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ABSTRACT

Recent advances in 3D generation have been remarkable, with methods such
as DreamFusion leveraging large-scale text-to-image diffusion-based models to
guide 3D object generation. These methods enable the synthesis of detailed and
photorealistic textured objects. However, the appearance of 3D objects produced
by such text-to-3D models is often unpredictable, and it is hard for single-image-
to-3D methods to deal with images lacking a clear subject, complicating the gen-
eration of appearance-controllable 3D objects from complex images. To address
these challenges, we present IPDreamer, a novel method that captures intricate ap-
pearance features from complex Image Prompts and aligns the synthesized 3D ob-
ject with these extracted features, enabling high-fidelity, appearance-controllable
3D object generation. Our experiments demonstrate that IPDreamer consistently
generates high-quality 3D objects that align with both the textual and complex
image prompts, highlighting its promising capability in appearance-controlled,
complex 3D object generation.

1 INTRODUCTION

The rapid evolution of 3D technology has revolutionized the way we create and interact with virtual
worlds. 3D technology is now essential in a wide range of fields, including architecture, gam-
ing, mechanical manufacturing, and AR/VR. However, creating high-quality 3D content remains
a challenging and time-consuming task, even for experts. To address this challenge, researchers
have developed text-to-3D methodologies that automate the process of generating 3D assets from
textual descriptions. Built on the 3D scene representation capabilities of Neural Radiance Fields
(NeRFs) (Mildenhall et al., 2021; Müller et al., 2022) and the rich visual prior knowledge of pre-
trained diffusion models (Rombach et al., 2022; Saharia et al., 2022a), recent research (Jain et al.,
2022; Mohammad Khalid et al., 2022; Poole et al., 2022; Lin et al., 2023; Chen et al., 2023b; Wang
et al., 2023; Shi et al., 2023b) has made significant progress, simplifying the text-to-3D pipeline and
making it more accessible, which causes a significant shift in these fields.

Recent advances in diffusion models have significantly enhanced the capabilities of text-to-image
generation. State-of-the-art (SOTA) systems, leveraging cutting-edge diffusion-based techniques
(Nichol et al., 2021; Rombach et al., 2022; Brooks et al., 2023; Zhang & Agrawala, 2023; Hu et al.,
2021), can now generate and modify images directly from textual descriptions with vastly improved
quality. Inspired by the rapid development in text-to-image generation, recent works (Poole et al.,
2022; Lin et al., 2023; Chen et al., 2023b; Wang et al., 2023) have extended these models to 3D by
utilizing pretrained text-to-image diffusion models in conjunction with the Score Distillation Sam-
pling (SDS) algorithm and its variants to optimize 3D representations. These methods are capable of
generating high-quality 3D objects and scenes. However, due to the lack of explicit appearance in-
formation in textual prompts, the appearance of the generated results remains largely uncontrollable,
limiting the precision of the visual output.

Unlike the unpredictability in text-to-3D generation, single-image-to-3D generation allows for strict
control over the appearance of the generated 3D results. However, existing single-image-to-3D
methods (Liu et al., 2023b;c; Shi et al., 2023b) are limited to simple images with clear subjects,
often struggling with complex images that feature rich content and intricate compositions. For
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Coarse NeRF Model

Reference Image #1
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Generated 3D Object #1

Generated 3D Object #2
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Leaves flying in the wind

(a)

(b)
Guided by VSD Guided by IPSDSInput Image Guided by LGM Guided by zero123

Figure 1: IPDreamer can generate controllable, high-quality 3D objects based on both textual and
image prompts. (a) illustrates two high-quality 3D objects with rich details, initialized by the same
NeRF model and guided by different complex reference image prompts. (b) demonstrates the 3D
synthesis under challenging textual conditions, where our method outperforms existing text-to-3D
method (Wang et al., 2023), image-to-3D methods LGM (Tang et al., 2024) and zero123++ (Shi
et al., 2023a). Besides, the input image in (b) is generated by SD Rombach et al. (2022).

example, Fig.1(a) contains complex images that lack a clear subject, making it difficult to seg-
ment a simple, singular image for single-image-to-3D generation. Furthermore, as demonstrated
in Fig.1(b), when text prompts are ambiguous or lack a clear main subject—such as “Leaves fly-
ing in the wind”—neither current text-to-3D nor image-to-3D methods can achieve reasonable 3D
synthesis.

To tackle these challenges, we introduce IPDreamer, a novel method for complex image-to-3D gen-
eration. Specifically, we extend SDS to Image Prompt Score Distillation Sampling (IPSDS), which
leverages detailed features extracted from complex image prompts and corresponding normal maps
to guide the optimization of both 3D mesh texture and geometry. With IPSDS, IPDreamer enables
high-quality 3D object generation with controllable appearances based on complex image inputs.
To ensure stable 3D object generation across various challenging scenarios, we propose a mask-
guided compositional alignment strategy for IPSDS, enabling 3D object generation from multiple
complex image prompts. In particular, we leverage a Multimodal Large Language Model (MLLM)
to localize the features from multiple image prompts onto the generated 3D objects. This allows
IPDreamer to handle diverse situations, including cases where multiple highly divergent images are
used to guide the synthesis of a single 3D object, and scenarios where the guiding complex image
exhibits significant structural differences from the initial coarse 3D object. As shown in Fig.1(a),
IPDreamer effectively transfers the appearances of reference images to NeRF models, generating
high-quality 3D objects even in cases with ambiguities or unclear primary subjects. For the more
challenging scenarios illustrated in Fig.1(b), IPDreamer successfully produces the desired 3D object
where existing text-to-3D and single-image-to-3D methods fall short.

In summary, the main contributions of this paper are as follows:

• We present IPDreamer, a novel 3D object synthesis framework that allows users to con-
sistently create controllable, high-quality 3D objects. Compared with previous methods,
IPDreamer excels in synthesizing high-quality 3D objects that closely align with complex
image prompts.

• We introduce Image Prompt Score Distillation Sampling (IPSDS), which utilizes a sub-
stantial image prompt feature to guide 3D mesh optimization.

• We propose a Mask-guided Compositional Alignment strategy for IPSDS, enabling high-
quality 3D objects synthesis based on multiple complex image prompts, in cases where
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initial NeRF models deviate significantly from the provided image prompts, or when mul-
tiple diverse image prompts are needed to guide the synthesis of a single 3D object.

• Comprehensive experiments show that IPDreamer achieves high-quality 3D generation and
excellent rendering results, outperforming existing SOTA methods.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (DMs) were initially introduced as a generative model for gradually denoising
images corrupted by Gaussian noise to generate samples (Sohl-Dickstein et al., 2015). Recent ad-
vancements in DMs (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021; Vahdat et al.,
2021; Rombach et al., 2022; Peebles & Xie, 2022) have shown their exceptional performance in
image synthesis. DMs have also achieved state-of-the-art results in various synthesis tasks, includ-
ing text-to-image generation (Saharia et al., 2022a; Nichol et al., 2021; Ramesh et al., 2022; Podell
et al., 2024; Yang et al., 2024), inpainting (Avrahami et al., 2022; Lugmayr et al., 2022; Ye et al.,
2023), 3D object synthesis (Li et al., 2022b; Luo & Hu, 2021), video synthesis (Ho et al., 2022b;a),
speech synthesis (Kong et al., 2020; Liu et al., 2021), super-resolution (Li et al., 2022a; Saharia
et al., 2022b; Gao et al., 2023), face animation (Qi et al., 2023), text-to-motion generation (Tevet
et al., 2022), and brain signal visualization (Takagi & Nishimoto, 2022; 2023). Some DMs (Kulikov
et al., 2022; Wang et al., 2022) can produce diverse results by learning the internal patch distribution
from a single image. (Mokady et al., 2023; Tumanyan et al., 2023; Wu et al., 2023; Geyer et al.,
2023) enhance image/video editing with pre-trained DMs in a zero-shot or one-shot manner. These
advancements highlight the versatility and potential of DMs across a wide range of syntheses.

2.2 CONTROLLABLE GENERATION AND EDITING

Controllable generation and editing of 2D images and 3D objects are core goals of generative tasks.
With the emergence of large language models (LLMs) such as GPT-3 and Llama (Brown et al.,
2020; Touvron et al., 2023a;b), instruction-based user-friendly generative control has gained much
attention. InstructPix2Pix (Brooks et al., 2023) and MagicBrush (Zhang et al., 2023a) build datasets
based on LLMs and large text-to-image models to achieve effective instruction control on 2D im-
ages. InstructNeRF2NeRF (Haque et al., 2023) combines this method with NeRF scene reconstruc-
tion (Mildenhall et al., 2021) to introduce instruction control into 3D generation. Meanwhile, a
series of adapter methods such as ControlNet and IP-Adapter (Zhang & Agrawala, 2023; Hu et al.,
2021; Mou et al., 2023; Zhao et al., 2023b; Ye et al., 2023; Huang et al., 2023) provide reliable
approaches for fine-tuning large pre-trained DMs (e.g., Stable Diffusion (Rombach et al., 2022) and
Imagen (Saharia et al., 2022a)) for conditional controllable generation (e.g., using sketch, canny,
pose, etc. to control image structure). Among them, image prompt adaption methods (Ye et al.,
2023; Zhang et al., 2023b) introduce a decoupled cross-attention mechanism to achieve effective
appearance generation control using image prompts.

2.3 3D GENERATION

In recent years, 3D generative modeling has attracted a large number of researchers. Inspired by the
recent neural volume rendering, many 3D-aware image rendering methods (Chan et al., 2022; 2021;
Gu et al., 2021; Hao et al., 2021; Nguyen-Phuoc et al., 2019; Niemeyer & Geiger, 2021) are proposed
to generate high-quality rendered 2D images for 3D visualization. Meanwhile, with the development
of text-to-image synthesis, researchers have shown a growing interest in text-to-3D generation. Early
methods such as DreamField (Jain et al., 2022) and CLIPmesh (Mohammad Khalid et al., 2022)
achieve text-to-3D generation by utilizing a pretrained image-text aligned model CLIP (Radford
et al., 2021). They optimize the underlying 3D representations (NeRFs and meshes) to ensure that
all 2D renderings have high text-image alignment scores. Recently, (Poole et al., 2022; Lin et al.,
2023; Chen et al., 2023b; Wang et al., 2023; Chen et al., 2023a) have achieved high-quality 3D
synthesis (NeRFs and meshes) by leveraging a robust pretrained text-to-image DM as a strong prior
to guiding the training of the 3D model. Other works (Shi et al., 2023b; Zhao et al., 2023a; Liu
et al., 2023b) introduce multi-view DMs to enhance 3D consistency and provide strong structured
semantic priors for 3D synthesis. IT3D (Chen et al., 2023c) combines SDS and GAN to refine the
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Figure 2: IPDreamer is designed to generate high-quality, appearance-controllable 3D meshes that
align with single/multiple complex image prompts.

3D model and obtain high-quality 3D synthesis. (Tang et al., 2023a; Liang et al., 2023) combine
3D Gaussians (Kerbl et al., 2023) with SDS-based optimization to improve 3D synthesis and reduce
generation time. Additionally, (Melas-Kyriazi et al., 2023; Tang et al., 2023b; Liu et al., 2023a;
Qian et al., 2023) are capable to generate 3D representations based on single images, and (Liu
et al., 2023b;c; Shi et al., 2023b; Yang et al., 2023) achieve 2D images in multiple viewpoints,
which enable consistant 3D object generation. In this work, we introduce IPDreamer, a method that
leverages complex image prompts to provide comprehensive appearance information, effectively
guiding the synthesis of high-quality 3D objects.

3 METHOD

In this section, we present the details of IPDreamer. We start with a brief definition of 3D mesh,
followed by the problem statement for text-to-3D and single-image-to-3D generation, and a re-
view of SDS preliminaries. Next, we present the design and analysis of our proposed IPSDS and
Mask-guided Compositional Alignment. Note that 3D meshes are the most common form of 3D
representation in industry, so our approach focuses on optimizing 3D meshes.

3.1 PRELIMINARIES AND MOTIVATION

3D Mesh. The 3D mesh can be represented as a deformable tetrahedral grid (V, T ), where each
vertex vi ∈ V has a signed distance field value si ∈ S and a deformation ∆vi ∈ ∆V from its
canonical position. During optimization, the surface mesh is rendered into high-resolution images
using a differentiable rasterizer (Munkberg et al., 2022).

Score Distillation Sampling. Given a textual prompt y or an image I , text-to-3D/single-image-
to-3D generation aims to synthesize novel views and optimize the parameters of a 3D object/scene
corresponding to the given y or I . DreamFusion (Poole et al., 2022) utilizes a pretrained text-to-
image DM ϵpretrain to optimize an MLP parameterized as θ representing a 3D volume, where a
differentiable generator g renders θ to create 2D images x = g(θ, c) given a sampled camera pose c,
based on the gradient of the Score Distillation Sampling (SDS) loss:

∇θLSDS(θ) = Et,ϵ

[
w(t) (ϵpretrain (xt; y, t)− ϵ)

∂x

∂θ

]
, (1)
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where w(t) is a weighting function, ϵpretrain (xt; y, t) predicts the noise ϵ ∼ N (0, I), given the
noisy image xt, text prompt features y and timestep t.

Motivation. Although (Lin et al., 2023; Chen et al., 2023b; Wang et al., 2023) show excellent
text-to-3D generation, the appearances of their 3D synthesis results are uncontrollable. A feasible
solution to realize controllable 3D object generation is to use a 2D image as a prior. However,
existing single-image-to-3D methods find obtaining high-quality 3D object synthesis from com-
plex images difficult. To overcome these obstacles, we extract feature details from complex image
prompts to provide comprehensive appearance information for 3D object synthesis, and we propose
the IPSDS and a Mask-guided Compositional Alignment strategy to enable stable, high-fidelity 3D
object generation.

3.2 IMAGE PROMPT SCORE DISTILLATION SAMPLING (IPSDS)

In this section, we leverage the image features extracted by the image encoder Eimage from (Ye et al.,
2023) to optimize the geometry and texture of 3D objects. The 3D mesh is initialized using either
a user-provided 3D mesh, or a coarse NeRF model generated by existing text-to-3D methods or
IPSDS. As shown in Fig. 2(b), we first explain how IPSDS optimizes ∆V , S, and θ. Subsequently,
we analyze how IPSDS effectively utilizes complex image prompts Irgb and corresponding normal
image prompts In to guide the synthesis of high-quality 3D objects.

Optimizing 3D Mesh with IPSDS. Existing methods directly use a text-conditioned DM to guide
geometry optimization. However, it can be challenging because the DM’s pre-training dataset lacks
normal map images. To address this, we adopt an additional normal image prompt feature yn =
Eimage(In) to provide richer and more robust geometric information with normal map optimization,
instead of solely using the textual prompt y (Chen et al., 2023b; Wang et al., 2023).

The geometry optimization process computes the gradients of the IPSDS geometry loss as:

∇∆V LIPSDS−Geo(∆V, S) = Et,ϵ[w(t) (ϵip(zn,t; yn, y, t)− ϵ)
∂zn
∂∆V

],
(2)

∇SLIPSDS−Geo(∆V, S) = Et,ϵ[w(t) (ϵip(zn,t; yn, y, t)− ϵ)
∂zn
∂S

], (3)

where zn,t denotes the noisy latent of rendered normal map in random view xn,ran at timestep t.

After optimizing the estimated normal map, the geometry of the 3D mesh becomes more reasonable.
Then we further optimize the texture through IPSDS. We first extract the image prompt features
yrgb = Eimage(Irgb), as a basic guidance for the texture optimization. Then we devise a geometry
prompt difference δgeo for yrgb to compensate for the morphological disparity between xrgb and
Irgb. Let xn,def , and xn,ran be the rendered normal map of the 3D mesh from the default viewpoint
and a randomly sampled viewpoint, respectively. We extract their image prompt featuress, yn,def =
Eimage(xn,def ) and yn,ran = Eimage(xn,ran). The difference between yn,ran and yn,def is called
the geometry prompt difference δgeo:

δgeo = yn,ran − yn,def . (4)

The texture optimization process computes the gradients of the IPSDS texture loss as:

∇θLIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; yrgb + δgeo, y, t)− ϵ)
∂zrgb
∂θ

], (5)

∇∆V LIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; yrgb + δgeo, y, t)− ϵ)
∂zrgb
∂∆V

], (6)

∇SLIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; yrgb + δgeo, y, t)− ϵ)
∂zrgb
∂S

], (7)

where zrgb,t denotes the noisy latent of xrgb (random viewpoint) in timestep t. The geometry prompt
difference δgeo can effectively represent the Morphological distance between xn,ran and xn,def in
the image prompt feature space. Thus it is used to compensate yrgb (default viewpoint) such that
yrgb + δgeo represents the RGB image xrgb.
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Figure 3: Illustration of the effectiveness of Mask-guided Compositional Alignment.

Incorporating Image Prompt into 3D Generation. Here we explain how our method can effec-
tively use a complex, high-quality image to guide 3D object synthesis, by introducing cross-attention
for the image prompt. Given the query features Z which are derived from the latent representations
of the 2D rendering results of the 3D object from various viewpoints, and the image prompt embed-
ding yrgb, the cross-attention for the image prompt is formulated as follows:

Z ′ = Softmax(
QK⊤
√
d

)V, (8)

where Q = ZWq , K = yrgbW
ip
k , V = yrgbW

ip
v represent the queries, keys, and values within

the cross-attention module, respectively, Z ′ denotes the output features of the module, and the Wq ,
Wip

k , and Wip
v are the projection matrices used for linear transformations. The reasons why IPSDS

can utilize complex images to guide the generation of 3D objects while existing single-image-to-3D
methods cannot are two-fold: First, the encoder of the image prompt adaption method effectively
extracts the image features yrgb from the reference high-resolution image prompt. Secondly, as
the attention map can accurately align the features yrgb with specific positions of rendered images
(Hertz et al., 2022) from the 3D object, the features from the original complex image are precisely
positioned on the most relevant parts of the 3D object.

3.3 MASK-GUIDED COMPOSITIONAL ALIGNMENT FOR MULTIPLE IMAGE PROMPTS

Motivation of Mask-guided Compositional Alignment. When the rendered 2D images from the
NeRF model significantly differ from the image prompt or when the input includes multiple diverse
image prompts, relying solely on cross-attention for the image prompt fails to effectively align the
features yrgb with specific positions on the 3D object. As illustrated in Fig. 3(a), it is evident that
IPDreamer encounters difficulties with this challenging sample. To address this issue, we have
designed a Mask-guided Compositional Alignment strategy. Specifically, we collect multiple images
Irgbi from the input complex image prompts. Then, we employ a large multimodel model (GPT-
4v) to provide localization words ytxti for corresponding Irgbi . We adopt the cross attention in
LDM (Rombach et al., 2022) to obtain localization masks:

mi = BI(Softmax(
QK⊤

txt,i√
d

)), Q = ZWq, Ktxt,i = ytxti Wtxt
k , i = 1, 2, ..., nip, (9)

where Z represents the same query features as in Equation 8, BI denotes a binarization operator
and nip is the number of the input multiple images. Subsequently, the mask mi, obtained from the
textual description ytxti , is used to adjust the computation of the cross attention corresponding to the
feature yrgbi of the image prompt Irgbi :

Z ′ =
1

nip

nip∑
i=1

mi Softmax(
QK⊤

ip,i√
d

)Vip,i, (10)

where Q = ZWq , Kip,i = yrgbi Wip
k , Vip,i = yrgbi Wip

v . With the help of our strategy, we
modify the cross-attention calculation during the IPSDS supervision process, enabling the features
of multiple images to be localized onto the 3D object, as shown in Fig. 3(b). Next, we provide more
details of the IPSDS training process with the Mask-guided Compositional Alignment.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

NeRF model “face” “clothes” “hair”

Figure 4: Visualization of localization masks.
Training Process of IPSDS with Mask-guided Compositional Alignment. We briefly describe
how IPSDS is designed with the Mask-guided Compositional Alignment. First, we utilize GPT-
4v to generate localization textual prompts, ytxt1 , ..., ytxtnip

, to map features of the complex images
onto 3D objects. Specifically, we input the multiple complex reference images and rendered im-
ages of a coarse NeRF model into GPT-4v, which analyzes and identifies the regions that need to
be segmented from the input complex images and generates the corresponding localization textual
prompts. Based on the analysis, we employ SAM (Kirillov et al., 2023) to segment multiple partial
images, Irgb1 , ..., Irgbnip

, from the complex images. Additionally, both the localization textual prompts,

ytxt1 , ..., ytxtnip
, and the segmented partial images, Irgb1 , ..., Irgbnip

, can be adjusted by users.

Given potential semantic differences between Irgb and the coarse NeRF model (e.g., “magnif-
icent magic castle” vs. “adorable cottage”) and the possibility that the multiple partial images
Irgb1 ,. . . ,Irgbnip

may lack detail or resolution, it is crucial to enhance them before initiating texture
optimization. We adopt a super-resolution model (Zhang & Agrawala, 2023) 1 in conjunction with
Irgb1 , ..., Irgbnip

and ytxt1 ,..., ytxtnip
to generate new Irgb1 , ..., Irgbnip

. This preprocessing step improves the
quality of both the guided images and the resulting 3D object.

Subsequently, we extract image prompt features yrgb1 , ..., yrgbnip
from corresponding partial image

prompts Irgb1 , ..., Irgbnip
. Then, we modify the cross-attention calculation based on Equation 9 and

Equation 10 during the IPSDS supervision process, to localize the image features onto the 3D object
according to ytxt1 ,..., ytxtnip

. Fig. 4 shows an example of the effect of localization masks calculated in
the process of Mask-guided Compositonal Alignment. The IPSDS supervision in this part can be
written as:

∇θLIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; y
rgb
1 , ..., yrgbnip

, ytxt
1 , ..., ytxtnip

, t)− ϵ)
∂zrgb
∂θ

], (11)

∇∆V LIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; y
rgb
1 , ..., yrgb

nip
, ytxt

1 , ..., ytxtnip
, t)− ϵ)

∂zrgb
∂∆V

], (12)

∇SLIPSDS−Tex(θ,∆V, S) = Et,ϵ[w(t) (ϵip(zrgb,t; y
rgb
1 , ..., yrgbnip

, ytxt
1 , ..., ytxtnip

, t)− ϵ)
∂zrgb
∂S

]. (13)

After initially localizing the partial image prompts onto the 3D object, it is then necessary to further
optimize the texture of the 3D object globally. We input all features of the partial images and the
provided complex images into the IPSDS loss to optimize the 3D object simultaneously:

fglobal = concat(yrgb1 , ..., yrgbnip
, yrgb + δgeo), (14)

∇θLIPSD−Tex(θ,∆V, S) = Et,ϵ[w(t)(ϵip(zrgb,t; fglobal, t)− ϵ)
∂zrgb
∂θ

], (15)

∇∆V LIPSD−Tex(θ,∆V, S) = Et,ϵ[w(t)(ϵip(zrgb,t; fglobal, t)− ϵ)
∂zrgb
∂∆V

], (16)

∇SLIPSD−Tex(θ,∆V, S) = Et,ϵ[w(t)(ϵip(zrgb,t; fglobal, t)− ϵ)
∂zrgb
∂S

]. (17)

4 EXPERIMENTS

4.1 3D GENERATION WITH SINGLE COMPLEX IMAGE

As depicted in Fig. 5, we show generated 3D objects that use diverse image prompts to guide
synthesis. This demonstrates IPDreamer’s ability to produce high-quality 3D objects that align with

1https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
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(a) (b)

Sample #1 Sample #2

Sample #3 Sample #4

“A female game character.”

(a) (b)

Sample #1 Sample #2

Sample #3 Sample #4

“An iron breastplate.”

Coarse NeRF models

3D objects generated by IPDreamer

Figure 5: generated 3D objects with different image prompts. (a) Image prompts used for Coarse
NeRF model generation. (b) Rendering of Coarse NeRF models. We show four samples for each
textual prompt. In each sample, the top left is a selected complex image prompt, and the bottom
left and the right illustrate the high-quality 3D object optimized by IPDreamer based on the coarse
NeRF model.

“A bird with the appearance of the phoenix.” “An adorable cottage.”

Coarse NeRF 
Model

Reference Images

w/o Mask-guided 
Compositional 

Alignment

3D Object

“Castle”
“Castle base”

“Castle base” “Castle”

Reference Image

Coarse NeRF 
Model 3D Object

3D Objects

(a)

(b)

Coarse NeRF 
Model

Reference Image

Reference ImagesCoarse NeRF 
Model

3D Objects

w/ Mask-guided 
Compositional 

Alignment

w/o Mask-guided 
Compositional 

Alignment

w/ Mask-guided 
Compositional 

Alignment

Figure 6: Effectiveness of Mask-guided Compositional Alignment.

the styles of the provided images. Remarkably, IPDreamer can appropriately transfer the appearance
of the image prompts to the synthesized 3D objects, regardless of the structure difference between
the image prompts and the coarse NeRF models. To our knowledge, this high-quality appearance
transfer task is not achievable by existing text-to-3D or single-image-to-3D methods. In Sample 2
for the textual prompt “An iron breastplate”, although both the textual and image prompt features are
provided for 3D object synthesis, the generated result resembles a leather breastplate more closely,
which aligns with the image prompt rather than the “iron” mentioned in the textual prompt. This
illustrates that the image prompt exerts a stronger influence on the synthesis of the 3D object than the
textual prompt. Consequently, such a powerful ability to edit 3D object textures greatly facilitates
applications in the gaming and video industries.

4.2 3D GENERATION WITH MULTIPLE COMPLEX IMAGES

To demonstrate the stability of our IPDreamer in generating 3D models guided by multiple com-
plex images or when the initial coarse 3D object significantly differs from these guiding images,
we produced more 3D objects under these conditions. As shown in Fig. 6(a), when provided im-
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Table 1: Quantitive comparison of text-to-3D
generation.

Method FID ↓ CLIP-Score ↑
DreamFusion 320.16 0.2413
Magic3D 320.56 0.2582
Fantasia3D 294.79 0.2557
ProlificDreamer 277.35 0.2603
LRM 304.81 0.2522
LGM 296.62 0.2605
zero123++ 269.58 0.2561
SV3D 266.21 0.2681
IPDreamer(Ours) 253.32 0.2716

Table 2: Percentage of the preference in the user
study of text-to-3D generation.

Method Prefer baseline Prefer ours
DreamFusion 6.45 93.55
Magic3D 10.89 89.11
Fantasia3D 25.82 72.18
ProlificDreamer 41.65 58.35
LRM 29.73 70.27
LGM 34.52 65.48
zero123++ 33.75 66.25
SV3D 43.75 56.25

ProlificDreamerIPDreamer

IPDreamer IPDreamer

IPDreamer Fantasia3D

Magic3D DreamFusion

A chimpanzee dressed like Henry VIII king of England.

A squirrel-octopus hybrid. A raccoon astronaut holding his helmet.

Michelangelo style statue of dog reading on a cellphone.

A 3D model of an adorable cottage with a thatched 
roof.

A vintage record player.

IPDreamer

LGM LRM

The shining sun.

Zero123++ SV3D

ProlificDreamerFantasia3DMagic3DDreamFusion

Figure 7: Qualitative Comparison of Text-to-3D Generation. It is worth noting that for the ”Shining
Sun” sample, our IPDreamer can generate a luminous 3D sphere with natural light rays emitting,
which is difficult for other baseline methods to achieve.

age prompts vastly differ from the coarse NeRF models, the 3D objects guided by IPSDS with
Mask-guided Compositional Alignment retain the semantic essence of the original coarse NeRF
models and achieve the intended outcomes. And in Fig. 6(b), we provide two samples with the
same coarse NeRF model and multiple diverse complex image prompts but different mask-guided
textual prompts; the generated results of these two samples are quite different and well follow the

9
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w/o Sample 1 Sample 2w/ w/

Figure 8: Visualization of the initial normal map of the 3D
object at the beginning of geometry optimization, along with
the image prompt and the refined normal map after geome-
try optimization for each sample.

Table 3: Ablation study of
δgeo.

Methods CLIP score ↑
w/o δgeo 0.8228
w/ δgeo 0.8389

textual requirements, showing that IPDreamer effectively enhances the diversity of the generated 3D
objects, offering new perspectives for the advancement in the 3D research domain.

4.3 COMPARISON ON TEXT-TO-3D

To validate the quality of the results generated by our method, we conducted a comparative analysis
with text-to-3D methods (Poole et al., 2022; Lin et al., 2023; Chen et al., 2023b; Wang et al., 2023)
and single-image-to-3D methods (Hong et al., 2024; Tang et al., 2024; Shi et al., 2023a; Voleti et al.,
2025) in the text-to-3D generation task. As illustrated in Fig. 7, IPDreamer surpasses these base-
line methods by producing highly controllable and realistic 3D objects that align closely with the
provided textual prompts. Additionally, we compare IPDreamer with all baseline methods under
example “The shining sun”, where existing text-to-3D and single-image-to-3D methods fail to gen-
erate clear and coherent subjects. In contrast, our method successfully generates results that meet
the requirements, further demonstrating its effectiveness.

For a quantitative evaluation, we randomly select 30 textual prompts and compare the performance
of IPDreamer against state-of-the-art (SOTA) methods, as shown in Table 1. IPDreamer achieves
superior performance, evidenced by a lower FID score, indicating higher quality 3D object genera-
tion, and a higher CLIP score, reflecting better alignment with the input textual prompts. To provide
a more comprehensive assessment of the generated results, we also conduct a user study, the results
are demonstrated in Table. 2. The details of the CLIP score, FID, and user study are introduced in
Appendix A.2. Besides, we provide more generated 3D results in Appendix A.1.3.

4.4 ABLATION STUDY

We conduct an ablation study to evaluate the impact of LIPSDS−Geo and δgeo on optimizing 3D
objects. Their effectiveness is illustrated in Fig. 8 and Table 3. In Fig. 8, we showcase the optimized
normal maps of two samples. After geometry optimization, Sample 1 and Sample 2 learn the high-
frequency details from their corresponding image prompts. The difference in the optimized normal
maps between Sample 1 and Sample 2 is readily discernible in Fig. 8, illustrating the efficacy of
LIPSDS−Geo in learning geometry representations from image prompts. In Table 3, we compare the
CLIP score of 3D objects optimized with and without δgeo. We conduct the quantitive comparison
using the samples mentioned in Section 4.3 and employ CLIP score to compare the alignment of
rendered images of 3D objects generated with and without δgeo in different viewpoints with the
reference image prompt. The experimental results show that with δgeo, the rendered images of the
3D object in different viewpoints are more consistent with the reference image prompt.

5 CONCLUSION

In this work, we propose IPDreamer, a novel framework that enables the generation of high-quality,
appearance-controllable 3D objects from complex image prompts. By introducing Image Prompt
Score Distillation Sampling (IPSDS), our method effectively captures rich and intricate appearance
features from complex images to guide the optimization of both texture and geometry in 3D mesh
generation. Our approach supports multiple complex images in various contexts to guide 3D object
generation, enabling the stable production of high-quality 3D results. IPDreamer addresses the limi-
tations of existing text-to-3D and single-image-to-3D methods by producing 3D objects that are con-
sistent with textual descriptions and the detailed appearances of complex image prompts. Compre-
hensive experiments demonstrate that IPDreamer outperforms state-of-the-art methods, highlighting
its promising capability in advancing appearance-controllable complex 3D object generation.
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A APPENDIX

In Appendix A.1, we present additional synthesized 3D objects generated by IPDreamer. Detailed
implementation information is provided in Appendix A.2. Furthermore, Appendix A.5 analyzes the
social impact of IPDreamer.

A.1 MORE EXAMPLES OF 3D OBJECTS GENERATED BY IPDREAMER

“A sacred altar.”

“A beautiful ring with diamonds.”

“A high-quality shoe.”

“A adorable doll.”

“A cool sword.”

(a) (b) (c) (d)

Figure 9: generated 3D objects with different image prompts. (a) Scribble object outlines and
corresponding image prompts for Coarse 3D object generation. (b) Renderings of coarse NeRF
models. (c) (d) Two samples demonstrated for each textual prompt. In each sample, the top left is a
reference complex image prompt, and the bottom left and the right illustrate the 3D object optimized
by IPDreamer based on the coarse NeRF model.

A.1.1 MORE EXAMPLES OF 3D OBJECTS GUIDED BY IPSDS

To further demonstrate IPDreamer’s remarkable ability to manipulate appearance, we conduct more
3D object synthesis experiments. These experiments use diverse textual prompts, each accompanied
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(a) (b) (c)

“A mini car.” “A pistol.”

(a) (b) (c)

Figure 10: More samples of 3D object editing. (a) Coarse NeRF models. (b) Provided image
prompts. (c) 3D objects generated by IPDreamer.

NeRF Model Image Prompt 3D object w/o Mask-guided  
Compositional Alignment

“A knapsack made of leather.” 

“A mechanical bear paw.”

“A ghost in a red wedding dress.” 

“An iron sword.”

3D object w/ Mask-guided  
Compositional Alignment

Figure 11: Comparison of 3D objects synthesis with and without Mask-guided Compositional
Alignment.

by two distinct image prompts. As evident in Fig. 9, IPDreamer consistently produces impressive 3D
object synthesis, regardless of the geometric shape of the acquired NeRF or the image prompts used
for texture editing. The generated results highlight IPDreamer’s powerful texture editing capabilities
for 3D objects, suggesting its potential to serve effectively in the 3D gaming and video industries.

Besides, to further demonstrate the appearance guidance capability of IPSDS in generating 3D ob-
jects, we use two samples whose reference image prompts are particularly complex and somewhat
different from the initial coarse NeRF models, as shown in Fig. 10. Even in such challenging cases,
IPDreamer can still achieve high-quality 3D objects, such as the cyborg-style mini car generated in
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NeRF 
Model

3D 
Object

“A crystal armor 
wrapped in vines.”

“A sofa made of 
leather.”

“A cyborg style mini 
car.”

“A phoenix.”

Complex 
Image 

Prompt

NeRF 
Model

3D 
Object

Complex 
Image 

Prompt

“The barbecue is stacked in 
the shape of a hamburger.”

“An aircraft carrier.”“An ice-creamer made of 
crystal.”

“A heart flowed 
magma.”

Figure 12: 3D objects synthesis with Mask-guided Compositional Alignment.

the first example, and the futuristic toy pistol in the second example. By utilizing IPDreamer’s style
editing ability for 3D objects, the generated results can be more diverse.

A.1.2 MORE EXAMPLES OF 3D OBJECTS GUIDED WITH MASK-GUIDED COMPOSITIONAL
ALIGNMENT

While IPDreamer can achieve remarkable 3D object synthesis in numerous challenging cases even
without Mask-guided Compositional Alignment, difficulties emerge when the appearance of the
supplied image prompts substantially diverge from the initial coarse NeRF model. To emphasize
the potent 3D object optimization capability of Mask-guided Compositional Alignment within IP-
Dreamer, we offer a comparison of the generated 3D objects with and without Mask-guided Com-
positional Alignment in Fig. 11. The outcomes validate the exceptional high-fidelity capability of
Mask-guided Compositional Alignment. To further elucidate the superiority of Mask-guided Com-
positional Alignment, we present additional generation results in Fig. 12

A.1.3 MORE TEXT-TO-3D GENERATION RESULTS

To further demonstrate the capability of our IPDreamer in generating the desired 3D objects, we
provide additional qualitative comparison results in Fig. 13. The baseline methods, including Pro-
lificDreamer (Wang et al., 2023) as well as single-image-to-3D methods (Hong et al., 2024; Tang
et al., 2024; Shi et al., 2023a; Voleti et al., 2025), are also included. It is evident that for the testing
samples which are ambiguous or lack a clear main subject, existing text-to-3D and single-image-
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LGM LRM SV3D ProlificDreamerZero123++IPDreamer

Splashing waves.

A broken bridge.

A broken egg.

Figure 13: More Qualitative comparison of text-to-3D synthesis.

A plush dragon toy. A praying mantis wearing 
roller.

A cauldron full of gold 
coins.

A car made out of sushi. A classic Packard car.A rotary telephone carved 
out of wood.

A stuffed grey rabbit 
holding a pretend carrot.

A DSLR photo of an imperial 
state crown of England.

A blue tulip.

Figure 14: More generated 3D objects of IPDreamer.

to-3D methods struggle to produce the desired 3D results. In contrast, our IPDreamer succeeds in
generating accurate 3D results. To further showcase the diversity of our model, we provide addi-
tional text-to-3D generation results in Fig. 14.
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A praying mantis wearing roller.
Michelangelo-style statue of a dog reading news on a cellphone.

A matte painting of a castle made of cheesecake surrounded by a moat made of ice cream.
A chimpanzee dressed like Henry VIII king of England.
A 3D model of an adorable cottage with a thatched roof.

A plate piled high with chocolate chip cookies.
A vintage record player.

A car made out of cheese.
A beautifully carved wooden knight chess piece.

A car made out of sushi.
A squirrel-octopus hybrid.

A small saguaro cactus is planted in a clay pot.
A DSLR photo of an imperial state crown of England.

A rotary telephone carved out of wood.
A raccoon astronaut holding his helmet.

A classic Packard car.
A cauldron full of gold coins.

A blue tulip.
A stuffed grey rabbit holding a pretend carrot.

A plush dragon toy.
A broken egg.

A popped balloon.
Leaves flying in the wind.
A robot assembles itself.

Lightning.
The shining sun.

A melting ice cube.
Ripples on water.
A broken bridge.
Splashing waves.

Table 4: Textual prompts used in the quantitative comparison.

A.2 IMPLEMENTAION DETAILS

A.2.1 OPTIMIZATION

In this work, we conduct all of our experiments on one A100-SXM4-40GB GPU. In Stage 1, we
optimize 5k steps with Adam optimizer Xie et al. (2022) to obtain a NeRF model. In Stage 2, we
optimize 10k steps for geometry optimization and 15k steps for texture optimization. During each
optimization progress in Stage 2, we initially sample the timesteps t ∼ U(0.02, 0.98) for the first
5k steps, and then sample t from t ∼ U(0.02, 0.5) for the rest steps. Each optimization process in
Stage 2 requires approximately 9GB GPU memory with batch size 1 and a rendering resolution of
512.

A.2.2 TEXTUAL PROMPTS USED FOR COMPARISON

We provide the 30 randomly selected textual prompts for quantitative comparison and user study
in Table. 4. To fully compare the generation capabilities of different methods and demonstrate
the effectiveness of our method, the testing textual prompts include 20 textual prompts that are
frequently used in previous text-to-3D methods as well as 10 relatively challenging textual prompts
that do not have a clear main subject.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

NeRF model
w/o Mask-guided Compositional 

Alignment Full guidancew/o global optimizationReference image

Figure 15: Ablation study of global optimization.

A.2.3 METRICS

We perform quantitative comparisons to evaluate IPDreamer’s performance, with the following met-
rics:

• CLIP score Gal et al. (2022): We employ CLIP score in Section 4.2 of the main paper. By
assessing the alignment between the textual descriptions and the rendered images of 3D
objects from various viewpoints, we can judge whether text-to-3D methods successfully
generate 3D objects that match the input textual prompts.

• Fréchet Inception Distance (FID) Heusel et al. (2017): To evaluate the quality of the gener-
ated results, we utilize FID to compare the similarity between the rendering images of 3D
objects and the images generated by the text-to-image model, Stable Diffusion.

A.2.4 USER STUDY

To further verify the quality of our generated results, we follow previous works Lin et al. (2023);
Chen et al. (2023b); Wang et al. (2023) and conduct a user study by comparing IPDreamer with the
six SOTA methods Poole et al. (2022); Lin et al. (2023); Chen et al. (2023b); Wang et al. (2023);
Hong et al. (2024); Tang et al. (2024), under 16 prompts randomly selected from Table 4. Each
of the 80 volunteers is provided with 16 pairs of results corresponding to the 16 prompts. In each
pair, one from IPDreamer and one from a randomly selected baseline. Thus, there are a total of
1280 pairwise comparisons. The volunteers are then asked to choose the better result in terms of
faithfulness, quality, and fidelity.

To enhance the reliability of our user study, we provide information on the demographic distribution
of the participants. The 80 volunteers included 30 university students, 20 employees from internet
companies, and 30 individuals without a computer science background. This diverse composition,
encompassing both participants with relevant academic experience and those without, suggests that
the results of our user study are reliable and generalizable.

A.2.5 DETAILS OF GPT-4V ANALYSIS

In this section, we provide a detailed description of how GPT-4v is utilized to generate localization
prompts. Specifically, the prompt given to GPT-4v is as follows:

“You will act as an image analysis agent. Based on the input complex image condition <image>,
you need to analyze which parts of the image can be used to guide 3D object synthesis. The multi-
view renderings of the initialized 3D model will be provided to you in the form of a video <video>.
Based on the input image condition, you are required to generate textual prompts that describe the
segmented partial images, which will be used to guide the segmentation of partial image features.
Each segmented partial image must also have a corresponding localization prompt, mapping these
partial image features onto the 3D object. Please respond in the following format: Partial image
textual prompts: <text1>, <text2>, ... Corresponding localization textual prompts: <y1>, <y2>,
... Note that the numbering of the partial image textual prompts must correspond one-to-one with
the localization textual prompts.”
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w/o Image Prompt Enhancement w/ Image Prompt Enhancement

Figure 16: Ablation study of partial images enhancement.

“atrium”

“vessel”

“window”

“door”

“roof”

“tail”

“wing”

“head”

Initial NeRF Model Reference Image
Human-selected 

Partial Images

Qwen-VL+SAM 

Selected Partial 

Images

Localization 

Prompts

Generated 3D 

Objects

GPT-4v+SAM 

Selected Partial 

Images

Figure 17: Ablation study of the accuracy of the GPT-4v and SAM.

A.3 ADDITIONAL ANALYSIS

A.3.1 EFFECTIVENESS OF GLOBAL OPTIMIZATION

To demonstrate the effectiveness of global optimization, We conduct an ablation study. As shown
in Fig. 15, we present results optimized using only Mask-guided Compositional Alignment, only
global optimization, and full guidance. When Mask-guided Compositional Alignment is omitted,
the features of partial images fail to align properly with the corresponding regions on the 3D object.
Conversely, without global optimization, the generated 3D object appears distorted and unnatural.
By combining the Mask-guided Compositional Alignment strategy with global optimization, we can
produce coherent, high-quality 3D objects. This highlights the role of Mask-guided Compositional
Alignment in accurately localizing features and the importance of global optimization in enhancing
the overall quality of the generated 3D object.
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A.3.2 EFFECTIVENESS OF PARTIAL IMAGES ENHANCEMENT

We utilize the super-resolution model to enhance the partial images in the main paper, especially
when the resolution of partial images is low. In this part, We compare the generated 3D results with
and without partial image enhancement. As shown in Fig. 16, the generated 3D models may exhibit
noticeable noise and artifacts when the low-resolution partial images are not enhanced. In contrast,
applying partial image enhancement leads to significantly improved 3D results, demonstrating the
effectiveness of partial image enhancement.

A.3.3 EFFECTIVENESS OF GPT-4V ANALYSIS

To validate the effectiveness of GPT-4v in analyzing and extracting parts, as well as to make the
multi-image-guided 3D object generation process easier to understand, we provide additional visu-
alizations in Fig. 17. These visualizations include manually extracted partial images, partial images
obtained using GPT-4v and SAM, partial images obtained by Qwen-VL Bai et al. (2023) and SAM,
and the 3D objects generated from the partial images obtained by GPT-4v and SAM. The results
show that analyzing the input conditions and extracting partial images is not a particularly difficult
task. The partial images extracted using MLLM (including GPT-4v and Qwen-VL) and SAM resem-
ble those manually extracted. By leveraging analytical capabilities of GPT-4v and the Mask-guided
Compositional Alignment strategy, our method can autonomously generate reasonable and high-
quality 3D objects. This further demonstrates the effectiveness of GPT-4v and SAM in accurately
obtaining partial images.

A.4 FUTURE WORK

Our IPDreamer can leverage complex images to guide high-quality 3D object synthesis and editing.
Compared to existing text-to-3D and single-image-to-3D methods, it enables a more flexible and
controllable synthesis of the desired 3D results. In future work, we will focus on improving the
alignment between the generated 3D objects and the provided complex image conditions, ensuring
that the generated 3D results better reflect the finer details in the complex image.

Although our IPDreamer has successfully guided high-quality 3D object synthesis in most cases
using complex images, there may still be cases of failure. Future work will focus on identifying
and addressing such failure cases, while enhancing the generalization ability of IPDreamer and
improving the quality of the generated 3D objects.

A.5 SOCIAL IMPACT

Our IPDreamer does not have a direct negative impact on society. However, it is important to
recognize the potential of high-quality 3D objects and ensure they are not adopted for malicious
purposes.
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