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Abstract

Vision transformers rely on self-attention operations between disjoint patches (tokens) of an
input image, in contrast with standard convolutional networks. We investigate fundamental
differences between the adversarial robustness properties of these two families of models
when subjected to adversarial token attacks (i.e., where an adversary can modify a tiny
subset of input tokens). We subject various transformer and convolutional models with
token attacks of varying patch sizes. Our results show that vision transformer models are
much more sensitive to token attacks than the current best convolutional models, with
SWIN outperforming transformer models by up to ∼ 20% in robust accuracy for single
token attacks. We also show that popular vision-language models such as CLIP are even
more vulnerable to token attacks. Finally, we also demonstrate that a simple architectural
operation (shifted windowing), which is used by transformer variants such as SWIN, can
significantly enhance robustness to token attacks. Further, using SWIN as a backbone for
vision-language models improves robustness to token attacks. Our evaluation, therefore,
suggests that using SWIN backbones or BEiT style pretraining results in models more
robust to token attacks.

1 Introduction

1.1 Motivation

Vision transformers (Dosovitskiy et al., 2020), or ViTs, are now ubiquitous across the entire spectrum of
tasks in computer vision. ViT-based models now rank among the state-of-the-art for a variety of tasks,
while also providing additional benefits like zero-shot classification (Radford et al., 2021) and distributional
robustness (Fang et al., 2022).

At the heart of vision transformers is the self-attention operation, a mechanism that allows the network
to find and exploit non-local correlations between spatially-disjoint, potentially-far away patches of a given
input image; indeed, an image can now be viewed as a collection of disjoint patches. In the context of vision,
small non-overlapping patches serve as input tokens to the transformer. Models such as ViT, Data Efficient
Image Transformers (DeIT) (Touvron et al., 2021), and many other variants all rely on this token-based
mechanism to represent images. In comparison, convolutional networks (CNNs) take raw image pixels as
input features, and each layer only calculates localized correlations.

By now, it is well-known that convolutional networks (CNNs) are vulnerable to adversarial attacks under
a variety of threat models (Szegedy et al., 2013; Carlini & Wagner, 2017b; Croce & Hein, 2019). We can
therefore also ask: how well do vision transformers fare against adversarial attacks? This has previously
been addressed by several papers (Bhojanapalli et al., 2021; Paul & Chen, 2021) which showed that ViTs
are at least as robust as CNNs under norm-bounded adversarial perturbation attacks.

However, since transformers process inputs in the form of tokens, this motivates a unique threat model, that
is not captured by previously proposed norm-bounded perturbation models. In this work, we introduce the
“token attack” threat model for transformer-based architectures, where a malicious attacker can modify a
tiny number of tokens (imperceptibly or otherwise). Specifically, we attempt to answer the question:

Are transformers robust to malicious perturbations to only a handful of input tokens?
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Our findings bear both good and bad news. On the negative side, we show that vanilla ViT models are
worryingly brittle when subjected to token attacks: even a single adversarially designed token in an image
can dramatically affect performance, compared to similar attacks on modern convolutional models (such as
ConvNextv2). This brittleness to token attacks is even worse when we consider CLIP vision-language models
with transformer backbones. Therefore, any pre-processing pipeline that processes images token-wise before
feeding into ViTs should be handled with care from a security perspective.

However, on the positive side, we show that some modern variations of ViTs are significantly more robust
than standard ViTs. As a potential explanation for why this is the case, we identify an architectural operation
common to these models (“shifted windowing"). This may provide insights on how to design transformer-style
vision architectures in the future that are robust by construction.

1.2 Our contributions

We introduce the “token attack” model where an adversary is permitted to modify a small subset of K
tokens (patches) of a given input image comprising N tokens. For large N and K, finding the optimal attack
under this threat model is combinatorially hard, but we can employ natural relaxations that can be solved
by (projected) gradient descent; see Section 3 below for technical details.

Using our token attack, we interrogate vulnerabilities of several families of neural architectures; transformer-
based (ViT (Dosovitskiy et al., 2020), DeIT (Touvron et al., 2021), BeIT, and others), convolutional
(Resnets (He et al., 2016), WideResNet Zagoruyko & Komodakis (2016), ConvNextv2), and finally vision-
language models that perform zero-shot classification (specifically, CLIP (Radford et al., 2021)) with a
transformer-based image backbone.

In summary, we make the following contributions:

1. We propose a saliency based token attack that leverages block-sparsity projected gradient descent.
2. With our token attack algorithm, we can significantly degrade the performance of the vision transformers

using only a small number of tokens (corresponding to 0.5% of pixels) — as opposed to ℓ2- or ℓ∞-attacks
which rely on perturbing all image pixels. We show consistent degradation of classification performance
of all architectures on token attacks of increasing patch sizes and number of patches.

3. We demonstrate that, for token attacks accounting for the architecture and token size, transformer ar-
chitectures relying on non-overlapping patches are less robust as compared to convolutional networks.
Intriguingly, we also show that CLIP (Radford et al., 2021) models based on transformer backbones,
which have generally been shown to be robust to distribution shifts, are far less robust to token attacks.

4. We also observe that models that have reduced dependency on singular tokens, generally achieved through
overlapping patches through shifted windowing or masked pretraining (SWIN, ConvNextv2 and BeIT)
are more robust than other models. We further analyse this effect through various experiments on SWIN
and show that using overlapping patches leads to robustness.

2 Related Work

Vision Transformers: Transformers, introduced by Vaswani et al. (2017), have led to significant improve-
ments in NLP tasks. Following this success in NLP, Dosovitskiy et al. (2020) propose Vision Transformers
(ViT) that leverage non-overlapping patches as tokens input to a similar attention based architecture. ViTs
have led to significant developments across vision tasks, including zero-shot classification (Radford et al.,
2021), captioning (Li et al., 2022), and image generation (Rombach et al., 2021) among others. Vision trans-
formers have further been improved through the use of distillation (Touvron et al., 2021), masked image
pre-training (BeIT) (Bao et al., 2022) and linear time attention layers (Liu et al., 2021). Given the recent
ubiquity of vision transformers across computer vision, it is of great importance to quantify and analyse
their robustness to adversarial perturbations.

Adversarial attacks: Deep networks are vulnerable to imperceptible changes to input images as defined
by the ℓ∞ distance (Szegedy et al., 2013). There exist several test-time attack algorithms with various
threat models: ℓp constrained (Goodfellow et al., 2015; Kurakin et al., 2017; Carlini & Wagner, 2017a),
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black-box (Ilyas et al., 2018b;a), geometric attacks (Engstrom et al., 2017; Xiao et al., 2018), semantic
and meaningful attacks (Joshi et al., 2019; Zhang et al., 2019b; Song et al., 2018) and data poisoning
based (Shafahi et al., 2018).

Defenses: Due to the vast variety of attacks, adversarial defense is a non-trivial problem. Empirical defenses
as proposed by Madry et al. (2018), Zhang et al. (2019a), and Jagatap et al. (2020) rely on adversarial
data augmentation and modified loss functions to improve robustness. Samangouei et al. (2018) and Yin
et al. (2020) propose preprocessing operations as defenses. However, such defenses fail to counter adaptive
attacks (Athalye et al., 2018). Wong & Kolter (2018), Cohen et al. (2019) and Salman et al. (2019) provide
methods that guarantee robustness theoretically.

Patch attacks: Patch attacks (Brown et al., 2017) are a more practically realizable threat model. Zolfi
et al. (2021), Thys et al. (2019), and, Wu et al. (2020) have successfully attacked detectors and classifiers
with physically printed patches. In addition, Croce & Hein (2019) and Croce et al. (2020) also show that
spatially limited sparse perturbations suffice to consistently reduce the accuracy of classification model. This
motivates our analysis of the robustness of recently invented architectures towards sparse and patch attacks.

Attacks and defenses for vision transformers: The popularity of transformer models in image classi-
fication have inspired a number of studies about their robustness. Bhojanapalli et al. (2021) and Hendrycks
et al. (2020) analyse the performance of vision transformers in comparison to massive ResNets under various
threat models and concur that vision transformers (ViT) are at least as robust as Resnets when pretrained
with massive training datasets.

The transferability of adversarial attacks on ViT has also been examined. Mahmood et al. (2021) showed
that adversarial examples do not transfer well between CNNs and transformers, and build an ensemble based
approach towards adversarial defense. Naseer et al. (2021) and Wei et al. (2021) suggested that adversarial
attacks can be transferred between ViTs and CNNs by specifically tailoring attacks to transformers. We
consider an orthogonal setup, where we construct adversarial attacks specifically for transformer models to
leverage the special input modality. Qin et al. (2021) show that ViTs are specifically vulnerable to patch-
level transformations, leading to good in-distribution accuracies but poor out-of-distribution performance.
Salman et al. (2022) present a certified defense for patch attacks, where in ViTs outperform Resnets.

Paul & Chen (2021) claim that ViTs are robust to a large variety of corruptions due to the attention
mechanism. However, Lovisotto et al. (2022) show that dot-product attention can result in vulnerability to
adversarial patch attacks and propose adversarial objectives for crafting patches that target this explicitly.
Gu et al. (2021) find that ViTs are more effective in dealing with naturally distorted image patches compared
to CNNs but are more susceptible to adversarial patches, where the attention mechanism can be easily fooled
to focus more on the adversarially perturbed patches. Fu et al. (2022) implement a patch attack by using
a set of attention-aware optimization techniques that are specifically designed to deceive the self-attention
mechanism of the model.

Wang et al. (2022) show that it is possible to improve the robustness of CNNs to changes in natural distri-
bution shifts by patchifying input images without incorporating any attention-related techniques. Croce &
Hein (2022) show that the patchified stem notably improves the robustness with respect to ℓ2 attacks while
being comparable to ℓ∞ attacks. Shi & Han (2022) propose a decision-based black box attack leveraging the
noise sensitivity of different subsets of an input image.

In any case, there seems to exist a strong effect on model robustness when subjected to patch-wise (token)
perturbations. In this paper, we illuminate this effect in greater detail for several model families. We
achieve this by leveraging a new saliency based adversarial token attack. Our approach not only validates
previously observed phenomenon, but also suggests the existence of easily found vulnerable tokens through
simple saliency metrics. In comparison with previous work (Gu et al., 2021; Qin et al., 2021; Croce & Hein,
2022), we analyse a larger variety of models, including modern variants like CLIP. We also show through
ablations that techniques like shifted windowing architectures and masked patch pretraining, which reduce
dependence on single patches, further provide significant robustness towards adversarial patches. Further, we
study models adversarially finetuned with our proposed token attack, and observe that our approach exposes
interesting connections in the transformer architecture and dependence on individual tokens. Finally, we

3



Under review as submission to TMLR

Figure 1: Examples of token attacks. Token attacks are successful in creating nearly imperceptible
perturbations that fool ViTs. The leftmost image in every triplet is an original image, followed by the
adversarial image with a single token perturbed, and the token perturbation.

also compare our proposed attack against the greedy attack used in Gu et al. (2021) and show that our
attack is more efficient as well as better at finding adversarial tokens.

3 Token Attacks on Vision Transformers

We begin by introducing Token attacks, which specifically are tailored towards targeting transformer archi-
tectures that rely on patch-based inputs.

Threat Model: Let x ∈ Rd be a d-dimensional image, and f : Rd → [m] be a classifier that takes x as
input and outputs one of m class labels. For our attacks, we focus on sparsity as the constraining factor.
Specifically, we restrict the number of pixels or blocks of pixels that an attacker is allowed to change. We
consider x as a concatenation of B blocks [x1, . . . xb, . . . , xB ], where each block is of size p. In order to
construct an attack, the attacker is allowed to perturb up to K ≤ B such blocks for a K-token attack. We
also assume a white-box threat model, that is, the attacker has access to the model including gradients and
preprocessing. We consider a block sparse token budget, where we restrict the attacker to modifying K
patches or “token” with an unconstrained perturbation allowed per patch.

Sparse attack: We first consider the simpler case of a sparse (ℓ0) attack. This is a special case of the block
sparse attack with block size is one. Numerous such attacks have been proposed in the past (Papernot et al.,
2016; Wiyatno & Xu, 2018). The general idea behind most such attacks is to analyse which pixels in the
input image tend to affect the output the most S(xi) :=

∣∣∣ ∂L(f(x,y))
∂xi

∣∣∣, where L(·) is the adversarial loss, and
c is the true class predicted by the network. The next step is to perturb the top s most salient pixels for a
s-sparse attack by using gradient descent to create the least amount of change in the s pixels to adversarially
flip the label.

Patchwise token attacks: Instead of inspecting saliency of single pixel we check the norm of gradients of
pixels belonging to non-overlapping patches using patch saliency:

S(xb) :=

√√√√ ∑
xi∈xb

∣∣∣∣∂L(f(x, y))
∂xi

∣∣∣∣2
,

for all b ∈ {1, . . . B}. We pick top K blocks according to patch saliency. The effective sparsity is thus
s = K · p. The sequence of operations are summarized in Alg. 1.

Since the transformers we test use non-overlapping patches as tokens, we select those as input to the algo-
rithm. Fig. 1 shows examples of token attacks on transformers.
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Algorithm 1 Adversarial Token Attack
Require: x0: Input image; f(.): Classifier; y: Original label; K: Patch budget; p: Patch size.

1: Set i← 0

2: [b1 . . . bK ]= Top-K of S(xb) =
√∑

xi∈xb

∣∣∣ ∂L(f(x,y))
∂xi

∣∣∣2
, ∀b.

3: while dof(x) ̸= y OR MaxIter
4: xbk

= xbk
+∇xbk

L; ∀ bk ∈ {b1, . . . , bK}
5: end while

4 Experiments and Results

Setup: To ensure a fair comparison, we choose the best models for the ImageNet dataset (Russakovsky
et al., 2015) reported in the literature.

The models achieve near state-of-the-art results in terms of classification accuracy. They also are all trained
using the best possible hyperparameters for each case. We use these weights and the shared models from
the Pytorch Image models (Wightman, 2019) repository.

Models: In order to quantify the robustness of transformers to other architectures, we consider multiple
families of models: Vision Transformers (ViT) (Dosovitskiy et al., 2020; Touvron et al., 2021; Bao et al.,
2022), Resnets (He et al., 2016; Zagoruyko & Komodakis, 2016), ConvViTs (Wu et al., 2021), ConvNexts (Liu
et al., 2022), SWIN (Liu et al., 2021), FlexiViT (Beyer et al., 2023) and CLIP (Radford et al., 2021). We
note that the vision transformer architectures except SWIN rely on non-overlapping patches. SWIN uses
a shifted window based approach to construct tokens. Note that Dosovitskiy et al. (2020) show that best
performing ImageNet models have a fixed input token size of 16 × 16. We, therefore, fix a token size of
16× 16 for all our models.

We do a hyper parameter search to find the best attacks for each model analysed. However, we use the same
number of steps for all our experiments.

Patch attacks: We allow the attacker a fixed budget of tokens as per Algorithm 1.

We use the robust accuracy as the metric of robustness, where a higher value is better. We start with an
attack budget of 1 token for an image size of 224 × 224 for the attacker where each token is a patch of the
size 16×16. In order to compensate for the differences in the size of the input, we scale the attack budget for
ConvNextv2-Huge by allowing for a bigger patch size (24×24 to be precise) to be perturbed. For this setup,
we do not enforce any imperceptibility constraints. We run the attack on the ImageNet validation set for
the network architectures defined above. Fig. 2 and Fig. 3 show the result of our analysis. Notice that vision
transformer architectures are less robust as compared to ResNet-101 and ConvNextv2 models. However, we
observe that SWIN and BeIT reject this trend and are more robust than CNNs (including ConvNext-v2)
for lower token budgets and comparable for higher budgets. We conjecture that this is a consequence of the
architectural novelties that SWIN and BeIT use. SWIN, for example, leverages shifted windowing and BeIT
on the other hand, uses a mask-based pretraining approach which intuitively reduces the models’ dependence
on a single patch. We empirically validate this conjecture in the next section by ablating over the amount
of patch-overlap.

Varying the Token budget: We now study the robustness of models by varying the token budget. For
this case, we only study attacks for a fixed patch (token) size of 16×16. See Fig. 2 for the results. We clearly
observe a difference in the behavior of transformer models and convnets here. In general, for larger token
budgets, SWIN outperforms all other token based models. For smaller token budgets, while transformers
are still comparably robust, convnets tend to be more robust than ViT. In addition, the robust accuracies
for Transformers fall significantly for as few as four tokens. The advantage offered by distillation in DeIT is
also lost under token attacks. In addition, a surprising observation is that CLIP models are vulnerable to
even a single token attacks. This is of particular concern as CLIP embeddings are now used for a variety
of downstream tasks. We also analyse finetuned CLIP models from Wortsman et al. (2022) and observe
that while they improve in robustness over the zero-shot CLIP, the models are still worse than convolutional
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Figure 2: Token attacks with varying budgets. p = 16. Vision transformers are less robust than SWIN,
BeIT and convnets for token budgets greater than 2. Note that ViT-224/B-16 takes a 196 16× 16 tokens as
input. The results are split across two figures based on approximate model sizes to ensure better visibility.
Detailed results for all models can be found in the appendix.
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Figure 3: Token attacks with varying patch sizes. K = 5. When the attack patch size is smaller than
the token size of the architecture, all models except CLIP are comparably robust against patch attacks.
However, as the attack patch size approaches token size, significant deterioration in robustness for vision
transformers can be observed. The results are split across two figures based on approximate model sizes to
ensure better visibility. More detailed results can be found in the Appendix.
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Table 1: Robust accuracies, s = 256 sparse and K = 1, 16× 16 token attack
Model Clean Sparse Token

BEiT-Base-224 84.69 29.28 54.46
BEiT-Large-224 87.34 42.60 67.58
BEiTv2-Base-224 86.27 45.16 52.05
BEiTv2-Large-224 88.34 52.03 61.23
ConvNextv2-Base 86.72 44.77 64.47
ConvNextv2-Huge 88.48 35.46 61.76
ConvNextv2-Large 86.89 51.01 65.45

ConvViT-Base 82.18 12.96 26.44
ConvViT-Small 81.28 13.61 10.62
ConvViT-Tiny 73.48 18.35 4.03
DeiT224-Distill 83.16 24.06 44.03
DeiT3-Base-224 83.61 12.51 44.87

DeiT3-Huge-224-14 85.07 6.76 21.87
DeiT3-Large-224 84.62 8.58 55.27

DeiT3-Medium-224 82.86 24.04 46.59
DeiT3-Small-224 81.46 4.14 21.34
FlexiViT-Small 82.62 11.92 4.02
FlexiViT-Base 84.82 21.40 14.29
FlexiViT-Large 85.71 50.65 43.66
ResNet101-D 82.10 33.78 54.53

ResNet50 80.10 9.03 38.33
Wide Resnet 78.33 4.78 34.59
SWIN-224 82.90 48.42 69.11

SWIN-224-Base 85.11 48.65 73.11
SWIN-224-Large 86.24 48.00 73.43

ViT-224 85.03 25.44 59.46

models. We consider two models from their setup: (1) the best performing finetuned model, and (2) the
averaged greedy-soup model. We observe that the finetuned models perform better than the zero-shot CLIP
models for low token budgets. However, as token budgets increase (> 4 tokens), the robust accuracy drops
to nearly zero in both instances. However, SWIN-LiT tuning, which uses a CLIP-style contrastive vision
language training approach, outperforms all other models. This suggests that the SWIN architecture is
naturally robust to token level attacks.

Another intriguing observation shows that FlexiViTs, which are agnostic to patch sizes, are also equally
vulnerable to token attacks. While being generally comparable to DEiT and CLIP, they lag behind ViTs
and Resnets.

Varying patch sizes: In order to further analyse if these results hold across stronger and weaker block
sparse constraints, we further run attacks for varying patch sizes. Smaller patch sizes are equivalent to
partial token manipulation. We fix the token budget to be 5 tokens. Here, this corresponds to allowing
the attacker to perturb 5 p × p patches. See Fig. 3 for the results. As one would expect, a smaller partial
token attack is weaker than a full token attack. Surprisingly, the Transformer networks are comparable
or better than ResNets and other convnets for attack sizes smaller than a single token. This leads us to
conclude that Transformers can compensate for adversarial perturbations within a token. However, as the
patch size approaches the token size, SWIN, BeIT, and convnets outperform ViTs and ConvViTs. Notice
that CLIP follows the same trend as well with CLIP-finetuned models being slightly more robust than the
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zero-shot classifier. On the other hand, FlexiViTs, now, are more robust to sub-token attacks. Specifically,
the patch size agnostic architecture allows the models to deal with sub-token attacks effectively. However,
as we increase the patch size to 16× 16, FlexiViTs are equally vulnerable.

Comparison with greedy token attacks (Gu et al., 2021). To further understand the efficacy of our
token attack, we also compare it against the greedy token attack proposed in Gu et al. (2021); Karmon
et al. (2018). Firstly, note that the greedy token attack is restricted to a single token. We ensure that a
fair comparison by running both attacks with 32 iterations with a token budget of one on the pretrained
ViT-B/16. We record both the final robust accuracy and average time to find an adversarial token for the
two attacks in Table 2. The attack times were calculated using a single A100 GPU with a batch size of 1.

Table 2: Comparison with Greedy token attacks. Observe that our proposed attack achieves a higher
attack success rate (lower robust accuracy) and is more efficient as compared to the greedy approach adapted
from Karmon et al. (2018) by Gu et al. (2021).

Algo. Robust Acc. Avg. time per image (s)
Adv. Token Attacks (ours) 59.46 1.27

Gu et al. (2021) 74.4 73.75

Adversarial Training. We further study the effect of adversarial training Madry et al. (2018) on the
existing models. Due to computational restrictions as well as to ensure that models are not undertrained,
we rely on adversarial finetuning to train our models. For generating attack images, we use our proposed
token attack with a token budget of 5 patches, and 16 iterations. We train three models: ViT-B/16-224,
SWIN-B, and Resnet-101D, and use early stopping following Rice et al. (2020). We then test the robustness
of our adversarially trained models using our token attacks with token budgets of 1 and 5. See Table ??
for results. Intriguingly, while adversarial training helps ViTs, it actually degrades performance in the case
of SWIN, and Resnet101d, suggesting that ViTs are vulnerable due to the existence of specific ‘vulnerable’
tokens.

Table 3: Adversarial Training. Observe that the robustness of the ViT significantly increases over the
base model, while SWIN and Resnet101 actually decrease, suggesting existence of specific vulnerable tokens
for the ViT. The robust accuracies are reported as a/b where a represents the accuracy for a token budget
of 1 while b represents the same for 5

Architecture Base Clean Acc. Base Robust Acc. Adv. Clean Acc. Adv. Robust Acc.
ViT-B/16 85.03 59.46 / 10.46 81.28 66.52 / 35.90
SWIN-B 85.11 73.11 / 34.48 84.06 74.32 / 33.08

Resnet101D 82.10 54.53 / 19.28 78.71 52.82 / 12.30

Ablation Study: Saliency v/s Random Selection. We also analyse the efficacy of using the saliency
metric to select vulnerable patches. To compare, we randomly select 1, 2 or 5 tokens and run steps 2-4
from Alg. 1. Fig. 4 shows the results of the experiment. Our saliency based block-sparse attacks outperform
random sampling and is able to reduce the accuracies of all vision transformer models for lower token budgets.
This demonstrates the necessity of using a saliency based metric to select tokens for attack.

Ablation Study: Sparse Attacks: We also study the effect of the block-sparsity constraint which forces
token level attacks here. The sparse variant of our algorithm restricts the patch size to 1× 1. We allow for
a sparsity budget of 0.5% of the original number of pixels. In the case of the standard 224× 224 ImageNet
image, the attacker is allowed to perturb 256 pixels. We compare the attack success rate of both sparse
attack and patch-based token attack at same sparsity budget; to compare we chose 1, 16× 16 patch attack
(refer Table 1). Notice that sparse attacks are generally stronger as compared to token attacks. We see that
as is the case with token attacks, even for sparse attacks, vision transformers are less robust as compared to
ResNets. With the same sparsity budget, sparse attacks are stronger than token attacks; however we stress
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Figure 4: Saliency based Token sampling v/s Random Sampling: The solid lines represent robust
accuracies for our token attack whereas dotted lines show the same for randomly sampled tokens. Notice
that our saliency based token attack is more successful at constructing attacks with fewer tokens compared
to random sampling.

that sparse threat model is less practical to implement as the sparse coefficients may be scattered anywhere
in the image.

5 Effects of Shifted Windowing in SWIN on Token Robustness

Table 4: Robust Accuracy for SWIN models
trained with different shift sizes. Notice that the
SWIN model trained with non-overlapping patches is
more vulnerable to adversarial token attacks.

Shift
(Patch
Overlap)

Clean Patch Size

1 4 8 16

0 81.04 78.56 71.62 60.31 33.52
1 82.01 79.75 73.82 64.00 36.18
2 82.02 80.18 75.20 66.80 42.49
3 81.94 79.89 74.37 64.55 38.07

Observing that SWIN and ConvNextv2 perform
much better, we conjecture that this is because these
models reduce the model dependency on single to-
kens. Primarily, The SWIN architecture utilizes two
different window partitioning strategies in consecu-
tive blocks. The first block applies a regular window
partitioning strategy, referred to as W-MSA. In con-
trast, the next block uses a shifted windowing strat-
egy, referred to as SW-MSA. In the SW-MSA ap-
proach, the window configuration is shifted relative
to the previous block by an amount determined by
the shift size parameter. The self-attention compu-
tation in the shifted windows crosses the boundaries
of the windows in the previous layer, providing con-
nections among them. This introduces redundancy
across tokens, thus reducing dependency on singular
patches.

To investigate the effectiveness of shifted windowing in SWIN, we trained SWIN transformers with varying
shift sizes in the SW-MSA and analysed their robustness to patch attacks. The shift size of the model
decides how many patches overlap across the window and the shifted window. We extended the model from
the Pytorch Image models (Wightman, 2019) repository to change the number of overlapping pixels across
patches in the W-MSA and SW-MSA layers. The original model uses a shift size of 3. We train three
additional models with shift sizes of zero, one and two. Note that all configurations have a standard window
size of 7×7. We train these models using the standard settings defined in the original paper (Liu et al.,
2021). We then repeat our experiments for the three models and compare the robust accuracy.
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We find that on comparing the models with shifted windowing (shift size of 1, 2, and 3) to the non-shifted
window variant, the robustness increases; see Table 4. Further, we note that there is a higher difference
between 0-shift to 1-shift compared to others. This clearly shows that reducing the independent, non-
overlapping token dependency plays a major role in improving the robustness of the transformers to token
attacks.

We also show that using the SWIN backbone as an architecture for vision-language models allows for ro-
bustness to token attacks (refer Fig. 2).

6 Discussion

In this paper, we analyzed the robustness of various modern vision classifiers to architecture-specific token
attacks. To achieve this, we proposed a new block-sparsity based gradient attack that leverages a form of
saliency to select and perturb vulnerable tokens. We then used this attack to analyse a variety of clas-
sifiers including various flavors of vision transformers. To provide a baseline, we also compared modern
convolutional networks under the same attack.

Analysing the above results, we infer certain interesting properties of transformers.

1. We find that Vision Transformers are generally susceptible to token attacks, even for very low token
budgets.

2. However, ViTs appear to compensate for perturbations to patch attacks smaller than the token size. This
suggests that the patch size used for tokenization plays a significant role in ensuring that transformers
being robust to token perturbations.

3. Intriguingly, while subsequent adversarial finetuning allows ViTs to be comparably robust to SWIN and
Resnets, robustness of SWIN and Resnets actually degrades, suggesting existence of uniquely vulnerable
tokens in ViTs.

4. We also observe that pure convolutional models (ResNet, ConvNextv2), as well as transformers like
SWIN and BeIT are more robust to such token level attacks. Further analysis of SWIN models reveals
that using shifted windowing helps reduce dependence of the model predictions on a few tokens, and
improve robustness through enforcing redundancy.

5. Finally, we note that CLIP is especially vulnerable to token attacks. However, a SWIN transformer
trained using a CLIP-style loss is able to subvert token attacks.

Our analysis reveals serious vulnerabilities for many modern backbone architectures. Architectural novelties
like SWIN-based shifted windowing and training approaches like masked pretraining (BEiT) that reduce the
dependence on singular tokens show some robustness. However, future investigation into better token and
shifted windowing schemes will be instrumental in ensuring more robust and reliable models.
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A Experiments

For all experiments, we use SGD for optimization with a learning rate of 0.1 for a maximum of 100 steps.

For Flexivit, which was trained on patches with patch size varying from {48, 40, 30, 24, 20, 16, 15, 12, 10, 8},
patch size of 16 was chosen (even when the image size is 240× 240) because the next possible attack token
size, 20, would result in very strong attack, making the results incomparable

To investigate the effectiveness of shifted windowing in Swin, we extended the Timm repository by incorpo-
rating support for new model configurations. These new configurations consisted of shift sizes of 0, 1, and
2, while the default configuration used a shift size of 3 (All configurations have a standard window size of
7). Each model was trained for 300 epochs using the adamw optimizer. To ensure consistency in comparing
results, we also included the default model with shift size 3 in our experiments.

For zero-shot CLIP models such as CLIP-ViT/B-16, we utilized the Timm repository. For Finetuned Clip
models, we used the model soup repository, which contains multiple models fine-tuned with various hyper-
parameter configurations on ImageNet. Fine-tuning was performed end-to-end to modify all parameters,
resulting in better accuracy than only training the final linear layer. Among these individual fine-tuned
models (i.e., not the greedy soup), the best performing model was selected. These experiments use the CLIP
ViT-B/32 model.

B Detailed Results

Figure 5: Patch attacks on Transformers: The attack images are generated with a fixed budget of 1
patch.
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Table 5: Robust Accuracy vs Token Budget. The models are attacked with a p = 16. Note that for smaller token
budgets, the models perform nearly the same. However, as the token budget increases, Convnets are more robust
than Vision Transformers.

Model Clean Token Budget
1 2 5 10 20

BEiT-Base-224 84.69 54.46 35.09 10.30 2.11 0.12
BEiT-Large-224 87.34 67.58 52.61 24.76 7.67 0.85
BEiTv2-Base-224 86.27 52.05 37.91 17.71 7.12 1.61
BEiTv2-Large-224 88.34 61.23 44.23 20.32 7.18 0.95

Conv2-Base 86.72 64.47 47.81 20.10 6.54 0.98
Conv2-Huge 88.48 61.76 44.49 18.32 4.20 0.49
Conv2-Large 86.89 65.45 48.29 24.15 9.63 2.19

ConvViT-Base 82.18 26.44 7.72 0.21 0.02 0.01
ConvViT-Small 81.28 10.62 1.83 0.05 0.01 0.01
ConvViT-Tiny 73.48 4.03 0.24 0.01 0.01 0.01
DeiT224-Distill 83.16 44.03 19.54 0.98 0.01 0.01
DeiT3-Base-224 83.61 44.87 11.88 0.20 0.01 0.01

DeiT3-Huge-224-14 85.07 21.87 2.48 0.05 0.01 0.01
DeiT3-Large-224 84.62 55.27 16.07 0.33 0.02 0.01

DeiT3-Medium-224 82.86 46.59 17.61 0.67 0.01 0.01
DeiT3-Small-224 81.46 21.34 4.88 0.25 0.01 0.01
FlexiViT-Small 82.62 4.02 1.02 0.09 0.01 0.01
FlexiViT-Base 84.82 14.29 4.08 0.40 0.02 0.01
FlexiViT-Large 85.71 43.66 19.08 3.93 0.72 0.10
ResNet101-D 82.10 54.53 39.62 19.28 3.17 0.37

ResNet50 80.10 38.33 20.78 4.65 0.37 0.04
Wide Resnet 78.33 34.59 17.05 3.22 0.19 0.02
SWIN-224 82.90 69.11 58.36 30.73 5.42 0.05

SWIN-224-Base 85.11 73.11 62.33 34.48 7.81 0.06
SWIN-224-Large 86.24 73.43 61.52 27.07 3.04 0.03

ViT-224 85.03 59.46 39.95 10.46 0.70 0.01
CLIP-ViT/B-16 66.83 1.48 0.14 0.02 0.01 0.01
CLIP-ViT/L-14 73.54 3.61 1.27 0.28 0.11 0.04

CLIP-RN50 58.36 6.55 1.97 0.23 0.01 0.01
CLIP-RN101 61.18 7.24 2.53 0.33 0.03 0.01

CLIP-Finetuned 80.16 37.10 20.26 3.53 0.18 0.01
SWIN (LiT-Tuned) 85.12 74.09 61.59 34.88 4.34 0.1
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Table 6: Robust Accuracy vs Patch Size. The models are attacked with a K = 5. Note that for smaller patch sizes,
the models perform nearly the same. However, as the patch size increases, Convnets are more robust than Vision
Transformers.

Model Clean Patch size
1 4 8 16

BEiT-Base-224 84.69 81.63 66.66 45.07 10.30
BEiT-Large-224 87.34 84.96 74.17 57.21 24.76
BEiTv2-Base-224 86.27 83.80 71.06 48.22 17.71
BEiTv2-Large-224 88.34 86.71 76.97 54.77 20.32

Conv2-Base 86.72 84.31 73.36 52.71 20.10
Conv2-Huge 88.48 87.52 74.53 52.15 18.32
Conv2-Large 86.89 84.93 75.72 55.84 24.15

ConvViT-Base 82.18 79.02 65.53 17.74 0.21
ConvViT-Small 81.28 77.26 62.92 9.27 0.05
ConvViT-Tiny 73.48 68.43 52.32 6.55 0.01
DeiT224-Distill 83.16 79.84 65.73 36.70 0.98
DeiT3-Base-224 83.61 80.68 64.86 25.42 0.20

DeiT3-Huge-224-14 85.07 83.24 64.31 8.02 0.05
DeiT3-Large-224 84.62 82.49 68.56 26.84 0.33

DeiT3-Medium-224 82.86 79.60 68.02 35.38 0.67
DeiT3-Small-224 81.46 77.00 46.47 12.62 0.25
FlexiViT-Small 82.62 79.30 59.39 6.41 0.09
FlexiViT-Base 84.82 82.81 62.15 16.11 0.40
FlexiViT-Large 85.71 84.10 76.86 44.77 3.93
ResNet101-D 82.10 79.17 63.44 44.65 19.28

ResNet50 80.10 74.54 46.88 22.89 4.65
Wide Resnet 78.33 70.06 37.60 17.71 3.22
SWIN-224 82.9 80.83 74.02 61.64 30.73

SWIN-224-Base 85.11 83.19 77.85 65.07 34.48
SWIN-224-Large 86.24 84.67 78.33 63.73 27.07

ViT-224 85.03 82.42 68.23 51.07 10.46
CLIP-ViT/B-16 66.83 55.50 7.62 0.32 0.02
CLIP-ViT/L-14 73.54 64.28 15.17 2.47 0.28

CLIP-RN50 58.36 45.22 10.87 1.84 0.23
CLIP-RN101 61.18 46.82 11.99 2.24 0.33

CLIP-Finetuned 80.16 72.64 44.48 19.82 3.53
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