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C TRAGEDY OF THE COMMONS EXPERIMENTS

Clustering. We model ToC as a multi-agent environment where agents consume from a common pool of
resources xt, which grows at a fixed rate g = 25% at each time step t: xt+1 = max

(
(1 + g) · xt −

∑
icti, 0

)
,

with cti as the consumption of the ith agent at time t and x0 = 200 as the starting pool. Hence, if all resources
are consumed, none can regrow and no agents can consume more resources. The Tragedy of the Commons
(ToC) environment features 4 different behavior patterns: Take-X consumes X units at every timestep, Take-X-
x-dpl consumes X units if this does not deplete the pool of resources, Take X% consumes X% of the available
resources, and TakeAvg consumes the average of the resources consumed by the other agents at the previous
timestep (0 in the first timestep). For the small-scale experiment of 12 agents, we consider three agents for
each pattern, with X values selected from the set 1, 3, 10. For the large-scale experiment of 120 agents, we
simply replicate each agent configuration 10 times. We simulate both experiments for groups of size 3 and 10,
respectively. We generate a simulated dataset using agents with four different behavior patterns. We first collect
a dataset of observations for a small-scale experiment of 12 agents and simulate ToC for groups of three agents
for 50 time steps (we later consider a group of 120 agents).

Due to the continuous nature of the state and action spaces in ToC, we first discretize both and then apply the
same clustering methods used in the Overcooked scenario. We proceed by computing EVs for all agents as
done in Overcooked (see Figure 3 for results). We implement imitation policies by replicating the averaged
action distributions in the discretized states.

C.1 COMPUTATIONAL DEMAND.

We used an Intel(R) Xeon(R) Silver 4116 CPU and an NVIDIA GeForce GTX 1080 Ti (only for training
BC, EV2BC, group-BC, and OMAR policies). In Overcooked, generating a dataset took a maximum of three
hours, and estimating EVs from a given dataset takes a few seconds. Behavior clustering consumes a couple
of minutes, while Variance clustering takes up to two hours per configuration (note that it is run 500 times).
Training of the BC, group-BC, and EV2BC policies took no more than 30 minutes (using a GPU), while the
OMAR baseline was trained for up to 2 hours. In Tragedy of Commons, each rollout only consumes a couple of
seconds. Clustering times were comparable to those in Overcooked. Computing imitation policies is similarly
only a matter of a few minutes.

D STARCRAFT EXPERIMENTS

Dataset generation. For each environment configuration, we first train agents with the ground truth reward
function for different seeds. We then extract agents at three different timesteps (0%, 50%, and 100%) of the
training. We randomly sample groups of the extracted agents to generate a large set of trajectory rollouts and
record the average score achieved by a group, which serves as the observed DVF score. We anonymize the
dataset by assigning one-time-use IDs to all agents.

Clustering of agents and EV computation. We first extract high-dimensional features from agent tra-
jectories using Term Frequency-Inverse Document Frequency (TF-IDF (Spärck Jones, 1972)) and compute
agent clusters. We compute a large number of possible cluster assignments using different hyperparameters for
TF-IDF and different hyperparameters for spectral clustering. In accordance with the objective of EV cluster-
ing, we then choose the cluster assignment that results in the largest variance in EVs across all agents.

For each individual agent, we extract the action sequence (up to a cutoff of either 1000 or 50000 environment
steps). We then convert the action sequence into a string to apply TD-IDF. This can be thought of as representing
each action as an individual word. This results in a corpus that contains one document per agent.

For the transformation of the corpus into a feature space, we apply the TF-IDF vectorization, parameterized by:

• Min df: Minimum document frequency set at 0.05, ensuring inclusion of terms present in at least 5% of the
documents.

• Max df: Maximum document frequencies tested were 0.3 and 0.9, to filter out terms excessively common
across documents.

• Max features: The upper limit on the number of features considered were set to 100, 000 or 1, 000, 000.
• Ngram range: We explored n-gram ranges of (1, 3), (1, 5), and (1, 10), to capture varying lengths of term

dependencies.

Post TF-IDF vectorization, we use spectral clustering to achieve cluster assignments. We compute clustered
EVs for each possible cluster assignment and choose the cluster assignment with the highest variance in EVs
across all agents. The computed EVs for the highest-variance cluster assignment are then used as the estimated
EVs for all agents.
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Imitation with EV2BC. We apply EV2Bc by filtering for agents with high estimated EVs. We found that
pre-filtering for trajectories with high collective scores significantly improves performance. In other words, we
filter for agents with high estimated EVs in trajectories with high collective scores. We assume that this is the
case as some agents might ‘block’ any progress in trajectories with low collective scores.
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