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ABSTRACT

To achieve satisfactory generalization performance on previously unseen domains,
existing domain generalization (DG) methods often assume fixed domain-invariant
features from a set of training domains for good generalization on new domains.
However, this assumption can be overly strict, especially when the source domains
lack shared information or when the target domains utilize information from
selective source domains in a compositional manner. This leads to the natural
question of how we utilize information from the source domain to the target domain
in an appropriate way. In response to this challenge, we propose an innovative
framework that includes an attribute-based feature extractor that captures from the
source domains semantically meaningful components referred to as attributes and
a Kernel-based Attribute Identifier that leverages kernel learning theory to define
the decision boundaries for these attributes collected from the source domains.
This dynamic learning approach empowers the classifier to effectively identify the
learned attributes in the domains it has not encountered before. We empirically
validate our method on well-established DG benchmarks, achieving competitive
results compared to state-of-the-art techniques.

1 INTRODUCTION

One of the most challenging problems in applying machine learning to real-world problems is to
address the domain shift encountered when test data at inference time come from different distributions
compared to training data, often causing unexpectedly imperfect generalization performance. To
handle this issue, many out-of-distribution learning settings have been investigated, notably domain
adaptation (DA) and domain generalization (DG). In particular, DA setting (Mansour et al., 2009;
Ben-David et al., 2010; Zhao et al., 2019; Phung et al., 2021) takes the assumption that both labeled
source data and unlabeled target data are available at the training phase, while DG setting (Blanchard
et al., 2011; Muandet et al., 2013; Ganin et al., 2016) is much more challenging due to the complete
absence of any target data at training time. Furthermore, the learned models are expected to perform
a zero-shot prediction on test samples. While being more challenging than DA, DG is arguably more
versatile and applicable to real-world scenarios where there is a need to rapidly deploy a prediction
model on a new target domain without any access to target data.

Many existing approaches aimed at addressing the domain shift problem rely on shared features and
learning concepts across different source domains (Muandet et al., 2013; Ganin et al., 2016; Motiian
et al., 2017; Ghifary et al., 2015; Xie et al., 2017; Wang et al., 2019; Piratla et al., 2020; Zhao et al.,
2020; Nguyen et al., 2021). These features, often referred to as domain-invariant representations,
are trained to capture a latent representation from multiple source domains that can generalize to
unseen target domains, thus mitigating domain shift issues. These domain invariance approaches
have limitations, primarily because the latent space is typically high-dimensional, and unseen target
domains may exhibit significant and unexpected variations. In real-world data, labels often depend
on multiple attributes, and different groups of domains may share distinct sets of these attributes. In
this context, the target domain’s similarity to one or more source domains is a complex interplay.
Enforcing domain-invariant learning across all source domains may lead to the exclusion of valuable
attributes during test time.

Recent research (Huang et al., 2020; Bui et al., 2021; Chattopadhyay et al., 2020) has underscored
the advantages of incorporating domain-specific knowledge for enhanced generalization. A critical
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challenge encountered in this context is the identification of pertinent attributes unique to the target
domain. This often leads to the utilization of all learned attributes for all target domains. We argue
that such behavior is sub-optimal. Specifically, when encountering a new example from an unfamiliar
target domain, which comprises various attribute sets, the classifier needs to be informed about the
attributes it has learned from the source domain to accurately predict the correct label.

Our goal in this work, therefore, is to propose a mechanism to alert the classifier of the presence of
previously acquired attributes in the target domain when making predictions. To accomplish this, we
propose a novel KErnel-based Attribute Identification (KEAI) framework including: (i) attribute-
based feature extractor, which aim to capture meaningful components in source domains (See formal
definition 1), and (ii) Kernel-based Attribute Identifier. This identifier uses kernel learning theory
to define and refine the decision boundaries of attributes from source domains, enabling our model
to identify familiar attributes even in new domains. Finally, we empirically demonstrate that our
proposed method can achieve favorable results when evaluating our model on domain generalization
benchmarks in the comparison with state-of-the-art methods.

2 PRELIMINARIES

In this section, we provide essential background information, including the intuition behind how
kernel methods contribute to clustering and out-of-distribution (OOD) detection, as well as an
introduction of random Fourier features, which play a crucial role in integrating kernel methods into
our proposed framework.

2.1 CLUSTERING INDUCED AND OOD DETECTION VIA KERNEL LEARNING

Figure 1: Illustration of clustering induced via kernel learning: the max-margin hyperplane, when
mapped back to the latent space forms sets of contours tightly enclosing corresponding (positive side)
data points into clusters.

The kernel method is widely used in support vector clustering and clustering analysis (Ben-Hur
et al., 2001; Nguyen et al., 2018), and data description (Tax & Duin, 2004) and one-class support
vector machine for anomaly detection (Schölkopf et al., 1999). In these techniques, data points are
transformed from the original data space to a higher-dimensional feature space using a kernel e.g.,
Gaussian kernel. In the kernel feature space, the objective is to identify the smallest sphere that
encompasses the transformed data points or the max-margin hyperplane that separates the transformed
data of interest from the negative examples (Schölkopf et al., 1999; Tax & Duin, 2004). The learned
sphere or hyperplane is then projected back into the original input space, resulting in a series of
contours that envelop the target points. These contours serve as cluster boundaries, with points within
each distinct contour being assigned to the same cluster. Additionally, it is found that these contours
effectively outline the support of the underlying probability distribution, essentially highlighting
high-density regions in the distribution’s landscape. This characteristic is particularly valuable for
outlier detection. For example in Figure.1, by introducing negative examples (represented by blue
points) alongside target samples (red points), we can learn the hyperplane in the kernel feature space
separates kernel features of positive and negative samples on kernel feature space, resulting to a
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series of contours that encompass the positive points on input space. These cluster boundaries can be
utilized to identify novel data points or outliers.

2.2 REPARAMETERIZED RANDOM FOURIER FEATURE

Let x ∈ RN denote the N -dimensional vector in data domain X . The vanilla kernel methods
define an implicit lifting ϕ(x) from data space to feature space, and the inner product ⟨ϕ(x), ϕ(x′)⟩
is evaluated through a positive semi-definite kernel κ(x, x′) using the so-called kernel trick. To
construct an explicit representation of ϕ(x), the key idea is to approximate the original kernel κ(x, x′)
using a kernel induced by a random finite-dimensional feature map (Rahimi & Recht, 2007; Nguyen
et al., 2017), i.e., given ed

i.i.d∼ N (ω | 0, I), we can construct a random feature map ϕ̂σ,D : X → R2D,
termed reparameterized random feature (RRF), wherein ϕ̃⊤

σ,D is given as:

ϕ̃⊤
σ,D(x) =

[
cos

(
(diag (σ) ed)

⊤
x
)
, sin

(
(diag (σ) ed)

⊤
x
)]D

d=1
/
√
D (1)

resulting in the induced kernel κ̃(x, x′)ω = ϕ̃σ,D(x)⊤ϕ̃σ,D(x) that can accurately and efficiently
approximate the original kernel:κ̃(x, x′)ω ≈ κσ(x, x

′).

3 PROPOSED METHOD

3.1 PROBLEM SETTING

We consider Domain-free DG setting, where there is no domain information during training. There-
fore, we simply take their union without using the original domain labels as the source domain, i.e.,
DS = {(xi, yi)}NS

i=1 be the source labeled datasets; NS denotes the number of examples in DS , and
yi ∈ Y := {1, ..., C} represents the instance ground truth with a set of C classes. The goal of DG
is to learn a model f on source domains DS that is expected to perform well on target domains
DT = {(xT,i, yT,i)}NT

i=1.

In general, we examine the composite hypothesis f = h ◦ g, where g : X → Z is an encoder
mapping the data space to a latent space and h : Z → Y is the classifier on this latent space. Let
ℓcls (h (g (x)) , y) be the loss incurred by using this hypothesis to predict the label of x ∈ X , given
its ground-truth one y ∈ Y . The general loss of the hypothesis f w.r.t. the joint distribution D is:

L (f,D) = E(x,y)∼D [ℓcls (h (g (x)) , y)] . (2)

3.2 OVERALL PROPOSED FRAMEWORK

Figure 2: The overall Kernel-based Attribute-Identification for DG Framework, in which, attributes
of each basis are characterized into clusters by sets of contours. Additionally, clusters of different
bases mutually push others far away, allowing the model to avoid attributes-collapse on feature space.

Our approach centers on acquiring knowledge about semantically meaningful factors within source
domains and discerning their presence within the target domain to make prediction. The overall frame-
work is depicted in Figure2. Drawing inspiration from the concept of disentangled representation
learning, given an encoder g, we break down the learned features zi = g(xi) into K sub-components,
which refer to as attributes. The set of all k-th attributes Ak = {aik}N

S

i=1 is called a basis, i.e., kth
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basis (See formal definition 1). Subsequently, we leverage kernel learning theory to characterize the
attributes of each basis by contours (max-margin hyperplane Γk on kernel feature space) which can
be interpreted as separated clusters tightly enclosing attributes in the attribute space (Figure 2.Right).
This capability empowers our model to proficiently identify learned attributes from source domains,
even in domains it has not previously encountered.

3.3 ATTRIBUTE-BASED REPRESENTATION

We begin by describing the construction of attribute-based Representation. Particularly, we initially
extract a latent vector for each data point xi using an encoder zi = g(xi) ∈ Rnz . We then partition
the latent vector z into K groups, each with equal dimensionality na (nz = K × na), denoted
as zi = [ai1, a

i
2, ..., a

i
K ]⊤ where each aik = g(xi)k ∈ Rna is denoted as attribute representing

semantically meaningful concepts. Consequently, given the mixture of source dataset DS and encoder
g, we have:

{
z1, z2, ..., zN

}
=




a11
a12
...
a1k
...
a1K

 ,


a21
a22
...
a2k
...
a2K

 , ... ,



aN
S

1

aN
S

2
...

aN
S

k

...

aN
S

K




Then, we define Ak =

{
a1k, a

2
k, ..., a

NS

k

}
as k-th basis which contains k-th attribute of all samples.

Definition 1. (Basis of attributes) For a dataset D = {(xi, yi)}Ni=1 and feature extractor g, a set
Ak =

{
a1k, a

2
k, ..., a

N
k

}
where each aik = g(xi)k is considered as basis of attributes with respect to

(D, g) if there exists a function hk such that hk(a
i
k) = yi,∀i = 1...N .

Definition 1 states that Ak is considered as a basis of attributes that encapsulates meaningful concepts
within DS if any element aik ∈ Ak can be used to determine its corresponding class-label yi. To
achieve this, we learn an encoder g and a set of attribute-based classifiers h = {hk : A → Y}Kk=1 by
optimizing the following objective function:

Lk
Attribute =

1

Ns

NS∑
i=1

ℓcls
(
hk

(
g
(
xi
)
k

)
, yi

)
,∀k = 1...K (3)

Next, we introduce a set Kernel-based Attribute Identifier Γ = {Γk}Kk=1, where each Γk is responsible
for characterizing and refining the attributes in the basis Ak in the sense that Γk is able to proficiently
identify whether a new attribute belongs to the basis Ak or not. To elaborate, considering the output
of Γk falls in {0, 1} i.e., given ak is the k-th attribute of a new datapoint, Γk(ak) = 1 signifies
that the attribute ak belongs to the basis Ak, while Γk(ak) = 0 indicates otherwise. For a detailed
explanation of how we model Γ, please refer to the following section.

Our focus is solely on attributes present in the source domains, as the attribute-based classifiers
{hk}Kk=1 are trained to predict based on the observed attributes in the source domains. Along with

attribute-based classifiers, this leads to the prediction f (x) =
∑K

k=1 Γk(g(x)k)hk(g(x)k)∑K
k=1 Γk(g(x)k)

which is
considered as the ensemble prediction of selected attributes.

3.4 KERNEL-BASED ATTRIBUTE IDENTIFIER

In this section, we describe how the kernel method is employed to represent observed attributes
within each basis Ak. More precisely, each Kernel-based Attribute Identifier Γk is modelled as a
max-margin hyperplane (Wk, bk), having equation W⊤

k ϕσ(a) + bk = 0 where attribute a is the input
and ϕσ is the mapping from attribute space to kernel space. To be able to integrate kernel models
nicely to deep nets, we utilize random Fourier features (Rahimi & Recht, 2007; Nguyen et al., 2017)
to approximate an RBF kernel for ϕσ. Particularly, the feature map ϕσ : U → R2×D admits the
following form:
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ϕ⊤
σ (x) =

[
cos

(
(diag (σ) ed)

⊤
x
)
, sin

(
(diag (σ) ed)

⊤
x
)]D

d=1
/
√
D (4)

where ed
i.i.d∼ N (0, I); 2×D is the dimension of kernel feature space and σ is kernel width.

Let’s recall that the objective of Γk is to characterize attributes within the basis Ak. Our approach
involves utilizing attributes from other bases as negative samples. Specifically, the max-margin
hyperplane Γk is built in such way that (i) it separates push-forward kernel-features of positive
attributes C+k = {ϕσ(a) | a ∈ Ak} and the negative attributes C−k = {ϕσ(a) | a ∈ Ai ̸=k}
and (ii) the margin w.r.t the hyperplane Γk defined as the closest distance from negative in C−k

to this hyperplane is maximized. This construction method results in a hyperplane that can be
aptly interpreted as cluster-boundaries that tightly envelop attributes belonging to the basic Ak.
It’s noteworthy that our max-margin hyperplane differs from the example illustrated in Figure 1,
primarily because our hyperplane is integrated with the encoder g, which allows it to refine attribute
clusters from basic Ak in a more compact manner while effectively separating them from attributes
originating in other bases. Consequently, this leads us to the following optimization problem (OP):

(Wk, bk) = arg max
Wk,bk

min
a∈C−k

∣∣W⊤
k ϕσ (a) + bk

∣∣
∥Wk∥

(5)

s.t: W⊤
k ϕσ (a) + bk ≥ 0 for a ∈ C+k

W⊤
k ϕσ (a) + bk ≤ 0 for a ∈ C−k

Since the margin is invariant if we replace (Wk, bk) by (λWk, λbk) for any λ > 0, without the loss
of generalization, we can naturally assume that minu∈C−k

∣∣W⊤
k ϕσ (u) + bk

∣∣ = 1, hence rewriting
the above OP as:

(Wk, bk) = arg max
Wk,bk

1

∥Wk∥
or arg min

Wk,bk
∥Wk∥

s.t: W⊤
k ϕσ (u) + bk ≥ 0 for u ∈ Ck

W⊤
k ϕσ (u) + bk ≤ −1 for u ∈ C−k

Using the slack variables ξ, we develop the soft version as
(Wk, bk) = arg min

Wk,bk
∥Wk∥

s.t: W⊤
k ϕσ (u) + bk ≥ −ξk for u ∈ Ck

W⊤
k ϕσ (u) + bk ≤ −1 + ξk for u ∈ C−k

Note that for the optimal solution ξk,a = max{0,−W⊤
k ϕσ(a) − bk} for u ∈ C+k and ξk,a =

max{0,−1 +W⊤
k ϕσ(a) + bk} for a ∈ C−k, we arrive at the following OP:

Lk
Kernel =

λ

2
∥Wk∥22 +

1

|Ck|
∑

a∈C+k

max{0,−W⊤
k ϕσ (a)− bk}

+
1

|C−k|
∑

a∈C−k

max{0,−1 +W⊤
k ϕσ (a) + bk} (6)

where | · | represents the cardinality of a set and λ > 0 is a trade-off parameter.

Finally, for new attribute a, the indicator Γk(a) = 1W⊤
k ϕσ(a)+bk≥−ξk

indicates that a is inside tight
clusters of observed attributes of k-th basis or not. In simpler terms, Γk(a) serves as a decision-maker,
indicating whether attribute a is an observed attribute from the source domains or not.

Remark: Remind that the of the max-margin hyperplane Γk when mapped back into the feature
space Ak becomes the set of contours tightly enclosed positive attributes into clusters, excluding
negative attributes (Ben-Hur et al., 2001; Tax & Duin, 2004; Schölkopf et al., 1999). Therefore,
simultaneously optimizing Γ = {Γk}Kk=1 in join space A = ∪Ak will enforce clusters of attributes
from different basis separate to each other (as illustrated in 2.Right), allowing model capture diverse
attributes.
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3.5 OVERALL FRAMEWORK

Training: Combining the attribute-based function loss and Kernel-based Attribute Identifier loss
functions, we propose to jointly minimize:

min
g,{hk}K

b=1,{Γk}K
b=1

K∑
k=1

(
Lk

Attribute + αLk
Kernel

)
(7)

where α > 0 is the trade-off hyper-parameter.

Inference: For a new sample, we utilize Γ to identify attributes which are observed in source domains

to make predictions: i.e., ŷ = f (x) =
∑K

k=1 Γk(g(x)k)hk(g(x)k)∑K
k=1 Γk(g(x)k)

.

Finally, the pseudo-code of our KEAI is summarized in Algorithm 1.

Algorithm 1 KEAI

1: Initialize: encoder g, classifier h, Sub-space indicator Γ and dataset DS .
2: for epoch = 1 → epochs do
3: for iter in iterations do
4: Sample Mini-batch: B =

{(
x1, y1

)
,
(
x2, y2

)
, ...,

(
xB , yB

)}
∼ DS

5: Optimize LKernel w.r.t. Γ on B.
6: Optimize LAttribute w.r.t. h, g on B.
7: end for
8: end for
9: Return: The optimal: g∗, h∗ and Γ∗.

4 EXPERIMENT

4.1 MAIN RESULTS ON BENCHMARK DATASETS FOR MULTI-SOURCE DG

Table 1: Classification accuracy (%) for all algorithms and datasets summarization. The best and
second best results are highlighted in hold and underline.

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM (Gulrajani & Lopez-Paz, 2021) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM (Arjovsky et al., 2019) 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO (Sagawa et al., 2019) 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
Mixup (Wang et al., 2020) 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG (Li et al., 2018a) 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL (Sun & Saenko, 2016) 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
MMD (Li et al., 2018b) 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
DANN (Ganin et al., 2016) 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN (Li et al., 2018b) 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
MTL (Blanchard et al., 2021) 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
SagNet (Nam et al., 2021) 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
ARM (Zhang et al., 2021) 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx (Krueger et al., 2021) 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
RSC (Huang et al., 2020) 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
KEAI 79.4 ± 0.3 86.8 ± 0.1 68.4 ± 0.1 48.6 ± 1.3 41.8 ± 0.3 65.0

Table 1 reports the results of our experiments on 5 benchmark datasets when compared with mentioned
methods. The full result per dataset and domain is provided in Appendix B. Our model achieves
comparable or better performances on most datasets and obtains average 0.3 points improvement on
all datasets. Those empirical results clearly indicate that our KEAI provides competitive classification
accuracy compared to the baselines.

4.2 SINGLE-SOURCE DG

To further demonstrate the effectiveness of our method, we evaluate KEAI on a more challenging
DG task with a single source domain. It is worth noting that Photo is considered to contain rich
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information to predict the label in comparison with three other domains. Therefore, we conduct
experiments on PACS, where Photo is chosen as the source domain, and the remaining domains
(i.e., Art painting, Cartoon, and Sketch) are selected as the target domains. As shown in Table 2, the
experimental results consistently indicate that KEAI achieves superior performance in terms of test
accuracy on all the target domains.

Table 2: Single-source DG on PACS with “Photo” is selected as the source domain for training.

Method Art-painting Cartoon Sketch Ave
ERM (Gulrajani & Lopez-Paz, 2021) 60.7 ± 0.00 23.5 ± 0.00 29.0 ± 0.00 37.70
JiGen (Carlucci et al., 2019) 63.6 ± 0.00 28.5 ± 0.00 30.2 ± 0.00 40.80
CrossGra (Shankar et al., 2018) 64.2 ± 0.00 29.4 ± 0.00 32.1 ± 0.00 41.90
DDAIG (Zhou et al., 2020b) 64.1 ± 0.00 32.5 ± 0.00 29.6 ± 0.00 42.10
M-ADA (Qiao et al., 2020) 64.6 ± 0.00 34.6 ± 0.00 26.6 ± 0.00 41.90
KEAI 73.6 ± 0.07 38.6 ± 1.72 41.3 ± 3.18 51.18

4.3 ABLATION EXPERIMENTS

4.3.1 ATTRIBUTE-BASED REPRESENTATION VISUALIZATION

As the kernel-models (hyperplanes) {Γk}K1 characterize high-density regions in the distribution of
target attributes, our model identify whether an attribute in the target domain was learned in the
source domain based on set of kernel-model {Γk}K1 in the sense that new attribute in target domain
is lied on high-density regions in the distribution of learned attributes from source domain or not.
However, we lack ground-truth labels for qualitative assessment. To gain a deeper understanding of
the advantages offered by the “Kernel-based Attribute Identifier” (KEAI), we employ t-SNE (van der
Maaten & Hinton, 2008) to visualize the distribution of learned attributes.

(a) Photo as target domain. (b) Sketch as target domain..

Figure 3: The t-SNE feature visualization of attributes from the first four basics learned from KEAI.
For source domains only figures, different colors (red, orange, green and blue) represent different
basic-labels. Target domains are presented in black for deselected attributes and yellow for selected
attributes.

Figure 3 provides illustrations of the attribute space generated by KEAI. For our analysis, we select
the Photo which contains rich information to predict the label in comparison with three other domains
as the target domain, and sketch domain, which exclusively comprises colorless images, as the target
domain. This domain is intentionally chosen because it is the most distant from the others, resulting
in the largest source-target divergence. Additionally, given the complexity of visualization, we focus
on plotting the attribute distributions of the first four basics in a single figure.

Attribute Identification. Notably, the visualization from Figure 3a.Left and Figure 3b. Left demon-
strates that attributes from different basics are distinctly clustered, indicating effective separation.
This observation demonstrates the benefits of Kernel-based Attribute Identifier (1) facilitating the
identification of attributes, and (2) enhancing the diversity of attributes. Indeed, it can be seen from
Figure 3a. Right and Figure 3b. Right, the selected attributes of the target domain are situated within
the clusters of attributes from the source domains while deselected attributes (3b.Right) are located
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outside them. This observation underscores the effectiveness of the Kernel-based Attribute Identifier
in identifying observed attributes in target domains.

Additionally, we observe that the photo domain effectively utilizes attributes from all three source
domains, as most of its attributes are selected (Figure 3a.Right). In contrast, the sketch domain
(Figure 3b.Right) shows fewer selected attributes.

(a) Photo as target domain. (b) Sketch as target domain.

Figure 4: The t-SNE feature visualization of attributes from first basics learn from KEAI in domain-
label and class-label levels.

Attribute Representation. it’s important to observe that some clusters share the same color in
the initial two figures. To gain a deeper understanding of this phenomenon, we further visualize
the first basic at both the class-label level (Figure 4a) and the domain-label level (Figure 4b). This
visualization highlights that attributes with the same class-label are distinctly distributed into separate
clusters when examined from a class-label perspective. However, when considered from a domain-
label perspective, these attributes tend to intermingle within clusters. This observation underscores
the expressive power of the kernel-based attribute representation, as attributes are meaningfully
distributed with respect to class-label, aligning with our definition of basis of attributes.

4.3.2 SENSITIVITY OF FEATURE-SIZE (FS)

Table 3: Classification Accuracy on PACS using ResNet50 with different feature-size (nu).

Rna K Photo Art-painting Cartoon Sketch Ave
128 16 97.8 ± 0.59 86.0 ± 0.31 77.7 ± 0.81 75.3 ± 0.85 84.19
64 32 97.6 ± 0.12 88.5 ± 0.42 78.8 ± 0.48 76.4 ± 0.53 85.32
32 64 97.5 ± 0.04 87.4 ± 0.17 82.0 ± 0.91 80.2 ± 0.38 86.76
16 128 97.7 ± 0.34 87.4 ± 0.65 78.4 ± 0.29 78.8 ± 0.18 85.56
ERM 1 97.2 ± 0.30 84.7 ± 0.40 80.8 ± 0.60 79.3 ± 1.00 85.50

We also conduct the ablation study on the sensitivity of FS to kernel-based feature learning. Specif-
ically, we examined different feature sizes, namely 16, 32, 64,, and 128. The results, presented in
Table 3, demonstrate that KEAI consistently improves the performance of “Photo” and “Art-painting”
across various feature sizes. However, the performance of “Cartoon” and “Sketch” exhibits a strong
dependence on the chosen feature size. This finding indicates that the Kernel-based Attribute Identifier
is notably sensitive to changes in feature size.

5 RELATED WORK

Domain generalization approaches can be grouped into domain-invariant representation learning,
meta-learning, and augmentation/self-supervision. Domain-invariant representation learning aims to
learn a domain-invariant representation that can transfer well to unseen domains. Notably, Muandet
et al. (2013) and Xie et al. (2017) construct shared components by minimizing the discrepancy of
the source domain marginal distributions using a kernel-based algorithm and an adversarial training
strategy, respectively. Seo et al. (2020) combine batch normalization and instance normalization to
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remove domain-specific styles while preserving semantic category information. Autoencoder-based
methods have also been proposed, such as multi-view autoencoders (Ghifary et al., 2015), adversarial
autoencoders combined with Maximum Mean Discrepancy (MMD) measure (Li et al., 2018b), and
variational autoencoder for representation disentanglement (Ilse et al., 2020), but these methods are
hard to be applied for real-world applications due to the limitation of the autoencoder. Li et al. (2022)
promotes the learning of invariant representations by invariant information Bottleneck principle.
Chan et al. (2022) aims to find an invariant linear discriminative representation of data by optimizing
the rate reduction objective. Recently, learning domain-specific information to boost classification
performance in DG has attracted more attention. Huang et al. (2020) iteratively discard dominant
features to exploit all useful features. Chattopadhyay et al. (2020) propose a domain-specific mask
learned from the domain label to balance domain-invariant and domain-specific features. Bui et al.
(2021) explicitly disentangle domain-invariant and domain-specific features and utilize a meta-
training scheme to support domain-specific information adaptation from source domains to unseen
domains. Meta-learning is another efficient approach for DG. Li et al. (2018a) and Balaji et al. (2018)
simulate meta-train/meta-test using source domains. Dou et al. (2019) extend Li et al.’s work with
metric learning loss to encourage domain-independent semantic feature space, while Shi et al. (2022)
propose an inter-domain gradient matching objective to learn invariant features. Self-supervised
learning (Yao et al., 2022) and data augmentation have also been applied to DG. Carlucci et al. (2019)
propose solving the pretext task of Jigsaw Puzzles to improve generalization to unseen domains,
while Shankar et al. (2018) augment training data with instances perturbed along with directions of
domain change. Zhou et al. (2020a) employ a classifier that can learn the generalization on additional
augmented samples of diversity pseudo-novel domains by leveraging optimal transport theory. Zhou
et al. (2020b) augment the training data of source domains with synthetic data from unseen domains
that can fool the domain classifier to make the task model more domain-generalizable, while Zhou
et al. (2021) mix the styles of different source domains based on normalization-based style-transfer
technique. Xu et al. (2021) mix the styles of training instances across domains by mixing amplitude
spectrums. Kang et al. (2022) create new styles from both the styles seen in the source and those
previously synthesized. Kernel-based methods have seen widespread use and extensive study within
the domain of DG. Often, these methods are closely linked to other categories, serving primarily as
measures of divergence or similarity. For instance, Blanchard et al. (2021) utilized positive semi-
definite kernel learning to develop a domain-invariant kernel from training data. Works by Grubinger
et al. (2015); Pan et al. (2010); Muandet et al. (2013) have adapted domain component analysis to
address discrepancies in the marginal distribution across multi-domains within the feature space. Li
et al. (2018b) focused on learning a feature representation with a domain-invariant class-conditional
distribution. (Ghifary et al., 2016) employed Fisher’s discriminant analysis to reduce the discrepancy
of representations within the same class and domain while enhancing the discrepancy across different
classes and domains. Additionally, Hu et al. (2020) introduced multi-domain discriminant analysis
for class-wise kernel learning.

Diverging from these existing methods, our proposed approach also falls under kernel-based methods
but takes a distinct route. Unlike traditional techniques that utilize the kernel as a tool for measuring
divergence or similarity and rely on the kernel trick to avoid explicit computation of the feature
map, our method takes a direct approach. We compute the feature map through a random finite-
dimensional feature map (Rahimi & Recht, 2007; Nguyen et al., 2017). This enables us to leverage a
clustering-based perspective of kernel methods, which is instrumental in characterizing and refining
representations for effective domain generalization.

6 CONCLUSION

In this study, we introduce a novel framework designed to alert the classifier to the presence of
previously acquired attributes in the target domain during predictions. This framework, KEAI
(Kernel-based Enhanced Attribute Identification), consists of two key modules: (i) attribute-based
feature extractor, which aim to capture meaningful components in source domains, (ii) Kernel-based
Attribute Identifier, leveraging kernel learning theory to delineate the decision region of attributes and
refine attribute-representation collected from the source domains. This empowers the model to detect
learned attributes in unseen domains. Our experimental results on benchmark datasets provide clear
evidence that our proposed method, KEAI, performs competitively when compared to the current
state-of-the-art models.
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APPENDIX

This supplementary material is organized as follows:

• In Section 7, we present the experimental settings and detailed results of each dataset.
• In Section 8, we present the implementation specification of our proposed approach.

7 FULL RESULTS

Metric. we adopt the training and evaluation protocol as in DomainBed benchmark (Gulrajani
& Lopez-Paz, 2021), including dataset splits, hyperparameter (HP) search, model selection on the
validation set, and optimizer HP. However, we use a reduced HP search space to reduce computational
costs. For training, we choose one domain as the target domain and the remaining domains as the
training domain, with 20% of the samples used for validation and model selection.

7.1 DATASETS

To evaluate the effectiveness of the proposed method, we utilize five datasets: PACS (Li et al., 2017),
VLCS (Torralba & Efros, 2011), Office-Home (Venkateswara et al., 2017), Terra Incognita (Beery
et al., 2018) and DomainNet (Peng et al., 2019) which are the common DG benchmarks with
multi-source domains.

• PACS (Li et al., 2017): 9991 images of seven classes in total, over four domains:Art painting
(A), Cartoon (C), Sketches (S), and Photo (P).

• VLCS (Torralba & Efros, 2011): five classes over four domains with a total of 10729
samples. The domains are defined by four image origins, i.e., images were taken from the
PASCAL VOC 2007 (V), LabelMe (L), Caltech (C) and Sun (S) datasets.

• Office-Home (Venkateswara et al., 2017): 65 categories of 15500 daily objects from 4
domains: Art, Clipart, Product (vendor website with white-background) and Real-World
(real-object collected from regular cameras).

• Terra Incognita (Beery et al., 2018) includes 24788 wild photographs of dimension (3,
224, 224) with 10 animals, over 4 camera-trap domains L100, L38, L43 and L46. This
dataset contains photographs of wild animals taken by camera traps; camera trap locations
are different across domains.

• DomainNet (Peng et al., 2019) contains 596006 images of dimension (3, 224, 224) and 345
classes, over 6 domains clipart, infograph, painting, quickdraw, real and sketch. This is the
biggest dataset in terms of the number of samples and classes.

7.2 BASELINES

This appendix provides an literature review about 14 related domain generalization methods from
DomainBed benchmark which are used to make comparisons with our model:

• ERM (Vapnik, 1999):minimizes the sum of errors across domains and examples. For our
experiments, we employ the implementation from (Gulrajani & Lopez-Paz, 2021), a strong
baseline that can achieve competitive accuracies on DG benchmarks.

• IRM (Arjovsky et al., 2019): learns invariant feature representation such that the optimal
linear classifier on top of that representation matches across domains.

• Mixup (Wang et al., 2020): applies ERM on linear interpolations of examples from random
pairs of domains and their labels.

• CORAL (Sun & Saenko, 2016): aligns training domain distributions at a specific level of
representation by matching the mean and covariance, which are second-order statistics, of
the features across these domains.

• MMD (Li et al., 2018b): employs the adversarial technique and the maximum mean
discrepancy criteria to align latent distribution across domain.
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• MLDG (Li et al., 2018a): proposed meta-learning strategy that splits meta train/test and
performs gradient alignment to update each minibatch.

• DANN (Ganin et al., 2016): uses an adversarial network to align latent representation across
domains.

• CDANN (Li et al., 2018b): is a variant of DANN that facilitates the alignment of multimodal
distributions by matching the feature conditional distributions across domains for all class
labels..

• VREx (Krueger et al., 2021): approximates IRM to reduce the variance of error averages
across domains.

• GroupDRO (Sagawa et al., 2019): applies ERM while enhancing the significance of
domains by assigning weights to mini-batches from the training distribution in proportion to
their larger errors..

• MTL (Blanchard et al., 2021): estimating a kernel mean embedding for each domain, which
is subsequently provided as a second argument to the classifier. These embeddings are
estimated using individual test examples during the testing phase.

• ARM (Zhang et al., 2020): extending MTL by utilizing of a distinct Convolutional Neural
Network (CNN) for the computation of domain embedding. This domain embedding is
subsequently appended to the input images as supplementary channels.

• SagNets (Nam et al., 2021): mitigates the domain gap by incentivizing latent representations
to disregard image style and prioritize content emphasis.

• RSC (Huang et al., 2020): iteratively dropping out the most activated features to challenge
the network.

7.3 EXPERIMENTAL RESULT DETAILS

In this section, we show detailed results of Table 1 in the main text. Standard errors are reported from
three trials.

7.3.1 VLCS

Table 4: Classification Accuracy on VLCS using ResNet50

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
KEAI 98,6 ± 0.1 65,6 ± 1,0 74,1 ± 0.1 79,3 ± 0,3 79,4
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7.3.2 PACS

Table 5: Classification Accuracy on PACS using ResNet50

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
KEAI 87.4 ± 0.2 82.0 ± 0.9 97.5 ± 0.1 80.2 ± 0.4 86.8

7.3.3 OFFICEHOME

Table 6: Classification Accuracy on OfficeHome using ResNet50

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
KEAI 64,7 ± 0.2 54,1 ± 0.6 76,3 ± 1.0 78,4 ± 0.8 68,4
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7.3.4 TERRAINCOGNITA

Table 7: Classification Accuracy on TerraIncognita using ResNet50

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
KEAI 52,6 ± 7.0 40,6 ± 1.2 57,3 ± 0.1 43,8 ± 0,7 48,6

7.3.5 DOMAINNET

Table 8: Classification Accuracy on DomainNet using ResNet50

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
KEAI 59,9 ± 0,3 20,9 ± 0.6 49,1 ± 0.2 12,0 ± 0.6 59,8 ± 1.2 50,8 ± 0.6 42,1

8 EXPERIMENTAL SETTINGS

8.1 IMPLEMENTATION DETAILS

we adopted a simple and effective strategy for dividing the latent vector, aimed at facilitating a
fair comparison. This method entails segmenting the latent vector into several sub-features, while
consciously avoiding the introduction of extra modules or transformations that could modify its
fundamental structure. For ease of implementation, we opted to split the latent vector into attributes
of equal dimensions.

We detail our algorithm’s implementation:

• Feature extractor network: we adopt the ResNet50 (He et al., 2016) architecture (removing
the final classification layer) and the batch normalization statistics are frozen during training.
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• Kernel-based Feature-Identifier Γ: each Kernel-based Attribute Identifier Γk is modelled as
a max-margin hyperplane (Wk, bk), having equation W⊤

k ϕσ(a) + bk = 0 where (wk, bk) is
implemented by i.e., a Full-Connected (FC) layer na × 1, attribute a ∈ Rna is the input and
ϕσ : U → R2×D is the feature map from attribute space to kernel space defined as Eq.4 in
the main paper.

8.2 HYPERPARAMETERS

The hyperparameters are chosen using the same strategy as in (Cha et al., 2021). Specifically, we
employ the Adam optimizer as described in (Gulrajani & Lopez-Paz, 2021), with a learning rate
in the search range of [1e−5, 5e−5] and no dropout or weight decay. The batch size is set to 32
and the attribute-dim is in the search choice of na ∈ {32, 64, 128} for all datasets in our main
experiments. The number of total iterations is 15,000 for DomainNet and 5,000 for other datasets,
which are considered sufficient for convergence. As for the kernel hyperparameters, we adopt the
initial values of σ = 1.0, and D = 128 based on insights from (Nguyen et al., 2017). These values
remain consistent across all experiments. Finally, we use system of NVIDIA QUADRO RTX 6000 to
conduct our experiments.

8.3 COMPUTATIONAL COST

In our KEAI framework, we divide the latent space into K groups and implement a classifier and a
kernel model for each attribute. This results in K attribute-based classifiers and K kernel models
{Γk}K1 . It’s important to highlight that each attribute-based classifier processes an input attribute
with a dimension of na = nz

K . As such, the cumulative parameters for the K linear attribute-based
classifiers are equivalent to those of a single linear classifier with an input dimension of nz . We
utilize batch-matrix computation (as detailed in Listing.1) to simultaneously forward all K linear
attribute-based classifiers. Consequently, the total parameter count and computational load are
comparable to a standard linear classifier operating on the original latent space.

A similar approach is adopted for the K kernel models {Γk}K1 , where the hyperplanes are also
modeled as linear layers. In summary, the additional computation involves only the transformation
from attribute space to kernel space as per Eq.4 and a linear classifier for the hyperplanes.

1 class EnsembleLinear(nn.Linear):
2 def __init__(self, ensemble_size, attribute_dim, output_dim):
3 nn.Module.__init__(self)
4 self.attribute_dim = attribute_dim
5 self.output_dim = output_dim
6 self.weight = nn.Parameter(torch.Tensor(ensemble_size,

attribute_dim, output_dim))
7 self.bias = nn.Parameter(torch.Tensor(ensemble_size, 1,

output_dim))
8

9 def forward(self, x):
10 # x: Ensemble Batch Attribute_in
11 return torch.baddbmm(self.bias, x, self.weight)

Listing 1: Ensemble Linear Layer
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