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Abstract

In-context learning (ICL) with Large Language Models has
been historically effective, but performance depends heavily
on demonstration quality while annotation budgets remain
constrained. Existing uncertainty-based selection methods like
Cover-ICL achieve strong performance through logit-based
uncertainty estimation, but most production LLMs operate as
black-box APIs where internal states are inaccessible. This
paper investigates whether effective uncertainty guided exam-
ple selection can be maintained under black-box constraints
by developing a consistency-based uncertainty estimation us-
ing only output observations. We evaluate five active learning
methods (random, hardest, VoteK, fast-VoteK, and Cover-ICL)
across seven benchmark datasets under both grey-box and
black-box settings. Experiments reveal paradigm-dependent
strategies: grey-box achieves best performance with Cover-
ICL (60.83% average accuracy), while black-box favors hard-
est selection (69.26% average accuracy), but no single method
dominates across all datasets. Our framework enables selecting
appropriate uncertainty estimation strategies based on model
accessibility constraints in practical deployment scenarios.

Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities through in-context learning (Brown et al.
2020; Wei et al. 2023), where model performance heavily de-
pends on the quality and diversity of demonstration examples
(Liu et al. 2022; Min et al. 2022). However, collecting high-
quality labeled examples is expensive and time-consuming,
creating a critical need for efficient example selection strate-
gies that maximize performance gains under limited annota-
tion budgets.

Recent advances in few-shot example selection have shown
significant promise through uncertainty-guided approaches in
grey-box settings, where researchers assume access to model
logits and loss information (Su et al. 2022; Zhang, Feng, and
Tan 2022). Notable work like Cover-ICL (Mavromatis et al.
2023, 2024) has demonstrated effective uncertainty quan-
tification by leveraging logit-based uncertainty estimation
to identify the most informative examples for annotation.
However, most production LLM applications rely exclusively
on black-box APIs (GPT-4, Claude, Gemini) where internal
model states are completely inaccessible. This accessibility
constraint forces practitioners to abandon logit-based uncer-

tainty methods, despite their proven effectiveness in research
settings.

The fundamental question becomes: Can effective
uncertainty-based example selection be achieved when we
can only observe model outputs, not internal representations
or logits? This constraint is not a design choice but an im-
posed limitation – API providers restrict access to model
internals for competitive and safety reasons (Shorinwa et al.
2025), leaving practitioners with only text-based outputs for
uncertainty estimation.

We systematically evaluate whether effective demonstra-
tion selection remains feasible under black-box constraints by
extending the Cover-ICL (Mavromatis et al. 2024) framework
with consistency-based uncertainty estimation methods that
quantify model confidence through response disagreement
across multiple samples. Our systematic comparison between
black-box and grey-box versions of identical model archi-
tectures reveals important insights about uncertainty estima-
tion reliability across access paradigms. We provide the first
comprehensive evaluation of how access constraints affect
uncertainty estimation quality and downstream in-context
learning performance across seven datasets spanning three
NLP tasks.

Our contributions include: (1) Consistency-based un-
certainty estimation methods enabling effective example se-
lection without logit access (Huang et al. 2025), extending
Cover-ICL principles to production-ready black-box settings;
(2) First systematic evaluation of how model accessibility
affects uncertainty estimation quality across multiple tasks
and architectures, quantifying when black-box approaches
can match grey-box performance and when additional model
access becomes essential.

Related Work
Traditional active learning optimizes model performance
through parameter updates (Lewis and Gale 1994; Settles
2009), but fine-tuning large language models is computa-
tionally expensive. This has driven a shift toward in-context
learning (ICL), where models adapt through demonstration
examples rather than parameter modifications (Zhang, Feng,
and Tan 2022; Liu et al. 2022). ICL selection strategies in-
clude uncertainty-based methods prioritizing low-confidence
examples (Lewis and Gale 1994; Huang et al. 2024; Gal
and Ghahramani 2016), diversity-based approaches ensuring



broad input coverage (Su et al. 2022), and hybrid methods
like VoteK combining both principles (Su et al. 2022). Cover-
ICL (Mavromatis et al. 2024) unifies these through a graph-
based framework applying Maximum Coverage for selection,
but requires grey-box logit access, limiting applicability to
proprietary APIs.

When internal states are inaccessible, uncertainty estima-
tion requires measuring response consistency across multiple
invocations (Huang et al. 2024; Wei et al. 2023), creating
computational overhead compared to single-query grey-box
approaches. LLM deployment encompasses distinct acces-
sibility levels: grey-box models provide logit access for di-
rect uncertainty quantification (Ma et al. 2025), while black-
box models restrict access to text outputs only (Huang et al.
2024). No systematic comparison exists between grey-box
and black-box uncertainty estimation using identical architec-
tures for ICL selection. Our work addresses this gap by pro-
viding the first systematic evaluation comparing logit-based
and consistency-based uncertainty estimation across seven
datasets spanning three NLP tasks using multiple model fam-
ilies.

Experimental Setup
Research Questions
Our experimental analysis addresses two key research ques-
tions examining uncertainty estimation across model accessi-
bility paradigms:

RQ1: How do uncertainty estimation capabilities differ
between grey-box models (with logit access) and black-box
models (using consistency measures) when applying identical
sample selection methods?

RQ2: Which uncertainty quantification approach – logit-
based confidence or consistency-based measures – provides
more reliable sample selection for few-shot learning?

Framework and Methodology
We extend the Cover-ICL experimental framework (Mavro-
matis et al. 2024) to enable systematic comparison between
black-box and grey-box versions of identical underlying mod-
els. Our approach simulates an active learning scenario where,
given a pool of unlabeled data U and a limited annotation bud-
get B, we select B examples to annotate such that few-shot
performance on test data is maximized.

We treat the training set as an unlabeled pool U , hiding la-
bels during selection and revealing them only after annotation.
Our experimental pipeline follows four sequential stages: (i)
Uncertainty estimation - we compute uncertainty scores
for all examples in U using either logit-based (grey-box) or
consistency-based (black-box) methods; (ii) Active selection
- each method selects B = 20 examples from U based on
uncertainty and/or diversity criteria; (iii) Few-shot retrieval
- for each test example, we retrieve the top-5 most similar
annotated examples using sentence-transformers/all-mpnet-
base-v2 (Song et al. 2020); (iv) Evaluation - we measure
accuracy on the test set using these 5-shot demonstrations.

We compare five selection strategies: random sampling
as baseline, uncertainty-based methods (Hardest (Lewis and

Gale 1994)), diversity-based approaches (VoteK and Fast-
VoteK (Su et al. 2022)), and uncertainty+diversity methods
(Cover-ICL (Mavromatis et al. 2024)).

Active sampling methods We evaluate five selection strate-
gies across both paradigms: Random, Hardest (Lewis and
Gale 1994), VoteK (Su et al. 2022), Fast-VoteK (Su et al.
2022), and Cover-ICL (Mavromatis et al. 2024). Random
provides baseline sampling from the training set. Hardest se-
lects examples with highest uncertainty. VoteK combines
uncertainty binning with diversity sampling. Fast-VoteK
removes uncertainty computation for improved efficiency.
Cover-ICL applies graph-based Maximum Coverage opti-
mization to select examples whose neighborhoods cover the
most hard examples while avoiding redundancy.

Grey-box paradigm In the grey-box setting, we leverage
base models with full logit accessibility. Since base models
require demonstration examples to understand task format,
we construct 5-shot ICL prompts using randomly selected
training examples with known labels. For uncertainty esti-
mation, we use different random 5-shot examples for each
unlabeled example xi to generate prompts and obtain model
predictions. We quantify uncertainty using the negative log-
likelihood (NLL) across all possible classification labels,
where higher NLL values correspond to greater uncertainty
and lower model confidence.

We rank examples by uncertainty and designate the top
θN examples as “hard examples” for graph-based selection,
where θ ∈ [0, 1] denotes the portion of examples considered
as hard ones (default θ = 0.5, meaning the top 50% most
uncertain examples). Uncertainty is computed as:

uncertainty(xi) = min
j∈Y

NLL(yj |xi, 5-shot context)

where Y represents the label space and
NLL(yj |xi, 5-shot context) denotes the negative log-
likelihood of label yj given example xi and the 5-shot
demonstration context.

This single-pass approach makes grey-box estimation com-
putationally efficient but requires model deployments that
expose internal states, limiting applicability to proprietary
APIs.

Black-box paradigm For black-box models, we employ
instruction-tuned models accessed via message-based tem-
plates without internal probability access. Since instruction-
tuned models are aligned to follow task instructions with-
out requiring demonstration examples, we adapt prompts
with explicit task clarification for 0-shot inference. We es-
timate uncertainty through consistency analysis across re-
peated queries. For each unlabeled example xi, we generate
K = 5 independent predictions using temperature T = 0.7
with identical instruction-based prompts. Unlike grey-box
models where we compute losses across all possible labels,
we let the model generate freely and apply postprocessing
to extract labels from the generated text when present, other-
wise randomly assigning labels as predictions. Uncertainty is
quantified as the normalized disagreement rate:



Method AGNews TREC SST2 Amazon RTE MRPC MNLI Avg
Random 46.17 43.64 67.41 65.68 59.21 63.39 45.14 56.53
Hardest 57.03 39.23 65.29 67.52 58.48 61.33 43.97 56.12
VoteK 57.53 42.97 66.86 63.89 59.43 62.28 42.63 56.51
Fast VoteK 53.24 33.54 67.08 65.46 57.37 62.78 43.58 54.72
Cover-ICL 59.26 33.77 70.42 69.92 58.09 63.39 47.66 59.42

Table 1: Grey-box method performance using logit-based uncertainty measures. Results are averaged across Gemma, Llama, and
Qwen model families.

Method AGNews TREC SST2 Amazon RTE MRPC MNLI Avg
Random 66.40 23.44 81.25 83.48 71.04 55.25 55.30 62.31
Hardest 69.42 22.38 81.64 84.43 72.60 54.74 54.52 62.82
VoteK 67.80 22.43 80.69 83.26 70.20 53.63 54.85 61.84
Fast VoteK 67.80 24.22 80.86 83.37 71.26 53.13 52.68 61.90
Cover-ICL 66.52 21.82 81.98 84.32 70.87 53.85 54.46 61.97

Table 2: Black-box method performance using consistency-based uncertainty measures with instruct-tuned models. Results are
averaged across Gemma, Llama, and Qwen model families.

uncertainty(xi) =
|unique responses| − 1

max(1,K − 1)
This metric ranges from 0 (complete consensus across all

K samples) to 1 (maximum disagreement with all distinct
responses). The approach captures epistemic uncertainty via
response inconsistency, enabling uncertainty estimation for
any generative model accessible through text-based APIs
without requiring logit access.

Datasets and Models
We evaluate our framework across seven diverse datasets,
including Topic Classification (AGNews (Zhang, Zhao, and
LeCun 2016), TREC (Hovy et al. 2001)), Sentiment Analysis
(SST2 (Socher et al. 2013), Amazon (McAuley, Julian and
Leskovec, Jure 2013)), Natural Language Inference (RTE
(Giampiccolo et al. 2008), MRPC (Dolan, Quirk, and Brock-
ett 2004), MNLI (Williams, Nangia, and Bowman 2018)),
ensuring comprehensive coverage of different NLP task com-
plexities and domain characteristics. We use the standard
train/test splits for each dataset, where the training set serves
as the unlabeled pool U for uncertainty estimation and active
selection, and we evaluate performance on the standard test
sets using accuracy as the primary metric.

Our model selection encompasses three prominent
LLM families in both base and instruction-tuned vari-
ants: (1) Gemma-3 series: 1B and 4B parameter models
(google/gemma-3-) (Team 2025a). (2) Qwen3 series: 0.6B,
8B and 14B parameter models (Qwen/Qwen3–Base) (Team
2025b). (3) Llama series: Llama-3.2 (1B, 3B) models (meta-
llama/Llama-3.2) (Aaron Grattafiori 2024).

This experimental design enables systematic comparison
of confidence-based and consistency-based uncertainty esti-
mation across model scales and accessibility paradigms while
maintaining controlled conditions for robust analysis.

Experimental Results and Analysis
We evaluated uncertainty estimation techniques across dif-
ferent active learning methods and model accessibility

paradigms using seven representative models: gemma-3-1b,
gemma-3-4b, qwen3-0.6b, qwen3-8b, qwen3-14b, llama-3.2-
1b, and llama-3.2-3b. Our analysis extends the Cover-ICL
framework to compare grey box (confidence) and black box
(consistency) uncertainty estimation across all datasets (ta-
bles 1 and 2). While TREC results are included in dataset-
level analysis, instruct prompt compatibility issues led to its
exclusion from model-family comparisons.

Grey Box Performance (Confidence Metric)
Table 1 presents dataset-level performance across seven
benchmarks. Cover-ICL achieves the highest average accu-
racy (59.42%), demonstrating particular strength on senti-
ment analysis tasks (SST2: 70.42%, Amazon: 69.92%).

Table 3 presents accuracy across all evaluated methods
and models. The Cover-ICL method demonstrates consistent
superiority in grey box settings, achieving the highest overall
average accuracy of 60.83%. Most notably, Cover-ICL shows
substantial improvements in the qwen3-0.6b model (73.99%
vs. 62.89-65.89% for other methods), representing an 8-11%
performance gain. This finding is particularly significant as
it demonstrates that advanced uncertainty estimation tech-
niques can enable smaller models to achieve performance
levels comparable to larger instruct-tuned variants.

For larger models (qwen3-8b, qwen3-14b), Cover-ICL
maintains competitive performance (82.03% and 81.64% re-
spectively) but shows diminishing relative improvements
compared to baseline methods. The addition of gemma-
3-4b reveals consistent patterns across the gemma family,
with Cover-ICL achieving modest improvements (51.43% vs.
49.02-51.17% for other methods).

Black Box Performance (Consistency Metric)
Table 2 presents dataset-level results across seven bench-
marks. Hardest selection achieves optimal performance
(62.82% average), outperforming Cover-ICL (61.97%).
Cover-ICL demonstrates strong results on sentiment anal-
ysis tasks (SST2: 81.98%, Amazon: 84.32%).



Method gemma-3-1b gemma-3-4b qwen3-0.6b qwen3-8b qwen3-14b llama-3.2-1b llama-3.2-3b Average*
Random 51.17 50.65 65.00 79.95 81.38 47.85 51.50 57.69
Hardest 52.74 51.17 62.89 80.47 79.43 49.42 52.99 58.28
VoteK 52.74 50.59 64.65 80.53 81.51 48.44 49.80 57.79
Fast VoteK 49.61 49.02 65.89 81.06 81.06 47.33 48.96 56.98
Cover-ICL 53.13 51.43 73.99 82.03 81.64 50.20 54.23 60.83
* Average excludes TREC dataset

Table 3: Grey-box performance using logit-based uncertainty measures across Gemma, Llama, and Qwen model families.

Method gemma-3-1b gemma-3-4b qwen3-0.6b qwen3-8b qwen3-14b llama-3.2-1b llama-3.2-3b Average*
Random 68.10 79.10 69.86 83.66 85.03 42.06 68.88 68.61
Hardest 69.79 78.71 71.35 84.64 85.42 42.12 68.95 69.26
VoteK 65.36 79.43 69.27 83.92 85.09 42.25 69.34 68.26
Fast VoteK 68.23 78.19 68.04 84.57 86.13 40.76 69.47 68.21
Cover-ICL 68.03 79.49 67.12 84.64 85.94 44.08 70.18 68.92
* Average excludes TREC dataset

Table 4: Black-box performance using consistency-based uncertainty measures across Gemma, Llama, and Qwen model families.

Table 4 reveals distinct patterns in black box uncertainty
estimation, with hardest selection achieving the highest over-
all performance at 69.26% average accuracy. Unlike grey box
settings, the optimal method varies significantly by model
family. For larger models including gemma-3-4b, qwen3-8b,
and qwen3-14b, hardest selection consistently outperforms
other approaches, achieving 78.71%, 84.64%, and 85.42%
respectively.

However, Cover-ICL shows selective effectiveness in the
llama family, consistently outperforming baseline meth-
ods: llama-3.2-1b (44.08% vs. 40.76-42.25%) and llama-
3.2-3b (70.18% vs. 68.88-69.47%). Interestingly, VoteK
demonstrates strong performance in the gemma-3-4b model
(79.43%), suggesting that diversity methods may be particu-
larly effective for certain architectural families.

Key Insights: Grey-box settings consistently favor Cover-
ICL across model families, achieving 60.83% average per-
formance with particularly strong gains on smaller models.
In contrast, black-box settings exhibit method-architecture
interactions, with hardest selection achieving 69.26% aver-
age performance but Cover-ICL proving superior specifically
for llama instruct models. Both paradigms show diminishing
returns for larger models (8B+ parameters), but the plateau
effect is more pronounced in black-box settings.

Conclusion and Limitations
This study systematically analyzes uncertainty estimation
across black-box and grey-box paradigms, extending the
Cover-ICL framework across seven diverse language mod-
els. Cover-ICL’s graph-based Maximum Coverage approach
excels with precise logit-based uncertainty enabling reliable
neighborhood construction, while consistency-based uncer-
tainty provides less precise signals that degrade graph quality.
Hardest selection proves more robust to uncertainty noise
through simple ranking. Models with 8B+ parameters show
minimal sensitivity to method choice (differences under 2%),
suggesting well-calibrated representations make method se-
lection less critical for larger models. Importantly, practition-
ers cannot simply translate grey-box findings to black-box

settings due to fundamental differences in uncertainty signal
quality, necessitating paradigm-specific optimization strate-
gies.

Model accessibility drives paradigm selection, with black-
box access commoditized through major APIs while grey-box
requires custom deployments. Black-box consistency estima-
tion requires fixed probes (K=5) regardless of task complex-
ity, while grey-box scales with class numbers. Production
systems should prioritize black-box for scalability and cost
predictability; grey-box remains valuable for research requir-
ing fine-grained uncertainty control.

Future directions: LLM-as-a-judge applications repre-
sent a particularly promising area, as judge performance
depends critically on demonstration quality (Li et al. 2024).
The proposed framework could identify illustrative examples
that improve accuracy and human-LLM alignment, while
consistency-based measures could enable adaptive protocols
with uncertainty-dependent confidence thresholds. Addition-
ally, investigating architectural factors that determine method-
model family interactions could enable more sophisticated
uncertainty estimation strategies, as different model families
(Gemma, Qwen, Llama) exhibit distinct uncertainty patterns.

Multi-modal extensions present opportunities for vision-
language models and code generation tasks, where visual
uncertainty compounds textual uncertainty. Task generaliza-
tion beyond the three evaluated NLP tasks to generation tasks
(summarization, dialogue, creative writing) would validate
broader framework applicability and reveal task-specific un-
certainty patterns.

Limitations
Our analysis focuses on three NLP task types (classification,
sentiment, NLI); patterns may differ for generation tasks.
Our model selection, while diverse across three families,
represents a subset of available architectures. Fixed hyperpa-
rameters (B=20, K=5, T=0.7) may not be optimal across all
tasks. Additionally, the consistency-based uncertainty metric
assumes reliable label extraction from outputs, which may
degrade for ambiguous specifications or format violations.
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Appendix: Additional Charts
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Figure 1: Performance comparison of active learning methods across model families using confidence-based (top row) and consistency-based
(bottom row) uncertainty estimation. Results show accuracy (%) for four selection strategies: Random, Uncertainty (hardest), Diversity, and

Cover-ICL. Grey-box confidence estimation enables Cover-ICL to achieve optimal performance (60.83% average), while black-box
consistency measures favor hardest selection (69.26% average), demonstrating paradigm-dependent optimal strategies for uncertainty-guided

example selection in in-context learning.


