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ABSTRACT

Learning from noisy labels is a critical challenge in machine learning, with vast
implications for numerous real-world scenarios. While supervised contrastive
learning has recently emerged as a powerful tool for navigating label noise, many
existing solutions remain heuristic, often devoid of a systematic theoretical foun-
dation for crafting robust supervised contrastive losses. To addresss the gap, in
this paper, we propose a unified theoretical framework for robust losses under
the pairwise contrastive paradigm. In particular, we for the first time derive a
general robust condition for arbitrary contrastive losses, which serves as a criterion
to verify the theoretical robustness of a supervised contrastive loss against label
noise. This framework is not only holistic – encompassing prior techniques such
as nearest-neighbor (NN) sample selection and robust contrastive loss – but also
instrumental, guiding us to develop a robust version of the popular InfoNCE loss,
termed Symmetric InfoNCE (SymNCE). Extensive experiments on benchmark
datasets demonstrate the superiority of SymNCE against label noise.

1 INTRODUCTION

Supervised learning has demonstrated remarkable success across various machine learning domains,
including computer vision (Krizhevsky et al., 2017; Redmon et al., 2016), information retrieval
(Zhang et al., 2016; Onal et al., 2018), and language processing (Howard & Ruder, 2018; Severyn &
Moschitti, 2015). However, it relies on clean and accurate labeled data. Unfortunately, real-world data
is often noisy, with mislabeled or wrongly labeled data points, which can significantly degrade the
performance of a supervised model. Consequently, learning with label noise becomes an important
research problem in machine learning, and has been extensively studied in recent years.

Recently, supervised contrastive learning (Khosla et al., 2020) has been introduced to the problem
of learning from label noise. Most methodological studies lean on the sample selection strategy,
wielding contrastive learning as a mechanism to select confident samples based on the learned
representations (Huang et al., 2023; Li et al., 2022; Ortego et al., 2021; Yao et al., 2021). For instance,
Yan et al. (2022) leverage the negative correlations from the noisy data to avoid same-class negatives
for contrastive learning. Navaneet et al. (2022) adopt nearest neighbor constraint to guarantee the
high “purity” of the positive pairs, making the supervised contrastive learning approach robust to
label noise. While these methods exhibit promising results, they often lack theoretical guarantees. On
the other hand, some theoretical studies focus on the pretraining approaches, and prove the robustness
of downstream classifiers with features learned by self-supervised contrastive learning (Cheng et al.,
2021; Xue et al., 2022) without using noisy labels in pre-training stage. Chuang et al. (2022) propose
the Robust InfoNCE (RINCE) loss against noisy views. Nonetheless, its theoretical analysis only
applies to the specific proposed loss, and there is still a lack of theoretical research on the general
robust condition for contrastive losses.

Therefore, we aim to establish a comprehensive theoretical framework for robust supervised con-
trastive losses against label noise. Specifically, we first derive the robust condition for arbitrary
pairwise contrastive losses, which serves as a criterion to verify if a contrastive loss is robust or
not. This general robust condition provides a unified understanding of existing robust contrastive
methods and can inspire new robust loss functions. Based on our theory, we show that the widely
used InfoNCE loss fails to meet the general robust condition, and we propose its robust counterpart
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called Symmetric InfoNCE (SymNCE) by adding a properly designed Reverse InfoNCE (RevNCE)
to the InfoNCE loss function.

The contributions of this paper are summarized as follows.

• We for the first time establish a unified theoretical framework for robust supervised con-
trastive losses against label noise. We highlight that our theory serves as an inclusive
framework that applies to existing robust contrastive learning techniques such as nearest
neighbor (NN) sample selection and the RINCE loss (Chuang et al., 2022).

• Inspired by our theoretical framework, we propose a robust counterpart of the widely used
InfoNCE loss function called SymNCE by adding InfoNCE with RevNCE, which is a
deliberately designed loss based on our derived robust condition. RevNCE helps InfoNCE to
be robust and meanwhile functions similarly as InfoNCE, i.e. aligning the positive samples
and pushing away the negatives.

• We empirically verify that our SymNCE loss is comparable and even outperforms existing
state-of-the-art robust loss functions for learning with label noise.

2 RELATED WORKS

2.1 LEARNING WITH LABEL NOISE

The major approaches of learning with label noise include robust architecture (Goldberger & Ben-
Reuven, 2017; Han et al., 2018a; Yao et al., 2018), robust regularization (Lukasik et al., 2020; Pereyra
et al., 2017; Wei et al., 2021), sample selection (Han et al., 2018b; Song et al., 2019; Yu et al., 2019),
loss adjustment (Hendrycks et al., 2018; Patrini et al., 2017; Zhang & Sugiyama, 2021), and robust
loss function (Ghosh et al., 2017; Ma et al., 2020; Wang et al., 2019; Zhang & Sabuncu, 2018). While
robust architecture adds noise adaptation layer or dedicated architectures to the deep neural networks,
robust regularization explicitly or implicitly regularizes the model complexity and prevents overfitting
to the noisy labels. Sample selection adopts specific techniques or network designs to identify clean
samples. Though these methodologies have exhibited empirical success, they often lean on intricate
designs and can sometimes appear heuristic in nature. Loss adjustment modifies the loss function
during training, whereas the effectiveness relies heavily on the estimated noise transition matrix.

Diverging from the aforementioned strategies, robust loss functions typically come with the assurance
of theoretical robustness and effectiveness. For instance, Ghosh et al. (2017) first theoretically proved
the general robust condition for supervised classification losses, and showed that the Mean Absolute
Error (MAE) loss is robust whereas Cross Entropy (CE) is not. However, as MAE performs poorly on
complex datasets, Zhang & Sabuncu (2018) generalized the MAE and CE losses, and proposed the
Generalized Cross Entropy (GCE) loss by applying the Box-Cox transformation to the probabilistic
predictions. Wang et al. (2019) proposed the Symmetric Cross Entropy (SCE) loss by combining the
CE loss with the provably robust Reverse Cross Entropy (RCE) loss. Ma et al. (2020) showed that
any supervised loss can be robust to noisy labels by a simple normalization, and proposed the Active
Passive Loss (APL) by combining two robust loss functions.

2.2 SUPERVISED CONTRASTIVE LEARNING

Contrastive learning algorithms (Chen et al., 2020; He et al., 2020) were first proposed for self-
supervised representation learning, where unsupervised contrastive losses pulls together an anchor
and its augmented views in the embedding space. Khosla et al. (2020) extended contrastive learning
to supervised training and proposed the Supervised Contrastive (SupCon) loss which takes same-class
augmented examples as the positive labels within the InfoNCE loss. SupCon achieves significantly
better performance than the state-of-the-art CE loss, especially on large-scale datasets.

Supervised contrastive learning with label noise. Recently, supervised contrastive learning has
been introduced to solve weakly supervised learning problems such as noisy label learning (Huang
et al., 2023; Li et al., 2022; Ortego et al., 2021; Yan et al., 2022; Yang et al., 2022). For example,
Ortego et al. (2021) proposed the interpolated contrastive learning which adopts the interpolated
samples in the contrastive loss to avoid overfitting to noisy labels, whose learned embeddings are
then used to select clean samples through the nearest neighbor (NN) technique. Li et al. (2022) not
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only selected confident samples for classifier training with the NN technique, but also mined positive
pairs from the confident same-class samples for the training of contrastive representation learning.
Huang et al. (2023) proposed the twin contrastive learning model to learn robust representations,
where the wrongly labeled samples are recognized as the out-of-distribution samples through a
Gaussian mixture model (GMM). Yan et al. (2022) leveraged the negative correlations from the noisy
data to avoid same-class negatives for contrastive learning, whereas the positive sample selection
procedure remains unsupervised. Yang et al. (2022) proposed to use supervised contrastive learning
for semi-supervised learning, where the learned representations are used to refine pseudo labels.

Robust supervised contrastive learning. Aside from the empirical success of supervision contrastive
learning with label noise, there are also works focusing on robust supervised contrastive learning
(Chuang et al., 2022; Navaneet et al., 2022). Navaneet et al. (2022) constrained the same-class
positives in contrastive learning within the k-nearest neighbors of the anchor sample. This method is
empirically effective but lacks theoretical guarantees. Inspired by the robust condition for supervised
classification losses in Ghosh et al. (2017), Chuang et al. (2022) proposed the robust InfoNCE
(RINCE) loss function against noisy views which is proved to be a lower bound of Wasserstein
Dependency Measure even under label noise. However, this theoretical analysis lacks generality to
arbitrary contrastive losses.

To summarize, while supervised contrastive learning has demonstrated immense empirical promise
in navigating label noise, the design and theoretical investigation of robust contrastive losses is still
under-exploited. To fill in the blank, here we propose a unified theoretical framework for robust
contrastive losses. We derive a general robust condition for arbitrary contrastive losses, inspired by
which we further propose a robust counterpart of the widely used InfoNCE loss called SymNCE.

3 PROPOSED ROBUST CONDITION FOR CONTRASTIVE LOSSES

In this section, we first introduce some preliminaries for the mathematical formulation of the risks
for contrastive losses and label noise. Then we propose the formal formulation of contrastive risks
under the distribution of label noise. After that, we can derive a general robust condition for arbitrary
contrastive losses, and discuss the relationship between our theoretical result and related works.

3.1 PRELIMINARIES

Suppose that random variables X ∈ X and c ∈ [C] := {1, . . . , C}. Let the input data {(xi, yi)}i∈[n]

be i.i.d. sampled from the joint distribution P(X, c). For i ∈ [C], we denote the marginal distribution
πi = P(c = i), and denote class conditional distribution ρi = P(x|c = i). Under the noisy
label distribution, we denote c̃ ∈ [C] as the random variable of noisy label, and let the noisy input
data {(xi, ỹi)}i∈[n] be i.i.d. sampled from the joint distribution P(X, c̃). For i ∈ [C], we denote
π̃i = P(c̃ = i) and ρ̃i = P(x|c̃ = i) as the noisy marginal and class conditional distributions,
respectively. For notational simplicity, we denote π = (πi)i∈[C] and π̃ = (π̃i)i∈[C].

3.1.1 MATHEMATICAL FORMULATIONS OF SUPERVISED CONTRASTIVE RISK

We first generalize the supervised contrastive learning loss proposed in Khosla et al. (2020) to arbitrary
contrastive losses L(x, {x+

m}Mm=1, {x−
k }Kk=1; f), where x is the anchor sample, {x+

m}Mm=1 are M

positive samples, {x−
k }Kk=1 are K negative samples, and f : X → Rd denotes the representation

function. For notational simplicity, we write L(x; f) instead in the rest of this paper.

For the mathematical formulations, we follow the CURL framework (Arora et al., 2019) for the
mathematical formulation of supervised contrastive learning under clean labels (without label noise).
Note that CURL uses the concept of latent classes to describe the distribution of positive pairs. In
supervised contrastive learning, we naturally assume the latent classes to be the annotated classes,
since positive samples are selected as those with the same labels.

The generation process of positive and negative samples is described as follows: (i) draw positive and
negative classes c+, {c−k }k∈[K] ∼ πK+1; (ii) draw an anchor sample x from class c+ with probability
ρc+ = P(x|c = c+); (iii) draw M positive samples {x+

m}Mm=1 from class c+ with probability ρc+ ;
and (iv) for k ∈ [K], draw negative sample x−

k from class c−k with probability ρc−k
.
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Then the corresponding risk for loss L(x; f) is formulated as
R(L; f) = Ec+,{c−k }K

k=1∼πK+1Ex,{x+
m}M

m=1∼ρc+ , x−
k ∼ρ

c
−
k
,k∈[K]L(x; f). (1)

3.1.2 LABEL NOISE ASSUMPTIONS

We model the generation process of label noise through label corruption. We assume that the label
corruption process is conditionally dependent of the true label and independent of data features. To be
specific, denote c̃ ∈ [C] as the random variable of noisy label, and we use qj(i) := P(c̃ = i|c = j, x)
to denote the probability of true label j ∈ [C] corrupted to label i ∈ [C]. Then according to the
law of total probability, the posterior probability of noisy labels can be expressed as P(c̃ = y|x) =∑C

j=1 qj(i)P(c = i|x).

Next, we take the classic symmetric label noise assumption as an example to formulate label noise.
This assumption is common and widely adopted in the community of learning with label noise
(Ghosh et al., 2017; Ma et al., 2020; Natarajan et al., 2013; Wang et al., 2019). The discussions about
asymmetric label noise can be found in the Appendix A.1.
Assumption 3.1 (Symmetric label noise). For noise rate γ ∈ (0, 1), we assume that there holds
qi(i) = 1− γ and qj(i) = γ/(C − 1) for all j ̸= i.

In Assumption 3.1, we assume that the label is corrupted to a noisy label with probability γ and
remains clean with probability 1− γ, where a label has uniform probability of corrupting to any of
the other labels.

3.2 SUPERVISED CONTRASTIVE RISKS UNDER LABEL NOISE

For supervised contrastive learning under label noise, the positive pairs are selected according to the
(corrupted) annotated labels. Therefore, we combine the framework of supervised contrastive risk in
Section 3.1.1 and the label noise assumptions in Section 3.1.2 to formulate the supervised contrastive
risk under label noise.

The generation process of positive and negative samples under label noise can be described as follows:
(i) draw noisy positive and negative classes c̃+, {c̃−k }k∈[K] ∼ π̃K+1; (ii) draw an anchor sample x

from class c̃+ with probability ρ̃c̃+ = P(x|c̃ = c̃+); (iii) draw M positive samples {x+
m}Mm=1 from

class c̃+ with probability ρ̃c̃+ ; and (iv) for k ∈ [K], draw negative sample x−
k from class c̃−k with

probability ρ̃c̃−k
.

Finally, we can formulate the noisy risk for loss L(x; f) as

R̃(L; f) = Ec̃+,{c̃−k }K
k=1∼π̃K+1Ex,{x+

m}M
m=1∼ρ̃c̃+ , x−

k ∼ρ̃
c̃
−
k
,k∈[K]L(x; f). (2)

3.3 ROBUST CONDITION FOR CONTRASTIVE LOSSES

Compared with the contrastive risk under clean label distribution R(L; f) in equation 1, the noisy
contrastive risk R̃(L; f) in equation 2 suffers from additional error because of label corruption.
Specifically, under the noisy label distribution, the positive samples have the same annotated labels,
but their true labels can be different. Aligning such noisy positive labels harms the representation
learning procedure. Therefore, in this part, we first separate the additional risk caused by label
corruption from the clean contrastive risk by explicitly deriving the relationship between clean and
noisy risks. Then we propose the robust condition for contrastive losses.

In Theorems 3.2, we show the relationship between the noisy contrastive risk R̃(L; f) and the clean
contrastive risk R(L; f).
Theorem 3.2. Assume that the input data is class balanced, i.e. πi = 1/C for i ∈ [C]. Then under
Assumption 3.1, for an arbitrary contrastive loss L(x; f), there holds

R̃(L; f) =
(
1− (C/C − 1)γ

)2

R(L; f) + (C/C − 1)γ ·
(
2− (C/C − 1)γ

)
∆R(L; f), (3)

where
∆R(L; f) := Ec+,{c+m}M

m=1,{c
−
k }K

k=1∼πM+K+1Ex∼ρc+ , x+
m∼ρ

c
+
m

,m∈[M ], x−
k ∼ρ

c
−
k
, k∈[K]L(x; f). (4)
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From Theorem 3.2, we show that the noisy risk is a linear combination of the clean risk R(L; f)
and the additional risk ∆R(L; f). Specifically, when γ = 0, i.e. the labels are clean, the RHS
of equation 3 degenerates to R(L; f). Note that in the additional risk term ∆R(L; f), the anchor
sample x and positive samples {x+

m}Mm=1 are independently and uniformly sampled from the input
distribution. The additional risk ∆R(L; f) represents the negative influence of label corruption, be-
cause no feature information can be learned by minimizing ∆R(L; f) and aligning such independent
positive samples.

In noisy label learning, the goal is to optimize the clean risk R(f), whereas we can only achieve
the noisy risk R̃(f) since the clean distribution remains unknown. Nonetheless, if the additional
risk ∆R(L; f) is a constant, then minimizing the noisy and clean risks results in the same optimal
representation function f .

Corollary 3.3. Assume that the input data is class balanced, and there exists a constant A ∈ R such
that ∆R(L; f) = A. Then under Assumption 3.1, contrastive loss L is noise tolerant if γ < C−1

C .

In Corollary 3.3, we give the general condition for an arbitrary contrastive loss function to be
noise tolerant. Comparing with Ghosh et al. (2017), who proposes the general robust condition for
supervised classification losses aligning the sample label and its model prediction, our theoretical
framework applies to losses under the pairwise contrastive paradigm. The two frameworks require
the same noise rate γ ≤ C−1

C under the same label noise assumption but require different “symmetric”
condition for the loss functions. Specifically, by Ghosh et al. (2017), a supervised loss function
L(g(x), y) is noise tolerant if

∑C
c=1 L(g(x), c) is a constant, where g(x) is the model prediction of x.

When the data is class-balanced, this condition indicates that the expectation of L(g(x), c) w.r.t. all
classes is a constant, i.e. L(g(x), c) is “symmetric” over all classes. On the other hand, by Corollary
3.3, for a supervised contrastive loss L(x; f), we require the contrastive loss to be “symmetric” over
all positive samples.

3.4 THEORETICAL CHARACTERIZATION OF EXISTING APPROACHES

We highlight that our theoretical analysis in Section 3.3 serves as an inclusive framework that applies
to nearest-neighbor (NN) sample selection, a widely used robust contrastive learning technique, and
the robust InfoNCE (RINCE) loss proposed in Chuang et al. (2022).

3.4.1 NN SAMPLE SELECTION UNDER THE UNIFIED THEORETICAL FRAMEWORK

In the NN sample selection, the positive samples in the supervised contrastive learning are selected
as the same-class samples near to the anchor point in the embedding space. This technique is often
used in noisy label learning algorithms to select confident samples that are believed to have correct
annotated labels (Navaneet et al., 2022; Ortego et al., 2021; Li et al., 2022). These works discuss
that samples usually have the same ground truth label as the semantically similar examples in a
neighborhood, so it is reasonable to use NN techniques to select confident samples. In this part,
we give an alternative theoretical explanation that NN techniques can reduce the gap between the
additional risk ∆R and constant values, thus making the loss function robust to label noise.

Under our theoretical framework, we take the widely used InfoNCE loss, i.e.

LInfoNCE(x; f) :=
1

M

∑
m∈[M ]

− log
ef(x)

⊤f(x+
m)

ef(x)⊤f(x+
m) +

∑
k∈[K] e

f(x)⊤f(x−
k
)
, (5)

as an example to demonstrate how the NN technique enables contrastive learning to be robust against
label noise. According to the definition of the additional risk, we have

lim
M,K→∞

∆R(LInfoNCE; f)− logK = −E
x,x+ i.i.d.∼ PX

f(x)⊤f(x+) + Ex∼PX logEx−∼PX
ef(x)

⊤f(x−). (6)

By Jensen’s Inequality, there holds

Ex′f(x)⊤f(x′) ≤ logEx′ef(x)
⊤f(x′), (7)

and accordingly limM,K→∞ ∆R(LInfoNCE; f)− logK ≥ 0 for all f .
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Next, we discuss that the NN technique reduces the value of the LHS of equation 7, making
limM,K→∞ ∆R(LInfoNCE; f)− logK close to the constant 0, and thus enabling the loss function
to be noise tolerant according to Corollary 3.3. Mathematically, we formulate the InfoNCE loss with
the NN technique as

LInfoNCE−NN(x; f, t) :=
1

|IN (x; t)|
∑

m∈IN (x;t)

− log
ef(x)

⊤f(x+
m)

ef(x)⊤f(x+
m) +

∑
k∈[K] e

f(x)⊤f(x−
k
)
, (8)

where for a threshold parameter t ∈ [−1, 1], we let N (x; t) := {x+ : f(x)⊤f(x+) ≥ t} be the
neighbor set of sample x, and denote IN (x; t) as the index set of N (x; t). The threshold parameter
t ensures that only the positive samples sharing high similarity with the anchor sample are used to
calculate the InfoNCE loss. Note that when t is selected as the quantiles of f(x)⊤f(x′), the positive
sample set N (x; t) contains exactly the nearest neighbors of x in the embedding space. Then for the
corresponding additional risk w.r.t. LInfoNCE−NN, we have

lim
M,K→∞

∆R(LInfoNCE−NN; f, t) − logK = −Ex∼PX
Ex′∈N(x;t)f(x)

⊤
f(x

′
) + Ex∼PX

log Ex′∼PX
e
f(x)⊤f(x′)

. (9)

Because Ex′∈N (x;t)f(x)
⊤f(x′) ≥ Ex′∼PX

f(x)⊤f(x′), for a given f , we can select a proper thresh-
old parameter t to make limM,K→∞ ∆R(LInfoNCE−NN; f, t)− logK = 0, and thus LInfoNCE−NN

is noise tolerant.

3.5 RINCE UNDER THE UNIFIED THEORETICAL FRAMEWORK

The mathematical form of the RINCE loss function (Chuang et al., 2022) is

LRINCE(x; f) = −(1− λ)ef(x)
⊤f(x+) + λ

K∑
k=1

ef(x)
⊤f(x−

k
), (10)

where λ > 0 is a density weighting term controlling the ratio between positive and negative pairs.
Although inspired by the symmetric condition (Ghosh et al., 2017), RINCE does not fit this theoretical
framework designed for supervised losses that align the model prediction and label. By contrast,
our proposed inclusive theoretical framework for contrastive losses can guarantee the robustness
of RINCE against label noise from the risk consistency perspective. By definition, we have the
additional risk ∆R(LRINCE; f) w.r.t. LRINCE as

E
x,x+,{x−

k
}K
k=1

i.i.d.∼ PX

− (1 − λ)e
f(x)⊤f(x+)

+ λ

K∑
k=1

e
f(x)⊤f(x

−
k

)
=

(
(K + 1)λ − 1

)
E
x,x′ i.i.d.∼ PX

e
f(x)⊤f(x′)

. (11)

According to Corollary 3.3, when λ = 1/(K + 1), we have ∆R(LRINCE; f) = 0, and thus LRINCE

is noise tolerant. That is, as a byproduct, our theory provides a more specific theoretical choice of the
parameter λ in RINCE.

4 THEORETICALLY INSPIRED SYMMETRIC CONTRASTIVE LOSS

Inspired by Corollary 3.3, we propose a robust contrastive loss SymNCE by directly modifying the
InfoNCE loss function. We first propose a reverse version of InfoNCE called RevNCE, and then
SymNCE is designed by adding RevNCE to InfoNCE.

4.1 REVERSE INFONCE (REVNCE)

We first argue that the InfoNCE loss function is non-robust. Recall that in equation 6, we have
limM,K→∞ ∆R(LInfoNCE; f)− logK ≥ 0 for all f . That is, the InfoNCE loss function violates the
general robust condition proposed in Corollary 3.3. Therefore, we seek to add a reverse term to the
InfoNCE loss such whose additional risk equals exactly to − limM,K→∞ ∆R(LInfoNCE; f) through
all representation functions f , so as to guarantee the robustness of the total loss function.

Although this theoretical robustness can be trivially achieved by adding −LInfoNCE or other similar
terms to the original InfoNCE, this would destroy the learning procedure. Therefore, in the meanwhile,
this reverse term is also required to function similarly as InfoNCE, i.e. aligning the positive samples
and pushing apart the negative ones.
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To find a proper “reverse” loss that meets the above requirements, we utilize the symmetric property
of the additional risk. Specifically, note that in the definition of ∆R(LInfoNCE; f), the positive and
negative samples are i.i.d. generated. Therefore, we can exchange them to get a reverse form of
∆R(LInfoNCE; f) without changing its value, i.e.

lim
M,K→∞

−∆R(LInfoNCE; f) + logK = E
x,x− i.i.d.∼ PX

f(x)⊤f(x−)− Ex∼PX logEx+∼PX
ef(x)

⊤f(x+)

= E
x,x− i.i.d.∼ PX

− log
Ex+∼PX

ef(x)
⊤f(x+)

f(x)⊤f(x−)
. (12)

In Proposition 4.1, we propose the reverse InfoNCE loss (abbreviated as RevNCE), and show that its
limit form is exactly the same as equation 12. The proof is shown in Appendix A.2.
Proposition 4.1. Define the RevNCE loss function as

LRevNCE(x; f) =
1

K

∑
k∈[K]

− log

1
M

∑
m∈[M ] e

f(x)⊤f(x+
m)

ef(x)
⊤f(x−

k
)

. (13)

Then we have limM,K→∞ ∆R(LRevNCE; f) = limM,K→∞ −∆R(LInfoNCE; f) + logK.

Moreover, similar to InfoNCE, the RevNCE loss aligns the positive samples and meanwhile pushes
away the negatives. It differs from the InfoNCE loss function only in the summation of the positives
and negatives.

4.2 SYMMETRIC INFONCE (SYMNCE)

By adding together the InfoNCE and RevNCE loss functions, we propose the symmetric InfoNCE
(SymNCE) as

LSymNCE(x; f) := LInfoNCE(x; f) + LRevNCE(x; f). (14)

By Proposition 4.1, we have limM,K→∞ ∆R(LSymNCE; f) = limM,K→∞ ∆R(LInfoNCE; f) +
limM,K→∞ ∆R(LRevNCE; f) = logK. Then by Corollary 3.3, LSymNCE(x; f) is noise tolerant.

Intuitively, LSymNCE is noise tolerant because LRevNCE selects high-confidence positive samples.
Because log-sum-exp approximates the max function, we have

LRevNCE(x; f) ≈
1

K

∑
k∈[K]

− max
m∈[M ]

{
f(x)⊤[f(x+

m)− f(x−
k )]

}
+ logM, (15)

that is, minimizing LRevNCE(x; f) is to optimize over the positive sample sharing the highest
similarity with the anchor. Samples with high semantically similarity usually have the same ground
truth label, so LSymNCE is robust against label noise because LRevNCE adds additional weights to
the highly confident same-class positives.

As is argued in previous works, robustness itself is insufficient for empirical performance and robust
losses can suffer from underfitting (Ma et al., 2020). Therefore, it is common to introduce an
additional weight parameter β ∈ [0, 1] to balance between accuracy and robustness (Chuang et al.,
2022; Ma et al., 2020; Wang et al., 2019). Empirically, we use

L̂SymNCE(xi; f, β) := L̂InfoNCE(xi; f) + β · L̂RevNCE(xi; f), (16)

where the empirical forms are

L̂InfoNCE(xi; f) := − 1

|P (i)|
∑

p∈P (i)

log
ef(xi)

⊤f(xp)/τ∑
a∈A(i) e

f(xi)⊤f(xa)/τ
, (17)

L̂RevNCE(xi; f) := − 1

|A(i)| − 1

∑
a∈A(i)\{i}

log

1
|P (i)|

∑
p∈P (i) e

f(xi)
⊤f(xp)/τ

ef(xi)⊤f(xa)/τ
, (18)

P (i) := {p ∈ A(i) : ỹp = ỹi} is the index set of all same-class positives distinct from i, A(i) is the
index set of all augmented samples, and τ > 0 is the temperature parameter.
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5 EXPERIMENTS

5.1 PERFORMANCE COMPARISONS ON BENCHMARK DATASETS

We first conduct numerical comparisons on CIFAR-10 and CIFAR-100 benchmark datasets
(Krizhevsky et al., 2009). The noisy labels are generated following standard approaches in pre-
vious works (Ma et al., 2020; Wang et al., 2019). The symmetric label noise is generated by flipping
a proportion of labels in each class uniformly at random to other classes. The proportion of flipped
labels equals to the noise rate γ. For asymmetric noise, we flip the labels within a specific set of
classes. For CIFAR-10, flipping TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER →
HORSE, and CAT ↔ DOG. For CIFAR-100, the 100 classes are grouped into 20 super-classes
with each having 5 sub-classes. We then flip each class within the same super-class into the next
in a circular fashion. We vary the noise rate γ ∈ {0.2, 0.4, 0.6, 0.8} for symmetric label noise and
γ ∈ {0.2, 0.4} for the asymmetric case.

It is worth mentioning that our paper focuses on designing new robust loss functions with sound
theoretical guarantees, which is one of the most important parts of learning from label noise. We
believe it is not so fair to directly compare a robust loss function with such algorithms incorporating
multiple heuristic techniques and without theoretical guarantees. Therefore, we compare our proposed
SymNCE with both robust supervised classification losses and robust supervised contrastive losses.
For supervised classification losses, we compare with Cross Entropy (CE), Mean Absolute Error
(MAE) (Ghosh et al., 2017), Generalized Cross Entropy (GCE) (Zhang & Sabuncu, 2018), Symmetric
Cross Entropy (SCE) (Wang et al., 2019), and Active Passive Loss (APL). For supervised contrastive
losses, we compare with SupCon (Khosla et al., 2020) and Robust InfoNCE (RINCE) (Chuang et al.,
2022). The training details can be found in Appendix A.3.

The results are shown in Table 1. We observe that our SymNCE shows mostly better empirical perfor-
mances under both symmetric and asymmetric label noise across various noise rates. Compared with
classification losses, SymNCE has significant advantages under high noise rates and asymmetric label
noise. Compared with both classification and contrastive losses, SymNCE has larger performance
gains on the more complex CIFAR-100 dataset.

Table 1: Performance comparisons with state-of-the-art robust losses.

Dataset Noise rate Symmetric Asymmetric

0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE 92.88 85.22 78.9 71.98 41.38 86.88 82.12
MAE 91.32 89.28 84.85 78.19 41.46 81.3 56.77
GCE 91.83 89.22 84.66 76.66 42.21 88.01 81.05
SCE 92.97 89.48 83.57 77.6 55.58 89.08 82.46
APL 91.21 88.9 82.08 78.48 52.04 88.39 81.92

SupCon 93.07 87.1 80.47 61.8 55.6 90.08 87.26
RINCE 86.17 85.26 83.15 80.65 80.32 84.92 84.27

SymNCE (Ours) 93.12 89.81 85.32 80.89 60.74 91.0 88.28

CIFAR-100

CE 64.39 47.21 37.30 27.25 15.12 49.16 36.29
MAE 13.53 8.84 8.44 6.63 2.73 11.63 7.69
GCE 58.52 54.16 47.27 35.65 20.25 53.79 34.60
SCE 66.83 60.32 52.79 39.24 20.33 59.29 40.49
APL 34.22 28.38 25.27 16.95 10.68 28.98 21.70

SupCon 68.05 61.23 53.02 38.74 25.37 64.98 55.33
RINCE 44.41 44.29 42.27 41.46 38.99 42.49 32.68

SymNCE (Ours) 70.30 64.56 55.68 43.35 39.14 67.15 56.5

5.2 PERFORMANCE COMPARISONS ON REAL-WORLD DATASETS

Beside benchmark datasets, we also evaluate our proposed SymNCE on the real-world dataset
Clothing1M (Xiao et al., 2015), whose noise rate is estimated to be around 40%. Following Li et al.
(2020), we select a subset which contains 1.4k samples for each class from the noisy training data
and report the performance on the 10k test data. In Table 2, where the best performance is marked in

8
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bold, we show that our SymNCE outperforms both robust classification losses and robust contrastive
losses on the real-world dataset Clothing1M.

Table 2: Real-data comparisons with state-of-the-art robust losses.
CE GCE SCE APL MAE SupCon RINCE SymNCE

53.48 56.01 57.48 36.15 36.83 62.50 43.30 65.20

5.3 PARAMETER ANALYSIS

Recall that in Section 4.2, we introduce a weight parameter β to our LSymNCE, which is the only
parameter of our method and balances between the accurate term LInfoNCE and the robust term
LRevNCE. We here conduct analysis of the weight parameter β. In Figures 1(a) and 1(b), we plot the
test accuracy of SymNCE with different weight parameters β ∈ {0.2, 0.6, 1.0} under symmetric label
noise γ ∈ {0, 0.2, 0.4, 0.6, 0.8} and asymmetric label noise γ ∈ {0, 0.2, 0.4} on CIFAR-100, where
γ = 0 corresponds to the clean dataset without label noise. We show that the optimal β increases
as noise rate γ enhances. Specifically, for symmetric label noise, when noise rate is low (γ = 0),
the optimal β = 0.2, and when noise rate is high (γ ∈ {0.2, 0.6, 0.8}), the optimal β = 1.0. For
asymmetric label noise, the optimal β is 0.2 when γ = 0, whereas raises to 1.0 when γ = 0.4. This
is because robust loss functions are designed to avoid overfitting to label noise, and thus can suffer
from underfitting (Ma et al., 2020) when noise rate is low. Therefore, we require relatively low β and
focus more on the accurate term LInfoNCE when noise rate is low. On the contrary, when noise rate is
high, we require β = 1, which is theoretically proved to be robust in Section 4.2.
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(a) Analysis of β under symmetric
label noise.
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Figure 1: (a)(b) Parameter analysis of weight parameter β in SymNCE under symmetric and asym-
metric label noise. (c) Verification of theoretical choice of λ in RINCE.

5.4 VERIFICATION OF OUR THEORETICAL BYPRODUCT FOR RINCE

Recall that in Section 3.5, when unifying RINCE into our theoretical framework, we could byproduct
provide a theoretical optimal parameter λ = 1/(K + 1) for RINCE. Here we conduct experiments to
verify the claim. We run experiments with ResNet-18 on the CIFAR-10 dataset under 40% symmetric
label noise. We vary the parameter λ = {0.08, 0.09, 0.10, 0.11}, and illustrate the linear probing
accuracy in Figure 1(c). We show that RINCE with λ = 0.09 has the best accuracy, which coincides
with our theoretical choice λ = 1/(K + 1) = 1/11 ≈ 0.09.

6 CONCLUSION

In this paper, we proposed a unified theoretical framework for robust supervised contrastive losses
against label noise. We derived a general robust condition for arbitrary contrastive losses, which
further inspires us to propose the SymNCE loss, a direct robust counterpart of the widely used
InfoNCE loss. As a theoretical work, our results are naturally limited by the assumptions. Nonetheless,
we highlight that our theoretical analysis is a unified framework applying to multiple robust techniques
such as nearest neighbor sample selection and robust losses. This framework not only provides a
benchmark for assessing the resilience of contrastive losses but also holds promise as a springboard
for innovative loss function designs in the future.
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A APPENDIX

In this appendix, we present the proofs related to Sections 3 and 4 in Appendices A.1 and A.2
respectively. We put additional training details in Appendix A.3.

A.1 PROOFS RELATED TO SECTION 3

Note that in (Khosla et al., 2020), the supervised contrastive loss can be expressed as

L(x, {x+
m}Mm=1, {x−

k }
K
k=1; f) =

1

M

M∑
i=1

Lm(x, x+
m, {x−

k }
K
k=1; f), (19)

and thus due to the conditional independence of x+
m|x, we demonstrate the equivalence between the

risks for single and multiple positive samples, i.e.

R(L; f) = Ex,{x+
m}M

m=1,{x
−
k }K

k=1

1

M

M∑
i=1

Lm(x, x+
m, {x−

k }
K
k=1; f)

=
1

M

M∑
i=1

Ex,x+
m,{x−

k }K
k=1

Lm(x, x+
m, {x−

k }
K
k=1; f)

=
1

M

M∑
i=1

R(Lm; f) = R(Lm; f). (20)

Therefore, in the following, we analyze the case with single positive label without loss of generality.

First, in the following lemma, we derive the relationship between the clean and noisy distributions
under the label corruption assumption.

Lemma A.1. Under label-dependent label corruption, we have π̃i =
∑C

j=1 qj(i)πj , and ρ̃i(x) =(∑C
j=1 qj(i)ρj(x)πj

)
/
(∑C

j=1 qj(i)πj

)
.

Proof of Lemma A.1. Under label-dependent label corruption, by the law of total probability, there
holds

P(c̃ = i|x) =
C∑
i=1

P(c̃ = i|c = j, x)P(c = j|x) =
C∑
i=1

qj(i)P(c = j|x). (21)

By taking expectation of x on both sides of equation 21, we have

π̃i = P(c̃ = i) =

C∑
i=1

qj(i)P(c = j) =

C∑
i=1

qj(i)πj . (22)

On the other hand, by Bayes’ theorem, there holds

ρ̃i(x) = P(x|c̃ = i) =
P(c̃ = i|x)P(x)

P(c̃ = i)
. (23)

Then combining with equation 21 and equation 22, we have

ρ̃i(x) =

∑C
i=1 qj(i)P(c = j|x)P(x)∑C

i=1 qj(i)P(c = j)
=

∑C
i=1 qj(i)P(x|c = j)P(c = j)∑C

i=1 qj(i)P(c = j)
=

∑C
i=1 qj(i)ρj(x)πj∑C

i=1 qj(i)πj

.

(24)

In Lemma A.2, we decompose the noisy risk for arbitrary contrastive losses without assuming any
specific label types.
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Lemma A.2. For arbitrary contrastive loss function L(x; f), the noisy contrastive risk with M = 1
can be decomposed into

R̃(L; f) =
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)E x∼ρu

x+∼ρu+

E
{x−

k }K
k=1

i.i.d.∼PX
L(x; f), (25)

where a(i) :=
∑

u∈[C] qu(i)πu.

By Lemma A.2, we see that the label noise only affects the noisy contrastive risk by changing the
distribution of positive samples. The negative sample distribution remains unaffected because the
negatives are uniformly drawn from the data distribution regardless of their labels. On the contrary,
for positive samples selected from the noisy distribution, it is probable that a positive pair actually
has different ground truth labels, and accordingly making the model overfitting to label noise.

Proof Lemma A.2. By definition of the noisy risk in equation 2, there holds

R̃(L; f) = Ec̃+,{c̃−k }K
k=1∼π̃K+1E x,x+∼ρ̃c̃+

x−
k ∼ρ̃

c̃
−
k
,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

=
∑

i,j1,...,jK∈[C]

π̃iπ̃j1 · · · π̃jK · E x,x+∼ρ̃i

x−
k ∼ρ̃jk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

=
∑

i,j1,...,jK∈[C]

∑
m∈[C]

qm(i)πm

∑
l1∈[C]

ql1(j1)πl1 · · ·
∑

lK∈[C]

qlK (jK)πlK

· E x,x+∼ρ̃i

x−
k ∼ρ̃jk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f). (26)

Denote a(i) :=
∑

u∈[C] qu(i)πu and A(u, u+,v) := Ex∼ρu,x
+∼ρu+

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }Kk=1; f). Then

by Lemma A.1, we have

E x,x+∼ρ̃i

x−
k ∼ρ̃jk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

=

∫
· · ·

∫
ρ̃i(x)ρ̃i(x

+)ρ̃j1(x
−
1 ) · · · ρ̃jK (x−

K) · L(x, x+, {x−
k }

K
k=1; f) dx dx

+ dx−
1 . . . dx−

K

=

∫
· · ·

∫ ∑
u∈[C] qu(i)ρu(x)πu∑

u∈[C] qu(i)πu
·
∑

u+∈[C] qu+(i)ρu+(x+)πu+∑
u+∈[C] qu+(i)πu+

·
∑

v1∈[C] qv1(j1)ρv1
(x−

1 )πv1∑
v1∈[C] qv1(j1)πv1

· · ·
∑

vK∈[C] qvK (jK)ρvK (x−
K)πvK∑

vK∈[C] qvK (jK)πvK

· L(x, x+, {x−
k }

K
k=1; f) dx dx

+ dx−
1 . . . dx−

K

:= (a(i)2a(j1) . . . a(jK))−1 ·
∑

u,u+,v1,...,vK∈[C]

πuπu+πv1
· · ·πvK · qu(i)qu+(i)qv1(j1) · · · qvK (jK)

·
∫

· · ·
∫

ρu(x)ρu+(x+)ρv1(x
−
1 ) · · · ρvK (x−

K) · L(x, x+, {x−
k }

K
k=1; f) dx dx

+ dx−
1 . . . dx−

K

:= (a(i)2a(j1) . . . a(jK))−1 ·
∑

u,u+,v1,...,vK∈[C]

πuπu+πv1 · · ·πvK · qu(i)qu+(i)qv1(j1) · · · qvK (jK)

· Ex∼ρu,x
+∼ρu+

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

:= (a(i)2a(j1) . . . a(jK))−1 ·
∑

u,u+,v1,...,vK∈[C]

πuπu+πv1 · · ·πvK

· qu(i)qu+(i)qv1(j1) · · · qvK (jK)A(u, u+,v). (27)

Combining equation 26 and equation 27, we have

R̃(L; f) =
∑

i,j1,...,jK∈[C]

(a(i)2a(j1) . . . a(jK))−1
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·
∑

m,l1,...,lK∈[C]

qm(i)ql1(j1) · · · qlK (jK) · πmπl1 · · ·πlK

·
∑

u,u+,v1,...,vK∈[C]

qu(i)qu+(i)qv1(j1) · · · qvK (jK) · πuπu+πv1 · · ·πvKA(u, u+,v)

=
∑
i∈[C]

a(i)−2
∑

m∈[C]

∑
u∈[C]

∑
u+∈[C]

πmπuπu+qm(i)qu(i)qu+(i)

·
∑

j1∈[C]

a(j1)
−1

∑
l1∈[C]

∑
v1∈[C]

πl1πv1ql1(j1)qv1(j1) · · ·

·
∑

jK∈[C]

a(jK)−1
∑

lK∈[C]

∑
vK∈[C]

πlKπvK qlK (jK)qvK (jK)A(u, u+,v). (28)

For the positive term in equation 28, we have∑
i∈[C]

a(i)−2
∑

m∈[C]

∑
u∈[C]

∑
u+∈[C]

πmπuπu+qm(i)qu(i)qu+(i)A(u, u+,v)

=
∑
i∈[C]

a(i)−2
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)A(u, u+,v)
∑

m∈[C]

qm(i)πm

=
∑
i∈[C]

a(i)−2
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)A(u, u+,v)a(i)

=
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)A(u, u+,v). (29)

For the negative terms in equation 28, we have for k ∈ [K]∑
jk∈[C]

a(jk)
−1

∑
lk∈[C]

∑
vk∈[C]

πlkπvkqlk(jk)qvk(jk)A(u, u+,v)

=
∑

jk∈[C]

a(jk)
−1

∑
lk∈[C]

qlk(jk)πlk

∑
vk∈[C]

πvkqvk(jk)A(u, u+,v)

=
∑

jk∈[C]

a(jk)
−1a(jk)

∑
vk∈[C]

πvkqvk(jk)A(u, u+,v)

=
∑

jk∈[C]

∑
vk∈[C]

πvkqvk(jk)A(u, u+,v)

=
∑

vk∈[C]

πvkA(u, u+,v)
∑

jk∈[C]

qvk(jk)

=
∑

vk∈[C]

πvkA(u, u+,v). (30)

Then combining equation 28, equation 29, and equation 28, we have

R̃(L; f) =
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)
∑

v1,...,vK∈[C]

πv1 · · ·πvKA(u, u+,v)

=
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)E x∼ρu,
x+∼ρu+

E
{x−

k }K
k=1

i.i.d.∼PX
L(x; f). (31)

A.1.1 PROOFS FOR SYMMETRIC LABEL NOISE

Then by Assumptions 3.1, we prove Theorem 3.2.
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Proof of Theorem 3.2. Under Assumption 3.1, qi(i) = 1 − γ and qu(i) = γ/(C − 1) for u ̸= i.
Denote B(u, u+) :=

∑
v1,...,vK∈[C] πv1 · · ·πvKA(u, u+,v). By Lemma A.2, we have

R̃(L; f) =
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)B(u, u+)

=
∑
i∈[C]

a(i)−1(1− γ)2π2
iB(i, i) +

∑
i∈[C]

a(i)−1 γ(1− γ)

C − 1
πi

∑
u+ ̸=i

πu+B(i, u+)

+
∑
i∈[C]

a(i)−1 γ(1− γ)

C − 1
πi

∑
u̸=i

πuB(u, i) +
∑
i∈[C]

a(i)−1 γ2

(C − 1)2

∑
u ̸=i

∑
u+ ̸=i

πuπu+B(u, u+)

=
∑
i∈[C]

a(i)−1
(
(1− γ)2 − γ2

(C − 1)2

)
π2
iB(i, i)

+
∑
i∈[C]

a(i)−1
(γ(1− γ)

C − 1
− γ2

(C − 1)2

)
πi

∑
u+ ̸=i

πu+B(i, u+)

+
∑
i∈[C]

a(i)−1
(γ(1− γ)

C − 1
− γ2

(C − 1)2

)
πi

∑
u ̸=i

πuB(u, i)

+
∑
i∈[C]

a(i)−1 γ2

(C − 1)2

∑
u∈[C]

∑
u+∈[C]

πuπu+B(u, u+)

=
∑
i∈[C]

a(i)−1
(
(1− γ)2 − 2γ

C − 1

(
1− C

C − 1
γ
)
− γ2

(C − 1)2

)
π2
iB(i, i)

+
∑
i∈[C]

a(i)−1 γ

C − 1

(
1− C

C − 1
γ
)
πi

∑
u+∈[C]

πu+B(i, u+)

+
∑
i∈[C]

a(i)−1 γ

C − 1

(
1− C

C − 1
γ
)
πi

∑
u∈[C]

πuB(u, i)

+
∑
i∈[C]

a(i)−1 γ2

(C − 1)2

∑
u∈[C]

∑
u+∈[C]

πuπu+B(u, u+)

=
∑
u∈[C]

a(u)−1
(
1− C

C − 1
γ
)2

π2
uB(u, u)

+
∑
u∈[C]

a(u)−1 γ

C − 1

(
1− C

C − 1
γ
)
πu

∑
u+∈[C]

πu+B(u, u+)

+
∑

u+∈[C]

a(u+)−1 γ

C − 1

(
1− C

C − 1
γ
)
πu+

∑
u∈[C]

πuB(u, u+)

+
∑
i∈[C]

a(i)−1 γ2

(C − 1)2

∑
u∈[C]

∑
u+∈[C]

πuπu+B(u, u+). (32)

When the input data is class balanced, i.e. πi =
1
C for i ∈ [C], we have for i ∈ [C],

a(i) =
∑
u∈[C]

qu(i)πu =
1

C

∑
u∈[C]

qu(i) =
1

C
. (33)

Then we have

R̃(L; f)

=
(
1− C

C − 1
γ
)2 ∑

u∈[C]

πuB(u, u) +
Cγ

C − 1

(
1− C

C − 1
γ
) ∑

u∈[C]

πu

∑
u+∈[C]

πu+B(u, u+)
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+
Cγ

C − 1

(
1− C

C − 1
γ
) ∑

u+∈[C]

πu+

∑
u∈[C]

πuB(u, u+) +
C2γ2

(C − 1)2

∑
u∈[C]

∑
u+∈[C]

πuπu+B(u, u+)

=
(
1− C

C − 1
γ
)2 ∑

u∈[C]

πuB(u, u) +
Cγ

C − 1

(
2− C

C − 1
γ
) ∑

u,u+∈[C]

πuπu+B(u, u+) (34)

Note that∑
u∈[C]

πuB(u, u) =
∑
u∈[C]

πu

∑
v1,...,vK∈[C]

πv1 · · ·πvKE x∼ρu,x
+∼ρu

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

= Ec+,{c−k }K
k=1∼πK+1E x∼ρu,x

+∼ρu

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

= R(L; f), (35)

and that ∑
u,u+∈[C]

πuπu+B(u, u+)

=
∑

u,u+∈[C]

πuπu+

∑
v1,...,vK∈[C]

πv1 · · ·πvKEx∼ρu,x
+∼ρu+

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

= Ec, c+,{c−k }K
k=1∼πK+2Ex∼ρu,x

+∼ρu+

x−
k ∼ρvk

,k∈[K]

L(x, x+, {x−
k }

K
k=1; f)

:= ∆R(L; f). (36)

Thus we have

R̃(L; f) =
(
1− C

C − 1
γ
)2

R(L; f) + Cγ

C − 1

(
2− C

C − 1
γ
)
∆R(L; f). (37)

Proof of Corollary 3.3. For symmetric label noise, by Theorem 3.2 and that ∆R(L; f) = A, we
have

R̃(L; f) =
(
1− C

C − 1
γ
)2

R(L; f) + Cγ

C − 1

(
2− C

C − 1
γ
)
A. (38)

Suppose f∗ is the minimizer of R̃(L; f), i.e. for all f

R̃(L; f∗) ≤ R̃(L; f). (39)

Then if γ ≤ (C − 1)/C, we have

R(L; f∗) ≤ R(L; f), (40)

that is, f∗ is also the minimizer of R(L; f).

A.1.2 PROOFS FOR ASYMMETRIC LABEL NOISE

Next, we show the results under asymmetric label noise.
Assumption A.3 (Asymmetric label noise). For noise rates γi ∈ (0, 1), i ∈ [C], we assume that
there holds qi(i) = 1− γi and qj(i) = γij ≥ 0 for all j ̸= i.
Theorem A.4. Assume that the input data is class balanced, i.e. πi = π̃i = 1/C for i ∈ [C].
Then under Assumption A.3, if we have

∑
i∈[C] γ

2
iu = c1(γ) and

∑
i∈[C] γiuγiu+ = c2(γ) for all

u ̸= u+ ∈ [C], then for an arbitrary contrastive loss L(x; f), where c1(γ) and c2(γ) are constants
related to γ := (γij)i,j∈[C], there holds

R̃(L; f) =
(
c1(γ)− c2(γ)

)
R(L; f) + C · c2(γ)∆R(L; f), (41)

where

∆R(L; f) := Ec+,{c+m}M
m=1∼πM+1

{c−k }K
k=1∼πK

Ex∼ρc+ , x+
m∼ρ

c
+
m

,m∈[M ]

x−
k ∼ρ

c
−
k
, k∈[K]

L(x; f). (42)

16



Under review as a conference paper at ICLR 2024

Proof of Theorem A.4.

R̃(L; f) =
∑
i∈[C]

a(i)−1
∑
u∈[C]

∑
u+∈[C]

πuπu+qu(i)qu+(i)B(u, u+)

=
∑
i∈[C]

a(i)−1(1− γi)
2π2

iB(i, i) +
∑
i∈[C]

a(i)−1
∑
u̸=i

γiu(1− γi)πuπiB(u, i)

+
∑
i∈[C]

a(i)−1
∑
u+ ̸=i

γiu+(1− γi)πu+πiB(u, u+)

+
∑
i∈[C]

a(i)−1
∑
u ̸=i

∑
u+ ̸=i

πuπu+γiuγiu+B(i, u+)

=
∑
u∈[C]

a(u)−1(1− γu)
2π2

uB(u, u) +
∑

u+∈[C]

a(u+)−1
∑
u ̸=u+

γu+u(1− γu+)πuπu+B(u, u+)

+
∑
u∈[C]

a(u)−1
∑
u+ ̸=u

γuu+(1− γu)πu+πuB(u, u+)

+
∑
i∈[C]

a(i)−1
∑
u ̸=i

π2
uγ

2
iuB(u, u) +

∑
i∈[C]

a(i)−1
∑
u̸=i

∑
u+ ̸=u,i

πuπu+γiuγiu+B(u, u+)

=
∑
u∈[C]

a(u)−1(1− γu)
2π2

uB(u, u) +
∑

u+∈[C]

∑
u̸=u+

a(u+)−1γu+u(1− γu+)πuπu+B(u, u+)

+
∑
u∈[C]

∑
u+ ̸=u

a(u)−1γuu+(1− γu)πuπu+B(u, u+)

+
∑
u∈[C]

∑
i̸=u

a(i)−1γ2
iuπ

2
uB(u, u) +

∑
u∈[C]

∑
u+ ̸=u

∑
i ̸=u,u+

a(i)−1γiuγiu+πuπu+B(u, u+).

(43)

Because a(i) = π̃i = 1/C for all i ∈ [C], we have

R̃(L; f) = C
∑
u∈[C]

(1− γu)
2π2

uB(u, u) + C
∑

u+∈[C]

∑
u̸=u+

γu+u(1− γu+)πuπu+B(u, u+)

+ C
∑
u∈[C]

∑
u+ ̸=u

γuu+(1− γu)πuπu+B(u, u+)

+ C
∑
u∈[C]

∑
i ̸=u

γ2
iuπ

2
uB(u, u) + C

∑
u∈[C]

∑
u+ ̸=u

∑
i ̸=u,u+

γiuγiu+πuπu+B(u, u+)

= C
∑
u∈[C]

[
(1− γu)

2 +
∑
i ̸=u

γ2
iu

]
π2
uB(u, u)

+ C
∑
u∈[C]

∑
u+ ̸=u

[ ∑
i̸=u,u+

γiuγiu+ + γu+u(1− γu+) + γuu+(1− γu)
]
πuπu+B(u, u+)

= C
∑
u∈[C]

( ∑
i∈[C]

γ2
iu

)
π2
uB(u, u) + C

∑
u∈[C]

∑
u+ ̸=u

( ∑
i∈[C]

γiuγiu+

)
πuπu+B(u, u+). (44)

By assumption,
∑

i∈[C] γ
2
iu = c1(γ) and

∑
i∈[C] γiuγiu+ = c2(γ) for all u ̸= u+ ∈ [C]. Thus we

have

R̃(L; f) = C · c1(γ)
∑
u∈[C]

π2
uB(u, u) + C · c2(γ)

∑
u∈[C]

∑
u+ ̸=u

πuπu+B(u, u+)

= C
(
c1(γ)− c2(γ)

) ∑
u∈[C]

π2
uB(u, u) + C · c2(γ)

∑
u,u+∈[C]

πuπu+B(u, u+)

=
(
c1(γ)− c2(γ)

)
R(L; f) + C · c2(γ)∆R(L; f). (45)
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In Corollary 3.3, we give the general condition for an arbitrary contrastive loss function to be noise
tolerant under asymmetric label noise. Comparing with Ghosh et al. (2017), our theoretical framework
requires the same noise rate 1− γu > γui for all i ̸= u, and u, i ∈ [C].

Theorem A.5. Assume that the input data is class balanced, and there exists a constant A ∈ R such
that ∆R(L; f) = A. Then under Assumption A.3, contrastive loss L is noise tolerant if 1− γu > γui
for all i ̸= u, u, i ∈ [C].

Proof of Theorem A.5. When ∆R(L; f) = A, we have

R̃(L; f) =
(
c1(γ)− c2(γ)

)
R(L; f) + CA · c2(γ). (46)

Then we calculate c1(γ)− c2(γ).

c1(γ)− c2(γ) =
∑
i∈[C]

γ2
iu −

∑
i∈[C]

γiuγiu+

=
1

2

∑
i∈[C]

(
γ2
iu + γ2

iu+ − 2γiuγiu+

)
=

1

2

∑
i∈[C]

(γiu − γiu+)2

=
1

2

[ ∑
i ̸=u,u+

(γiu − γiu+)2 + (1− γu − γuu+)2 + (1− γu+ − γu+u)
2
]
. (47)

If 1− γu > γui for all i ̸= u, u, i ∈ [C], then c1(γ)− c2(γ) > 0. Suppose f∗ is the minimizer of
R̃(L; f), and thus we have when 1− γu > γui,

R(L; f)−R(L; f∗) =
1(

c1(γ)− c2(γ)
)[R̃(L; f∗)− R̃(L; f)

]
< 0, (48)

that is, f∗ is also the minimizer of R(L; f).

A.2 PROOFS RELATED TO SECTION 4

For completeness, we first prove the limit form of InfoNCE shown in equation 6, following Wang &
Isola (2020).

lim
M,K→∞

∆R(LInfoNCE; f)− logK

= lim
M,K→∞

E
x,x+

m,x−
k

i.i.d.∼PX

1

M

∑
m∈[M ]

− log
ef(x)

⊤f(x+
m)

ef(x)⊤f(x+
m) +

∑
k∈[K] e

f(x)⊤f(x−
k )

− logK

= E
x,x+

m,x−
k

i.i.d.∼PX
− f(x)⊤f(x+

m) + lim
K→∞

log
( 1

K
ef(x)

⊤f(x+
m) +

1

K

∑
k∈[K]

ef(x)
⊤f(x−

k )
)

= E
x,x+ i.i.d.∼PX

− f(x)⊤f(x+) + Ex∼PX
log

(
Ex−∼PX

ef(x)
⊤f(x−)

)
. (49)

Proof of Proposition 4.1.

lim
M,K→∞

∆R(LRevNCE; f)

= lim
K,M→∞

E
x,x+

m,x−
k

i.i.d.∼PX

1

K

∑
k∈[K]

− log

1
M

∑
m∈[M ] e

f(x)⊤f(x+
m)

ef(x)
⊤f(x−

k )

= E
x,x+

m,x−
k

i.i.d.∼PX
lim

K,M→∞

1

K

∑
k∈[K]

− log
( 1

M

∑
m∈[M ]

ef(x)
⊤f(x+

m)
)
+

1

K

∑
k∈[K]

f(x)⊤f(x−
k )
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= Ex∼PX
− log

(
Ex+∼PX

ef(x)
⊤f(x+)

)
+ E

x,x− i.i.d.∼PX
f(x)⊤f(x−

k )

= lim
M,K→∞

−∆R(LInfoNCE; f) + logK. (50)

A.3 TRAINING DETAILS

Training details on CIFAR datasets. We run all experiments on an NVIDIA GeForce RTX 3090
24G GPU. We adopt a ResNet-18 as the backbone for all methods, and use the SGD optimizer with
momentum 0.9. The batch size is set to be 512. For our SymNCE, we set learning rate as 0.1 for
CIFAR-10 and 0.01 for CIFAR-100 without decay. Temperature is 0.5 for CIFAR-10 and 0.07 for
CIFAR-100. Weight decay is set to be 10−4. The weight parameter β is selected in {0.2, 0.6, 1.0}
through validation. For robust start, we warm up with the SupCon loss in the early stage of training.
For compared methods, the parameters are set referring to their original papers. For all supervised
contrastive losses, we run 300 epochs for training the representations, which are then evaluated
through linear probing on the noisy dataset with CE loss for 30 epochs. The data augmentations
are random crop and resize (with random flip), color distortion and color dropping. For supervised
classification losses, we train all losses for 300 epochs and report the test accuracy.

For SupCon, we set learning rate as 0.5 for CIFAR-10 and 0.01 for CIFAR-100 without decay.
Temperature is 0.1 for CIFAR-10 and 0.07 for CIFAR-100. Weight decay is set to be 10−4. For
RINCE, we set temperature 0.1, λ = 0.01 and q = 0.5. For RINCE, SCE, AP, CE, and MAE, the
learning rate is set to be 0.01 without decay. We set q = 0.7 in GCE, α = 0.1, β = 1 for SCE. For
APL (NCE+MAE), we set α = β = 1 for CIFAR-10 and α = 10, β = 0.1 for CIFAR-100.

Training details on Clothing1M dataset. We adopt an ImageNet pre-trained ResNet-18 as our
backbone. We use the SGD optimizer with momentum 0.9. The batchsize is set to be 32. For our
method, we set learning rate as 0.002. The temperature is 0.07 and weigth decay is set to be 10−4.
For robust start, we warm up with the SupCon loss for the early 20 epoches. For all supervised
contrastive losses, we run 80 epoches for representation learning,which are then evaluated through
the linear probing on the training dataset with CE loss for 30 epoches. For compared method, we all
set the training epoches as 80 for a fair comparison.
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