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Abstract

The training of neural networks by gradient descent methods is a cornerstone
of the deep learning revolution. Yet, despite some recent progress, a complete
theory explaining its success is still missing. This article presents, for orthogonal
input vectors, a precise description of the gradient flow dynamics of training
one-hidden layer ReLU neural networks for the mean squared error at small
initialisation. In this setting, despite non-convexity, we show that the gradient
flow converges to zero loss and characterise its implicit bias towards minimum
variation norm. Furthermore, some interesting phenomena are highlighted: a
quantitative description of the initial alignment phenomenon and a proof that the
process follows a specific saddle to saddle dynamics.

1 Introduction

Artificial neural networks are nowadays trained successfully to solve a large variety of learning tasks.
However, a large number of fundamental questions surround their impressive success. Among them,
the convergence to global minima of their non-convex training dynamics and their ability to generalise
well despite fitting perfectly the dataset have challenged traditional machine learning belief. While
a complete theory is still lacking, the machine learning community has recently come up with key
steps that allow to tame the complexity of the problem: proving the convergence of gradient flow
to zero loss [Mei et al., 2018, Chizat and Bach, 2018, Sirignano and Spiliopoulos, 2020, Rotskoff
and Vanden-Eijnden, 2022], investigating the algorithmic selection of a specific global minimum,
often referred as the implicit bias of an algorithm [Neyshabur et al., 2014, Zhang et al., 2021]; while
paying attention to the importance of the initialisation [Woodworth et al., 2020, Chizat et al., 2019].
The aim of this article is to analyse precisely these three points for regression problems. This is done
in a specific setting: for orthogonal inputs, we provide a complete characterisation of the gradient
flows dynamics of training one-hidden layer ReLU neural networks with the square loss at small
initialisation. We show that this non-convex optimisation dynamics captures most of the complexity
mentioned above and thus could be a first step towards analysing more general setups.

Global convergence of training loss for neural networks. Showing convergence of the gradient
flow to a global minimum is an open and important question. Beyond the lazy regime (see next
paragraph), only a few results were proven in the regression setting. The most promising route
might be the link with Wassertein gradient flows for infinite neural networks. In that case, global
convergence happens under mild conditions [Chizat and Bach, 2018, Wojtowytsch, 2020]. Other
works focus on local convergence [Zhou et al., 2021, Safran et al., 2021], or general criteria that
eventually fail to encompass practical setups [Chatterjee, 2022, Chen et al., 2022]. These latter works
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rest on Polyak-Łojasiewicz inequalities that in fact cannot be satisfied through the whole process if
the dynamics travels near saddle points [Liu et al., 2022], as empirically observed [Dauphin et al.,
2014]. On the contrary, the present paper proves global convergence without resorting to large
overparameterisation, dealing carefully with saddles.

Feature learning and small initialisation. The scale of initialisation plays an essential role in
the behavior of the training dynamics. Indeed, an important example is that, at large initialisation,
known as the lazy regime [Chizat et al., 2019], the neurons move relatively slightly implying that
the dynamics is nearly convex and described by an effective kernel method with respect to the
Neural Tangent Kernel [Jacot et al., 2018, Allen-Zhu et al., 2019, Arora et al., 2019]. Instead, we
are interested in another regime where the initialisation scale is small. This regime is known to be
richer as it performs feature learning [Yang and Hu, 2021] but is also more challenging to analyse as
it follows a truly non-convex dynamics (see details in Section 4).

Implicit bias of gradient methods training. There are many global minima to the mean squared
error, i.e. ReLU neural networks that perfectly interpolate the dataset. An important question is to
understand which one is selected by the gradient flow for a given initialisation [Neyshabur et al.,
2014]. For linear neural networks, this question has been answered thoroughly [Arora et al., 2019,
Yun et al., 2021, Min et al., 2021] with a discussion on the role of initialisation [Woodworth et al.,
2020] and noise [Pesme et al., 2021]. For non-linear activations such as ReLU, no clear implicit
bias criteria have been ever exhibited for the square loss besides a conjecture of a quantisation
effect [Maennel et al., 2018]. Finally, note that in the classification setting, the favorable behavior of
iterates going to infinity simplifies the analysis to prove implicit biases such as: max-margin for the
`2 norm in case of linear models [Soudry et al., 2018, Ji and Telgarsky, 2019b], alignment of inner
layers for linear neural networks [Ji and Telgarsky, 2019a] and max-margin for the variation norm
induced by neural networks [Kurková and Sanguineti, 2001] in the case of one-hidden layer neural
networks [Lyu and Li, 2019, Chizat and Bach, 2020].
Beyond the convergence results, the implicit bias characterisation anticipates the generalisation
properties of the returned estimate as discussed in Section 3.2.

Dynamics of training for neural network. In the regression case, the starting point governs where
the flow converges. This observation suggests that a complete analysis of the trajectory may be
required when one wants to understand the implicit bias in this case. Such descriptions have been
undertaken by Maennel et al. [2018], who describe the initial alignment phase at small initialisation,
and Li et al. [2020], Jacot et al. [2021] who conjecture that the dynamics travels from saddle to saddle.
These papers provide intuitive content that we prove rigorously in the orthogonal setup.
Finally, closest to our work are the following results on the classification of orthogonally separable
data [Phuong and Lampert, 2020, Wang and Pilanci, 2021] and linearly separable, symmetric data [Lyu
et al., 2021]. The classification setup provides easier tools to analyse the problem: indeed, after the
initial alignment phase, the network has already perfectly classified the data points in these settings.
From there, it is known that the training loss converges to zero and that the parameters direction is
biased towards KKT points of the max-margin problem [Lyu and Li, 2019, Ji and Telgarsky, 2020].
Such tools cannot be applied after the alignment phase for regression, and we resort to a refined
analysis of the trajectory to show both global convergence and implicit bias. On the other hand, Lyu
et al. [2021] require a precise description of the dynamics to ensure convergence towards specific
KKT points of the max-margin problem. Yet, the analysis of the dynamics is simplified by their
symmetry assumption: the trajectory does not go through intermediate saddles and all the labels are
simultaneously fitted. On the contrary, the dynamics we describe travels near an intermediate saddle
point which separates two distinct fitting phases. This behaviour largely complicates the analysis,
besides being more representative of the saddle to saddle dynamics observed in general settings.

1.1 Main contributions

We make the following contributions.

• We prove the convergence of the gradient flow towards a global minimum of the non-convex
training loss for small enough initialisation and finite width.

• We characterise the global optimum retrieved for infinitesimal initialisation as a minimum `2
norm interpolator, which implies a minimum variation norm in terms of prediction function.

• As important as the convergence result, the dynamics is portrayed in Section 4: we quantitatively
detail its different phases (alignment and fitting) and show it follows a saddle to saddle dynamics.
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1.2 Notations

We denote by 1A the function equal to 1 if A is true and 0 otherwise. U(S) is the uniform distribution
over the set S and N (µ,⌃) is a Gaussian of mean µ and covariance ⌃. We denote r✓h✓(x) the
gradient of ✓ 7! h✓(x) at fixed x. For any n 2 N⇤, JnK denotes the tuple of integers between 1 and n.
The scalar product between x, y 2 Rd is denoted by hx, yi and the Euclidean norm is denoted by k · k
and called `2. Sd�1 denotes the sphere of Rd for the Euclidean norm. B(✓, r) is the Euclidean ball
of center ✓ and radius r. All the detailed proofs of the claimed results are deferred to the Appendix.

2 Setup and preliminaries

2.1 One-hidden layer neural network and training loss

Model. Let us fix an integer n 2 N⇤ as well as input data (x1, . . . , xn) 2 (Rd)n and outputs
(y1, . . . , yn) 2 Rn. We are interested in the minimisation of the mean squared error:

L(✓) :=
1

2n

nX

k=1

(h✓(xk)� yk)
2 , where h✓(x) :=

mX

j=1

aj�(hwj , xi) (1)

is a one-hidden layer neural network of width m defined with parameters ✓ = (a,W ) 2 Rm
⇥Rm⇥d.

The vector a 2 Rm stands for the weights of the last layer and W> = [w1 · · · wm] 2 Rd⇥m,
where each wj 2 Rd represents a hidden neuron. To encompass the effect of the bias, an additional
component can be added to the inputs x>

 [x>, 1] without changing our results. Finally, the
activation function � is the ReLU: �(x) := max {0, x}.

We introduce here the main assumptions on the data inputs.
Assumption 1. The input points form an orthonormal family, i.e. 8k, k0 2 JnK, hxk, xk0i = 1k=k0 .
The data are assumed to be normalized only for convenience—the real limitation being that they are
pairwise orthogonal. This assumption is exhaustively discussed in Section 3.2.
Assumption 2. For all k 2 JnK, yk 6= 0 and

P
k|yk>0 y

2
k 6=

P
k|yk<0 y

2
k.

This assumption on the data output is mild, e.g. has zero Lebesgue measure, and only permits to
exclude degenerate situations.

Gradient flow. As the limiting dynamics of the (stochastic) gradient descent with infinitesimal
step-sizes [Li et al., 2019], we study the following gradient flow

d✓t

dt
= �rL(✓t) = �

1

n

nX

k=1

(h✓t(xk)� yk)r✓h✓t(xk), (2)

initialised at ✓0 := (a0,W 0). Since the ReLU is not differentiable at 0, the dynamics should be
defined as a subgradient inclusion flow [Bolte et al., 2010]. However, we show in Appendix D that the
only ReLU subgradient that guarantees the existence of a global solution is �0(x) = 1x>0. Hence, we
stick with this choice throughout the paper. Another important difficulty of this non-differentiability
is that Cauchy-Lipschitz theorem does not apply and uniqueness is not ensured. There have been
attempts to define the solution of this Ordinary Diffential Equation (ODE) unequivocally [Eberle et al.,
2021] as well as ways to circumvent this difficulty by resorting to smooth activations or additional
data assumptions [Wojtowytsch, 2020, Chizat and Bach, 2020]. Yet, we do not follow this line and
demonstrate our results for all the gradient flows satisfying Equation (2).

2.2 Preliminary properties and initialisation

Let us derive here some preliminary properties of the gradient flows. If we rewrite explicitly the
dynamics of Equation (2) on each layer separately, we have straightforwardly that for all j 2 JmK,

datj
dt

= hD✓t

j , wt
ji and

dwt
j

dt
= D✓t

j atj , (3)
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where D✓t

j := � 1
n

Pn
k=1 1hwt

j , xki>0 (h✓t(xk)� yk)xk is a vector of Rd. This vector solely depends
on ✓t through the prediction function h✓t and on the neuron j through its activation vector A(wt

j);
where, for a vector w 2 Rd, A(w) := (1hw, x1i>0, . . . , 1hw, xni>0) 2 {0, 1}n. From Equation (3),
we deduce the following balancedness property [Arora et al., 2019].
Lemma 1. For all t � 0 and all j 2 JmK, (atj)

2
�kwt

jk
2 = (a0j )

2
�kw0

jk
2. Assume furthermore that

for all j 2 JmK, the initialisation is balanced and non-zero: |a0j | = kw
0
jk > 0. Then |atj | = kw

t
jk > 0

and letting s = sign(a0) 2 {1,�1}m, for all t � 0, we have that atj = sjkwt
jk.

Importantly, by Lemma 1, the study of Equation (3) reduces to the hidden layer W solely. We
consider the following balanced initialisation:

✓0 = (a0,W 0) with

(
w0

j = � gj where gj
i.i.d.
⇠ N (0, Id),

a0j = sjkw0
jk where sj

i.i.d.
⇠ U({�1, 1}).

(4)

As already stated, we are interested in the regime where the initialisation scale � > 0 is small. We
also introduce the following sets of neurons that are crucial in the fitting process

S+,1 :=
�
j 2 JmK | sj = +1 and for all k such that yk > 0, hw0

j , xki � 0
 
, (5)

S�,1 :=
�
j 2 JmK | sj = �1 and for all k such that yk < 0, hw0

j , xki � 0
 
. (6)

Assumption 3. The sets S+,1 and S�,1 are both non-empty.

Assumption 3 states that there are some neurons in two given cones at initialisation. It holds
with probability 1 when the support of initialisation covers all directions and the width m of the
network goes to infinity. This is thus a weaker condition than the omni-directionality of neurons
at initialisation [Wojtowytsch, 2020], which is instrumental to show convergence in the mean field
regime [Chizat and Bach, 2018]. On the other hand, it is stronger than the alignment condition
of Abbe et al. [2022], which is known to be necessary for weak learning but might not lead to the
implicit bias described in the next section.

3 Convergence and implicit bias characterisation

3.1 Main result

Theorem 1 below states our main result on the convergence and implicit bias of one-hidden layer
ReLU networks for regression tasks with orthogonal data.
Theorem 1. Under Assumptions 1 to 3, there exists �⇤ > 0 depending only on the data and the width
such that, if �  �⇤, the gradient flow initialised according to Equation (4) converges almost surely
to some ✓1� of zero training loss, i.e. L(✓1� ) = 0. Furthermore, there exists ✓⇤ such that

lim
�!0

lim
t!1

✓t = ✓⇤ 2 argmin
L(✓)=0

k✓k2. (7)

The significance of this result is thoroughly discussed in Section 3.2. Note that a quantitative and
non-asymptotic version of Theorem 1, both in time and �, is stated in Lemma 12 (Appendix B).
Roughly, it states that the dynamics has already nearly converged after a time of order � ln(�) and
then that the convergence happens at exponential speed. Note also that the neural network need not
be overparametrised for the result to hold: the only sufficient and necessary requirement on the width
m stems from Assumption 3.

Sketch of proof. The proof of Theorem 1 rests on a precise description of the training dynamics,
which is divided into four different phases. We here only sketch it at a very high level and a more
thorough description, with quantitative intermediate lemmas, is given in Section 4.

During the first phase, hidden neurons align to a few representative directions, while remaining close
to 0 in norm. In particular, all hidden neurons in S+,1 (resp. S�,1) align with some key vector D+

(resp. �D�) defined in Section 4.1. During the second phase, the neurons aligned with D+ grow in
norm, while staying aligned with D+, until fitting all the positive labels of the dataset (up to some
error scaling with �). Meanwhile, all the other neurons stay idle. Then similarly, the neurons aligned
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with�D� grow in norm during the third phase, until nearly fitting all the negative labels. Meanwhile,
these neurons remain aligned with �D� and all other neurons remain idle. The precise description
of these three phases is obtained by analysing the solutions of the limit ODEs when � = 0. The
approximation errors that occur from dealing with non-zero � are then carefully handled via Grönwall
comparison arguments. Due to the large time scales (of order � ln(�)), the error can propagate on
such large time spans. Handling these error terms is the main challenge of our proof and remains
intricate despite the orthogonality assumption.

After these three phases (which last a time � ln(�)/kD�k), the parameters vector is close to some
minimal `2-norm interpolator. From there we show, exploiting a local Polyak-Łojasiewicz condition,
that the dynamics converges at exponential speed to a global minimum close to this interpolator.

3.2 Discussion

Even if the orthogonal setting we consider is quite restrictive, it carries several characteristics that
may be generic, either because they have been observed empirically, shown in related contexts or
simply conjectured. We discuss these important points below.

Convergence to zero loss. Theorem 1 states that the gradient flow converges to zero loss. Such a
result is simple to show when the loss satisfies a Polyak-Łojasiewicz (PL) inequality [Bolte et al.,
2007]: krLk2 � cL for c > 0. However, here, as the dynamics travels near saddles, this inequality is
not verified through all the process. Circumventing this global argument, it is yet possible to formulate
a refined analysis and show convergence if the dynamics arrives in a region where a local PL stands
with a large enough constant. This refined analysis, inspired by the recent work of Chatterjee [2022]1,
allows to characterise properly the last phase of the dynamics. We believe that this approach may
help in showing convergence in other non-convex gradient flow/descent.

On the implicit bias. Additionally, Theorem 1 states that the gradient flow at infinitesimally small
initialisation selects global minimisers with the smallest `2 parameter norm. To our knowledge, this is
the first characterisation of the implicit bias for regression with non-linear neural networks. Although
it might not hold for some degenerate situations [Vardi and Shamir, 2021], we believe it to be true
beyond the orthogonal case.

This regularisation is implicit, meaning that this effect does not result from any explicit regularisation
(e.g. weight decay) performed during training [Shevchenko et al., 2021, Parhi and Nowak, 2022].
This is only a consequence of the inner structure of the gradient flow and the scale of initialisation.

Furthermore, the implicit bias in parameter space can be translated in function space. Indeed, if
we introduce formally the space of (infinite) neural networks, i.e. functions written as f(x) :=R
�(h✓, xi)dµ(✓), where µ is a signed finite measure on Sd�1. Then, we can define the variation

norm, kfkF1 , as the infimum of |µ|(Sd�1) over such representations [Kurková and Sanguineti, 2001,
Bach, 2017]. We have the following link between the two formulations

min
L(✓)=0

1

2
k✓k22 = min

L(f)=0
kfkF1 , (8)

with a slight abuse of notation when defining L(f). Note that the result in terms of the `2-norm of
the parameters is strictly stronger than that of the F1-norm of the function [Neyshabur et al., 2014].

Following Equation (8), note the striking parallel between the inductive bias of infinitesimally small
initialisation for regression and that of the classification problem with the logistic loss as a max-
margin problem with respect to the F1-norm [Chizat and Bach, 2020]. As already observed in the
linear case [Woodworth et al., 2020], in contrast with classification, infinitesimally small initialisation
is instrumental in regression to be biased towards small F1-norm functions. The role of initialisation
is illustrated empirically in Appendix A.

Finally, let us stress that we did not address the question of what functions solve Equation (8), nor the
question of the generalisation implied by such a bias. Related works on the first point come from
a functional description of norms related to F1 [Savarese et al., 2019, Ongie et al., 2019, Debarre
et al., 2022]. For the generalisation properties of small F1 norm functions, we refer to Kurková and
Sanguineti [2001], Bach [2017]. Importantly, we recall that the question of how well low F1-norm
functions generalise depends heavily on the a priori we have on the ground-truth [Petrini et al., 2022].

1Note that the argument is certainly not new, but the cited article has the benefit of clearly presenting it.
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The initial alignment phenomenon. An important characteristics of the loss landscape is that the
origin is a saddle point. Hence, as the dynamics is initialised at small scale �, the radial movement is
slow and neurons move out of the saddle after time scale� ln�. Meanwhile, the tangential movement
of the neurons rules the dynamics and aligns their directions towards specific vectors. This has
been first explained by Maennel et al. [2018] and referred as the quantisation phenomenon, because
neural networks weights collapse to a small finite number of directions. We emphasise that this phase
happens generically when initialisation is near the origin and that this part of our analysis can be
directly extended to the general (i.e. non-orthognal) case. Phuong and Lampert [2020], Lyu et al.
[2021] analysed a similar early alignment for classification with specific data structures.

The saddle to saddle dynamics. When initialising the dynamics of a gradient flow near a saddle
point of the loss, it is expected (but hard to prove generically) that the dynamics will alternate slow
movements near saddles and rapid junctions between them. Such a behavior has been conjectured for
linear neural networks [Li et al., 2020, Jacot et al., 2021] initialised near the origin. We precisely
prove that such a phenomenon occurs: after initialisation, the dynamics visits one strict saddle. See
Section 4, Fact 1 for more details.

Limitations and possible relaxations. As its main limitation, Theorem 1 assumes orthogonal data
points xk. The orthogonality assumption disentangles the analysis as the different phases, where
either the neurons align towards some direction or grow in norm, are well separated in that case.
More precisely, the neurons do not change in direction once they have a non-zero norm in the case of
orthogonal data. This separation between alignment and norm growth does not hold in the general
case, as observed empirically in Appendix A. Extending our result to more general data thus remains
a major challenge and requires additional theoretical tools. Nonetheless, as it can be the case in high
dimension, our analysis can easily be extended to nearly orthogonal data where |hxk, xk0i|  �, with
� of order �. If however � is much larger than the initialisation scale, the dynamics is drastically
different and becomes as hard as the general case to analyse. In Appendix A, we observe similar
dynamics for high dimensional data, where the loss converges towards 0, goes through an intermediate
saddle point and the final solution is close to a 2 neurons network.

A minor assumption is the balanced initialisation, i.e. kw0
jk = |a0j |. If instead we initialise a0 as a

Gaussian scaling with �, the initialisation would be nearly balanced for small �. This assumption is
thus mostly used for simplicity and our analysis can be extended to unbalanced initialisations.

It is unclear whether our analysis can be extended to any homogeneous activation function. The train-
ing trajectory might indeed not be biased towards minimal `2-norm for leaky ReLU activations [Lyu
et al., 2021, Theorem 6.2]. Contrary to some beliefs, it suggests that the `2 implicit bias phenomenon
does not occur for any homogeneous activation function, but might instead be specific to the ReLU.

The overparameterisation regime. Assumption 3 states a deterministic condition to guarantee
convergence towards a minimal norm interpolator. This condition is not only sufficient, but also
necessary for implicit bias towards minimal `2 norm. For isotropic initialisations, the width m needs
to be exponential in the number of data points n for Assumption 3 to hold with high probability.

With a smaller (e.g. polynomial in n) number of neurons, Assumption 3 does not hold anymore. In
that case, the training loss should still converge to 0, but the `2-norm of the parameters will not be
minimal. More precisely, the estimated function will have more than two kinks. However, an adapted
analysis might still show some sparsity in the number of kinks (and thus a weak bias) of the final
solution. The training trajectory would then go through multiple saddle points (one saddle per kink).

Scale of initialisation. The exact value of �⇤ is omitted for exposition’s clarity. Roughly, it can be
inferred from the analysis that �⇤ scales as ⇥(1)p

m
e�⇥(n). Interestingly, the 1p

m
term is reminiscent of

the mean field regime, which is known to induce implicit bias [Chizat and Bach, 2020, Lyu et al.,
2021]. On the other hand, the exponential dependency in n is common in the implicit bias literature
[Woodworth et al., 2020]. For larger values of � (but still in the mean field regime), the parameters
empirically seem to also converge towards a minimal norm interpolator. The analysis yet becomes
more intricate and we do not observe any separation between Phase 2 and Phase 3, i.e. there is no
intermediate saddle in the trajectory.
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4 Fine dynamics description: alignments and saddles

This section describes thoroughly the training dynamics of the gradient flow. It presents and discusses
quantitative lemmas on the state of the neural network at the end of each different phase. In particular,
mathematical formulations of the early alignment and saddle to saddle phenomena are provided.

4.1 Additional notations

First, we need to introduce additional notations for this section. We define vectors D+ and D� that
are the two directions towards which the neurons align

D+ :=
1

n

X

k|yk>0

ykxk and D� :=
1

n

X

k|yk<0

ykxk.

We also need to define c := maxj2JmK kw
0
jk/� and r := kD+k/kD�k. Assumption 2 implies that

r 6= 1, and by symmetry we can assume r > 1 without any loss of generality. We additionally fix
constants �⇤, " > 0, small enough and depending only on the dataset and the width m.

Spherical coordinates. As radial and tangential movements are almost decoupled during the
dynamics, it is natural to introduce the spherical coordinates of the neurons: for all j 2 JmK, denote
wj = e⇢j · wj , where ⇢j = ln kwjk 2 R and wj = wj/kwjk 2 Sd�1. In these adapted coordinates,
the system of ODEs (3) reduces to:

d⇢tj
dt

= sjhD
✓t

j ,wt
ji and

dwt
j

dt
= sj

⇣
D✓t

j � hD
✓t

j ,wt
jiw

t
j

⌘
. (9)

4.2 Training dynamics

This section precisely describes the phases of the dynamics, summarised in Figure 1.

Early alignment
(Lemma 2)

Fitting positive labels
(Lemma 3)

Final convergence
(Lemma 5)

Fitting negative labels
(Lemma 4)

t0 �" ln�
kD�k

�(1+3") ln�
kD+k

�(1�") ln�
kD�k

�(1+3r") ln�
kD�k

1

Intermediate saddle (Fact 1)

Figure 1: Timeline of the training dynamics.

Neuron alignment phase. During the first phase, all the neurons remain small in norm, while
moving tangentially (i.e. in directions). The neurons align according to several key directions: an
initial clustering of neurons’ directions happens in this early phase, as observed by Maennel et al.
[2018]. As the neurons have small norm, h✓t ⇡ 0 for this phase and Equation (9) approximates

dwt
j

dt
⇡ sj

�
D0

j � hD
0
j ,w

t
jiw

t
j

�
. (10)

This ODE corresponds to the descent/ascent gradient flow (depending on the sign of sj) on the sphere
with objective hD0

j ,wji. All neurons end up minimizing or maximizing their scalar product with D0
j ,

which only depends on the activation of wj . As a consequence, neurons with similar activations align
towards the same vector, leading to some quantisation of the neurons’ directions. This alignment
happens in a relatively short time, so that the neurons cannot largely grow in norm. Lemma 2 below
quantifies this effect for neurons in S+1, and S�,1, which are crucial to the training dynamics. Since
all other neurons remain small in norm during the whole process, we do not focus on their direction.

Lemma 2 (First phase). For �  �⇤, we have the following inequalities for t1 = �" ln(�)
kD�k :

(i) neurons in S+,1 are aligned with D+: 8j 2 S+,1, hw
t1
j , D+i � (1� 2�")kD+k,

(ii) neurons in S�,1 are aligned with �D�: 8j 2 S�,1, hw
t1
j ,�D�i � (1� 2�")kD�k,

(iii) all neurons have small norm: 8j 2 JmK, kwt1
j k  2c�1�r".
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Fitting positive labels. During the second phase, the norm of the neurons in S+,1 (which are
aligned with D+) grows until fitting all positive labels. Meanwhile, all the other neurons do not move
significantly. The key approximate ODE of this phase is given for u+(t) :=

P
j2S+,1

kwt
jk

2 by

du+(t)

dt
⇡ 2kD+k

✓
1�

u+(t)

nkD+k

◆
u+(t).

This equation implies that u+(t), the sum of the squared norms of neurons in S+,1, eventually
converges to nkD+k within a time � ln(�)/kD+k . Meanwhile, it needs to be shown that these
neurons remain aligned with D+ and that the other neurons remain small in norm. This fine control
is technical and relies on the orthogonality assumption. If data were not orthogonal, neurons could
indeed realign while growing in norm as illustrated by Figure 4d in Appendix A. Lemma 3 below
describes the state of the network at the end of the second phase.
Lemma 3 (Second phase). If �  �⇤, then for some time t2  �

1+3"
kD+k ln(�):

(i) neurons in S+,1 are aligned with D+: 8j 2 S+,1, hw
t2
j , D+i � kD+k � �

"
2 ,

(ii) neurons in S+,1 have a large norm:
P

j2S+,1
kwt2

j k
2 = nkD+k � �

"
5 ,

(iii) other neurons have small norm: 8j 2 JmK \ S+,1, kw
t2
j k  2c�".

These three points directly imply that the loss is of order � "
5 on the positive labels at time t2.

Saddle to saddle dynamics. As explained above, the positive labels are almost fitted by the action
of the neurons belonging to S+,1 at the end of the second phase, whereas the other neurons still have
infinitesimally small norm. At this point, the dynamics has reached the vicinity of a strict saddle
point and requires a long time to escape it. The analysis actually leads to the following fact:
Fact 1. There exists a (strict) saddle point ✓S 6= 0 of L such that if �  �⇤:

8t 2


�
1 + 3"

kD+k
ln(�),�

1� "

kD�k
ln(�)

�
, we have k✓t � ✓Sk  �

"
5 .

The training trajectory thus starts at the saddle point 0 and passes through a second non-trivial saddle
point at the end of the second phase. This lemma illustrates the phenomenon of saddle to saddle
dynamics discussed in Section 3.2 and conjectured for linear models by Li et al. [2020], Jacot et al.
[2021]. This intermediate saddle point is escaped when the norms of the neurons in S�,1 have
significantly grown (i.e. become non-zero), which happens during a third phase described below.

Fitting negative labels. The norm of the neurons in S�,1 (which are aligned with �D�) grows
until fitting all negative labels during the third phase. Meanwhile, all other neurons do not move
significantly. The additional difficulty in the analysis of this phase compared to the second one is that
of controlling the possible movements of neurons in S+,1. Their norm is indeed large during the whole
phase, but they do not change consequently, because the positive labels are nearly perfectly fitted.
Lemma 4 (Third phase). If �  �⇤, then for some time t3  �

1+3r"
kD�k ln(�):

(i) neurons in S�,1 are aligned with �D�: 8j 2 S�,1, hw
t3
j ,�D�i � kD�k � �

"
14 ,

(ii) neurons in S�,1 have a large norm:
P

j2S�,1
kwt3

j k
2 = nkD�k � �

"
29 ,

(iii) neurons in S+,1 did not move since phase 2: 8j 2 S+,1, kw
t2
j � wt3

j k  �
"
15 ,

(iv) other neurons have small norm: 8j 2 JmK \ (S+,1 [ S�,1) , kw
t3
j k  3c�".

Thanks to the orthogonality assumption, the set of minimal `2-norm interpolators can be exactly
described by Proposition 1 in Appendix C. The minimal interpolators are actually equivalent to
a neural network of width 2: the first hidden neuron is collinear with D+ and the second one is
collinear with �D�. Lemma 4 then ensures at the end of the third phase that the parameter vector
is � "

29 -close to an interpolator ✓⇤ of minimal `2-norm, that does not depend on � (see Lemma 12).
It remains to show that the training trajectory converges to a point close to this interpolator at infinity.

Convergence phase. To show this final convergence, we use a local PL condition given by Lemma 5.
Lemma 5 (Local PL condition). For �  �⇤, we have the following lower bound on the PL constant

inf
✓2B(✓⇤, �

"
240 )\⇥

krL(✓)k2

L(✓)
� kD�k,

where ⇥ is the set of parameters verifying the balancedness property.
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Adapting arguments from the recent work by Chatterjee [2022], this implies that the training trajectory
converges to an interpolator and stays in the aforementioned ball. It thus converges exponentially
at a rate kD�k to a point close to a minimal norm interpolator, and the distance to this point goes
to 0 when � goes to 0, hence implying Theorem 1. This exponential rate is only asymptotical: the
dynamics still require a large time �ln(�)/kD�k to escape the two first saddles.

Remark 1 (Local PL in the ReLU case). Note that, strictly speaking, Theorem 1.1 of Chatterjee
[2022] cannot be applied directly to our setup because (i) the infimum is taken on the intersection of
a ball and the set ⇥ of balanced weights, (ii) the ReLU and hence the loss are not C2 as required. We
thank Spencer Frei for bringing us this point after the paper acceptance. Yet, the reformulation of
Chatterjee [2022] in our case is straightforward and does not provide any more insight. To avoid
confusion, we decide to omit the proof here and postpone its writing in an independent note for later.
This will also be the occasion to put emphasis on the fact that, in some cases, such a result can be
applied in the ReLU case without much difficulty.

5 Experiments

This section confirms empirically the dynamics described in Section 4 on an orthogonal toy ex-
ample. The code and animated versions of the figures are available in github.com/eboursier/
GFdynamics. Additional experiments can be found in Appendix A; they illustrate the necessity of
small initialisation for implicit bias and present similar experiments on non-orthogonal toy data.
For the latter, we observe some similar training phenomena, but major differences appearing in the
dynamics highlight the difficulty of dealing with non-orthogonality.

We consider the following two-point dataset: x1, y1 = (�0.5, 1),�1 and x2, y2 = (2, 1), 1. It
corresponds to unidimensional data with a second 1 coordinate for the bias term. We choose
unidimensional data for a simpler visualisation. However, it restricts the number of observations
to n = 2 to maintain orthogonality. Also, the inputs’ norms are not 1 here, but we recall that our
analysis is not specific to this case. The width of the neural network is m = 60. We choose a
balanced initialisation at scale � = 10�6/

p
m. We then run gradient descent with a step size 10�3 to

approximate the gradient flow trajectory.

Figure 2 shows the training dynamics on this example. In particular, the state of the network is shown
at different steps. In Figure 2a, all the neurons are close to 0 at initialisation. Figure 2b shows the end
of the first phase, where the neurons are aligned towards two key directions. After the second phase,
shown in Figure 2c, all the neurons aligned with D+ have grown in norm and the positive label is
perfectly fitted. Similarly at the end of third phase in Figure 2d, all neurons aligned with �D� have
grown in norm and the negative label is fitted.

At the end of training, the loss is 0 and the estimated function is simple. In particular, it only has two
kinks, which illustrates the sparsity induced by the implicit bias. Also, the final estimated function
might be counter-intuitive. Previous works on implicit bias indeed conjectured that the learned
estimator is linear if the data can be linearly fitted [Kalimeris et al., 2019, Lyu et al., 2021]. However,
the learned function in Figure 2d has a smaller F1-norm than the linear interpolator.
Figure 3 shows the evolution of the loss during train-
ing. The saddle to saddle dynamics is well observed
here: the parameters vector starts from the 0 sad-
dle point at initialisation and needs 5000 iterations
to leave this first saddle. A second saddle is then
encountered at the end of the second phase and the
trajectory only leaves this saddle around iteration
11000, once the norm of the neurons in S�,1 start
being significant during the third phase. All these
different experiments confirm Theorem 1 and the
precise dynamics described in Section 4. Moreover,
such training phenomena are not specific to the or-
thogonal data case, as observed in Appendix A.

0 2500 5000 7500 10000 12500 15000 17500 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

L
(�

)

Figure 3: Evolution of the training loss.
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(a) Initialisation (Iteration 0)
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(b) End of first phase (Iteration 4000)
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(c) End of second phase (Iteration 8000)
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(d) End of third phase (Iteration 15000)

Figure 2: State of training at different stages. The green dots correspond to the data, while the green
line is the estimated function h✓. Each blue star represents a neuron wj : its x-axis value is given by
�wj,2/wj,1, which coincides with the position of the kink of its associated ReLU; its y-axis value is
given by sjkwjk, which we recall is the associated value of the output layer.

6 Conclusion and perspectives

We have shown that the training of non-linear neural networks on orthogonal data presents a rich
dynamics with a small and omnidirectional intialisation. Convergence holds generically despite
a truly non-convex landscape and the limit enjoys an implicit bias as a minimum `2 parameter
norm. Obviously, removing the orthogonal assumption on the inputs, while keeping a fine level
of description is a major, but difficult, perspective for future work. Another key point to better
understand the good generalisation of neural networks is to analyse the properties of the functions
solving the minimum variation norm problem stated in Equation (8).
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