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Figure 1: Visualization of segmentation and tracking results. We compare Motion4D with state-
of-the-art 2D foundation models, highlighting their lack of 3D consistency. As shown, existing 2D
approaches often suffer from temporal flickering (green box) or spatial misalignment (red box).

Abstract

Recent advancements in foundation models for 2D vision have substantially im-
proved the analysis of dynamic scenes from monocular videos. However, despite
their strong generalization capabilities, these models often lack 3D consistency, a
fundamental requirement for understanding scene geometry and motion, thereby
causing severe spatial misalignment and temporal flickering in complex 3D envi-
ronments. In this paper, we present Motion4D, a novel framework that addresses
these challenges by integrating 2D priors from foundation models into a unified
4D Gaussian Splatting representation. Our method features a two-part iterative
optimization framework: 1) Sequential optimization, which updates motion and
semantic fields in consecutive stages to maintain local consistency, and 2) Global
optimization, which jointly refines all attributes for long-term coherence. To en-
hance motion accuracy, we introduce a 3D confidence map that dynamically adjusts
the motion priors, and an adaptive resampling process that inserts new Gaussians
into under-represented regions based on per-pixel RGB and semantic errors. Fur-
thermore, we enhance semantic coherence through an iterative refinement process
that resolves semantic inconsistencies by alternately optimizing the semantic fields
and updating prompts of SAM2. Extensive evaluations demonstrate that our Mo-
tion4D significantly outperforms both 2D foundation models and existing 3D-based
approaches across diverse scene understanding tasks, including point-based track-
ing, video object segmentation, and novel view synthesis. Our code is available at
https://hrzhou2.github.io/motion4d-web/.
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1 Introduction
The joint modeling of geometry, semantics and temporal dynamics of 4D scenes is a fundamental
task in computer vision with broad applications in robotics, autonomous driving, augmented reality,
etc. A key aspect of this problem is the estimation of motion-related priors, such as semantic masks,
2D point tracks, and depth maps, which serve as essential cues for reconstructing and interpreting
complex scenes. However, despite significant progress, ensuring consistency and accuracy in the
predictions remains challenging due to occlusions, view variations, and motion ambiguity.

Recently, the emergence of the Segment Anything Model (SAM) [18] has revolutionized 2D visual
understanding and established itself as a foundational model for image segmentation. Inspired by its
success, many related vision models have been developed. For example, Track Any Point [7, 8] for
point-based object tracking and Depth Anything [47, 48] for monocular depth estimation. Although
these models have achieved impressive performance by using large-scale datasets and extensive
pre-training, they remain inherently limited in maintaining 3D coherence. In practice, even the state-
of-the-art SAM2 [34] model still suffers from significant inconsistencies across frames, including
spatial misalignment, temporal flickering, and boundary artifacts (cf. Figure 1). Such limitations arise
from their design, which relies on frame-wise processing and lacks explicit 3D reasoning.

One promising solution is to lift 2D vision models for 3D understanding by leveraging explicit 3D
representations such as Neural Radiance Fields (NeRFs) [26] or 3D Gaussian Splatting (3DGS) [17].
Unfortunately, most existing methods [52, 1, 37, 51, 2] are specifically designed for static scenes,
where they improve consistency across the scene by incorporating multi-view segmentation results
into an optimized 3D representation. Applying 2D models to dynamic environments introduces
new challenges, including motion complexity, occlusions, and spatio-temporal alignment. These
challenges, which are already problematic in 2D, remain difficult to resolve through direct integration
with 3D representations. Another limitation of recent works [40, 14, 21] is that they treat 2D priors
separately from dynamic 3D representations: they either learn the feature fields independently of
the 3D model or decouple semantic understanding from motion estimation. As a result, the limited
modeling of appearance and motion ultimately prevents the estimation of coherent predictions.

In this paper, we address the challenges of inconsistent 2D predictions and weak 3D integration
by developing a unified dynamic representation that models motion and semantics from casual
monocular videos. We introduce Motion4D, a method that refines multiple scene characteristics,
including semantic masks, 2D point tracks, and depth estimation, while jointly optimizing a 3D
Gaussian Splatting model augmented with semantic and motion fields. Motion4D consists of a
two-part iterative optimization framework: 1) Sequential optimization that updates the motion and
semantic fields in two consecutive stages within short temporal windows to maintain local consistency.
2) Global optimization that performs a joint optimization of all attributes throughout the sequence
to ensure coherence. In the first stage of sequential optimization, we propose iterative motion
refinement to enforce 3D motion consistency by correcting accumulated errors across sequences
using a tracking loss with learned 3D confidence maps. We further introduce an adaptive resampling
module to improve motion consistency by inserting new Gaussians into underrepresented regions
identified through per-pixel RGB and semantic errors. In the second stage, we propose an iterative
semantic refinement process to iteratively update 2D semantic priors by aligning rendered 3D masks
with 2D predictions through bounding boxes and prompt points.

We introduce DyCheck-VOS, a new benchmark for evaluating video object segmentation in real-
istic and dynamic scenes with camera and object motion. Extensive evaluations on benchmark
datasets show that our Motion4D demonstrates superior performance across various dynamic scene
understanding tasks. Our method significantly outperforms both 2D foundation models and 3D
representation-based methods in video object segmentation, point-based tracking, and novel view
synthesis. Figure 1 shows an example of our qualitative result compared to existing approaches. Our
contributions are summarized as:

• We propose Motion4D, a model that integrates 2D priors from foundation models into a dynamic
3D Gaussian Splatting representation to achieve consistent motion and semantic modeling from
monocular videos.

• We design a two-part iterative optimization framework comprising sequential optimization, which
updates motion and semantic fields in consecutive stages to maintain local consistency, and global
optimization, which jointly refines all attributes to ensure long-term coherence.
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• We introduce iterative motion refinement using 3D confidence maps and adaptive resampling
to enhance dynamic scene reconstruction, and semantic refinement to correct 2D semantic
inconsistencies through iterative updates with SAM2.

• Our Motion4D significantly outperforms both 2D foundation models and existing 3D methods in
tasks, including video object segmentation, point-based tracking, and novel view synthesis.

2 Related Work

2D vision models for scene understanding. As a fundamental aspect of scene understanding,
semantic segmentation remains an essential yet challenging task in computer vision. Recently,
the Segment Anything Model (SAM) [18] was introduced as a promptable segmentation network
trained on billions of masks, enabling strong zero-shot segmentation performance on new images.
Its successor, SAM2 [34], extends this paradigm to video by using a streaming memory mechanism,
and builds the largest video segmentation dataset (SA-V) to date. SAM2 serves as a foundation
model for segmentation across images and videos, achieving state-of-the-art results in video object
segmentation [5, 4, 30, 28] and offering broad applications across various domains.

Inspired by its success, many related vision models have been developed, further exploring foundation
models for vision understanding. Among them, Track Any Point (TAP) [7] introduces the task of
point-level tracking for dynamic scenarios, standing out as a key task in scene understanding.
Building on prior work in 2D optical flow [39], it further extends the definition to capture dense
and long-term relationships for tracking arbitrary points in videos. Recently, there has been a
rising interest in this problem, with several works demonstrating impressive long-term 2D tracking
results on challenging, in-the-wild videos [8, 19, 20]. Another important topic is the Monocular
Depth Estimation (MDE) from images and videos [33, 3, 44]. This line of work aims to predict
depth information for any images under any circumstances, demonstrating strong generalization
abilities suitable for various downstream scenarios. Recently, Depth Anything [47] has achieved
significant progress by greatly scaling up its dataset with large-scale unlabeled data, leading to
significant improvements in depth estimation. Building on this progress, several works have been
proposed [48, 47], with further improvement in video depth estimation and data acquisition. While
these 2D foundation models demonstrate superior generalization abilities, they are still intrinsically
limited in producing 3D-consistent estimations essential for scene understanding. Our work, therefore,
builds on the predictions of 2D vision models and seeks to construct a joint and spatio-temporally
coherent representation of multiple motion priors.

3D representation models. In the field of 3D vision, recent advances in 3D representation models,
such as Neural Radiance Fields (Nerf) [26] and 3D Gaussian Splatting (3DGS) [17], have achieved
impressive results in novel view synthesis. Leveraging the expressive representation of 3DGS,
research in scene reconstruction and view synthesis has expanded to dynamic scenes [43, 24, 49, 31,
10, 27, 11], allowing for the modeling of complex object geometry and motion. On the other hand, the
use of 3D models has extended beyond view synthesis to broader tasks, such as generation [13, 23],
scene understanding [46, 25], and language-related applications [32]. Integrating 2D vision models
with 3D representations for scene understanding is also a common strategy, typically for segmentation
tasks with multi-view inputs in static scenes [51, 2, 52, 41, 37, 1]. However, when dealing with
dynamic scenes involving complex motion, fewer relevant studies have been proposed. These methods
either leverage an existing dynamic 3D representation with an additional semantic field [14, 21],
or decouple the modeling of semantics and motion [40]. This makes them ineffective in handling
complex motion in casual videos, limiting their ability to maintain 3D consistency. Compared to
previous works, our method employs an effective iterative optimization strategy to jointly model
semantics and motion, ensuring 3D consistency in dynamic scenes.

3 Our Method: Motion4D

Problem Definition. The input to our Motion4D is a video sequence of T posed RGB images
{It}, and a set of priors generated by 2D pre-trained models: 1) The object masks Mt; 2) 2D
point tracks Ut→t′ from t to target frame at t′; 3) Monocular depth Dt, where t denotes the
timestep. Our goal is to estimate spatio-temporally consistent predictions of semantics M̂t and motion
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Figure 2: Overview of Motion4D. Our Motion4D introduces an iterative refinement framework,
consisting of (c) sequential optimization and global optimization stages. We develop (a) an iterative
motion refinement module that uses 3D confidence maps and adaptive resampling to improve motion
accuracy, and (b) an iterative semantic refinement module to refine the semantic field.

components {Ût→t′ , D̂t} while simultaneously reconstructing a coherent scene representation that
models appearance and dynamics of the scene.

Overview. Figure 2 shows an overview of our Motion4D pipeline. We first define the 3DGS with
motion and semantic fields as our 4D scene understanding representation in Section 3.1, followed
by the introduction of our Motion4D. Conceptually, our method aims to iteratively refine both
the 2D priors and 3D scene representation throughout the optimization process of dynamic scene
reconstruction. For the motion field, we update the 2D tracking priors by learning a confidence
weight to control the supervision and introduce an adaptive resampling strategy to further enhance
the modeling of motion (cf. Section 3.2). For the semantic field, we leverage the promptable
SAM2 model [34] as a component in our training pipeline. After each iteration, we render semantic
views from the GS model and feed them as additional prompts to the SAM2 model, which directly
refines the 2D semantic priors (cf. Section 3.3). Furthermore, we adopt a sequential optimization
strategy for motion and semantic fields to effectively mitigate error accumulations over time (cf.
Section 3.4). Finally, we further improve reconstruction accuracy via a global optimization stage
to ensure consistency and coherence across all fields (cf. Section 3.4). By combining the strong
temporal consistency of explicit 3D representations and the rich semantic priors provided by 2D
networks, our Motion4D achieves improved motion and semantic coherence across space and time.

3.1 4D Scene Understanding Representation

We represent the scene using 3DGS [17] and further extend it with motion and semantic fields to
model dynamic 3D environments. Traditionally, 3DGS defines a set of N static Gaussians in the
canonical frame as g0i = {µ0

i , R
0
i , si, oi, ci}, where i = 1, ..., N . µ0

i ∈ R3 and R0
i ∈ SO(3) denote

the 3D position and orientation in the canonical frame, and si ∈ R3 is the scale, oi ∈ R is the opacity,
and ci ∈ R3 is the color. During rendering, given a pixel p in view I with extrinsic matrix E and
intrinsic matrix K, its color I(p) can be computed by blending intersected 3D Gaussians:

I(p) =
∑

i∈H(p)

ciαi

i−1∏
j=1

(1− αj), (1)

where H(p) is the set of Gaussians intersecting at pixel p, and αi = oi · exp(− 1
2 (p− µ2d)⊤Σ2d(p−

µ2d)). µ2d and Σ2d are the projected 2D Gaussian mean and covariance, respectively.

To model the motion of dynamic objects, we define a deformation field (motion field) which adjusts
positions and orientations at each frame via rigid transformations [42]. Specifically, the pose
parameters (µt

i, R
t
i) are rigidly transformed from the canonical frame t0 via T0→t

i = [R0→t
i t0→t

i ] ∈
SE(3) for a dynamic 3D Gaussian at time t, i.e.:

µt
i = R0→t

i µ0
i + t0→t

i , Rt
i = R0→t

i R0
i . (2)

Instead of defining per-frame motion parameters for all Gaussians, we use a set of global motion bases
{T̂0→t

b }Bb=1 and assign coefficients wb
i to each Gaussian. As a result, the per-frame transformation is

obtained by a weighted combination as T0→t
i =

∑B
b=0 w

b
i T̂

0→t
b .
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Due to the explicit representation of 3DGS, we follow [51, 2, 21] to directly embed a semantic
field onto each Gaussian for scene semantics. This is analogous to the role of the color field during
rendering. As a result, we can render the semantic view in a similar way as Equation 1 by:

Isem(p) =
∑

i∈H(p)

f sem
i αi

i−1∏
j=1

(1− αj). (3)

This gives the per-pixel semantic features, which can be converted to object masks M̂t at time t.

3.2 Iterative Motion Refinement

Figure 2(a) illustrates the motion field refinement process, where we focus on improving the motion
(deformation field) of dynamic Gaussian Splatting that directly impacts the accuracy of 3D point
tracking estimation. The initial 3D point tracks are formulated by the 2D point tracks Ut→t′ and
monocular depth Dt. Following [42], we then compute the pixel-wise 3D motion trajectory of the
query frame t by rendering the 3D positions of Gaussian points at the target time t′:

Xt→t′(p) =
∑

i∈H(p)

µt′

i αi

i−1∏
j=1

(1− αj), (4)

where µt′

i is position of the Gaussian at the target frame. Xt→t′(p) therefore estimates the 3D position
of the pixel at time t′, which can be projected into 2D tracks Ût→t′(p) and depth D̂t→t′(p). We now
consider supervising these estimates using the corresponding 2D priors.

Unlike the refinement of semantics (cf. Section 3.3), 2D tracking networks do not support prompt-
based interactions such as those in SAM2, i.e. we cannot directly update 2D track and depth priors
to ensure consistency. Instead, we seek to control the supervision loss by assigning a pixel-wise
confidence weight w(p) to reduce the influence of erroneous estimations in the input priors:

Ltrack =
1

|It|
∑
p∈It

w(p)∥Ût→t′(p)−Ut→t′(p)∥, Ldepth =
1

|It|
∑
p∈It

w(p)∥D̂t→t′(p)−Dt(p
′)∥. (5)

where p′ = Xt→t′(p) is the position at t′. The confidence weight w(p) estimates the probability that
the input priors are inconsistent with the ground truth. We then add a new uncertainty field ui ∈ R to
each Gaussian and obtain the weight by rendering the 3D uncertainty logits into 2D:

w(p) =
∑

i∈H(p)

uiαi

i−1∏
j=1

(1− αj). (6)

We define the weight by evaluating the self-consistency of the pixel across time in terms of the color
and semantic estimations:

Lw = BCE(ŵ(p), w(p)), where ŵ(p) =
{
1 if ∥It(p), It′(p′)∥ < δ and ∥Mt(p),Mt′(p

′)∥ < δ′,

0 otherwise.
(7)

where BCE(·) is the binary cross entropy, and δ and δ′ are the distance thresholds.

Adaptive Resampling. We introduce a new 3DGS densification strategy to further enhance motion
modeling through an adaptive resampling process. As discussed in prior works [35, 38], the Adaptive
Density Control of 3DGS [17] relies heavily on gradient magnitude. This makes it sensitive to the
choice of loss functions and often fails to identify the underfitting regions. Consequently, we extend
the idea of error-based densification from static scenes [35] to dynamic environments and develop a
sampling strategy to insert new Gaussians into the under-represented regions of the moving objects.
In each iteration, we first compute per-pixel errors ergb(p) and esem(p) for the RGB and semantic
views, respectively. We then select regions where ergb(p) > θrgb or esem(p) > θsem. Finally, we
sample 2D points from these error-prone regions, project them into 3D using the rendered depth, and
initialize new Gaussians based on their nearest dynamic Gaussians. By progressively refining and
filling sparsely reconstructed regions, our Motion4D effectively recovers blurry or missing parts of
foreground targets that are typically caused by inaccurate initial motion estimates or tracking failures.
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Figure 3: Illustration of (a) iterative semantic refinement and sequential optimization processes for
(b) the semantic field and (c) the motion field. The proposed strategies effectively update 2D input
priors to achieve consistent results across space and time.

3.3 Iterative Semantic Refinement

Our Motion4D iteratively refines scene semantics by alternating between updating the 3D rep-
resentation and semantic field, and refining the 2D semantic priors using the reconstructed 3D
scene representation. Specifically, at the s-th iteration step, we first obtain 2D segmentation masks
{Ms−1

t }Tt=1 generated by SAM2 in the previous iteration to supervise the semantic field during its
optimization. We then render 3D masks M̂s

t and compare each rendered mask with the corresponding
2D mask Ms−1

t to identify mismatched regions that require additional prompts. For each object, m
prompts are generated to align the 2D predictions with the rendered 3D masks as follows: 1) an exact
bounding box of the 3D mask is provided, and 2) we place positive or negative prompt points at the
center of the most prominent regions, determined by the maximum value of the distance transform.
Note that, we avoid using the exact 3D mask as a prompt since that SAM2 tends to strictly follow
the mask input, limiting its flexibility in refining 2D semantic priors. Figure 3(a) provides a visual
example of the iterative refinement on semantics. We show that rendered 3D masks offer greater
consistency inherent to the 3D scene representation, while SAM2 excels at preserving fine-grained
high-resolution details. To this end, our method effectively updates inconsistent 2D masks through
additional prompts that resolve semantic ambiguity.

3.4 Optimization Pipeline

Figure 2(c) illustrates the overall optimization pipeline, which consists of the sequential and global
optimization in three stages.

Sequential Optimization. The sequential optimization consists of two stages. In Stage 1, our
Motion4D optimizes the motion field across video sequences, where each sequence is defined as
a chunk of consecutive frames Si = It | t ∈ [iL, (i+ 1)L). To enhance short-term tracking and
dynamics, we apply the iterative motion refinement module within each sequence. We proceed to
Stage 2 upon completion of the motion field optimization, which focuses on optimizing the semantic
field. During this stage, we ensure a more stable semantic refinement by keeping the motion field
fixed to prevent inaccurate semantic priors from affecting the Gaussian parameters.

Sequential optimization is crucial for maintaining long-term consistency in both motion and semantic
estimations. As shown in Figure 3(b), 2D priors are prone to error accumulation over time since 2D
networks typically rely on the short-term memory of recent predictions. We observe that the SAM2
result aligns well with objects in the initial frames but gradually loses track as the video progresses.
The accumulation of these inconsistencies corrupt the semantic representation and dominate the
supervision when optimizing over the entire sequence space. To address this issue, our Motion4D
uses sequential optimization steps to produce consistent results over short temporal windows and
progressively extending them across the entire video. To ensure consistency between sequences, the
semantic refinement step explicitly updates SAM2 semantic priors to enhance temporal consistency
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Table 1: Comparisons of segmentation performance on DyCheck-VOS and DAVIS. We compare the
results of 2D networks (2D) and 3D methods (3D + SAM2 masks).

Method Representation DyCheck-VOS DAVIS 2017 val
J&F J F J&F J F

XMem [4] 2D 83.5 81.0 86.0 86.2 82.9 89.5
DEVA [5] 2D 84.5 81.7 87.4 87.0 83.6 90.4
SAM2 [34] 2D 89.4 88.3 90.5 90.7 89.4 92.0
Semantic Flow [40] 3D + SAM2 masks 76.9 74.4 79.3 72.2 69.3 75.2
SADG [21] 3D + SAM2 masks 81.8 79.2 84.3 75.0 71.9 78.1

Motion4D 3D + SAM2 masks 91.0 89.6 92.4 89.7 86.1 90.3
Motion4D + SAM2 [34] 3D + SAM2 masks 91.7 90.4 93.0 90.8 89.6 92.0

(a) SADG [21] (b) DEVA [5] (c) SAM2 [34] (d) Motion4D (e) Motion4D* (f) GT

Figure 4: Visualization of segmentation results on DyCheck-VOS (our proposed VOS benchmark).
We provide our results of both rendered masks (Motion4D) and refined SAM2 masks (Motion4D*).
As shown, the 2D predictions lack 3D consistency, which leads to misaligned spatial structures.

and correct accumulated errors. The motion refinement step also corrects accumulated errors by
implicitly aligning the motion trajectories through the tracking loss (Equation 5) across sequences.
Concurrently, these complementary refinements ensure robust scene understanding over time.

Global Optimization. Finally, we perform a global optimization in Stage 3 to jointly train all fields
over the full sequences of video frames. The global stage integrates information across all fields
to achieve a coherent 4D scene representation. We show in Section 4.4 that it is beneficial to learn
motion and semantic representations together via scene reconstruction. The overall loss is defined as
L = λrgbLrgb + λsemLsem + λtrackLtrack + λdepthLdepth + λwLw, where each λ is a hyperparameter to
balance the loss terms.

4 Experiments

We evaluate Motion4D across diverse tasks, including video object segmentation, point-based tracking,
and novel view synthesis, to demonstrate its ability to model motion and semantics in dynamic scenes.

4.1 Segmentation Results

Introducing DyCheck-VOS for Video Object Segmentation. We create a new VOS benchmark
to evaluate segmentation performance in realistic and dynamic scenes by manually annotating the
DyCheck dataset [12] with high-quality per-frame object masks. The DyCheck dataset was originally
designed for scene reconstruction and novel view synthesis. It contains 14 sequences, each with
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(a) Query Points (b) BootsTAPIR [9] (c) CoTracker3 [15] (d) Motion4D

Figure 5: Visualization of 2D point tracking results. Motion4D maintains stable and accurate point
trajectories even under severe occlusions and drastic object or camera motion.

200–500 frames, featuring diverse types of real-world motions. We annotate selected foreground
objects of interest, with a focus on partial regions instead of full-object masks, which involve more
challenging motion patterns and frequent occlusions. As shown in Figure 4, 2D networks often
produce inconsistent predictions on object subparts, making DyCheck-VOS a strong benchmark for
assessing semantic consistency. We follow the standard VOS settings [30, 45] and report the J&F
which is the average of Jaccard index (J ), and boundary F1-score (F).

We also evaluate our method on the DAVIS dataset [30]. We use the DAVIS 2017 validation set
and follow the standard setting of semi-supervised video object segmentation by providing the
ground-truth object masks on the first frame as input.

Results. Table 1 summarizes the results. We report results for both the rendered masks (Motion4D)
and the refined SAM2 outputs by our method (Motion4D + SAM2) in the comparisons. For DyCheck-
VOS, we show that Motion4D significantly outperforms all compared methods, including both 2D
segmentation models and approaches based on 3D representations. For the compared 2D models [4, 5],
we follow standard VOS settings by using the ground-truth masks of the first frame as input. For
the 3D-based approaches [40, 21], we provide masks generated by SAM2 to match the input setting
used in our method. Unfortunately, the full training code for SADG [21] is not publicly available,
and we implement the training pipeline based on their released model code. Figure 4 shows visual
comparisons of the segmentation results. We show that 2D models often struggle to maintain
consistent object masks, and 3D-based methods, when given inconsistent masks as input, also fail to
improve the quality, leading to degraded performance. In contrast, our method is able to produce
consistent estimations by effectively combining the 2D masks and 3D representation.

We also observe strong performance on the DAVIS dataset, demonstrating the generalization of our
method. As shown in Figure 1, Motion4D effectively improves the segmentation results of SAM2
by correcting temporally inconsistent regions. While the directly rendered masks from Motion4D
achieve slightly lower scores, this is primarily due to limitations in reconstruction quality, which can
affect fine-grained mask boundaries.

4.2 2D Point Tracking Results

We next evaluate our method on the task of 2D point tracking. The DAVIS dataset, introduced for
2D point tracking by TAP-Vid [7], provides sparsely annotated point trajectories across real-world
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Table 2: Comparison of 2D point tracking performance on DAVIS [7] and DyCheck [12] datasets.

Method DAVIS 2D Tracking DyCheck 2D Tracking
AJ ↑ < δavg ↑ OA ↑ AJ ↑ < δavg ↑ OA ↑

TAPIR [8] 56.2 70.0 86.5 27.8 41.5 67.4
LocoTrack [6] 62.9 75.3 87.2 26.1 40.5 66.9
CoTracker [16] 61.8 76.1 88.3 24.1 33.9 73.0
BootsTAPIR [9] 61.4 73.6 88.7 30.1 42.8 78.5
CoTracker3 [15] 64.4 76.9 91.2 31.0 44.4 79.9
HyperNeRF [29] 50.6 63.6 81.0 10.1 19.3 52.0
Deformable-3D-GS [50] 55.6 69.4 82.0 14.0 20.9 63.9
Shape of Motion [42] 62.3 76.2 87.1 34.4 47.0 86.6

Motion4D 64.4 77.7 90.4 37.3 50.4 87.1

Table 3: Comparison of 3D point tracking and novel view synthesis results on DyCheck [12] dataset.

Method 3D Point Tracking Novel View Synthesis
EPE ↓ δ.053D ↑ δ.103D ↑ PSNR ↑ SSIM ↑ LPIPS ↓

T-NeRF [12] - - - 15.60 0.55 0.55
HyperNeRF [29] 0.182 28.4 45.8 15.99 0.59 0.51
DynIBaR [22] 0.252 11.4 24.6 13.41 0.48 0.55
Deformable-3D-GS [50] 0.151 33.4 55.3 11.92 0.49 0.66
CoTracker [16] + Depth Anything [47] 0.202 34.3 57.9 - - -
TAPIR [8] + Depth Anything [47] 0.114 38.1 63.2 - - -
Shape of Motion [42] 0.082 43.0 73.3 16.72 0.63 0.45

Motion4D 0.072 46.7 75.9 17.91 0.69 0.42

video sequences. It serves as a benchmark for assessing a model’s ability to track arbitrary points
under occlusion, deformation, and complex motion. Similarly, the DyCheck [12] dataset provides
annotations of 5 to 15 keypoints sampled at equally spaced time steps for each sequence. The
dataset contains longer video sequences, making it well suited for evaluating long-term point tracking
performance. We therefore evaluate the tracking performance in terms of both position accuracy
and occlusion accuracy, reporting the Average Jaccard (AJ), average position accuracy (< δavg), and
Occlusion Accuracy (OA).

Results. Table 2 summarizes the quantitative results for point-based tracking. Motion4D achieves
superior accuracy compared to both 2D tracking models and 3D-based methods across various
challenging scenarios. Moreover, Figure 5 presents visual comparisons with strong 2D tracking
baselines. As the ground-truth annotations in the DAVIS dataset are available only for sparsely
sampled points, we visualize dense query point tracking results for qualitative comparison. Motion4D
demonstrates clear advantages particularly in handling severe occlusions (first and second rows) and
drastic motion (third and fourth rows), maintaining consistent and accurate trajectories throughout
the sequences. In contrast, 2D tracking models tend to lose track of points under such challenging
conditions, resulting in noticeable drift and fragmented tracks.

4.3 3D Point Tracking and Novel View Synthesis

Finally, we evaluate our method on the DyCheck [12] dataset for the tasks of 3D point tracking and
novel view synthesis. Following the experimental setting of [42], we use camera poses estimated by
COLMAP [36] and initial monocular depths from Depth Anything [47]. For 3D point tracking, we
generate ground-truth 3D trajectories by lifting the 2D keypoint annotations into 3D using LiDAR
depth, and evaluate the tracking performance using the 3D end-point-error (EPE) and the percentage
of points that fall within a given threshold δ.053D = 5cm and δ.103D = 10cm. For novel view synthesis,
we assess reconstruction quality using PSNR, SSIM, and LPIPS scores.

Results. We report quantitative results for both tasks in Table 3. Motion4D consistently outperforms
state-of-the-art methods, including both 2D- and 3D-based approaches, across the 3D tracking and
novel view synthesis tasks. For 3D point tracking, our method achieves lower 3D end-point error and
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Table 4: Ablation studies on the DyCheck-VOS and DyCheck dataset.
Method 2D Update Sampling Seq. Opt. Global Opt. J&F ↑ AJ ↑ < δavg ↑ OA ↑
Ours (Full) ✓ ✓ ✓ ✓ 91.7 37.3 50.4 87.1
w/o Iterative Refinement ✓ ✓ ✓ 87.6 34.6 47.2 86.5
w/o Adaptive Sampling ✓ ✓ ✓ 88.9 35.1 47.7 84.2
Full Initialization ✓ ✓ ✓ 88.0 34.9 47.5 87.0
w/o Global Optimization ✓ ✓ ✓ 90.3 36.5 49.4 86.6

higher accuracy at both δ.053D and δ.103D thresholds, demonstrating more precise and temporally stable
motion estimation. For novel view synthesis, Motion4D produces sharper and more geometrically
consistent renderings, achieving higher PSNR and SSIM scores and lower LPIPS values, indicating
improved visual fidelity.

4.4 Ablation Studies

We ablate key components of our method on the DyCheck dataset, with results summarized in Table 4.
First, we validate the effectiveness of the iterative refinement strategy. In the ablation of “w/o Iterative
Refinement”, we remove the iterative update mechanism used to refine 2D priors during training,
including both the update of 2D semantic masks and the confidence-based refinement of point tracks.
In this setting, only the 3D scene representation is optimized, while the 2D priors remain fixed
throughout training. In addition, the “w/o Adaptive Sampling” variant disables the densification step
based on error-driven sampling. The results highlight the importance of both iterative refinement and
adaptive sampling for achieving robust motion and segmentation performance.

Next, we validate the optimization strategies including sequential and global optimization stages.
In the “Full Initialization” variant, we apply a straightforward initialization over the entire video
sequence without dividing it into temporal chunks. This setting suffers from inconsistent supervision
due to unreliable 2D priors, often leading to unstable training and degraded performance. In the “w/o
Global Optimization” setting, we skip the final stage of joint optimization over the full sequence
and instead rely solely on sequential updates. This results in local consistency but introduces slight
temporal drift across chunks. As shown in Table 4, both optimization stages are critical for achieving
accurate and temporally coherent motion and segmentation results.

5 Conclusion

We present Motion4D, a unified framework for dynamic 3D scene reconstruction that jointly models
motion and semantics via 4D scene reconstruction. By leveraging iterative refinement of 2D priors and
a multi-stage optimization strategy, Motion4D achieves robust and temporally consistent performance
across multiple tasks, including video object segmentation, point-based tracking, and novel view
synthesis. We also introduce DyCheck-VOS, an annotated benchmark for segmentation in dynamic
reconstruction scenes, and demonstrate the effectiveness of our method on various tasks. While
Motion4D achieves strong performance in dynamic scene understanding, it still relies heavily on the
quality of the underlying 3D reconstruction. In scenes with severe occlusions, low-texture regions, or
inaccurate depth estimation, the reconstruction quality can degrade, which in turn affects the accuracy
of motion and semantic predictions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions of this paper are clearly stated in both the abstract and
introduction, including the Motion4D iterative optimization framework. The claims are
aligned with the methods and results presented, accurately reflecting the paper’s scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the framework, optimization
procedure, datasets, and evaluation metrics, ensuring that the main experimental results can
be reproduced independently.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is not included in the submission to preserve anonymity, but we plan
to release it publicly upon acceptance to enable full reproducibility of the main experimental
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides an overview of the experimental settings in the main text,
with full training and testing details provided in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow the standard evaluation protocol used in prior work and report
single-run results in tabular format without error bars. The compared methods and datasets
do not typically include statistical variation measures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about the compute resources used in the supplementary
material alongside other implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The method has potential positive impacts in areas like robotics and AR/VR,
but it could also be misused in surveillance applications. We encourage responsible and
ethical use of the technology.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets with a high risk of misuse, so no
specific safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external datasets and models used in this work are properly cited, and we
ensured that their licenses and terms of use were respected as specified by their original
authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a new benchmark built on top of an existing dataset. Details of
the benchmark, including evaluation protocol and annotations, are documented and will be
released with the asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects or crowdsourcing, so
IRB approval is not applicable.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not use LLMs as part of its core methods. Any use of LLMs
was limited to writing or editing support and does not impact the scientific content of the
paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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