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ABSTRACT

Black-box Large Language Models (LLMs) provide practical and accessible al-
ternatives to other machine learning methods, as they require minimal labeled
data and machine learning expertise to develop solutions for various decision mak-
ing problems. However, for applications that need operating with constraints on
specific metrics (e.g., precision ≥ 95%), decision making with black-box LLMs
remains unfavorable, due to their low numerical output cardinalities. This results
in limited control over their operating points, preventing fine-grained adjustment
of their decision making behavior. In this paper, we study using black-box LLMs
as classifiers, focusing on efficiently improving their operational granularity with-
out performance loss. Specifically, we first investigate the reasons behind their
low-cardinality numerical outputs and show that they are biased towards generat-
ing rounded but informative verbalized probabilities. Then, we experiment with
standard prompt engineering, uncertainty estimation and confidence elicitation
techniques, and observe that they do not effectively improve operational granularity
without sacrificing performance or increasing inference cost. Finally, we propose
efficient approaches to significantly increase the number and diversity of available
operating points. Our proposed approaches provide finer-grained operating points
and achieve comparable to or better performance than the benchmark methods
across 11 datasets and 3 LLMs.

1 INTRODUCTION

Black-box LLMs, accessible through cloud APIs, offer ready-to-use solutions for many real-world
problems that previously required traditional machine learning approaches Ajwani et al. (2024); Fang
et al. (2024). These models can be deployed for decision making tasks with minimal requirements for
data annotation, computing infrastructure, or machine learning expertise. This accessibility has fueled
their widespread adoption in various applications such as fraud detection, product classification, and
medical diagnosis Min et al. (2021); Zeng et al. (2024).

Despite their versatility, these black-box models face limitations when applied to decision making
tasks with operational or mission-critical constraints. Often, these constraints aim to adapt the mode
of operation with respect to the expected risk associated with making a decision Davis & Goadrich
(2006); Liu et al. (2017); Zadrozny (2004). One such example of an operational constraint is when the
probability of making an incorrect decision is high; in such cases, a system may choose to delegate
the decision to a larger model or a human-in-the-loop. Consequently, having finer-grained control
over these operational metrics results in better optimization of the system’s behavior. Typically,
with predictive models that generate diverse and high-cardinality output distributions, traditional
calibration techniques are used to conduct such behavior optimization on a Receiver Operating
Characteristics (ROC) or precision-recall (PR) curve Guo et al. (2017). However, these techniques
cannot be directly applied to Black-box LLMs due to lack of access to such a high-cardinality
classification score distribution.

In this paper, we work under the assumption of an LLM being served behind a black-box service,
where the user cannot access the LLM’s weights, activations, logits, or token probabilities. We also
assume that the LLM cannot be fine-tuned and is used as a frozen inference-only model. Many real-
world widely-adopted LLM services fall under this business model. Then, in a binary classification
setting, one immediate way to make this black-box LLM emulate a white-box machine learning
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Figure 1: PR and ROC curves of 3 LLMs’ verbalized probability estimates (vrb) together with
Qwen’s decision token probabilities (tkn) across 11 datasets. Histograms of verbalized probabilities
over individual axes are also provided to visualize the sparsity along these axes. All three LLMs’
verbalized probability distributions imply low cardinality and diversity of operating points, while
using token probabilities provides a highly continuous curve (its histogram is omitted for brevity).

model is to prompt the LLM to output a verbalized quantity associated with its decision Lin et al.
(2022); Tian et al. (2023); Xiong et al. (2023); Wen et al. (2024). When prompted, this score can
be generated as the numerical string representation of the probability as a float between 0 and 1, or
indirectly converted from a grading scale (e.g., 1 to 5, A to Z, and very confident to not confident).

Let us take the example of direct probability-emulation output. In this setting, given a classification
dataset {(xi, yi)}Ni=1, yi ∈ {c1, c2, ..., cn}, the black-box LLM is prompted to estimate the class
probabilities p(yi = cj |xi) ∀i, j and return them as part of its textual output. One issue we observe
is that the distribution of returned probabilities contains a small number of distinct elements. Figure
1 compares the precision-recall (PR) curves of such probability-emulation of 3 LLMs, as well as
the white-box LLM Qwen’s DeepSeek-AI (2025) token probabilities across 11 datasets. Although
directly prompted to generate continuous class probabilities, we observe that simple prompting has
a significantly lower number of distinct predictions compared to using token probabilities that are
not accessible in black-box setting. Consequently, number of unique model score thresholds that
correspond to different operating points is also low, resulting in coarse operational granularity.
Given an operational measure α, operational granularity measures the smallest adjustment that
can always be made to α. This is problematic because many business-critical and mission-critical
real-world applications rely on complete precision-recall (PR) or Receiver Operating Characteristic
(ROC) curves to select the appropriate operating point for the system, based on specific operational
requirements like high recall or high precision. However, with such a limited set of probabilities from
the black-box LLM, it is not possible to finely adjust the system behavior to a desired operating point.

To address these limitations, we investigate the reasons behind the low-cardinality output distributions
of LLMs, and we propose efficient approaches to map black-box LLMs’ verbalized probabilities
to a distribution of predictions that has fine-grained coverage of spaces described by two widely-
used operational metrics: PR and ROC curves Flach & Kull (2015). These approaches involve
introducing parameterized noise to LLM outputs, where the parameters are estimated from data.
These approaches can be interpreted as using a known continuous noise distribution (e.g., Gaussian
noise) as prior, which inherently has the cardinality of the continuum |R|. Then, guided by black-box
LLM outputs, we learn functions f to transform this prior to a prediction distribution with fine
operational granularity.

Our primary contributions include: (1) demonstrating the prevalence and impact of low cardinality in
LLM verbalized scores through extensive experiments, (2) providing a hypothesis for this behavior
with supporting experiments, and (3) offering simple yet effective solutions that outperform SOTA
confidence elicitation and uncertainty estimation techniques on the task of increasing cardinality
(precisely operational granularity) while maintaining predictive performance. Our focus is not on
better model calibration or improving model performance in terms of task specific metrics but on
improving granularity. To do so, we modify the LLM predicted scores using noise and do not alter the
initial predictions by the LLM. We show through extensive experiments that it is not trivial to improve
granularity with just better prompting techniques and that model fine-tuning might be necessary to
fundamentally modify the LLM scores. This is outside the scope of our work.
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2 RELATED WORK

We focus on reviewing uncertainty estimation and confidence elicitation studies, as they are the
most relevant directions to our problem. In Appendix A.1, we also discuss works that study model
calibration and numerical capabilities of LLMs.

Black-Box Uncertainty Estimation. In this paper, we aim to extract highly granular classification
scores from black-box LLMs. One way to tackle this problem is to use uncertainty estimation
techniques to calculate a continuous measure of uncertainty and combine it with the classification
decision. Lin et al. (2024) proposes and compares a group of simple sampling-based uncertainty
metrics that utilize the number of semantic sets, sum of eigenvalues of the graph Laplacian and the
degree matrices formed based on the output distributions. Tsai et al. (2024) introduces an efficient
approach that utilizes point-wise dependency neural estimation to assess decision trustworthiness
for stepwise decision planning. Manakul et al. (2023) proposes a hallucination detection framework
by aggregating multiple evaluations of stochastically-generated LLM responses. Wagner et al.
(2024) creates a confusion matrix by injecting bias into prompts for each class and aggregates the
measurements in the matrix to produce an uncertainty label. Although uncertainty estimation methods
tend to increase the LLM output cardinality, they require tens to hundreds of repeated LLM calls per
sample to converge and produce sufficiently continuous output distributions.

Confidence Elicitation. An efficient alternative to sampling-based uncertainty estimation is to use
prompting strategies to extract self-assessments associated LLM decisions. Tian et al. (2023); Lin
et al. (2022) find that verbalized confidences often align better with the actual correctness of the
model’s answers compared to internally calculated token probabilities and predictive uncertainty.
Xiong et al. (2023) observes that LLMs tend to be overconfident with their elicitation, possibly
mimicking the style of human confidence expressions. The authors report that the performance
difference between using token probabilities of white-box models and using elicited confidences of
black-box models is small, however, there is no single technique that consistently works the best.
Notably, the authors also observe that the verbalized confidences of LLMs usually fall in the 80-100
range, and are expressed in multiples of 5. However, they do not further investigate this phenomena.
Zhou et al. (2023b) studies the relationship between the epistemic markers injected into the prompts
and the corresponding confidence expression verbalized by LLMs. They find that LLMs tend to be
biased from the observed language use in prompts, rather than truly expressing their own epistemic
uncertainty. These studies commonly observe that confidence elicitation produces an informative
but potentially biased signal, and they propose prompting approaches to mitigate these biases. Also,
these approaches do not significantly increase the cardinality or diversity of the LLM-generated
confidences, and they do not work consistently across datasets.

3 METHODOLOGY

3.1 BACKGROUND

In real-world applications, due to the constraints and requirements of the use case, machine learning
models often need to be evaluated by a combination of metrics. For example, a fraud detection model
that declines banking activities may need to operate with a low false positive rate but a high recall to
maintain good customer experience, while minimizing fraudulent activity. For such use cases, using
one-dimensional performance metrics such as accuracy does not provide sufficient insight into model
behavior. Instead, multi-dimensional performance summaries such as ROC and PR curves are utilized
Davis & Goadrich (2006). As they are common choices for decision making problems, we focus on
these two curves. We also limit the discussion to binary classification, however, our analyses and
proposed approaches can be extended to multiclass setting by taking a 1-vs-rest or 1-vs-1 approach.

Operational Curves. In a binary decision problem with positive (P) and negative (N) classes, let x
be an input instance with an unknown class label y ∈ {P,N}. Let a classifier estimate the probability
of input belonging to class P: ŷ = p(y = P|x) ∈ [0, 1]. We can use a threshold th ∈ [0, 1] to
map the probability estimate to a decision P if ŷ > th, and to N otherwise. Then, a distribution of
decisions over a set of instances can be summarized in a confusion matrix that contains counts of
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). Notably, a
confusion matrix can be seen as a function of a multiset of prediction-label pairs [(y, ŷ)i]Ni=1 and
a threshold thj , since the distribution of true and false decisions change based on these variables.
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Figure 2 (a): All 3 LLMs are heavily biased towards verbaliz-
ing probability estimates that end with "0" and "5"s. On the
other hand, the distributions of the 3rd characters are spread
across all tokens (digits) with slights bias towards extremes.
Interestingly we observe that even though all three models’
top 2 most frequent tokens in position 4 are consistent, Qwen’s
highest probability token is "5" while the others’ is "0".

Model |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓
Claude (vrb) 16 0.080 0.450 0.191
Nova (vrb) 23 0.085 0.424 0.270
Qwen (vrb) 21 0.128 0.219 0.194
Qwen (tkn) 41671 0.001 0.028 0.028

Figure 2 (b): Output cardinalities (|ŷ|) and oper-
ational granularities (g) of three LLMs across 11
datasets (granularities are truncated to the third
decimal points). We observe that (1) verbal-
ized probabilities produce orders of magnitude
coarser-grained operational curves and lower-
cardinality output distributions than using to-
ken probabilities, and (2) higher cardinality does
not always translate to finer-granularity as many
unique predictions may densely populate a sub-
region and leave the rest of the space sparse.

Specifically, given this set of prediction and label pairs, let Mthj
=

[
TPthj

TNthj

FPthj FNthj

]
denote the

confusion matrix constructed using the threshold thj . Mthj can be used to construct a point in either

ROC space Rfpr ×Rtpr as xROC
j :

( FPthj

FPthj
+TPthj

,
TPthj

FNthj
+TPthj

)
, or a point in the PR space

Rrec × Rpre as xPR
j :

( TPthj

FNthj
+TPthj

,
TPthj

FPthj
+TPthj

)
, where fpr and tpr denote false and

true positive rates, and rec and pre denote recall and precision, respectively. Then, corresponding
ROC and PR curves can be expressed as the following sets:

ROC
(
[(y, ŷ)i]

N
i=1

)
=

{
xROC
j ∀ thj ∈ {ŷi}

}
, PR

(
[(y, ŷ)i]

N
i=1

)
=

{
xPR
j ∀ thj ∈ {ŷi}

}
. (1)

Operational Granularity. Both ROC and PR curves describe mappings from multisets to sets,
because the thresholds to produce points in these spaces are defined in the set of unique model
predictions {ŷi}. The distributions of the points in these sets directly express the operational behavior
of the model that generates them. Depending on how sensitive the use case is to the operational
metrics that these spaces consist of, the number of points to sufficiently cover the full operational
range may vary. For example, being able to control the precision of a model in 0.25 increments
may be sufficient for sentiment classification, but not for medical diagnosis. Given a set of points
S ∈ Ra × Rb that describe a model’s operational behavior (e.g., ROC ∈ Rfpr × Rtpr), we define
the operational granularity of S along an axis a as

ga(S) = argmin
s≥0

{
s | ∀m ∈ Z ∩

[
0, ⌈1/s⌉

]
,∃pi ∈ Πa(S) : m · s ≤ pi < (m+ 1) · s

}
, (2)

where Πa(S) denotes the projection of points in S onto a. Intuitively, ga(S) is the cell size of the
minimum-width uniform grid that Πa(S) covers, capturing the granularity of adjustment that can be
consistently done along the range in which the operational metric a is defined. Then, a lower value of
ga(S) would imply a consistently finer-grained control over the metric a.

3.2 ANALYSIS OF LLM-GENERATED PROBABILITY ESTIMATES

In this section, we investigate the verbalized probability estimates ŷvrb generated by three LLMs: the
black-box Anthropic Claude 3.0 Sonnet (Claude) Anthropic (2024) and Amazon Nova
Pro 1.0 (Nova) Amazon (2025b), and the white-box DeepSeek R1 Distill-Qwen-32B
(Qwen) DeepSeek-AI (2025). We also investigate Qwen’s token probability distribution ŷtkn corre-
sponding to the decision token to gain further insights. For this analysis, we combine samples from
11 binary classification datasets (see Appendix A.2) and prompt the LLMs to verbalize numerical
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Figure 3: Verbalized probability distributions of Qwen using prompts with low, medium and high
specificity. The output cardinality can be increased by providing additional instructions on how to
conduct the task.

classification scores given input instances (see Appendix A.3 for the prompts used). We analyze their
score distribution cardinalities, PR and ROC curves, and operational granularities using equation 2.

Verbalized classification scores have low cardinality. Figure 1 depicts the PR and ROC curves
of the distributions ŷvrb

Claude, ŷvrb
Nova, ŷvrb

Qwen and when prompted to output class probabilities, and ŷtkn
Qwen

when prompted to output binary decisions (e.g., yes or no). From the figure, it can be observed
that all three LLMs generate sparsely populated PR and ROC curves when verbalized probabilities
are used, while the token probabilities of Qwen (i.e., ŷtknQwen) form continuous curves. Figure 2 (b):
shows output cardinalities and operational granularities of these four variants. We observe that using
verbalized probabilities only provide 16-23 unique values, while token probabilities provide 41671
unique values. Notably, we observe minimal change in cardinality when we prompt the LLMs to
generate scores in [0, 100], generate and combine a coarse and a fine grained score, generate 20
scores within a single output and conduct post-processing to aggregate them, and generate output
by using a context of 20 example scores in desired high-precision form. See Appendix A.4 for
experiment results with these variants. We additionally consider two prompt based approaches from
state-of-the-art confidence estimation works Tian et al. (2023); Xiong et al. (2023). These are two
stage approaches (requiring 2 LLM calls per instance) with the LLM first predicting just the class
label and then provided with this label, predicting the likelihood of its correctness. One of these
variants uses chain-of-thought prompting in addition to the two-stage approach.

Verbalized probability generation is biased towards round but informative numbers. In order
to gain additional insights into low-cardinality generations, we dive deeper into token probabilities
associated with the generations ŷvrb

Qwen character by character. Note that, this is different than ŷtkn
Qwen that

corresponds to the token probabilities associated to binary decisions. Specifically, given a verbalized
probability ŷvrb[i], we individually analyze the token probability distribution of each character by
their position. For example, let ŷvrb

1 ="0.95". Then, the positions 1 and 3 would correspond
to the tokens "0" and "9", respectively. For the black-box Claude and Nova, because the token
probabilities are not available, we conduct the same analysis by counting the characters occurring at
each position. Figure 2 (a): depicts the distribution of the token probabilities and character counts by
position across 11 datasets. From the figure, it can be observed that when simply asked to verbalize
class probabilities, all three LLMs chose to end their generations with "0" and "5" tokens most
of the time, regardless of the task. We hypothesize that this is due to the fact that LLMs are trained
and aligned by heavily relying on human-generated data, and humans tend to prefer expressing
quantities in round numbers as their cognitive bias Pope & Simonsohn (2011); Zhou et al. (2023b).
When this bias is reflected to LLM generations, it creates a many-to-one mapping from an internal
high-precision representation (e.g., discrete token probabilities) to a round number, reducing the
cardinality of generations. We refer to this generation behavior of LLMs as rounding bias. To be
clear, in this context, we are using the definition of roundness as described by Ferson et al. (2015): a
number ending in the digit 5 is considered rounder than any number ending in 1, 2, 3, 4, 6, 7, 8, or
9. However, a number ending in 5 is considered less round than any number ending in 0. From the
figure, we also observe that the distribution in the third position is spread across all numerical tokens,
while having slight bias towards extremes. Notably, even though the verbalized probabilities are
heavily impacted by the rounding bias, they still imply operational curves that are visibly correlated
with the ones generated using ŷtkn

Qwen as shown in Figure 1.
Increased specificity in prompt can reduce rounding bias. We aim to understand why verbalized
probabilities are heavily impacted by rounding bias, while LLMs can conduct operations such as
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Prompt Specificity |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓ PRAUC↑ AUROC↑
Low 28 0.091 0.188 0.297 0.775 0.792
Medium 89 0.031 0.117 0.104 0.713 0.748
High 179 0.010 0.050 0.042 0.633 0.663

Table 1: Cardinality, granularity and AUCs of Qwen’s verbalized probability distributions when
prompted with Low, Medium and High specificity. As the specificity increases, cardinalities and
granularities improve. However, the increased specificity may impact the performance.

simple algebra with reasonable precision. We hypothesize that tasks with high ambiguity leave
room for the rounding bias to impact the output, as the steps of conducting the task are not explicit.
We design an experiment using prompts with increasing levels of specificity to help reduce task
ambiguity. The low specificity prompt (A.3.2) asks the model to directly output a class probability
value, the medium specificity prompt (A.3.3) instructs the model to first extract numerical features
and then combine them, and the high specificity prompt (A.3.4) additionally instructs the model
to combine the extracted features using a parameterized function with weights assigned using the
LLM’s own sense of feature importance. Figure 3 and Table 1 depict the histograms of verbalized
probability distributions as well as cardinality, operational granularity and AUC measurements using
these three prompts. We find that as the specificity increases, the granularity and cardinality of the
output improves. However, increased specificity may impact the performance. Although, with further
trial and error, it may be possible to maintain the performance, these results show that the impact of
increased specificity to performance is not always predictable. We provide additional ablations with
these prompts in Appendix A.5.

3.3 PROPOSED APPROACHES

In Section 3.2, we observe that LLM-generated verbalized probabilities have rounding bias and
attempting to resolve it with prompting is non-trivial as it may negatively impact performance.
Additionally, we see that verbalized probabilities imply PR and ROC curves that still behave similarly
to using token probabilities. Motivated by these observations, we propose approaches to enrich
verbalized probabilities with noise introduced in various ways. As the cardinality of noise sampled
from a continuous distribution would approach to infinity with increasing sample size, we expect it to
help introduce smoothness and diversity to the verbalized probability distributions, if it is aggregated
with the original probabilities carefully.

Given a dataset D = {(xi, yi)}Ni=1 where yi ∈ {0, 1}, let a black-box LLM output the verbalized
probability ŷvrb

i that estimates p(yi = 1|xi). Then, our objective can be loosely formulated as a
constrained optimization problem:

argmin
θf

[
ga(Sf ), g

b(Sf )

]
s.t.

N∑
i=1

ℓ(yi, ŷi = f(ŷvrb
i ; θf )) ≤

N∑
i=1

ℓ(yi, ŷ
vrb
i ), (3)

where Sf denotes the operational curve S([y, f(ŷi; θf )]Ni=1) defined for S ∈ {ROC,PR} in Equation
equation 1, g(Sf ) is the operational granularity of Sf from Equation equation 2, ŷ = f( .; θf ) is a
function that maps verbalized probabilities [ŷvrb

i ]Ni=1 to an output distribution [ŷi]
N
i=1 that estimates

class probabilities, and ℓ is a function that measures the classification loss. Then, the objective is
to find a function f (by estimating θf ) that minimizes the operational granularity for a and b of
S ∈ Ra×b, while keeping the empirical risk bounded by the loss incurred by the original verbalized
predictions [ŷvrb

i ]Ni=1. One way to attempt solving this optimization problem is to observe that
according to Equations equation 1 and equation 2, ga(Sf ) and gb(Sf ) depend on the cardinality∣∣[ŷi]Ni=1

∣∣ and the entropy H
(
[ŷi]

N
i=1

)
of the output distribution. In fact, setting

∣∣[ŷi]Ni=1

∣∣ to samples
from the standard uniform distribution U(0, 1) would minimize this objective, however, would
also violate the inequality constraint. Based on this observation, instead of directly minimizing[
ga(Sf ), g

b(Sf )
]
, we reformulate the objective of our first proposed variant as follows:

max(w) s.t.
N∑
i=1

ℓ(yi, ŷi = clip[0,1](ziw + ŷvrb
i )) ≤

N∑
i=1

ℓ(yi, ŷ
vrb
i ), w > 0, (4)
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Figure 4: PRAUC of different approaches over 5 different train/test splits with 2σ error bars. Proposed
methods are shown in purple. (Top) Aggregated results over 11 datasets. While naive prompting is
usually worse than other methods, no method consistently outperforms the rest. Since a majority of
these datasets are small and have nearly monotonic PR curves, the proposed supervised methods do
not provide significant boosts. (Bottom) Results on combined dataset. Supervised approaches vastly
outperform the rest including the sampling approaches requiring 20 LLM calls per instance.

where clip[0,1](x) maps x to the closest value in [0, 1], and z ∼ U(0, 1). Note that in Equation
equation 4, w controls the amount of noise introduced to the verbalized predictions. Then, Equation
equation 4 aims to find the largest w that does not impact the classification performance. Note that, to
maintain the classification performance in PR and ROC spaces, it is not required to directly calculate
the classification losses ℓ. As long as the relative ranks of the predictions remain the same, the
performance in these spaces will remain unchanged. Then, given a list of verbalized probabilities
[ŷvrb

i ]ni=1, one can set the w such that zn+1w + ŷvrb
n+1 < ŷvrb

i , where ŷvrb
i is the smallest probability in

the list that is larger than ŷvrb
n+1. We refer to this approach as Ours-Unsup.

We empirically observe that using Ours-Unsup produces operational curves by interpolating the
curves implied by the verbalized probabilities. However, when these probabilities do not have a
sufficiently monotonous relationship between their empirical performance, there may be room to
correct this behavior and lift performance using ground truth. This is typically the case for machine
learning models that operate in the zero-shot setting, as their score distributions are not calibrated to
the corresponding task. In order to achieve this, we extend equation 4 to a supervised learning setting,
reformulating the objective as finding a continuous distribution with high entropy and that can be
transformed to an output distribution that minimizes the empirical loss:

argmin
θf ,w>0

N∑
i=1

ℓ(yi, ŷi = sig(
zi
w

+ f(ŷvrb
i ; θf ))) + λw, (5)

where z ∼ N (0, 1) and sig(x) = 1/(1 + e−x). In Equation equation 5, f models additive corrections
made to the samples from a Gaussian distribution with the standard deviation σ ∝ 1/w. Since
the differential entropy of a Gaussian (i.e., ln(σ

√
2πe)) is proportional to its standard deviation,

decreasing the value of a positive w would increase the entropy of the sample distribution that is
corrected by f and [zi/w]

N
i=1. Consequently, λ controls the magnitude of regularization that pushes

the entropy up, and we leave it as a hyperparameter. (w, θf ) is estimated using a ReLU network Hanin
& Rolnick (2019) by setting ℓ to cross-entropy loss Mao et al. (2023). We refer to this approach as
Ours-Sup-1call. It is important to note that Equation equation 5 learns a mapping from (zi, ŷ

vrb
i )

to yi, without having visibility of input features xi. Therefore, when w → ∞, the mapping f reduces
to a calibrator that learns to correct ŷvrb’s mistakes that is consistently repeated across different input
instances. In Appendix A.7, we provide ablation studies to show that jointly learning to introduce
noise and correcting miscalibrated behavior (i.e., equation 5) performs better than conducting these
steps separately.

4 EXPERIMENTS

We empirically demonstrate the improvements in performance and granularity of operating points
using the proposed approaches. We use 11 publicly available binary classification datasets to
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Figure 5 (a): Scatter plot of precision-recall values
for all possible thresholds. The plots along the
margin show the histogram of operating points for
each method. The proposed methods have signifi-
cantly higher output cardinality, providing better
control over the operating point, while simultane-
ously improving the performance.

Approach Calls |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓ PRAUC ↑
Prompt-Naive 1 15 0.078 0.451 0.207 0.73(0.01)
Prompt-Seq 2 16 0.157 0.377 0.525 0.72(0.01)
Prompt-Seq-CoT 2 15 0.137 0.399 0.504 0.71(0.01)
Sample-Class 20 97 0.168 0.552 0.124 0.73(0.00)
Sample-Prob 20 2291 0.014 0.018 0.010 0.78(0.01)
lightpurple Ours-Unsup 1 18673 0.023 0.037 0.011 0.72(0.01)
lightpurple Ours-Sup-1call 1 20596 0.016 0.001 0.004 0.74(0.02)
lightpurple Ours-Sup-2call 2 20607 0.016 0.001 0.005 0.79(0.05)

Figure 5 (b): Operational granularity of the baselines and
proposed approaches measured along precision (pre), re-
call (rec) and false positive rate (fpr) axes to cover both
PR and ROC spaces, as well as their output cardinalities
(car). Granularities are calculated using Equation equa-
tion 2. Proposed methods increase cardinality by nearly 3
orders of magnitude providing great granularity along all
3 axes. 2σ− error margins are denoted in parenthesis for
PRAUC.

evaluate the effectiveness of the proposed approach, covering a variety of applications from sentiment
classification to heart disease detection. Dataset sources, sizes and processing details can be found
in Appendix A.2. Similar to Section 3.2, we experiment with three LLMs of varying parameter
counts - Anthropic Claude 3.0 Sonnet (Claude), Amazon Nova Pro 1.0 (Nova) and
DeepSeek R1 Distill-Qwen-32B (Qwen). We implement Ours-Sup-1call as an MLP
with 2 hidden-layers of width 8 and with ReLU activation function, and tune learning rates via
grid search within [0.01, 0.05, 0.1]. We also conduct grid search to find a suitable value for λ from
Equation equation 5 within LogUniform(1e−4, 1e−1).

Benchmarks. Prompt-Naive, with a simple prompt to predict verbalized scores, serves as our
primary baseline (Appendix A.3.1). Following Tian et al. (2023); Xiong et al. (2023), we consider
a two-stage prompting approach where only a class prediction is obtained in the first LLM call
and only the confidence for the predicted class is obtained in the second LLM call. We use both
regular (termed Prompt-Seq) and chain-of-thought (termed Prompt-Seq-CoT) variants for this
approach. Additionally, as described in Sec. 3.2, we consider several prompt methods for comparison.
However, all these approaches fail to significantly improve cardinality and might result in performance
drops. For brevity, we compare against the baseline and state-of-the-art prompt variants here and
provide the remaining results in the Appendix. For Qwen, we directly use the token probabilities for
the decision token as the classification score. In the absence of these probabilities for the black-box
Claude and Nova models, we estimate them by setting the temperature to 1, repeatedly sampling
outputs, and calculating the ratio of times the most frequent class was predicted. This method is
termed as Sample-Class. It is straightforward to show that when temperature is set to 1, as the
number of samples approaches infinity, the estimated probability approaches the token probability of
the decision token. For each input instance, we sample black-box LLMs 20 times to conduct this
approximation. Sample-Prob can be seen as a mix of verbalizing and sampling approaches where
multiple samples per instance are obtained as in Sample-Class but the verbalized probabilities are
predicted for each instance and averaged to get the aggregated prediction. Details and complete prompt
templates are provided in Appendix A.3. We empirically observe that averaging the verbalized scores
over multiple samples for an instance (Sample-Prob) helps improve cardinality and performance.
Thus, we use a variant of our approach, termed Ours-Sup-2call, that takes in two verbalized
probabilities (with temperatures 0 and 1) as input. Different from the other supervised approaches,
this model is trained on 20 samples per instance and it requires two samples per instance during
inference. Note that this is still 10× more efficient compared to Sample-Prob during inference.

Results on the 11 Benchmark Datasets. Fig. 4 (top) summarizes the experiment results aggregated
across 11 datasets. It compares PRAUCs of different approaches calculated over 5 runs with different
train/val/test splits on each of the three LLMs, depicting mean and 2−σ error bars. Detailed results are
provided in the Appendix A.9. As previously observed in Section 3.2, proposed methods significantly
improve the operational granularity by increasing the diversity and cardinality of the outputs. The
proposed methods perform comparably or better than the baseline Prompt-Naive. However, a
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majority of the 11 datasets are small with as few as 250 samples in five of them. Additionally, the
precision-recall curves of the LLMs are mostly monotonic, leaving little scope for improvement.
Thus, the performance of proposed supervised methods is comparable to Ours-Unsup. Notably, we
observe that even though it is significantly simpler, more efficient and scalable than Sample-Class
and Sample-Prob, Ours-Unsup performs similarly to the approximated token probabilities on
Nova and Qwen LLMs while achieving comparable or higher density in the operational curves.

Results on a Simulated Diverse Dataset. Real-world scenarios often involve highly diverse data
that contains sub-populations with different distributions. Due to their foundational nature, LLMs
are commonly used in these scenarios. To simulate experiments on such a dataset, we combine the
11 datasets we individually experimented with into a single one and analyze the performance. For
a single operating point to work well on this combined dataset, it is necessary that the predicted
probabilities have consistent meaning across datasets. We observe that the supervised approaches
trained on this combined dataset are particularly beneficial in such scenarios. Figure 5 (a): compares
the precision-recall curves of different approaches for Claude. For a given approach, we use every
unique value in the prediction as a threshold and calculate the corresponding precision and recall
and visualize this as a scatter plot. The histograms on the margins denote the number of such
points within a bin. We observe that compared to Prompt-Naive, proposed method significantly
improves the operational granularity by increasing the diversity and cardinality of the outputs, while
outperforming it in terms of PRAUC. In addition, we observe that even though it is significantly more
efficient and scalable, Ours-Sup-2call outperforms Sample-Prob while achieving compara-
ble or higher density in the operational curves. Unlike the individual datasets, the performance of
Ours-Unsup here is not comparable to that of the supervised ones. However, it still offers an easy
way to increase the cardinality while outperforming Prompt-Naive. Figure 4 (bottom) shows
PRAUC comparison for the joint dataset. Unlike on the individual datasets, the proposed supervised
approaches and Sample-Prob vastly outperform other methods. With just 2 samples per instance
during inference, the Ours-Sup-2call achieves 8% point improvement in mean PRAUC over the
baseline Prompt-Naive and 2.6% points over 20 sample Sample-Prob approach. The learning
approaches have relatively higher variance due to the small sizes of dataset-subsets that are merged to
create the combined dataset. Figure 5 (b): shows the operational granularity measurements along
gpre, grec and gfpr, as well as the output cardinalities. Prompt-Naive and the two more complex
prompting techniques Prompt-Seq and Prompt-Seq-CoT have an extremely small cardinality
(16 or less). Sampling approaches improve it by nearly two orders of magnitude. However, the
proposed methods achieve a cardinality nearly equaling the size of the dataset. This increase in
cardinality also translates to better operating points, seen in the low granularity values along all 3
axes of precision, recall and fpr, while maintaining or improving performance.

Limitations. All three variants of the proposed method rely on initial LLM predictions with the naive
prompting approach. Thus, while this methods can increase the cardinality and provide more choices
for operating point selection, it might not always be possible to obtain the optimal interpolation
between the naive approaches‘ points on the operation curves. This is particularly true for the
unsupervised approach. The supervised approaches require access to ground-truth labels for training
the MLP. While this is akin to typically employed calibration approaches, it adds a layer of complexity
over simple zero-shot API calls to LLMs. With greater availability of fine-tuning capabilities for
black-box LLMs, it might be possible to overcome both these limitations by training them to provide
diverse verbalized scores. Additionally, while the proposed methods and analysis can easily be
extended to multi-class settings, we limit our experiments to binary classification tasks in this work.

5 CONCLUSION

We studied the impact of prompting, confidence elicitation and uncertainty estimation techniques
to black-box LLMs’ output distributions for decision making problems. We showed that verbalized
probabilities have limited cardinality and provided possible explanations for why and when this
issue surfaces. Our proposed approaches expand the range of operating points while maintaining or
improving the overall prediction quality. Although empirically successful, our approaches do not
directly optimize the objective equation 3, but rely on noise to increase granularity. This results in
always operating in a granularity-performance tradeoff that may fail to retain performance on tasks
with highly complex relationships between ŷ and y. Future work includes moving away from this
tradeoff by modeling z as a prior to a generative model, and fitting a classifier to the representations
of this model.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

The appendix contains additional discussion on related work in Section A.1, details on datasets
in Section A.2 and complete prompts for the approaches we studied in Section A.3. Additional
prompting techniques and corresponding results are presented in sections A.4 and A.8. Section A.5
presents an ablation study on prompt specificity. Section A.6 provides additional insights around
calibration of LLM-generated probabilities. We provide ablations on model configuration for the
proposed approach in Section A.7. Section A.9 contains detailed results for experiments in the main
text including dataset-level results.

A.1 EXTENDED RELATED WORK

Numerical Capabilities of LLMs. Our work is centered around the observation that LLMs do not
verbalize fine-grained (numerical) probability estimates when prompted. On a higher level, this
connects to lines of works that investigate the capabilities of LLMs on domains that involve conducting
and expressing probabilistic and mathematical reasoning. Imani et al. (2023) observes that LLMs have
limited performance on arithmetic reasoning tasks, and proposes a chain-of-thought (CoT) prompting
technique to solve the same math problem in multiple ways to improve the predictions. Paruchuri et al.
(2024) investigates the LLMs’ capability of estimating percentiles, drawing samples and calculating
probabilities. Their experiment results suggest that LLMs have some internal representation that
enables probabilistic modeling and reasoning, however, they tend to perform much better on common
distributions like uniform and normal compared to others. Although not explicitly discussed, from
their experiment results, it can be observed that the verbalized probabilities extracted from LLMs
are also low cardinality. Xiong et al. (2023) studied if LLMs can express their own uncertainty and
how this expression can be improved by developing prompting, sampling and aggregation strategies.
They found that there is not a single strategy that outperforms the others, however, it is recommended
to use a combination of top-K prompt, self-random sampling, and average confidence to get stable
performance. Notably, these approaches focus on single point performance metrics such as accuracy
and expected calibration error (ECE) for evaluation, and they aim to either lift the performance
on the task at hand (i.e., fine-tune) or establish consistency between empirical probabilities and
model outputs. We instead focus on increasing the granularity of the adjustments we can make to
a model’s operational behavior. We empirically observe that approaches that involve prompting
the LLM multiple times (e.g., CoT and sampling with high temperature) can increase the output
diversity, however, this increase is insignificant. See Appendix A.4 for additional experiments with
these approaches.

Model Calibration. As we study transforming the output distribution (in the form of verbalized
probabilities) of black-box LLMs to improve their operational usage, our work can be seen as a type of
model calibration. The domain of model calibration studies increasing the reliability and performance
of model output distributions, as most machine learning models have inherent biases that impact
their predictions. Typically, calibration methods aim to map model predictions to a space where the
score distribution has a desired relationship with the empirical ground truth distribution. For example,
a probabilistic classifier is considered well-calibrated if the class distribution of the instances that
receives the prediction of p is approximately p Silva Filho et al. (2023). Model calibration has been
studied extensively from traditional machine learning methods to deep neural networks Minderer et al.
(2021); Krishnan & Tickoo (2020). Calibration of LLMs outputs has also been studied in order to
mitigate impact of the unwanted bias caused by the choice of prompt Zhou et al. (2023a), architecture
LeVine et al. (2023), and pre-training data He et al. (2024). Notably, most of the existing works for
calibrating LLMs rely on access to token probabilities Xie et al. (2024). In black-box LLMs, it is
more common to conduct post-processing Detommaso et al. (2024) or training auxiliary models using
the same input as the LLM Ulmer et al. (2024) (i.e., converting the setting to gray-box). Existing
post-processing methods focus on regulating the coarse-grained verbalized confidence scores and
do increase the cardinality of these scores. Hence, they are not immediately applicable to enriching
performance curves to set operating points on. On the other hand, the auxiliary models rely on training
on the same input provided to the LLM for inference. This improves the operational granularity of
the whole system, given that the system now includes a score generating models that is trained on the
given task in a fully-supervised setting (as it involves training another language model to be used
with the LLM). However, auxiliary approaches significantly increase the amount of annotated data
and the level of expertise needed to reliably generalize, compared to using black-box LLMs as they
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are. Additional, these approaches suffer from the increased length and complexity of the inputs, as
their predictions are conditioned on the input of the black box LLMs. In this work, we explicitly
limit our scope to simple, efficient and scalable approaches and avoid using the signals from the
input features directly. This helps us to focus on correcting LLM behavior that generalizes across
samples and isolate the complexity of extracting features from textual input within the LLM, instead
of learning corrections conditioned over input features.

A.2 EXPERIMENT DETAILS

Datasets. Table 2 lists the dataset names, with their numbers of samples and URLs. We drop SST2
and BoolQ’s test sets as their labels are not publicly available. We also drop the passage field of
the Boolq dataset as the context it provides makes the task significantly easier for the LLMs we
experiment with. {Heart, Income, Jungle}-Serialized-TabLLM are tabular datasets
that were serialized to natural-language strings using by Hegselmann et al. (2023). We include
these datasets to introduce variety to the set of tasks we experiment with, as they frequently involve
decision making using numerical features together with categorical ones. When the dataset has its
own test split available, we directly use it for testing. Otherwise, we combine all the available splits
and randomly sample 20% of the combined splits to create a set split. With this, we end up with train
and test splits with 145262 and 42084 samples, respectively. With single-LLM-call approaches, we
first experiment with these splits and observe that low cardinality and rounding bias are prominent
problems across > 180k samples, and magnitudes of these issues are only sub-linearly related to the
number of samples (Figure 6). With this observation, as we expand our baselines to include additional
single and multi-call approaches that require up to 20 LLM calls per sample, we reduce redundancy
of LLM calls and use the original test split (42084 samples) as our full dataset, and further split it into
new training and test splits (21042 samples each). For each learning-based approach, we randomly
sample this new training set by %20 for validation. All experiments presented in the main body of
this paper use these new training and test splits. In order to simulate a diverse dataset, we combine the
11 datasets by respecting these training and test splits. This simulated task represents a heterogeneous
classification use case where sub-populations have different distributions.

Hardware and Services. We use Amazon Bedrock’s Amazon (2025a) APIs to experiment with
Anthropic Claude 3.0 Sonnet and Amazon Nova Pro 1.0. We experiment with
DeepSeek R1 Distill-Qwen-32B by deploying the model to 9 Amazon SageMaker Amazon
(2025c) endpoints with g5.48xlarge compute instances and running inference on the in parallel.
We conduct all non-LLM-inference compute (including the experiments with proposed approaches)
using two c5.12xlarge Amazon SageMaker notebook instances Amazon (2025c).

Implementation of proposed-unsupervised. We provide the implementation of the unsupervised
variant of the proposed approach below. The implementation assumes that the LLM verbalized proba-
bilities are provided in a DataFrame df. Then, for each row, it samples from a uniform distribution
with its range determined by the corresponding row’s verbalized probability (i.e., 1-score) and the
next larger verbalized prediction that was previously generated.

# proposed-unsupervised start

import pandas as pd
import numpy as np

def find_smallest_larger(x, l):
’’’Find the smallest score in the list of past predictions l,
that is larger than x.’’’

smallest_larger = None

for num in l:
if num > x:

if smallest_larger is None or num < smallest_larger:
smallest_larger = num

return smallest_larger

def proposed_noise(pred, all_scores):
’’’Sample the additive noise from a range that
ensures that when added to pred, it won’t change
the order of predictions.’’’

upper_bound = find_smallest_larger(pred, all_scores)
if upper_bound == None:
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noise_upper_bound = 0

else:
noise_upper_bound = np.max((0, (upper_bound - pred) - 1e-9))

noise = np.random.uniform(0, noise_upper_bound)
return noise

"""Let df be a Pandas DataFrame with LLM verbalized
predictions provided in the column ’1-score’"""

all_scores = list(set(df[’1-score’].unique()) | {0, 1})
df[’noise_proposed’] = df[’1-score’].apply(lambda x: proposed_noise(x, all_scores))
noisy_predictions = df[’1-score’] + df[’noise_proposed’]

# proposed-unsupervised end

Implementation of proposed-supervised. We use PyTorch and PyTorch Lightning to
implement the supervised variant of the proposed method as a simple MLP. We avoid searching for
width and depth of the MLP, and simply set the implementation to always use a 2-hidden layer MLP
with layer widths set to 2insize. For easy extension to multi-class, we prompt the LLM to output
verbalized probabilities for each class. Hence, for binary classification, this translates to an insize
of 3 (2 from verbalized probabilities, 1 from sampled noise). For the 2-call variant of the proposed
method, the insize gets increased by 2 as there are 2 more verbalized probabilities added from the
additional temperature=1 call. Finally, we limit the maximum number of training epochs to 50,
and use early stopping on the validation split PRAUC with patience set to 5. We truncate the logging
steps from the code provided below for readability.

# proposed-supervised start

import torch
import lightning as L
from torch import optim, nn

class Proposed(L.LightningModule):
def __init__(self, insize, outsize, learning_rate, bias_weight=1.0, lambda_bias=0.01):

super().__init__()

self.mlp = nn.Sequential(
nn.Linear(insize-1, 2**insize),
nn.ReLU(),
nn.Linear(2**insize, 2**insize),
nn.ReLU(),
nn.Linear(2**insize, outsize),

)

self.bias_weight = nn.Parameter(torch.tensor(bias_weight))
self.learning_rate = learning_rate
self.lambda_bias = lambda_bias

def training_step(self, batch, batch_idx):
x, y = batch
x, bias = x[:, :-1], x[:, -1:]
yhat = nn.functional.sigmoid(self.mlp(x) + bias * 1/self.bias_weight)
loss = nn.functional.binary_cross_entropy(yhat, y.unsqueeze(1)) + torch.abs(self.bias_weight) *

self.lambda_bias
return loss

def validation_step(self, batch, batch_idx):
x, y = batch
x, bias = x[:, :-1], x[:, -1:]
yhat = nn.functional.sigmoid(self.mlp(x) + bias * 1/self.bias_weight)
loss = nn.functional.binary_cross_entropy(yhat, y.unsqueeze(1)) + torch.abs(self.bias_weight) *

self.lambda_bias
return loss

def forward(self, x):
x, bias = x[:, :-1], x[:, -1:]
return nn.functional.sigmoid(self.mlp(x) + bias * 1/self.bias_weight)

def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer

# proposed-supervised start
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Figure 6: Cardinality vs. sampling percentage for Claude (left) and Nova (right). We observe that
there is a sub-linear relationship between the number of samples and the cardinality they correspond
to. Error bar represent 2− σ ranges calculated across 15 random seeds.

Dataset #Samples Source URL
SST2 (train., val.) 68221 huggingface.co/datasets/stanfordnlp/sst2
Movie Reviews 10662 huggingface.co/datasets/cornell-movie-review-data/rotten_tomatoes
Heart-Serialized-TabLLM Hegselmann et al. (2023) 918 github.com/clinicalml/TabLLM/tree/main/datasets_serialized/heart
Income-Serialized-TabLLM Hegselmann et al. (2023) 48842 github.com/clinicalml/TabLLM/tree/main/datasets_serialized/income
Jungle-Serialized-TabLLM Hegselmann et al. (2023) 44819 github.com/clinicalml/TabLLM/tree/main/datasets_serialized/jungle
BoolQ (train., dev.) 12697 https://github.com/google-research-datasets/boolean-questions
BIG-Bench Hard-Boolean Expressions 250 github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh/boolean_expressions.json
BIG-Bench Hard-Causal Judgement 187 github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh/causal_judgement.json
BIG-Bench Hard-Formal Fallacies 250 github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh/formal_fallacies.json
BIG-Bench Hard-Sports Understanding 250 github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh/sports_understanding.json
BIG-Bench Hard-Hyperbaton 250 github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh/hyperbaton.json

Table 2: Dataset sizes and sources used in experiments.

A.3 LIST OF PROMPTS USED IN EXPERIMENTS

A.3.1 BASELINE PROMPT TEMPLATE

We use the below prompt template for all our experiments with both the baseline and proposed
approaches.

Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}

</input_sentence>

<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct
in the range of 0 to 1.</decision-confidence>

</expected-output>
"""

A.3.2 LOW SPECIFICITY PROMPT TEMPLATE

Specificity: Low
Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}

</input_sentence>
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<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

While generating your output, follow the instructions provided below:
<task_instructions>
1. Your task is to estimate the class probabilities given input. In order to do this, determine the input

features that will contribute to your decision.
2. Then, based on your understanding of the task and the input features you selected, pick a function

(hypothesis) that takes these input features in, and outputs a continuous decision estimate.
3. Using your input features, hypothesis and its weights, calculate the classification score as your output.
</task_instructions>

Your output should look like this but in JSON format:
<expected-output>

<selected-features>List the names and values of the features you selected to generate your output
with.</selected-features>

<hypothesis-function>Describe the function you picked for decision making.</hypothesis-function>
{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>
"""

A.3.3 MEDIUM SPECIFICITY PROMPT TEMPLATE

Specificity: Medium
Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}

</input_sentence>

<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

While generating your output, follow the instructions provided below:
<task_instructions>
1. Your task is to estimate the class probabilities given input. In order to do this, determine the input

features that will contribute to your decision and extract their values. You have to ALWAYS assign a
continuous numerical value from [0-1] with high precision (can have many decimal points) to each
feature you picked, and work with these values in the next steps to represent the features.

2. Then, based on your understanding of the task and the input features you selected, pick a function
(hypothesis) that takes these input features in, and outputs a continuous decision estimate.

3. Using your input features and the hypothesis function and calculate the classification score as your
output.

</task_instructions>

Your output should look like this but in JSON format:
<expected-output>

<selected-features>List the names and values of the features you selected to generate your output
with.</selected-features>

<hypothesis-function>Describe the function you picked.</hypothesis-function>
{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>
"""

A.3.4 HIGH SPECIFICITY PROMPT TEMPLATE

Specificity: High
Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}
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</input_sentence>

<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

While generating your output, follow the instructions provided below:
<task_instructions>
1. Your task is to estimate the class probabilities given input. In order to do this, determine the input

features that will contribute to your decision and extract their values. You have to ALWAYS assign a
continuous numerical value from [0-1] with high precision (can have many decimal points) to each
feature you picked, and work with these values in the next steps to represent the features.

2. Then, based on your understanding of the task and the input features you selected, pick a function
(hypothesis) parameterized by weights for each input feature, and that takes these input features in,
and outputs a continuous decision estimate.

3. Assign continuous weights to your hypothesis function considering the desired impact of each input feature
to the decision.

4. Next, having chosen the input features and weights of your prediction fuction, calculate your continuous
decision estimates (i.e., probability of classes) as your output by running input features through the
function you picked.

</task_instructions>

Your output should look like this but in JSON format:
<expected-output>

<selected-features>List the names and values of the features you selected to generate your output
with.</selected-features>

<hypothesis-function>Describe the function you picked.</hypothesis-function>
<weights>List the weights you assigned to each input feature to parameterize the logistic regression

function.</weights>
<calculation>Break down the calculation of your outputs using selected feature values, hypothesis

functions and weights.</calculation>
{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>
"""

A.3.5 LINEAR AND LOGISTIC PROMPT TEMPLATES USED IN APPENDIX A.5

Specificity: Linear
Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}

</input_sentence>

<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

While generating your output, follow the instructions provided below:
<task_instructions>
1. Your task is to estimate the class probabilities given input. In order to do this, determine the input

features that will contribute to your decision and extract their values. You have to ALWAYS assign a
continuous numerical value from [0-1] with high precision (can have many decimal points) to each
feature you picked, and work with these values in the next steps to represent the features.

2. Then, based on your understanding of the task and the input features you selected, use a linear weighted
combination that combines the input features (hypothesis function), and outputs a continuous decision
estimate.

3. Assign continuous weights to your hypothesis function considering the desired impact of each input feature
to the decision.

4. Next, having chosen the input features and weights of your prediction fuction, calculate your continuous
decision estimates (i.e., probability of classes) as your output by running input features through the
function you picked. If your output is not in [0, 1], you are allowed to round to the closest value
inside this range.

</task_instructions>

Your output should look like this but in JSON format:
<expected-output>

<selected-features>List the names and values of the features you selected to generate your output
with.</selected-features>

<hypothesis-function>Describe the function you picked.</hypothesis-function>
<weights>List the weights you assigned to each input feature to parameterize the logistic regression

function.</weights>
<calculation>Break down the calculation of your outputs using selected feature values, hypothesis

functions and weights.</calculation>
{category_probabilities}
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<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>
"""

Specificity: Logistic
Prompt:
"""
<task>

{context}
</task>

<input_sentence>
{input}

</input_sentence>

<formatting instructions>
- Provide your final answer **only** in the specified JSON format below.
- Do **not** include any explanations or additional text outside the JSON.
- Ensure the JSON is valid and properly formatted.
- Do **not** include any extra characters or text before or after the JSON.

</formatting instructions>

While generating your output, follow the instructions provided below:
<task_instructions>
1. Your task is to estimate the class probabilities given input. In order to do this, determine the input

features that will contribute to your decision and extract their values. You have to ALWAYS assign a
continuous numerical value from [0-1] with high precision (can have many decimal points) to each
feature you picked, and work with these values in the next steps to represent the features.

2. Then, based on your understanding of the task and the input features you selected, use a linear weighted
combination that combines the input features (hypothesis function) followed by a logistic sigmoid
function (1/(1+e^(-x))) to output a continuous decision estimate.

3. Assign continuous weights to your hypothesis function considering the desired impact of each input feature
to the decision.

4. Next, having chosen the input features and weights of your prediction fuction, calculate your continuous
decision estimates (i.e., probability of classes) as your output by running input features through the
function you picked.

</task_instructions>

Your output should look like this but in JSON format:
<expected-output>

<selected-features>List the names and values of the features you selected to generate your output
with.</selected-features>

<hypothesis-function>Describe the function you picked.</hypothesis-function>
<weights>List the weights you assigned to each input feature to parameterize the logistic regression

function.</weights>
<calculation>Break down the calculation of your outputs using selected feature values, hypothesis

functions and weights.</calculation>
{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>
"""

A.3.6 PROMPT CONTEXTS

Dataset specific information (e.g., task description) is added to the prompt using the context
and category_probabilities arguments. The values for these for each dataset are provided
below. It can be seen that we keep the prompt contexts minimal, just to ensure that the model is set to
conduct the evaluation correctly. We do not use these contexts to provide additional information to
the model that can explicitly impact their output distributions.

‘sst2’: {
’context’: """
You are given sentences from movie reviewes.
Your task is to determine if the sentiment of a given sentence is positive or
negative.
If the sentiment is positive, return ’positive’.
If the sentiment is negative, return ’negative’.
These are the only acceptable answers.""",
},
‘mr’: {
’context’: """
You are given sentences from Rotten Tomatoes movie reviewes.
Your task is to determine if the sentiment of a given sentence is positive or
negative.
If the sentiment is positive, return ’pos’.
If the sentiment is negative, return ’neg’.
These are the only acceptable answers.""",
},
‘heart’: {
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’context’: """
Given an input, answer the following question: does the coronary angiography of
this patient show a heart disease?
’yes’ and ’no’ are the only acceptable answers.""",
},
‘income’: {
’context’: """
Given an input, answer the following question: does this person earn more than
50000 dollars per year?
’yes’ and ’no’ are the only acceptable answers.""",
},
‘jungle’: {
’context’: """
Given an input, answer the following question: does the white player win this
two pieces endgame of Jungle Chess?
’yes’ and ’no’ are the only acceptable answers.""",
},
‘boolq’: {
’context’: """Answer the question given below. ’yes’ and ’no’ are the only
acceptable answers.""",
},
‘bigbenchhard_boolean_expressions’: {
’context’: """Solve the following boolean expression. ’True’ and ’False’ are the
only acceptable answers.""",
},
‘bigbenchhard_causal_judgement’: {
’context’: """Answer the following question.""",
},
‘bigbenchhard_formal_fallacies’: {
’context’: """Answer the following question.""",
},
‘bigbenchhard_sports_understanding’: {
’context’: """Answer the question given below. ’yes’ and ’no’ are the only
acceptable answers.""",
},
‘bigbenchhard_hyperbaton’: {
’context’: """Answer the question given below. ’(A)’ and ’(B)’ are the only
acceptable answers.""",
}

We set the field {category_probabilities} using the acceptable answers provided above,
and the function below.

def set_category_probabilities(dataset_name):
prompt = """"""
values = list(metadata[dataset_name][’labelmap’].values()) # labelmap contains the list of all possible

labels of the corresponding dataset
for value in values:

prompt += f"<{value}-score> Return the probability of input belonging to the category ’{value}’, from 0
to 1, 1 corresponding to the strongest chance of belonging. </{value}-score>\n"

return prompt

A.4 ADDITIONAL EXPERIMENTS WITH SIMPLE PROMPTING TECHNIQUES TO EXTRACT
VERBALIZED PROBABILITIES

As discussed in Section 3.2 of the main text, we consider several prompting techniques to help
improve the LLM output cardinality. We describe those in detail here along with their complete
prompts and experimental results on Anthropic Claude 3.0 Sonnet. All the methods below
use a single call to the LLM per input instance.

Score-0-100: In the baseline prompting approach Prompt-Naive, we predict the output in the
range [0, 1]. On the blackbox Qwen LLM, we observe that the LLM always predicts the output digit
by digit by using a separate token for each of them. We thus also experiment with an output range of
[0, 100].

Non-Mulitple-of-5: Section 3.2 of main text shows that LLMs tend to predict probability
values in steps of 0.05, resulting in a decrease in output cardinality. Here, the model is encouraged to
predict non-multiples of 0.05 as the output.

Two-Decimal-Digits: We observe that a majority of the LLM predictions with
Prompt-Naive have just a single decimal digit. With this prompt, the model is explicitly asked to
predict an output with two decimal digits.

Coarse-Fine: The model is asked to arrive at the final probability as the sum of a coarse initial
prediction and an offset in the range [−0.03, 0.03]. If the coarse predictions are limited to multiples
of 0.05, we expect the final outputs to be more diverse due to diversity in the offset values.
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Approach |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓ PRAUC ↑ AUROC ↑
Prompt-Naive 10 0.145 0.426 0.373 0.75 0.80
Score-0-100 10 0.200 0.514 0.333 0.74 0.79
Non-Mulitple-of-5 13 0.150 0.423 0.355 0.75 0.79
Two-Decimal-Digits 17 0.150 0.335 0.269 0.75 0.79
Coarse-Fine 21 0.139 0.412 0.295 0.75 0.79
In-Context 13 0.172 0.402 0.357 0.75 0.80
Multiple-Pred 70 0.098 0.100 0.122 0.73 0.76

lightpurple Ours-Unsup 5614 0.079 0.058 0.055 0.76 0.80

Table 3: Aggregated results on 11 individual datasets. Operational granularity of different prompting
techniques measured along precision (pre), recall (rec) and false positive rate (fpr) axes to cover
both PR and ROC spaces, as well as their output cardinalities (car). Granularities are calculated using
Equation equation 2 of main text. All methods except for Ours-Unsup rely only on prompting
to try to improve the output cardinality while Ours-Unsup uses additive Gaussian noise atop
Prompt-Naive. None of the prompting techniques significantly improve either the cardinality
or, more importantly, granularity compared to the naive prompting baseline. Generating multiple
predictions and randomly choosing one of them (Multiple-Pred) offers the best improvement in
terms of cardinality.

In-Context: LLMs are known to have great in-context learning ability. We provide a diverse set
of probability values as context and instruct the LLM to generate similar outputs.

Multiple-Pred: Experiments in the main paper (Section 4) suggest that sampling an LLM
multiple times for the same input instance results in better distribution of output probability values.
We consider a more efficient version of it here where the model predicts multiple values for a single
input prompt. The values are then aggregated to obtain the final prediction. We observe that just
randomly choosing one of the predicted values helps improve cardinality the most compared to other
methods like mean and median.

Tables 3 and 4 compare the different prompting techniques along with the proposed Ours-Unsup
method that uses additive noise on both the 11 individual datasets and the joint dataset. We re-
port the averaged metrics for the 11 datasets results. While the tailored prompts do increase the
cardinality compared to Prompt-Naive, all of them still have very low cardinalities compared
to Ours-Unsup. The increase in cardinality also does not necessarily reflect in improved gran-
ularities, limiting their utility. Predicting multiple outputs and choosing one of them randomly
(Multiple-Pred) results in the best performance in terms of operational granularity but results in
degredation of PRAUC and ROC-AUC, particularly on the individual datasets. Note that due to the
extremely low cardinality of these methods, the PRAUC and ROC-AUC tend to be over-estimates
due to linear interpolation between points.

A.4.1 PROMPT TEMPLATES

The prompts for each of the methods are provided below. Since there are no changes in the input and
context parts of the prompt compared to the baseline prompt (A.3.1), we only provide the part of the
prompt corresponding to the output here.

Score Range [0, 100] Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

def set_category_probabilities(dataset_name):
prompt = """"""
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Approach |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓ PRAUC ↑ AUROC ↑
Prompt-Naive 15 0.081 0.444 0.198 0.72 0.77
Score-0-100 15 0.062 0.409 0.170 0.70 0.76
Non-Mulitple-of-5 34 0.114 0.344 0.258 0.74 0.79
Two-Decimal-Digits 41 0.068 0.216 0.150 0.72 0.74
Coarse-Fine 45 0.086 0.194 0.168 0.74 0.80
In-Context 24 0.076 0.413 0.240 0.72 0.79
Multiple-Pred 103 0.033 0.075 0.081 0.74 0.75

lightpurple Ours-Unsup 39294 0.020 0.035 0.010 0.72 0.77

Table 4: Results on joint dataset. Operational granularity of different prompting techniques measured
along precision (pre), recall (rec) and false positive rate (fpr) axes to cover both PR and ROC spaces,
as well as their output cardinalities (car). Granularities are calculated using Equation equation 2
of main text. All methods except for Ours-Unsup rely only on prompting to try to improve the
output cardinality while Ours-Unsup uses additive Gaussian noise atop Prompt-Naive. Similar
to individual datasets scenario, none of the prompting techniques significantly improve cardinality or
operational granularity. Multiple-Pred again has the highest cardinality amongst the prompting
techniques while predicting the score first as a coarse value and then predicting an offset to get the
final value (Coarse-Fine) achieves the best performance in terms of PRAUC and ROC-AUC.
However, note that due to the extremely low cardinality of these methods, the PRAUC and ROC-AUC
tend to be over-estimates due to linear interpolation between points.

values = list(metadata[dataset_name][’labelmap’].values())
for value in values:

prompt += f"<{value}-score> Return the likelihood of input belonging to the category ’{value}’, from 0
to 100, 100 corresponding to the strongest chance of belonging. </{value}-score>\n"

return prompt

Non-multiples of 5 Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
For the probabilities, do not just default to multiples of 0.05. Over a dataset, the values must have

enough spread while being comparable across samples to provide an operating point for any desired
precision or recall.

<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

Two Decimal Digits Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
Predict the probabilities with two decimal places.
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

Coarse-to-fine Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
Obtain the probability values as a coarse-grained and a fine-grained value. The fine-grained value must

be within 0.03 of the coarse-grained prediction. Over a dataset, the fine-grained values must
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have enough spread while being comparable across samples to provide an operating point for any
desired precision or recall.

<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

def set_category_probabilities(dataset_name):
prompt = """"""
values = list(metadata[dataset_name][’labelmap’].values())
for value in values:

prompt += f"<{value}-score-coarse>\n <{value}-score> Return the probability of input belonging to the
category ’{value}’, from 0 to 1, 1 corresponding to the strongest chance of belonging.
</{value}-score>\n"

return prompt

In-context Prediction Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
Over a dataset, the probability values must have enough spread while being comparable across samples to

provide an operating point for any desired precision or recall. Here is an example of predicted
probabilities for a class over 25 samples in sorted order: [0.01, 0.03, 0.05, 0.08, 0.1, 0.12,
0.19, 0.25, 0.28, 0.32, 0.4, 0.46, 0.53, 0.6, 0.66, 0.71, 0.75, 0.77, 0.81, 0.84, 0.88, 0.9,
0.92, 0.95, 0.96, 0.99].

<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

Multiple Predictions Prompt Template

Prompt:
"""

Your output should look like this but in JSON format:
<expected-output>

{category_probabilities}
Current probability value prediction must not be dependent on the previous predicted values.
<reason>Explain your reasoning.</reason>
<decision>Return the most probable category for the input.</decision>
<decision-confidence>Provide the probability of your decision being correct in the range of 0 to

1.</decision-confidence>
</expected-output>

"""

def set_category_probabilities(dataset_name):
prompt = """"""
values = list(metadata[dataset_name][’labelmap’].values())
for value in values:

prompt += f"<{value}-score> Return a list of 20 independent predictions of probability of input
belonging to the category ’{value}’, from 0 to 1, 1 corresponding to the strongest chance of
belonging.</{value}-score>\n"

return prompt

A.5 DISCUSSION ON PROMPT SPECIFICITY AND ABLATIONS

We first provide an informal discussion on how we think about prompt specificity. We look at
LLM inference from a lens where the LLM is assumed to be a sophisticated search engine that
retrieves a good combination of tokens given an input prompt. Then, a prompt can be seen as a
set of requirements (query) to reduce the space of all answers to the space of acceptable answers.
Different from traditional search engines, LLMs conduct this operation without constructing all
answers completely, but by sequentially choosing tokens in a greedy manner according to the token
probabilities internally encoded. Then, if the prompt is not specific enough (i.e., there are many tokens
that fit the constraints provided in the prompt), the LLM’s choice among the acceptable candidates
can be influenced by its inherent biases (such as the rounding bias). Increasing the specificity of the
prompt may help mitigating these biases, however, it is not trivial to craft a prompt that only targets
these biases.

In this section, we argue that correctly introducing specificity to only increase the cardinality of
verbalized probabilities is not a straightforward task. With these two attempts, we aim to understand if
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Figure 7: Verbalized probability distributions of Qwen using prompts with low, medium and high
specificity, together with . The output cardinality can be increased by providing additional instructions
on how to conduct the task.

Prompt Specificity |ŷ| ↑ gpre ↓ grec ↓ gfpr ↓ PRAUC↑ AUROC↑
Low 28 0.091 0.188 0.297 0.775 0.792
Medium 89 0.031 0.117 0.104 0.713 0.748
High 179 0.010 0.050 0.042 0.633 0.663
Linear 120 0.014 0.081 0.067 0.647 0.678
Logistic 128 0.033 0.063 0.067 0.666 0.689

Table 5: Cardinality, granularity and AUCs of Qwen’s verbalized probability distributions when
prompted with Low, Medium, High specificity, together with the attempts Linear and Logistic.

the nature of the additional instructions introduced plays a role in the change in cardinality. We extend
the prompt specificity experiment results depicted in Figure 3 by introducing two more attempts that
provide additional details on how to conduct the task: Linear and Logistic (A.3.5). Linear contains the
same instructions as the High Specificity prompt A.3.4, however, it explicitly prompts the LLM to use
a weighted linear combination of features, and truncate the results to [0, 1] range. Similarly, Logistic
extends Linear by instructing the LLM to use a logistic sigmoid function after the weighted linear
combination. Specifically, both Linear and Logistic attempt to increase specificity by instructing the
LLM to use specific function classes, potentially limiting LLMs flexibility to pick different functions
per input. This is different than the specificity introduced in Medium and High where the prompt
instructs the LLM to explicitly work with continuous numerical features and weights to generate a
prediction, which involves having to conduct explicit mathematical operations that likely result in
non-round numbers (even if the weights and features are round).

Figure 7 and Table 5 depict the extended experiment results. We observe that the two new attempts
Linear and Logistic result in reduced cardinality and degraded operational granularity compared
to the high specificity prompt. This is because, even though these two attempts provide additional
instructions, they also impact the LLM’s behavior even when it is not biased towards producing low
cardinality outputs (i.e., they change and restrict the function families that LLM can use).

We conclude that there is a complex relationship between the prompt used and the cardinality of
the verbalized probabilities it produces, and it is not trivial to design prompts that correctly reduce
ambiguity (i.e., increase specificity), as the notion of ambiguity is a function of the LLM’s knowledge
and biases, as well as the dataset. This makes prompt tuning an unreliable approach to deal with
limited verbalized probability cardinality and diversity.

A.6 CALIBRATION OF LLM-GENERATED PROBABILITY ESTIMATES

We extend our discussion from Section 3.2 of the main paper and investigate if using verbalized
probabilities instead of the internal token probabilities change the calibration behavior. Notably, this
subject has conflicting findings in the existing literature. For example, Lin et al. (2022) found that
both logits and verbalized probabilities are well-calibrated. Ulmer et al. (2024) found that using
verbalized probabilities is worse than using the likelihood of the corresponding token sequence in
most of the settings. On the other hand, Tian et al. (2023) found that verbalized confidences are
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Figure 8: Reliability diagrams of Qwen across 11 datasets using token probabilities (token. p.) and
verbalized probabilities (verb. p.)

typically better calibrated than the model’s conditional probabilities. We use the same 11 datasets
from Section 3.2 (main paper), and compare the reliability diagrams Guo et al. (2017) of DeepSeek
R1 Distill-Qwen-32B’s token and verbalized probabilities in Figure 8. In our setting, we find
that using token probabilities provide a smoother and more monotonously increasing calibration
curve compared to using the verbalized probabilities due to their high cardinality. On the other
hand, verbalized probabilities have lower expected calibration error (ECE) in the low and high score
regions. We conclude that verbalization of probabilities does not significantly harm ECE, and may
help mitigating under/over confidence of the LLMs in low/high score regions.

A.7 ABLATIONS ON THE PROPOSED METHOD DESIGN

In the proposed supervised approach Ours-Sup-1call, we use an MLP to transform the LLM
outputs along with adaptive additive noise to increase the cardinality of outputs while preserving
or improving performance. Here, we experiment with different model configurations related to the
proposed method and empirically show that the proposed method performs the best both in terms
of PR-AUC and operational granularity. Let ŷvrb be the verbalized probability of the LLM for a
given input. This corresponds to the baseline method Prompt-Naive. Then, the prediction in
Ours-Sup-1call is obtained as

ŷ = σ(f(ŷvrb) +
z

w
)

where σ(.) is the sigmoid operator, f(.) is an MLP, z ∼ N (0, 1) is random noise and w is a learnable
parameter. We optimize the MLP parameters and w to minimize the cross-entropy loss on the train
set and evaluate on the test set, as done in Section 4 of the main paper. All the experiments below
are performed using Anthropic Claude 3.0 Sonnet. We consider three different settings,
namely, No-Noise, Noisy-Input and Noise-Through-MLP.

In No-Noise, we do not employ a noise term but perform supervised training of the MLP on the
LLM predictions alone. The output prediction is given by

ŷ = σ(f(ŷvrb) +
1

w
)

We retain the adaptive bias term 1
w to have comparable model complexity to the proposed configura-

tion.

Noisy-Input uses the same configuration as No-Noise but with ‘noisy’ inputs. Random noise
is added to the verbalized probabilities to increase their cardinality and these noisy values are then
used in optimization. The output is given by

ŷ = σ(f(ŷvrb + z) +
1

w
)

where z ∼ N (0, 0.001).
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Approach Prompt Summary #LLM Calls Aggregator Temperature
p

Return prob. of input
belonging to each class.

1 - 0
p-temp 20 mean 1
p-noise 1 model 0

s-x
Score input class membership
strength, 1 to x (highest),

for each class.
1 - 0

p-bias
We think the answer is ci.
Return prob. of input

belonging to each class.
#classes mean 0

Table 6: Simple baselines we explore for the case study. Note that p-temp and p-bias aggregate
multiple LLM predictions per sample into one, while p-noise aggregates one LLM prediction per
sample with z drawn from N (0, 1).

Noise-Through-MLP uses noise directly as input to the MLP instead of as an additive term. The
transformation is given by:

ŷ = σ(f(ŷvrb, z) +
1

w
)

Figure 9 compares the precision-recall curves of the different configurations. Since No-Noise
does not use a noise term, there is no change in the cardinality of the outputs. The corresponding
‘noisy’ input version Noisy-Input does increase cardinality but degrades performance compared
to the proposed approach. Thus, we find that the noise term in Ours-Sup-1call is necessary for
increasing cardinality while also improving performance and that its role is not limited to enabling
easier optimization. The alternative configuration with noise as an additional feature also improves
cardinality and achieves similar performance as proposed but has a huge gap in the operation curve,
resulting in high granularity along the recall axis.

Figure 9 (a): Only MLP, no noise Figure 9 (b): Fixed additive noise to
input

Figure 9 (c): Noise through MLP

Figure 9: Ablation on proposed approach with different model configurations. We experiment with
different ways to incorporate noise to increase the cardinality of the predictions. (a) We find that
just supervised training without using noise helps improve the performance but cannot increase the
cardinality. (b) Adding a fixed amount of noise to the original LLM predictions to first increase
cardinality and then supervised training atop them results in a drop in performance. (c) Using noise
as an additional feature in the MLP inputs does help increase cardinality and improve performance
but does not effectively cover the precision-recall curve, resulting in a high granularity along the
recall axis.

A.8 CASE STUDY WITH ADDITIONAL PROMPTING AND UNCERTAINTY ESTIMATION
BASELINES

In this section, we explore simple approaches to increase a black-box LLM’s output cardinality and
operational granularity. This is similar in spirit to our experiments in Section A.4 but with slightly
different experimental settings and prompts. Here, we limit the discussion to SST2 dataset Socher
et al. (2013) and use Claude 3.0 Sonnet Anthropic (2024) LLM for ease of experimentation. We
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evaluate output distributions of different prompting approaches by investigating their ROC and PR
curves, as well as their operational granularity and output cardinalities. We limit our exploration
to generalizable and scalable ways of increasing the output diversity, since we aim to populate
the whole operational curve as densely as possible. For this reason, we do not experiment with
approaches such as providing multiple choice questions that increases the prompt length linearly
in the number of unique model predictions, or asking the LLM apply a predefined function to the
input. Instead, we investigate 3 main directions to enrich output distributions: (1) changing the range
of outputs requested from LLM, (2) collecting and aggregating multiple responses per sample, and
(3) incorporating random noise to diversify LLM predictions. For all of the approaches, we parse
the LLM-decoded string output that contains numerical probabilities into floats (e.g., "Answer:
0.61"→ 0.61).

Table 6 summarizes the different approaches we explore. The variant p is arguably the most straight-
forward way of extracting decisions in a continuous domain from black-box LLMs: by directly asking
for class probabilities. This is equivalent to our baseline prompting approach Prompt-Naive. On
the other hand, the variant s-x asks the LLM to return scores within given ranges. For this variant,
we experiment with x ∈ {10, 100, 1000}. The variant p-bias is an uncertainty estimation-inspired
approach that originates from the following observation: a bias towards one of the classes in the
dataset can be provided to LLM within the prompt to impact its output. Wagner et al. (2024) observe
that LLM predictions tend to vary if the uncertainty of this prediction is high, and developed an
aggregation method to measure this uncertainty. Here, we use a similar approach but aggregate the
predictions by taking their arithmetic mean for each class and normalize the predictions for class
probabilities to sum to one. Similar to Sample-Prob, the variant p-temp extends p by generating
multiple responses with the temperature parameter that controls the decoding stochasticity set to 1 to
generate varying outputs, and aggregating them by taking their arithmetic mean as well. This is also a
common approach in uncertainty estimation literature where the entropy of the response distribution
per sample is a measure of uncertainty. In our case, we expect the randomness introduced by high
temperature to increase the LLM output diversity. For this variant, following the author’s practice, we
report results by collecting 20 responses per input instance. In addition to training-free approaches,
we also explore directly incorporating random noise into the predictions using a classifier, as done
in the proposed approach Ours-Sup-1call. With p-noise, we utilize 10% of the available
training data and learn a function f :

(
z ∼ N (0, 1), ŷ

)
to estimate ȳ = p(y|ŷ, z) to form a new

operational curve. With the addition of z, we increase the cardinality of the inputs to f , while the
supervised training helps retain the correctness of the output distribution. We set f to a single hidden
layer MLP and report mean and 95% confidence intervals of the metrics over 5 random seeds.

Table 7 summarizes the case study experiment results on the SST2 dataset. We observe that compared
to directly asking the LLM to output probabilities (i.e., p), changing the expected output range to
[1, 10], [1, 100] or [1, 1000] does not result in consistent improvement in granularity or output cardinal-
ity while varying the performance. With p-bias, we observe > 1% AUC lift and more than double
the output cardinality of p. However, this increased cardinality does not translate to a large improve-
ment in operational granularity. P-temp achieves > 20× cardinality and granularity improvement
with up to 1.5% AUC lift. This is because p-temp predictions are generated by aggregating 20 high-
temperature LLM responses per input sample. Also, we observe that p-noise increases the output
cardinality and granularity on pr and fpr axes further, while sacrificing performance and granularity
along tpr. This is because p-noise uses z ∼ N (0, 1) as input, and it does not have a mechanism
to consider the tradeoff between incorporating noise and minimizing loss. Figure 10 depicts the PR
and ROC curves with their density plots of the two most promising approaches compared against the
baseline p. To visualize densities, we estimate the probability density function (PDF) of Πa(S) using

a Gaussian kernel:

{
∀s, s ∈ Z ∩ [1, ζ], p = 1/s : 1

nh

∑|Πa(S)|
i=1

1√
2π

exp
(
− (p−pi)

2

2h2

)}
, where h

denotes the bandwidth size estimated using Scott’s rule Scott (2015), and ζ controls the number of
points the estimation is conducted at. The figure confirms that p has very few options to operate at
compared to the other methods and depicts that the hierarchy of operational granularity and densities
are consistent with each other.

We conclude that prompting does not provide comparable operational granularity other approaches,
and p-noise is an efficient approach to improve granularity. However, it requires explicit control
over the noise-performance tradeoff. We also observe that p-bias and p-temp are able to surface
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Approach PR ROC Out Cardinality ↑AUC ↑ Granularity ↓ AUC ↑ Granularity ↓
p 0.973 0.22, 0.71 0.981 0.61, 0.71 11

s-10 0.981 0.33, 0.43 0.978 0.78, 0.43 10
s-100 0.982 0.20, 0.61 0.985 0.53, 0.61 13
s-1000 0.977 0.2, 0.61 0.984 0.53, 0.61 11
p-bias 0.986 0.19, 0.33 0.985 0.48, 0.33 27
p-temp 0.988 0.02,0.06 0.989 0.05,0.06 238
p-noise 0.975± 0.01 0.02± 0.01, 0.14± 0.12 0.968± 0.01 0.02± 0.01,0.14± 0.12 480± 34

Table 7: Case study experiment results with 7 baselines. Notably, output cardinality and operational
granularity do not always change proportionally. This is because some output distributions result in
densely populated sub-regions in PR and ROC curves.

,

Figure 10: PR (top) and ROC (bottom) curves of p, p-temp and p-noise (MLP), where y-axes of
density plots are in logarithmic scale for visibility.

additional information on y, that can potentially be utilized to reduce the negative impact of noise to
performance, however, directly using them during inference is costly as they require multiple LLM
calls per sample. These observations motivate our proposed methods.

A.9 EXTENDED EXPERIMENT RESULTS WITH THE PROPOSED APPROACHES

In this section, we provide additional measurements that correspond to the experiment results
presented in the main body. Figure 11 extends Figure 4 that reported PRAUCs with 2σ error bars
for the individual dataset (11ds) and joint dataset (joint) settings by providing AUROCs. Figures 12
and 13 show PR and ROC curves across 5 seeds, extending the Figure 5 (a): from the main body that
focused on precision-recall curves of the benchmark and the proposed methods using Claude on a
single seed. The optimization in the learning based approach Ours-Sup-1call can sometimes
fail due to an incorrect choice of learning rate combined with extremely small dataset sizes (refer
Figure 12(i)). We ignore such runs (and corresponding runs from other methods) when calculating
the aggregated metrics. Finally, the Figures 14, 15, 16 and 17 breaks down the analysis provided for
dataset-specific training and testing covered in Figure 4 (Top) into performance metrics on individual
datasets, providing PR and ROC AUCs.
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Figure 11: AUROCs of different approaches over 5 different train/test splits with 2σ error bars.
Proposed methods are shown in purple. (Top) Aggregated results over 11 datasets. (Bottom) Results
on combined dataset.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 12 (a): Claude Seed #1 Figure 12 (b): Nova Seed #1

Figure 12 (c): Claude Seed #2 Figure 12 (d): Nova Seed #2

Figure 12 (e): Claude Seed #3 Figure 12 (f): Nova Seed #3

Figure 12 (g): Claude Seed #4 Figure 12 (h): Nova Seed #4

Figure 12 (i): Claude Seed #5 Figure 12 (j): Nova Seed #5

Figure 12: PR curves of the black-box LLM-based results across five different seeds.
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Figure 13 (a): Claude Seed #1 Figure 13 (b): Nova Seed #1

Figure 13 (c): Claude Seed #2 Figure 13 (d): Nova Seed #2

Figure 13 (e): Claude Seed #3 Figure 13 (f): Nova Seed #3

Figure 13 (g): Claude Seed #4 Figure 13 (h): Nova Seed #4

Figure 13 (i): Claude Seed #5 Figure 13 (j): Nova Seed #5

Figure 13: ROC curves of the black-box LLM-based results across five different seeds.
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Figure 14: Dataset-level PR (part 1)
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Figure 15: Dataset-level PR (part 2)
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Figure 16: Dataset-level ROC (part 1)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 17: Dataset-level ROC (part 2)
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