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ABSTRACT

In recommender systems, selection bias arises from the users’ selective interac-
tions with items, which poses a widely-recognized challenge for unbiased evalu-
ation and learning for recommendation models. Recently, doubly robust and its
variants have been widely studied to achieve debiased learning of prediction mod-
els. However, if the users and items in the training set are not exactly the same as
those in the test set, even if the imputed errors and learned propensities are accu-
rate, all previous doubly robust based debiasing methods are biased. To tackle this
problem, in this paper, we first derive the bias of doubly robust learning methods
and provide alternative unbiasedness conditions when users and items are sampled
from a superpopulation. Then we propose a novel superpopulation doubly robust
target learning approach (SuperDR), which is unbiased when either the imputation
model or propensity model is correctly specified. We further derive the general-
ization error bound of the proposed method under superpopulation, and show that
it can be effectively controlled by the proposed target learning approach. We con-
duct extensive experiments on three real-world datasets, including a large-scale
industrial dataset, to demonstrate the effectiveness of our method.

1 INTRODUCTION

In the era of information explosion, recommender system (RS) plays an increasingly important
role in areas such as e-commerce platforms, news reading, and social media. However, due to the
subjective preferences of users and the data collection process itself, selection bias always exists in
the collected data (Pradel et al., 2012), which poses a widely-recognized challenge (De Myttenaere
et al., 2014; Marlin and Zemel, 2009). Ignoring selection bias makes RS difficult to provide accurate
recommendations to users, thus hurting the user’s experience and reducing social welfare.

Many methods have been proposed to address selection bias. The error imputation based (EIB)
method (Chang et al., 2010; Marlin et al., 2007; Steck, 2010; 2013) utilizes an imputation model to
impute the missing relevance. The inverse propensity score (IPS) method uses inverse propensity to
reweight the observed events to achieve unbiasedness (Imbens and Rubin, 2015; Saito et al., 2020;
Schnabel et al., 2016). The doubly robust (DR) method combines the error imputation model and
the propensity model (Wang et al., 2019; Saito, 2020; Wang et al., 2022; Oosterhuis, 2023), which
is unbiased if either the imputed errors or the learned propensities are accurate, which is also proved
to has smaller variance compared to the IPS method (Saito, 2020; Oosterhuis, 2022).

Although previous methods have demonstrated promising performance in debiasing tasks, their un-
biasedness relies on the assumption that the test set contains exactly the same users and items as
the training set. As illustrated in Figure 1, if the users and items in the training set are randomly
sampled from a larger superpopulation, previous debiasing methods are unbiased only if the test set
contains exactly the same users and items, and are otherwise biased, even if the test set is another
random sampling and the imputed errors and learned propensities are correct. For example, for the
user side in the e-commerce platform, the training set contains users who are active and participate
in transactions, while the whole population is all registered users. One may argue that the training
set should contain all registered users, in this case, the whole population can be regarded as both the
registered and non-registered users. In other words, we can always assume that there exists a larger
population without loss of generality. At this point, for a set of users that have not appeared in the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The drawbacks of previous debiasing methods.

training set, even if the distribution is consistent with the training set, previous debiasing methods
still cannot achieve unbiased recommendations.

To this end, in this paper, we first derive the bias of doubly robust learning methods and provide al-
ternative unbiasedness conditions when users and items are sampled from a superpopulation. Then
we propose a novel superpopulation doubly robust (SuperDR) joint learning approach, which im-
proves the accuracy of the imputed errors and leads to unbiased learning under probabilistic error
imputations and learned propensities. We further derive the generalization error bound when using
the probabilistic models, and show that it can be effectively controlled by the proposed learning
approach. Extensive experiments are conducted on three real-world datasets, including a large-scale
industrial dataset, to demonstrate the effectiveness of our proposal.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first paper that considers the randomness (thus the
additional bias) introduced by the sampling process. In this scenario, we show the bias of
the DR estimator has two terms: a covariance term and a term that measures the accuracy
of learned propensities and imputed errors.

• In order to control the covariance term while obtaining accurately learned propensities and
imputed errors, we propose the SuperDR method based on the target learning approach,
which is unbiased under the new scenario and can effectively control the generalization
bounds.

• We conduct extensive experiments on three real-world datasets, including a large industrial
dataset, to demonstrate the effectiveness of our proposed method.

2 RELATED WORK

There are various biases in the data collected from RS (Chen et al., 2020; Wu et al., 2022), which
have been of increasing concern in recent years (Ai et al., 2018; Saito and Nomura, 2022; Liu et al.,
2021; Zhang et al., 2021; Luo et al., 2021; Liu et al., 2022; Lin et al., 2023). Selection bias is one of
the most common biases in RS and a lot of research has been done aiming to eliminate this kind of
bias (Chen et al., 2021; Guo et al., 2021; Liu et al., 2020; Saito, 2020; Schnabel et al., 2016; Wang
et al., 2019). The error imputation based method (EIB) (Chang et al., 2010; Marlin et al., 2007;
Steck, 2010; 2013) first imputes pseudo-labels for missing events from the observed events, and
then leverages these pseudo-labels to train the prediction model (Dudı́k et al., 2011; Marlin et al.,
2007; Steck, 2013; Wu et al., 2022). An alternative way to eliminate selection bias is to weight
the inverse propensity score (IPS) on the observed data to eliminate bias (Imbens and Rubin, 2015;
Saito et al., 2020; Schnabel et al., 2016). However, IPS will suffer from a large variance when the
extreme values exist in the estimated propensities (Thomas and Brunskill, 2016).

The doubly robust (DR) method improves the weakness of EIB and IPS methods and becomes the
mainstream model due to the weaker unbiasedness conditions and smaller variance than the IPS
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method (Benkeser et al., 2017; Morgan and Winship, 2015; Luo et al., 2021; Li et al., 2023d; Saito,
2020; Wang et al., 2019). In particular, the DR estimator is unbiased when either learned propensities
or imputed errors are accurate. Many augmented DR methods are developed to further enhance the
previous DR method performance by modifying the propensity model and imputation model or
the form of the DR estimator, such as MRDR (Guo et al., 2021), BRD-DR (Ding et al., 2022),
StableDR (Li et al., 2023d), TDR (Li et al., 2023b), DR-MSE (Dai et al., 2022), and DR-BIAS (Dai
et al., 2022). However, these approaches are limited to the use of deterministic error imputation
and propensity models and fail to be unbiased when using probabilistic models to impute errors and
learn propensities. To the best of our knowledge, this is the first paper that extends previous widely
adopted DR methods to be compatible with probabilistic error imputation and propensity models.

3 PRELIMINARIES

We start with the classic scenario. Suppose the user set U = {u1, u2, . . . , um} contains m users, the
item set I = {i1, i2, . . . , in} contains n items, and denote the set of all user-item pairs as D = U×I.
Let R ∈ Rm×n be the ground truth rating matrix of all user-item pairs, where ru,i is the rating of
user u on item i. Let xu,i be the feature of user u and item i, and r̂u,i = f(xu,i; θ) is the predicted
rating by a prediction model, θ is the corresponding parameter. Denote R̂ ∈ Rm×n as the matrix
contains all the predicted ratings. Let O ∈ {0, 1}m×n be the binary observation indicator matrix for
all user-item pairs, ou,i = 1 indicates the rating of user u on item i is observed, otherwise missing
ou,i = 0. The purpose of RS is to train a prediction model to accurately predict all ratings. If all the
ratings are observed, the prediction model can be trained directly by minimizing the ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i) is the loss between the predicted rating r̂u,i and the true rating ru,i and
L(·, ·) is an arbitrary loss function. However, the ideal loss is not available in most cases because
we can only observe partial biased data. To tackle this issue, the DR estimator has been proposed:

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

where p̂u,i = π(xu,i;ψ) is the propensity model to estimate pu,i := P(ou,i = 1 | xu,i), and êu,i is
the imputation model to impute the missing eu,i.

Below, we focus on the theoretical properties of the DR estimator and start from the widely-known
conclusions for the bias form for DR estimator.
Lemma 1 (Bias of DR Estimator (Wang et al., 2019)). Given imputed errors êu,i and learned
propensities p̂u,i > 0 for all user-item pairs, when considering only the randomness of rating miss-
ing indicators, the bias of the DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.

We find that either êu,i = eu,i or p̂u,i = pu,i is sufficient to eliminate bias under deterministic
models, which inspires the double robustness condition for the DR method.
Corollary 1 (Double Robustness (Wang et al., 2019)). The DR estimator is unbiased when either
imputed errors êu,i or learned propensities p̂u,i are accurate, i.e., either êu,i = eu,i or p̂u,i = pu,i.

4 PROPOSED METHOD

4.1 FROM FINITE POPULATION TO SUPERPOPULATION

The above Lemma 1 shows the bias form of the DR estimator when users and items in the train-
ing set and the users and items in the test set are exactly the same. However, as we discussed
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earlier, this assumption does not hold in many real-world scenarios. Formally, in such a gen-
eral scenario, we denote U = {u1, u2, ...}, I = {i1, i2, ...} are the user set and item set, and
Dtrain = {u1, u2, . . . , um}×{i1, i2, . . . , in} and Dtest = {uj1 , uj1 , . . . , ujm′}×{ik1 , ik2 , . . . , ikn′}
are sampled from the whole user set and item set, respectively. Without loss of generality, we as-
sume that the sampling strategy is the same for both Dtrain and Dtest datasets (otherwise, we can
adjust the sampling strategy by using reweighting). Note that the learned imputed error êu,i no
longer estimates eu,i, but estimates the error expectation E(eu,i | xu,i), and the learned propensity
p̂u,i estimates E(pu,i | xu,i). The following theorem and corollary show the bias and the adjusted
DR property for the DR estimator.
Theorem 1 (Bias of DR Estimator under Superpopulation). Given probabilistic error imputation
model êu,i and probabilistic propensity model p̂u,i, consider all variables are random, then the bias
of the DR estimator is

BiasP [EDR(θ)] = Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

Corollary 2 (Double Robustness under Superpopulation). The DR estimator is unbiased when
both the following conditions hold:

(i) The covariance term vanishes, i.e., Cov
(
p̂u,i−ou,i
p̂u,i

, eu,i − êu,i

)
= 0;

(ii) Either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i].

Compared with the existing theoretical results as in Lemma 1, it is obvious that condition (ii) is
necessary to achieve unbiasedness, which directly extends the conditions of accurate imputed errors
and learned propensities in Lemma 1 to the expectation form. However, note that the condition
(i) that covariance vanishes is also needed for the unbiasedness under superpopulation scenario.
Therefore, it is necessary to modify the previous DR learning approach to control the covariance
and simultaneously learn accurate propensity and imputation models.

4.2 THE PROBABILISTIC DR ESTIMATOR

It is important to note that the true covariance is unknown because we cannot access the true data dis-
tribution. However, we can use the empirical covariance over all user-item pairs as an approximation
of the true covariance. We first give the definition of empirical covariance.
Definition 1 (Empirical Covariance). The empirical expected conditional covariance between
(p̂u,i − ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

A direct method to control the empirical covariance is to regard it as a regularization term. How-
ever, since the data are partially observed, we cannot obtain the value of the empirical covariance
on all user-item pairs. In addition, the large penalty term may hurt the prediction performance. In-
terestingly, we found that the empirical covariance can be controlled with subtle changes to the DR
estimator. Specifically, we designed imputation balancing correction as follows:

ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)).

Motivated by targeted maximum likelihood estimation (van der Laan and Rose, 2011), we add a
correction term ϵ(ou,i − π(xu,i;ψ)) on êu,i, which has zero mean under accurate π(xu,i;ψ), thus
will not bring extra bias to the imputation model. We then learn ϕ and ϵ in ẽu,i by minimizing

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+ v∥ϕ∥2F ,

4
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where ∥ · ∥2F is the Frobenius norm. This proposed loss has several desired properties. First, the
derivatives on the proposed loss with respect to ϵ are shown below:

∂

∂ϵ
LBale (ϕ, ϵ) =

2

|D|
∑

(u,i)∈O

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i).

It has the same form as the empirical covariance for user-item pairs with ou,i = 1, which means
that we can make the empirical covariance for observed user-item pairs to exact zero by minimizing
the LBale directly. Meanwhile, the gradient contains ϵ when taking the derivatives with respect to
ϕ, which indicates a well-learned ϵ can lead to a more accurate ϕ to further ensure unbiasedness.
Moreover, the unobserved empirical covariance can also be bounded by LBale using the concentra-
tion inequality. Theorem 2 below shows the controllability of empirical covariance.
Theorem 2 (Controllability of Empirical Covariance). The boosted imputation model trained by the
balanced enhanced imputation loss is sufficient for controlling the empirical covariance.

(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have

∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ,
then with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤
√

LBale (ϕ, ϵ) +Kϕ ·

√√√√ 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
+

√√√√Kϕ

(
1 +

1

Kψ

)(
2R(F) + (2Kϕ + 1)

√
2 log(4/η)

|D|

)
.

Note that the proposed imputation balancing correction has no harm property. That is, when the êu,i
has already ensured the empirical covariance to zero, the ϵ will converge to zero to degrade.
Corollary 3 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero
when the probabilistic imputation model êu,i has already led to zero empirical covariance, making
ẽu,i degenerates to êu,i.

In addition, Corollary 4 shows that the proposed imputation balancing correction can not only con-
trol the empirical covariance effectively but also be helpful for learning more accurate imputed errors
when the previous imputed errors are inaccurate.
Corollary 4 (Bias reduction property). The proposed balancing enhanced imputation loss leads to
the smaller bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally, we have

min
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Moreover, while reducing bias, the proposed method also reduces the variance compared to the
previous imputed errors under a moderate condition, as shown below.
Corollary 5 (Variance reduction property). The proposed balancing enhanced imputation loss leads
to the smaller variance of ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Finally, the proposed SuperDR estimator is given as

ESuperDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
,

where ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)).
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Algorithm 1: The Proposed Superpopulation Doubly Robust Joint Learning
Input: observed ratings Ro and a pre-trained probabilistic propensity model π(xu,i;ψ).

1 while stopping criteria is not satisfied do
2 for number of steps for training the balancing enhanced imputation model do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
4 Update ϕ by descending along the gradient ∇ϕLBale (ϕ, ϵ);
5 Update ϵ by descending along the gradient ∇ϵLBale (ϕ, ϵ);
6 end
7 for number of steps for training the debiased prediction model do
8 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D;
9 Update θ by descending along the gradient ∇θLSuperDR(θ;ϕ, ψ);

10 end
11 end

4.3 THE LEARNING ALGORITHM

We optimize the prediction model and the imputation model of the SuperDR method by a widely
used joint learning framework (Wang et al., 2019), which alternatively optimizes two models to
achieve unbiased learning. Specifically, we train prediction model by minimizing the SuperDR loss:

LSuperDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
+ v∥θ∥2F .

We update the imputation model parameters and ϵ simultaneously by minimizing the LBale (ϕ, ϵ) in
Section 4.2. The parameters of the prediction and imputation model are updated alternatively via
stochastic gradient descent. The joint learning process is summarized in Algorithm 1.

4.4 THE GENERALIZATION BOUND

Next, we analyze the generalization error bound of the DR methods using the probabilistic models
for estimating eu,i and pu,i, and show that controlling empirical covariance leads to a tighter bound.
Specifically, the generalization error theories for the previous DR estimators relied mainly on the
boundedness of the loss to each user-item pair in the DR estimators from the binary indicator ou,i,
i.e., for the DR estimator, the bound for DR loss on (u, i) is (eu,i − êu,i)/p̂u,i. However, these
analyses no longer hold under superpopulation scenario. To proceed, we first define the empirical
Rademacher complexity as below.

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a
fixed sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with
respect to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values
in {−1,+1}. The random variables σu,i are called Rademacher variables.

Finally, we provide the generalization error bound of SuperDR, which includes four terms: the
SuperDR loss itself, the empirical covariance, the bias of the SuperDR estimator, and the tail bound.
Compared to the previous DR method, the proposed method can further control the covariance term,
which leads to a more desirable generalization bound and thus improving the debiasing performance.
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Table 1: Performance on AUC, NDCG@K and Recall@K on the Coat, Yahoo and KuaiRec
datasets. The best result is bolded and the best baseline result is underlined, where * means sta-
tistically significant results (p-value ≤ 0.05) using the paired-t-test.

Methods
Coat Yahoo KuaiRec

AUC NDCG@5 Recall@5 AUC NDCG@5 Recall@5 AUC NDCG@50 Recall@50

Base 0.718± 0.003 0.639± 0.015 0.612± 0.010 0.664± 0.002 0.645± 0.002 0.442± 0.004 0.808± 0.005 0.610± 0.007 0.645± 0.010

DAMF 0.722± 0.008 0.640± 0.010 0.617± 0.007 0.664± 0.002 0.642± 0.001 0.438± 0.002 0.811± 0.003 0.609± 0.004 0.643± 0.005

CVIB 0.725± 0.007 0.644± 0.010 0.620± 0.007 0.670± 0.004 0.656± 0.003 0.452± 0.001 0.816± 0.007 0.617± 0.008 0.653± 0.009

IPS 0.716± 0.007 0.640± 0.006 0.613± 0.008 0.667± 0.003 0.647± 0.006 0.445± 0.007 0.806± 0.006 0.606± 0.006 0.643± 0.005

SNIPS 0.713± 0.003 0.639± 0.009 0.613± 0.010 0.665± 0.003 0.644± 0.004 0.443± 0.003 0.811± 0.004 0.612± 0.006 0.649± 0.006

ASIPS 0.720± 0.008 0.639± 0.004 0.619± 0.007 0.668± 0.002 0.655± 0.004 0.452± 0.005 0.811± 0.006 0.614± 0.006 0.652± 0.005

IPS-V2 0.717± 0.004 0.643± 0.010 0.622± 0.007 0.662± 0.003 0.651± 0.001 0.445± 0.002 0.813± 0.006 0.612± 0.008 0.655± 0.006

DR 0.721± 0.004 0.645± 0.007 0.621± 0.007 0.667± 0.005 0.655± 0.004 0.449± 0.008 0.818± 0.003 0.620± 0.004 0.655± 0.007

MRDR 0.720± 0.006 0.646± 0.006 0.624± 0.007 0.665± 0.005 0.652± 0.005 0.448± 0.005 0.814± 0.006 0.616± 0.006 0.652± 0.003

DR-MSE 0.720± 0.001 0.639± 0.008 0.621± 0.009 0.667± 0.004 0.650± 0.004 0.446± 0.004 0.814± 0.006 0.617± 0.006 0.654± 0.007

DR-V2 0.726± 0.007 0.646± 0.010 0.621± 0.009 0.671± 0.008 0.660± 0.005 0.456± 0.003 0.821± 0.010 0.619± 0.010 0.661± 0.008

SDR 0.722± 0.005 0.644± 0.005 0.623± 0.010 0.666± 0.005 0.653± 0.004 0.451± 0.004 0.819± 0.004 0.618± 0.005 0.652± 0.006

TDR 0.724± 0.005 0.643± 0.006 0.623± 0.009 0.664± 0.004 0.655± 0.007 0.453± 0.003 0.822± 0.005 0.621± 0.009 0.656± 0.010

MR 0.725± 0.007 0.647± 0.006 0.622± 0.007 0.672± 0.003 0.657± 0.003 0.454± 0.002 0.823± 0.003 0.622± 0.004 0.655± 0.005

SuperDR 0.739∗ ± 0.004 0.654∗ ± 0.005 0.626 ± 0.010 0.673 ± 0.003 0.662 ± 0.003 0.459∗ ± 0.003 0.824 ± 0.006 0.631∗ ± 0.005 0.679∗ ± 0.010

Theorem 3 (Generalization Bound under Superpopulation). Suppose that p̂u,i ≥ Kψ and |eu,i −
êu,i| ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LSuperDR(θ) + Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
+

BiasP(ESuperDR(θ)) + (1 +
1

Kψ
)

(
2R(F) +Kϕ

√
18

|D|
log

4

η

)
.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. To verify the effectiveness of the proposed method in the real-world
dataset, the dataset that contains both biased and unbiased data is required. Following the previous
studies (Saito, 2020; Wang et al., 2019; 2021; Chen et al., 2021), the following three widely used
real-world datasets are adopted to conduct our experiments: Coat 1 contains ratings from 290 users
to 300 items. Each user rates 24 of the coats that are selected by themselves, which produces 6,960
biased ratings in total. Meanwhile, each user is asked to rate 16 randomly picked items, which
generates 4,640 unbiased ratings. Yahoo2 contains ratings from 15,400 users to 1,000 items. Each
user rates several items to generate the 311,704 biased ratings. In addition, the first 5,400 users are
asked to rate 10 randomly picked items, which constitutes the 54,000 unbiased ratings. We binarize
the ratings to 0 for ratings less than 3, otherwise 1. We further use a fully exposed industrial dataset
KuaiRec3 (Gao et al., 2022) with 4,676,570 video watching ratio records from 1,411 users to 3,327
videos. For this dataset, we binarize the records to 0 for records less than 2, otherwise 1.

Baselines. In our experiments, we first use the matrix factorization (MF) (Mnih and Salakhutdi-
nov, 2007) to generate the embedding for each user and item, and then fix such embedding as the
user-item feature. Then we take the MLP for the base model and compared the proposed method
with the following baselines DAMF (Saito and Nomura, 2022), the information bottleneck based
method: CVIB (Wang et al., 2020), the propensity based methods: IPS (Schnabel et al., 2016),
SNIPS (Swaminathan and Joachims, 2015), ASIPS (Saito, 2020), and IPS-V2 (Li et al., 2023c),
and the DR-based methods: DR (Wang et al., 2019), MRDR (Guo et al., 2021), DR-MSE (Dai
et al., 2022), DR-V2 (Li et al., 2023c), TDR (Li et al., 2023b), SDR (Li et al., 2023d), and MR (Li
et al., 2023a).

Experimental Protocols and Details. The following three metrics are used to measure the de-
biasing performance: AUC, NDCG@K, and Recall@K, where we set K = 5 for Coat and Ya-

1https://www.cs.cornell.edu/˜schnabts/mnar/
2http://webscope.sandbox.Music.com/
3https://github.com/chongminggao/KuaiRec
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Figure 2: Effects of varying sample ratios on performance on the KuaiRec dataset.

hoo, while set K = 50 for KuaiRec. All the experiments are implemented on PyTorch with the
GeForce RTX 3090 as the computational resource. Adam is utilized as the optimizer for fast con-
vergence in all experiments. To simulate the superpopulation scenario, we first randomly sam-
ple b% users and items (b is set to 50% in our experiments except in Figures 2 and 3.) from
the training set and then use the whole test set to evaluate the debiasing performance. Note
that this intervention will not affect the data sparsity, it will only affect the number of observed
users and items. In addition, we tune learning rate in {0.001, 0.005, 0.01, 0.05, 0.1}, batch size in
{128, 256, 512} for Coat and {1024, 2048, 4096} for Yahoo and KuaiRec. The weight decay is
tuned in {1e − 5, 5e − 5, . . . , 1e − 2}. In addition, We use the logistic regression model as the
propensity model, which means that there is no unbiased data requirement for our method. 4

5.2 PERFORMANCE COMPARISON

Table 1 summarizes the debiasing performance of various methods on three benchmark datasets
Coat, Yahoo, and KuaiRec, and we have the following findings. First, most debiased methods
outperform the base model, which shows the necessity for debiasing. Second, overall speaking, the
information bottleneck-based methods perform slightly better than the propensity-based methods,
while DR-based methods such as DR-V2 and MR demonstrate the most competitive performance,
indicating the superiority of DR methods over other baselines. Third, the proposed SuperDR method
achieves the best performance in terms of all evaluation metrics. This indicates that the SuperDR
method can effectively reduce the additional bias introduced by sampling through controlling em-
pirical covariance, and achieve an unbiased estimate of the ideal loss in scenarios where users and
items in the training set are not exactly the same as those in the test set.

5.3 IN-DEPTH ANALYSIS

Effects of Varying Bias Level. Figures 2 investigates the impact of different levels of bias intro-
duced by sampling on prediction performance on the KuaiRec dataset. We change the sample ratios
to control the degree of overlap between users and items in the training and test sets. A higher sam-
ple ratio indicates a greater proportion of the same users and items in both sets, resulting in less bias
introduced by sampling. When the sample ratio is 1, it means that the users and items in the training
and test sets are identical, with no bias introduced by sampling. At this point, our method slightly
outperforms recently proposed state-of-the-art methods such as DR-V2. When the sample ratio is
0.1 and 0.3, there are few overlapping users and items between the training and test sets, resulting
in significant bias introduced by sampling. The performance of previous methods noticeably de-
clines, while the SuperDR method effectively addresses this bias, achieving significant performance
improvements. See more experiment results on Yahoo dataset in Appendix B.

Effects of Empirical Covariance Control. We explore the effects of Empirical Covariance (EC)
Reduction on the prediction performance in Figure 3. We find that SuperDR achieves the most
significant empirical covariance decreases and the most competitive performance in AUC and
NDCG@K, which empirically demonstrates that the EC reduction contributes to the prediction per-
formance. Note that TDR method obtains some performance improvement compared to vallina DR,
this is because it adds ou,i( 1

p̂u,i
− 1) as the correction term to the imputed errors to control the co-

4Code will be fully open sourced once the paper is accepted.
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Figure 3: Effects of Empirical Covariance(EC) Reduction (%) on Relative Improvement(RI) (%) of
AUC, NDCG@K on three datasets.
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Figure 4: Effects of learning rate of correction hyperparameter ϵ on AUC and NDCG@K.

variance on observed samples. Unfortunately, TDR is unable to control the covariance on missing
outcomes, resulting in its performance being inferior to the proposed SuperDR.

5.4 SENSITIVITY ANALYSIS

We conduct sensitivity analysis on the Yahoo and KuaiRec datasets to explore the relationship
between the learning rate of learnable parameter ϵ and the debiasing performance, with AUC and
NDCG@K as the evaluation metrics, where K=5 on Yahoo and K=50 on KuaiRec. As shown
in Figure 4, the proposed SuperDR stably outperforms vallina DR under varying learning rates of
ϵ, demonstrating that the enhanced imputation model with target learning mitigates the additional
bias introduced by sampling and exhibits no-harm property. Meanwhile, under relatively moderate
learning rates (1e−5, 1e−3), the SuperDR model demonstrates competitive prediction performance.
These results indicate the effectiveness of SuperDR in addressing sampling bias.

6 CONCLUSION

In this paper, we addressed the critical issue of selection bias in recommender systems when users
and items in the training and test sets are sampled from a larger superpopulation. We demonstrated
that traditional doubly robust methods, though effective under certain unbiasedness conditions under
a finite population, are biased when the training and test sets do not contain exactly the same users
and items even if the imputed errors and learned propensities are correct. To overcome this limita-
tion, we introduced a novel approach, Superpopulation Doubly Robust Target Learning (SuperDR),
which is underpinned by a comprehensive theoretical framework. Specifically, we first derive the
bias in existing doubly robust estimators has two terms: a covariance term and a term that mea-
sures the accuracy of learned propensities and imputed errors. Then we establish new conditions for
unbiasedness in the superpopulation scenario. Moreover, we derived a generalization error bound
for SuperDR, demonstrating the practical applicability in terms of unbiased learning. In addition,
we conducted extensive experiments on three real-world datasets, including a large-scale industrial
dataset, and empirically validated the effectiveness of SuperDR in delivering unbiased and accurate
recommendations. One of the potential limitations and research direction is how to develop a tighter
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bound for control the empirical covariance and to develop a more efficient algorithm for alternatively
update the prediction model, the imputation model, and the target learning parameter.
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A PROOFS

Lemma 1 (Bias of DR Estimator (Wang et al., 2019)). Given imputed errors êu,i and learned
propensities p̂u,i > 0 for all user-item pairs, when considering only the randomness of rating miss-
ing indicators, the bias of the DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.

Proof of Lemma 1. The proof can be found in Lemma 3.1 of Wang et al. (2019). However, one
should note that, as stated in the proof, ”the prediction and imputed errors are treated as constants
when taking the expectation, since ou,i does not result from any prediction or imputation mod-
els (Schnabel et al., 2016)”. The DR estimator in (Wang et al., 2019) is given as

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

By considering only the randomness on ou,i, we have

EO[EDR(θ)] = EO

[ 1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]]
=

1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
.

By definition, the bias of the DR estimator is

BiasO[EDR(θ)] = Eideal(θ)− EO[EDR(θ)]

=
1

|D|
∑

(u,i)∈D

eu,i −
1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
=

1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

,

which yields the stated results.

Corollary 1 (Double Robustness (Wang et al., 2019)). The DR estimator is unbiased when either
imputed errors êu,i or learned propensities p̂u,i are accurate for all user-item pairs, i.e., either
êu,i = eu,i or p̂u,i = pu,i.

Proof of Corollary 1. The proof can be found at Corollary 3.1 in Appendix of (Wang et al., 2019).
However, one should note that, as stated in the proof, ”the prediction and imputed errors are treated
as constants when taking the expectation, since ou,i does not result from any prediction or imputation
models (Schnabel et al., 2016)”.

Let δu,i = eu,i − êu,i and ∆u,i =
p̂u,i−pu,i
p̂u,i

. On the hand, when imputed errors are accurate, we
have δu,i = 0 for (u, i) ∈ D. In such case, we can compute the bias of the DR estimator by

BiasO[EDR(θ)] =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

∆u,i · 0 = 0.

On the other hand, when the learned propensities are accurate, we have ∆u,i = 0 for (u, i) ∈ D. In
this case, we can compute the bias of the DR estimator by

Bias (EDR) =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

0 · δu,i = 0.

In both cases, the bias of the DR estimator is zero, which means that the expectation of the DR
estimator over all the possible instances of ou,i is exactly the same as the prediction inaccuracy.
This completes the proof.
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Theorem 1 (Bias of DR Estimator under Superpopulation). Given error imputation model êu,i
and probabilistic propensity model p̂u,i, consider all variables are random, then the bias of the DR
estimator, namely Bias[EDR(θ)], is

Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

Proof of Theorem 1. Instead of considering only the randomness of the rating missing indicator, in
the following, we treat all variables, including imputed errors and learned propensities, as random
variables. Formally, we have

Bias[EDR(θ)] = E[Eideal(θ)]− E[EDR(θ)] = E[eu,i]− E
[
eu,i +

{ou,i − p̂u,i} · {eu,i − êu,i}
p̂u,i

]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

}
{eu,i − êu,i} | xu,i

]]
(by the double expectation formula)

= E
[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]
+ E

[ p̂u,i − ou,i
p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i] + E[eu,i − êu,i]} | xu,i

]]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i]} | xu,i

]]
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

= Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]
,

which yields the stated results.

Corollary 2 (Double Robustness under Superpopulation). The DR estimator is unbiased when
both the following conditions hold:

(i) conditional independence condition holds, i.e., Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0;

(ii) either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i].

Proof of Corollary 2. First, when condition (i) holds, i.e.,

Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0,

it follows from the results in Theorem 1 that

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

On the hand, when the learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1. In such case, we can
compute the bias of the DR estimator by

Bias[EDR(θ)] = E [0 · {E[eu,i | xu,i]− E[êu,i | xu,i]}] = 0.

On the other hand, when imputed errors have the same conditional expectation with true prediction
errors, we have E[êu,i | xu,i] = E[eu,i | xu,i]. In this case, we can compute the bias of the DR
estimator by

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · 0
]
= 0.

In both cases, the bias of the DR estimator is zero, which completes the proof.
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Definition 1 (Empirical Covariance). The empirical expected conditional covariance between
(p̂u,i − ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a
fixed sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with
respect to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values
in {−1,+1}. The random variables σu,i are called Rademacher variables.

Lemma 2 (Rademacher Comparison Lemma (Shalev-Shwartz and Ben-David, 2014)). Let F be a
family of real-valued functions on z ∈ Z to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of
size |D| with elements in X . Then

E
S∼P|D|

[
sup
f∈F

 E
z∼P

[f(z)]− 1

|D|
∑

(u,i)∈D

f (zu,i)

] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if (zu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values
in {−1,+1}. The random variables σu,i are called Rademacher variables.

Proof of Lemma 2. The proof can be found in Lemma 26.2 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 3 (McDiarmid’s Inequality (Shalev-Shwartz and Ben-David, 2014)). Let V be some set and
let f : V m → R be a function of m variables such that for some c > 0, for all i ∈ [m] and for all
x1, . . . , xm, x

′
i ∈ V we have

|f (x1, . . . , xm)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c

Let X1, . . . , Xm be m independent random variables taking values in V . Then, with probability of
at least 1− δ we have

|f (X1, . . . , Xm)− E [f (X1, . . . , Xm)]| ≤ c

√
log

(
2

δ

)
m/2

Proof of Lemma 3. The proof can be found in Lemma 26.4 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 4 (Rademacher Calculus (Shalev-Shwartz and Ben-David, 2014)). For anyA ⊂ Rm, scalar
c ∈ R, and vector a0 ∈ Rm, we have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

Proof of Lemma 4. The proof can be found in Lemma 26.6 of (Shalev-Shwartz and Ben-David,
2014).

Theorem 2 (Controllability of Empirical Covariance). The boosted imputation model trained by
minimizing the balanced enhanced imputation loss is sufficient for controlling the empirical covari-
ance.
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(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have

∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − êu,i| ≤ Kϕ,
then with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤ LBale (ϕ, ϵ)
1
2︸ ︷︷ ︸

proposed loss

+Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

︸ ︷︷ ︸
empirical bias from probabilistic propensity model

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)] 1
2

︸ ︷︷ ︸
tail bound controlled by empirical Rademacher complexity and sample size

.

Proof. For the proof of Theorem 2(i), first recap that the proposed boosted imputation model is

ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)),

and the proposed balancing enhanced loss function for training the boosted imputation model is

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
.

By taking the partial derivative with respective to ϵ of the above formula and setting it to zero, we
have

∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0,

which proves the empirical convariance on the observed outcomes is 0.

For the proof of Theorem 2(ii), by noting that

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

·(eu,i−ẽu,i) =
1

|D|
∑

(u,i): ou,i=0

(eu,i−ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

,

we now focus on bounding the last term of the above equation with the least probability.
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Suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

− E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

+ E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

≤ 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 − E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

∣∣∣∣∣∣
+

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i


≤ LBale (ϕ, ϵ) +K2

ϕ ·

∣∣∣∣∣∣E
 1

|D|
∑

(u,i)∈D

1− ou,i
p̂u,i

∣∣∣∣∣∣
+ sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i
ou,i(eu,i − ẽu,i)

2

p̂u,i

 .
By the assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
Eσ∼{−1,+1}|D| sup

fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i(eu,i − ẽu,i)


= 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)},

where the last equation is directly from Lemma 4, and R(F) is the empirical Rademacher complex-
ity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values
in {−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma 3, and let c = 2Kϕ
|D| , with probability at least 1− η

2 ,∣∣∣∣R(F)− E
S∼P|D|

{R(F)}
∣∣∣∣ ≤ 2Kϕ

√
log(4/η)

2|D|
= Kϕ

√
2 log(4/η)

|D|
.
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For the rest term B(F) − E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 3 and the

assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, let c =
2K2

ϕ

(
1+ 1

Kψ

)
|D| , then with probability at

least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ 2K2
ϕ

(
1 +

1

Kψ

)√
log(4/η)

2|D|
= K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|
.

We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2Kϕ

(
1 +

1

Kψ

)(
R(F) +Kϕ

√
2 log(4/η)

|D|

)
+K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|

= Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.

We now bound the empirical convariance on the missing outcomes combining the above results.
Formally, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

≤

LBale (ϕ, ϵ) +
K2
ϕ

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣+Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

) 1
2

≤ LBale (ϕ, ϵ)
1
2 +Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)] 1
2

,

which yields the stated results.

Corollary 3 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero
when the probabilistic imputation model êu,i has already led to zero empirical covariance, making
ẽu,i degenerates to êu,i.

Proof of Corollary 3. Note that ϵ∗ is solved by minimizing

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i − ϵ(ou,i − p̂u,i))
2

p̂u,i
.

Taking the first derivative of the above loss with respect to ϵ and setting it to zero yields∑
(u,i)∈D

ou,i
p̂u,i

·
{
eu,i − êu,i − ϵ(ou,i − p̂u,i)

}
· (ou,i − p̂u,i) = 0,
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which implies that ∑
(u,i)∈D

ou,i
p̂u,i

· {eu,i − ẽu,i} · (ou,i − p̂u,i) = 0,

from which implies the uniqueness of ϵ. Formally, if êu,i already satisfies zero empirical covariance
on the observed outcomes, then ϵ = 0 is a solution of the above equation. Let ϵ̂ be another solution
of the above equation. Since the solution of equation is unique, then ϵ̂ will converage to 0, making
ẽu,i degenerates to êu,i.

Corollary 4 (Bias reduction property). The proposed balancing enhanced imputation loss leads to
the smaller bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally, we have

min
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Proof of Corollary 4. The result holds by noting that

min
ϕ,ϵ

LBale (ϕ, ϵ) ≤ min
ϕ

LBale (ϕ, ϵ = 0) = min
ϕ

Le(ϕ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Corollary 5 (Variance reduction property). The proposed balancing enhanced imputation loss leads
to the smaller variance of ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Proof of Corollary 5. First, we note that V(ẽu,i) equals to

V(êu,i)− 2ϵ∗ Cov(êu,i, p̂u,i − ou,i) + (ϵ∗)2V(ou,i − p̂u,i),

which serves as a quadratic function with respect to ϵ∗. By taking the partial derivative respective to
ϵ∗ of the above formula and setting it to zero, the optimal ϵ∗ with the minimal variance is given as

ϵ∗ =
Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)
.

By exploiting the symmetry of the quadratic function, we have

V(ẽu,i) =V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i),

if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Theorem 3 (Generalization Bound under Probabilistic Models). Suppose that p̂u,i ≥ Kψ and
min{êu,i, |eu,i − êu,i|} ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣

︸ ︷︷ ︸
vanilla DR only controls the empirical DR loss, and empirical risks of imputation and propensity models

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣︸ ︷︷ ︸
balancing enhanced DR further controls the independence

+

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof of Theorem 3. First we decompose the ideal loss as follows.

Lideal(θ) = LDR(θ) + (Lideal(θ)− E[LDR(θ)]) + (E[LDR(θ)]− LDR(θ))

= LDR(θ) + Bias[LDR(θ)] + (E[LDR(θ)]− LDR(θ))

≤ LDR(θ) + |Bias[LDR(θ)]|

+ sup
fθ∈F
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 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
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(u,i)∈D

êu,i +
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− 1

|D|
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êu,i −
ou,i(eu,i − êu,i)

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
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 .
By the assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|
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≤ 2

(
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)
E
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{R(F)},

where the first equation is from Lemma 4, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values
in {−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma 3, and let c = 2Kϕ
|D| , with probability at least 1− η
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For the rest term B(F) − E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 3 and the

assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, let c =
2Kϕ

(
1+ 1
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)
|D| , then with

probability at least 1− η
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.
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We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2

(
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.

We now bound the ideal loss combining the above results. Formally, we have

Lideal(θ) ≤ LDR(θ) + |Bias[LDR(θ)]|+ B(F)

≤ LDR(θ) + |Bias[LDR(θ)]|+
(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)
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)
.

In Theorem 1, we have already prove that

|Bias[EDR(θ)]| =
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therefore with probability at least 1− η, we have
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which yields the stated results.

B MORE EXPERIMENT RESULTS

We change the sample ratios on Yahoo dataset to control the degree of overlap between users and
items in the training and test set. The results are shown in Figure 5. The proposed SuperDR method
still outperform baselines and achieve the promising debiasing performance.
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Figure 5: Effects of varying sample ratios on performance on the Yahoo dataset.
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