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Abstract: Mimicry is a fundamental learning mechanism in humans, enabling1

individuals to learn new tasks by observing and imitating experts. However, ap-2

plying this ability to robots presents significant challenges due to the inherent3

differences between human and robot embodiments in both their visual appear-4

ance and physical capabilities. While previous methods bridge this gap using5

cross-embodiment datasets with shared scenes and tasks, collecting such aligned6

data between humans and robots at scale is not trivial. In this paper, we propose7

UniSkill, a novel framework that learns embodiment-agnostic skill representa-8

tions from large-scale cross-embodiment video data without any labels, enabling9

skills extracted from human video prompts to effectively transfer to robot policies10

trained only on robot data. Our experiments in both simulation and real-world11

environments show that our cross-embodiment skills successfully guide robots in12

selecting appropriate actions, even with unseen video prompts.13

Keywords: Learning from Videos, Skill Representations14

15

1 Introduction16

Learning from human videos has emerged as a central paradigm in robot learning, offering a scal-17

able approach to the scarcity of robot-specific data by leveraging large, diverse video sources. Hu-18

man videos contain everyday behaviors such as human-object interactions, which could provide a19

rich source of skills for robot learning. Here, a central question arises: Can robots acquire cross-20

embodiment skill representations by watching large-scale human demonstrations?21

Translating human videos into robot-executable skill representations has traditionally relied on22

paired human-robot datasets [1, 2, 3] or predefined semantic skill labels [4, 5], both of which are dif-23

ficult to scale. Recent approaches aim to bypass these requirements by learning cross-embodiment24

skill representations without explicit pairing or labeling [6, 7, 8, 9, 10]. However, these methods25

still impose constraints on data collection, such as multi-view camera setups, and task and scene26

alignment between human and robot demonstrations, which limit their scalability and applicability27

to real-world, in-the-wild human videos.28

To this end, we propose Universal Skill representations (UniSkill), a scalable approach for learning29

cross-embodiment skill representations from large-scale in-the-wild video data so that a robot can30

translate an unseen human demonstration into a sequence of robot-executable skill representations,31

as illustrated in Figure 1. To extract reusable, embodiment-agnostic motion patterns from videos,32

UniSkill focuses on capturing dynamics changes between temporally distant video frames, which33

can be agnostic to embodiments and shared across diverse videos. UniSkill leverages an image-34

editing pipeline, which naturally emphasizes dynamic regions over static content, and encodes the35
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Figure 1: Universal Skill representations (UniSkill) are cross-embodiment skill representations
shared across various embodiments (e.g., humans, Franka, WidowX) trained from both human and
robot videos via skill dynamics modeling. Unlike prior works that require additional supervision
(e.g., trajectory labels) or alignment between human and robot videos, UniSkill removes these con-
straints by learning solely from off-the-shelf video datasets–such as Something-Something V2 [11]
and H2O [12] for human videos, and DROID [13], Bridge V2 [14], and LIBERO [15] for robot
videos. UniSkill, trained on large-scale cross-embodiment videos, learns an embodiment-agnostic
skill representation that enables interpreting human videos as skill sequences executable directly
through a skill-conditioned policy.

resulting motion patterns into skill representations. The design choice enables the use of arbitrary,36

embodiment-agnostic video datasets for training, making it possible to scale cross-embodiment skill37

representation learning to large, in-the-wild datasets. As a result of its embodiment-agnostic skill38

representation, UniSkill can imitate a given prompt video by capturing sequence of motion patterns39

within it, even when demonstration is performed by a human.40

Our experiments demonstrate that UniSkill effectively learn cross-embodiment skill representations41

by training on large-scale video datasets. Its embodiment-agnostic design allows it to generalize42

to unseen human prompts at test time, without any kind of additional guidance such as language43

instructions. Notably, UniSkill’s skill-centric architecture enhances robustness to novel objects and44

supports compositional task solving. In addition, its versatile training pipeline benefits from in-45

corporating diverse video datasets, with performance improving as more data sources are added.46

Finally, qualitative results from the Forward Skill Dynamics (FSD) model predictions and skill rep-47

resentation visualizations highlight the interpretability of the learned representations.48

In summary, our contributions are twofold:49

• We introduce UniSkill, a universal skill representation learning approach that enables the use50

of large-scale video data by removing the need for labels or any form of alignment constraints.51

• UniSkill shows effective human-to-robot and robot-to-robot imitation in both simulation and52

real-world experiments through its embodiment-agnostic skill representation.53

2 Related Work54

Learning action (or skill) representations for robot learning from in-the-wild video dataset is chal-55

lenging due to the absence of action labels. Recent work on latent action models addresses this by56

deriving action-relevant information through inverse or forward dynamics models. LAPO [16] and57

Genie [17] propose to learn generative interactive environments from gameplay videos with latent58

actions, but they are primarily tailored to game settings with discrete actions. LAPA [18] extends59

this line of research to real-world robotic manipulation by incorporating diverse videos, including60

human demonstrations. However, the learned latent actions are used merely to pretrain policy as61
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Figure 2: The overview of UniSkill. (a) Inverse Skill Dynamics (ISD) and Forward Skill Dynamics
(FSD) are jointly trained on diverse video datasets to encode dynamics information into univer-
sal skill representations by predicting skills and future frames, respectively. (b) A universal skill-
conditioned policy is trained on DROID and small target environment data. Here, skill representa-
tions are extracted from robot data using the pretrained ISD. (c) Skills extracted from a human video
prompt are sequentially executed by the skill-conditioned policy to reproduce the target behavior.

pseudo action labels. Going one step further, UniSkill treats latent actions as explicit skill represen-62

tations and directly trains a skill-conditioned policy on the learned representations.63

Another line of work transfers action information from human videos to robots via explicit action64

representations, such as 2D/3D trajectories and flow fields. MimicPlay [7], EgoMimic [8], and65

Motion Tracks [19] extract 3D human hand trajectories from multi-view videos or wearable sensor66

inputs. ATM [9] and Im2Flow2Act [10] predict 2D motion paths or flows from task-labeled human67

videos. These methods often require calibrated cameras, pose tracking, or environment-specific68

constraints, limiting their scalability to off-the-shelf video datasets. UniSkill differs by avoiding any69

task-specific trajectory extraction or pose supervision. Our method learns directly from raw RGB70

videos, which enables the use of diverse public human and robot datasets.71

XSkill [6] is the most similar work to our paper, as XSkill does not rely on manually designed72

skill representations or supervision, such as hand trajectories or flows. XSkill aligns skills from73

human and robot videos via Sinkhorn-Knopp clustering [20, 21], enforcing embodiment-agnostic74

skill prototypes. However, this clustering with shared prototypes implicitly assumes some degree of75

alignment between human and robot videos. In practice, while paired dataset is not required, human76

videos still cover the target robot task and be captured in similar environments for effective skill77

transfer. On the other hand, UniSkill takes a different approach, learning predictive representations78

through future frame forecasting. This completely removes the need for domain or task alignment,79

allowing the model to benefit even from entirely unrelated human videos. As a result, UniSkill can80

fully exploit web-scale, unlabeled data for cross-embodiment skill representation learning.81

3 Method82

In this paper, we address the problem of cross-embodiment imitation, where a human guides a83

robot to perform a task by demonstrating the desired behavior. We introduce UniSkill, which learns84

embodiment-agnostic skill representations from large-scale, unlabeled video data spanning diverse85

embodiments (Section 3.2), and imitates a human video demonstration through a skill-conditioned86

robot policy (Section 3.3) and cross-embodiment skills extracted from the video demonstration (Sec-87

tion 3.4), as illustrated in Figure 2.88

3



3.1 Problem Formulation89

We aim for cross-embodiment imitation, where a skill-conditioned robot policy π(ot, zt) replicates90

behaviors demonstrated in a prompt video Vp = {Ip1 , . . . , I
p
Np

} of length Np, which comes from a91

different embodiment (e.g., a human). Ipt and ot represent the frame of the prompt video and the92

robot observation at time t, respectively. The prompt video contains only raw pixel data, without any93

action annotations. To achieve imitation, we extract an embodiment-agnostic skill representation zt94

from a pair of frames (Ipt , I
p
t+k) within the prompt video, where k is the temporal distance between95

frames. This skill representation zt is then used to condition the robot’s policy π(ot, zt), enabling it96

to replicate the actions demonstrated in the video prompt.97

For training, we assume two types of datasets: (1) cross-embodiment video datasets Du = {Vu
n}

Nu
n=198

and (2) robot demonstration datasets Da = {Tn}Na
n=1. First, an unlabeled large-scale video dataset99

Du consists of both human and robot videos, where each video Vu contains only raw RGB frames100

Iu. Then, a robot dataset consists of action-labeled trajectories, where each trajectory Tn is a se-101

quence of observation-action pairs: Tn = {(ot,at)}Ln
t=1. Ln denotes the length of the n-th trajectory,102

and ot and at represent the observation and the corresponding robot action at time t, respectively.103

Da is relatively smaller than Du (i.e., Nu ≫ Na). Unless otherwise stated, Vp is excluded from104

both Du and Da, ensuring that the prompt videos remain unseen during training.105

3.2 Universal Skill Representation Learning106

Following [16], we develop UniSkill based on the intuition that the latent skill zt serves as an ef-107

fective compression of the dynamics between It and It+k, thus using the reconstruction of It+k as108

a supervisory signal. In addition, we impose an additional requirement: the extracted zt should be109

embodiment-agnostic. In other words, if the semantic meanings of the dynamics are the same,110

the extracted skills should be similar, regardless of the actor. Therefore, we fully leverage the111

embodiment-agnostic nature of motion patterns in videos by introducing an Inverse Skill Dynam-112

ics (ISD) model and a Forward Skill Dynamics (FSD) model, trained on a large-scale, multi-113

embodiment, unlabeled video dataset Du.114

Inverse Skill Dynamics Model (ISD) consumes two temporally distant frames It and It+k, and115

yields a universal skill representation zt, namely:116

zt = ISD(It, It+k). (1)

We found that relying solely on raw RGB frames can lead to encoding of embodiment-specific117

details, such as the demonstrator’s appearance or scene context, which can hinder the learning of118

embodiment-agnostic zt. To mitigate this, as illustrated in Figure 2 (a), we incorporate depth in-119

formation by generating depth maps for each frame using an off-the-shelf monocular depth estima-120

tor [22]. Note that we do not use external depth inputs; instead, our ISD model internally employs a121

depth estimation module, utilizing predicted depth as an intermediate representation. Further analy-122

sis of depth utilization is provided in Appendix A.5.123

Forward Skill Dynamics Model (FSD) predicts the future frame It+k given It and zt:124

It+k = FSD(It, zt). (2)

To prevent a trivial solution where FSD simply assigns zt = It+k, we enforce an information125

bottleneck on zt, following [16]. Since It and It+k belong to the same video and are only k frames126

apart, the dynamics may induce minimal changes to the overall scene, except for the embodiment127

and its relevant parts. Thus, we formulate the prediction process as an image editing task, modifying128

only the dynamic components while preserving the rest of the scene. To be specific, we adopt a129

diffusion-based image editing method, InstructPix2Pix [23], which generates a target image from a130

source image using a language instruction. In our framework, we replace the language instruction131

with zt, enabling the future frame to be generated according to the skill representation. Following132

InstructPix2Pix [23], we minimize the latent diffusion objective during training, encouraging ISD to133

compactly encode the dynamic information to zt.134
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3.3 Universal Skill-Conditioned Policy135

The next stage involves training a robot policy network πϕ(at:t+h | ot, zt), which receives the136

current observation ot and utilizes zt as a skill-conditioning signal. To train the skill-conditioned137

policy, we first sample two observations, ot and ot+k, from Da and extract the skill representation138

zt = ISD(It, It+k) using the pre-trained, frozen ISD. The policy πϕ is then conditioned on ot and139

zt to predict a sequence of actions at:t+h, where h denotes the action horizon [24, 25]. Finally, the140

policy is trained using behavioral cloning on a robot dataset Da:141

ϕ∗ = argmaxϕE(ot,ot+h,at:t+h)∼Da
[log πϕ(at:t+h | ot, zt)] . (3)

For cross-embodiment imitation, the policy receives zt from videos with different embodiments at142

inference time while the policy is trained solely on zt computed from robot videos. To mitigate143

the discrepancy between zt for training and testing, we apply augmentation to both It and It+k,144

producing Ĩt and Ĩt+k to simulate the aforementioned discrepancy during training, as illustrated in145

Figure 2 (b). This augmentation enhances the robustness of our skill-conditioned policy, enabling146

it to generalize effectively across diverse video prompts Vp from different embodiment at inference147

time. The effectiveness of this augmentation is demonstrated in Appendix A.5.148

3.4 Cross-Embodiment Imitation with Universal Skill Representations149

During inference, the behaviors demonstrated in the video prompts are imitated using the frozen ISD150

and skill-conditioned policy πϕ. Given a video prompt Vp, we extract a set of skill representations151

{zi}Nz
i=1, where Nz < Np, using ISD. As shown in Figure 2 (c), we sequentially condition the policy152

πϕ on each skill representation zi to predict the corresponding actions that imitate the demonstrated153

behaviors in Vp. Importantly, the universal skill representation learned by ISD allows πϕ to condition154

on video prompts from any embodiment.155

4 Experiments156

4.1 Experimental Setup157

Datasets. Our primary goal is to learn the underlying dynamics from large video datasets across158

diverse embodiments. Thus, we leverage a variety of video domains, including human and robot159

videos from both real-world and simulated environments:160

• Human video datasets: Something-Something V2 [11] and H2O [12]161

• Robot video datasets: DROID [13], BridgeV2 [14], and LIBERO [15]162

Something-Something V2 contains numerous clips of humans performing simple actions in ego-163

centric view and H2O includes both ego-centric and third-person viewpoints, featuring two-handed164

manipulation. DROID and BridgeV2 are large-scale manipulation datasets, featuring a Franka robot165

arm and a WidowX 250 arm, respectively. LIBERO is a simulation dataset in which a Franka arm166

performs various tasks in diverse environments.167

Evaluation Protocol. We conduct real-world experiments using a Franka robot across five table-168

top tasks and three kitchen tasks, as well as simulation experiments on the LIBERO benchmark169

covering eight tasks. Each task includes 100 demonstrations and we fine-tune skill-conditioned170

policies separately for each benchmark. As shown in Figure 3, tabletop evaluation uses two prompt171

types: Franka (same embodiment, held out from training) and Human (performed by humans, un-172

seen during training). For the kitchen benchmark, we also use Anubis prompts, collected from a173

custom Aloha-like robot [25, 26] with an unseen embodiment, in an unseen environment (see Fig-174

ure 4). Performance is measured by the average success rate over three prompts per task with 20175

rollouts each. Additional details on all benchmarks, including LIBERO, and robot hardware setups176

are provided in Appendix B.177
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Figure 3: Overview of our tabletop experiments. (a) Average results on the tabletop benchmark using
Franka and human prompts. (b) Results on skill composition using Franka and human prompts. A:
Open the trash bin, B: Pull out the tissue, C: Pick the blue towel and place it in the bowl, D: Close
the trash bin. (c) Results from human prompts evaluated on unseen environments in (d).

Baselines. We compare UniSkill with a goal-conditioned behavioral cloning policy (GCBC),178

which conditions on a goal image. This baseline adopts the diffusion-policy architecture like ours,179

and is trained on goal images via hindsight relabeling [27]. For a fair comparison, we condition180

the policy at inference on a sub-goal image 20 frames ahead, matching the 20-frame skill inter-181

val used by our skill-conditioned policy. Apart from replacing the conditioning factor from a skill182

representation to a goal image, all other aspects remain identical in both training and inference.183

We also compare against XSkill [6], which learns a shared skill representation to enable cross-184

embodiment imitation through a self-supervised learning approach. Unlike UniSkill, it requires a185

scene-aligned dataset, where human demonstrations are performed in the same environment and for186

the same task as the robot. To support this, we collect an additional 100 human demonstrations per187

task to train XSkill. Note that without this additional scene-aligned human video data, XSkill fails188

on all tabletop tasks (i.e., 0 success). More details on the baselines are provided in Appendix C.189

4.2 Cross-Embodiment Imitation190
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Figure 4: Results on the Kitchen benchmark
using Franka, Human, and Anubis (a differ-
ent robot embodiment) prompts.

Figure 3(a) and Figure 4 present the cross-191

embodiment imitation performance of UniSkill on192

real-world tabletop and kitchen benchmarks, and193

Figure 5 shows the results on the LIBERO [15]194

benchmark. UniSkill consistently outperforms all195

baselines across both settings. Notably, XSkill fails196

to imitate human videos, even when trained di-197

rectly on human demonstrations. We attribute this198

to XSkill’s clip-level contrastive learning objective,199

which does not effectively capture dynamics be-200

tween frames. On the other hand, UniSkill’s image-201

editing based objective explicitly models temporal202

dynamics and generalizes well to both human and203

Anubis prompts, despite the former involving en-204

tirely different morphologies and the latter coming from an unseen robot in an unseen environment205

with novel objects. This robustness highlights the embodiment-agnostic nature of UniSkill’s skill206

representations enabled by large-scale video data including human videos. Detailed task-wise results207

and additional results on the LIBERO benchmark are provided in Appendix A.208
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4.3 Cross-Embodiment Skill Representations209

Can UniSkill generalize to unseen, compositional tasks? During pre-training on large-scale210

video datasets, ISD compresses a motion pattern between two frames, allowing zt to represent a211

low-level skill rather than a full task. Although both UniSkill and GCBC are trained solely on212

demonstrations of individual tasks, we can assemble them at inference time to perform novel task213

combinations by leveraging the compositional nature of skills. Figure 3 (b) presents the results of214

task compositions in the tabletop benchmark. While GCBC fails in all evaluations, UniSkill shows215

robust performance across all task combinations, even with human prompts. This highlights that216

UniSkill captures a combinatorial space of diverse skills rather than overfitting to specific tasks,217

suggesting its potential scalability to a wide range of novel tasks.218
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Figure 5: Average success rates for the
LIBERO benchmark with unseen human
prompts (bottom). In human prompt
videos, a human directly manipulates objects
in a real-world environment similar to the
LIBERO environment.

Can UniSkill generalize to unseen environments?219

UniSkill leverages embodiment-agnostic skill rep-220

resentations to translate human video prompts into221

robot behaviors, despite not being trained on hu-222

man prompts. To further assess its generalization223

beyond embodiment, we evaluate Uniskill in two un-224

seen environments: Scene A, which alters the back-225

ground and objects of the original tabletop bench-226

mark, and Scene B, which adds additional distractors227

into Scene A, as illustrated in Figure 3 (d). Figure 3228

(c) shows that UniSkill achieves comparable perfor-229

mance across novel and visually modified scenes,230

which indicates that UniSkill is resilient to back-231

ground and distractor variations.232

To further validate scene-level generalization, we233

also conduct experiments in simulation, as shown in234

Figure 5. Even when the human prompts come from235

entirely different environments, UniSkill is able to236

successfully infer and execute the intended task.237

Further detail are provided in Appendix B.238

Droid Robot Human Avg

✓ 0.56
✓ ✓ 0.76

✓ ✓ ✓ 0.91

Table 1: Ablation studies on
the impact of different train-
ing datasets, conducted on the
LIBERO benchmark using robot
prompts. Robot: Bridge and
LIBERO. Human: Something-
SomethingV2 and H2O.

Does UniSkill benefit from incorporating human videos?239

Using human videos for skill representation learning enables240

UniSkill to acquire diverse and transferable skills by lever-241

aging large-scale video data. As shown in Table 1, adding242

additional robot datasets (BridgeV2 and LIBERO) improves243

performance by 20%, while further incorporating large-scale244

human videos (Something-SomethingV2 and H2O) boosts it245

by an additional 15%. This demonstrates that UniSkill bene-246

fits not only from scaling the robot dataset but also from us-247

ing diverse human videos, highlighting the effectiveness of its248

embodiment-agnostic skill representation learning.249

Does UniSkill capture dynamic information? During skill representation learning, our image-250

editing based objective encourages the model to focus on dynamics changes between frames rather251

than static content, promoting the encoding of motion patterns into the skill representations. To252

validate this, Figure 6 presents qualitative results of future frame prediction using FSD, conditioned253

on skill representations zt from ISD. Even when the current image is the same, the predicted future254

frame varies depending on the motion encoded in zt, despite the skills originating from different255

environments. This confirms that the skill representation captures meaningful motion dynamics. A256

comparison of dynamics awareness between UniSkill and prior works are provided in Appendix A.3.257
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Figure 6: Qualitative results from FSD. The skill representation is extracted using ISD from each
video prompt and conditioned on FSD to predict the future frame. (Left) Skills are extracted from
two images using ISD. (Right) The predicted image generated by passing the current image and the
extracted skill through FSD. Best viewed in color.

Does UniSkill exhibit embodiment-agnostic properties? Unlike prior methods, UniSkill258

can learn cross-embodiment skill representations without requiring constrained hu-259

man data, such as paired demonstrations with robots or matched environments. Fig-260

ure 6 shows that the predicted future frames from FSD preserve the original embod-261

iment, even when the skill representation zt is inferred from a different embodiment.262

Figure 7: t-SNE visualization of
UniSkill embeddings on the XSkill
datasets. Circle markers indicate
skill embeddings from human prompts,
while cross markers represent those
from robot prompts. Each color denotes
a different skill. Example frames for
each skill are shown in Appendix A.6.2.

Notably, UniSkill preserves the correct embodiment263

when the current observation is from a simulation envi-264

ronment and the human prompt comes from a real-world265

setting. Leveraging this property, we improve the original266

GCBC method, which suffers from performance degrada-267

tion due to domain gaps between sub-goal images and the268

current observation. As shown in Figure 5, we introduce269

GCBC-U, a variant that replaces GCBC’s sub-goal image270

with an FSD-predicted frame (see details in Appendix A),271

resulting in a 15% performance improvement.272

Additionally, Figure 7 presents a t-SNE visualization us-273

ing the XSkill dataset [6], which is not used for train-274

ing. The embeddings form task-specific clusters rather275

than embodiment-specific ones. The pattern indicates that276

the representation itself encodes embodiment-agnostic277

skills, since different tasks require different skill sets. To-278

gether with the results from the real-world benchmarks,279

these findings highlight the embodiment-agnostic nature280

of UniSkill’s skill representations.281

5 Conclusions282

In this paper, we propose UniSkill, a novel approach that successfully addresses cross-embodiment283

challenges without relying on a scene-aligned cross-embodiment dataset during training. Unlike284

prior works, UniSkill leverages unlabeled, large-scale video datasets spanning diverse embodiments285

to learn shared skill representations that generalize across embodiments. This enables impressive286

cross-embodiment imitation utilizing only the skill representations, without requiring additional in-287

puts such as language instructions or goal images. UniSkill achieves comparable performance to ex-288

isting methods and demonstrates the ability to mimic behaviors from video prompts, even when the289

prompts feature different embodiments. Our results demonstrate that UniSkill effectively captures290

embodiment-agnostic dynamics information, allowing the policy to generalize across embodiments,291

making it a scalable solution for cross-embodiment imitation.292
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6 Limitations293

UniSkill effectively encodes embodiment-agnostic dynamics into the skill representation, enabling294

policies to replicate behaviors from video prompts despite embodiment discrepancies. However,295

UniSkill has three primary limitations.296

First, UniSkill relies on a fixed skill interval, which restricts its ability to adapt to varying execu-297

tion speeds between human and robot demonstrations. Allowing for variable skill durations could298

improve its flexibility in handling differences in motion speeds across embodiments.299

Second, UniSkill struggles with videos that exhibit abrupt viewpoint changes, particularly in ego-300

centric human videos. Drastic visual shifts between consecutive frames hinder the extraction of301

coherent dynamic information, suggesting that improving robustness to such viewpoint variations is302

an important direction for future work.303

Finally, UniSkill prefers prompt videos that exhibit robotic behaviors because its approach relies304

purely on motion imitation. Without semantic cues such as task descriptions, having well-aligned305

behaviors in the prompts enhances performance. A promising direction is to integrate UniSkill306

with vision-language-action (VLA) frameworks, where the VLA component provides high-level307

reasoning and UniSkill contributes precise motion representations for execution.308
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A Additional Experimental Results406

A.1 Detailed Results407

A.1.1 Tabletop and Kitchen Benchmark408

Table 2a presents the cross-embodiment capabilities of UniSkill’s universal skill representation409

within the tabletop benchmark. For Franka prompts, UniSkill achieves the highest performance410

on most tasks compared to the baselines. While GCBC and XSkill show average success rate of411

60% and 61%, UniSkill maintains a minimum success rate of 75%, indicating consistently strong412

performance. For human prompts, GCBC and XSkill fail to complete more than half of the tasks413

even once. In contrast, UniSkill succeeds on most tasks and achieves an average success rate more414

than three times higher than the baselines. This robustness, enabled by training on large-scale video415

data, demonstrates the generality of our skill representation across different embodiment, which is a416

central goal of our framework.417

Table 2b illustrates the performance on the kitchen benchmark. UniSkill outperforms GCBC when418

evaluated with Franka prompts, which use an embodiment seen during both skill representation and419

policy learning. Even with Anubis prompts, which involve an unseen robot embodiment, UniSkill420

still surpasses GCBC. The performance gap is even more pronounced with human prompts, where421

UniSkill achieves more than twice the success rate of GCBC. Notably, GCBC exhibits biased per-422

formance with unseen prompts, succeeding on only one out of three tasks for each type of different423

embodiment prompt. This highlights GCBC’s difficulty in handling demonstration videos from un-424

seen embodiments.425

Prompt Task GCBC XSkill UniSkill

Franka

Pull out the tissue 0.43 0.42 0.93
Push the blue towel 0.93 0.97 0.75
Close the trash bin 0.13 0.58 0.65
Open the trash bin 0.63 0.80 0.87
Pick the blue towel and place it in the bowl 0.62 0.28 0.85

Average 0.60 0.61 0.81

Human

Pull out the tissue 0.00 0.00 0.57
Push the blue towel 0.00 0.00 0.37
Close the trash bin 0.45 0.00 0.25
Open the trash bin 0.10 0.00 0.62
Pick the blue towel and place it in the bowl 0.00 0.00 0.00

Average 0.11 0.00 0.36

(a) Tabletop

Prompt Task GCBC UniSkill

Franka
Put carrot on plate 0.58 0.90
Turn faucet front to left 1.00 1.00
Turn faucet front to right 0.70 0.93

Average 0.76 0.94

Anubis
Put carrot on plate 0.00 0.00
Turn faucet front to left 1.00 0.83
Turn faucet front to right 0.00 0.80

Average 0.33 0.54

Human
Put carrot on plate 0.00 0.67
Turn faucet front to left 1.00 0.97
Turn faucet front to right 0.00 0.97

Average 0.33 0.87

(b) Bridge

Table 2: Real-world robot experiment results comparing UniSkill with baselines. Each task is eval-
uated using three prompts, and success rates averaged over 20 rollouts per prompt. (a) Results on
the tabletop benchmark using Franka and Human prompts. (b) Results on the kitchen benchmark
using Franka, Anubis (a different robot embodiment), and Human prompts.

A.1.2 Task and Environment Generalization426

Table 3a presents detailed results for compositional tasks. For Franka prompts, performance de-427

creases as task complexity increases, but UniSkill still achieves a 42% success rate even when428

composing four tasks. In contrast, GCBC fails even on compositions of just two tasks. For hu-429

man prompts, UniSkill achieves a 33% success rate on two-task compositions, despite the prompts430

involving both an unseen embodiment and unseen tasks. These results highlight the compositional431

nature of UniSkill’s skill representation. Although the composed tasks are not seen during policy432

learning, the skill-conditioned policy can still predict appropriate actions from the given skill rep-433

resentation. This shows that even when tasks are novel, the policy can generalize across skills by434

executing actions aligned with the inferred motion patterns, resulting in successful behavior.435

Table 3b reports per-task results for experiments in unseen environments. With human prompts,436

GCBC fails on most tasks, showing biased results with success only on one or two out of five437
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Prompt Task GCBC UniSkill

Franka
A + B 0.00 0.83
A + B + C 0.00 0.72
A + B + C + D 0.00 0.42

Human A + B 0.00 0.33

(a)

Task Scene A Scene B
GCBC UniSkill GCBC UniSkill

Pull out the tissue 0.00 0.33 0.00 0.23
Push the blue towel 0.03 0.18 0.00 0.17
Close the trash bin 0.05 0.15 0.12 0.12
Open the trash bin 0.02 0.62 0.02 0.57
Pick the blue towel and place it in the bowl 0.35 0.00 0.30 0.00

Average 0.09 0.26 0.12 0.23

(b)

Table 3: (a) Skill compositionality evaluation on the tabletop benchmark using Franka and human
prompts. A composed task is considered successful only if all sub-tasks are completed. The sub-
tasks are defined as follows: A: Open the trash bin, B: Pull out the tissue, C: Pick the blue towel and
place it in the bowl, D: Close the trash bin. (b) Results on unseen scenes. Evaluation uses human
prompts and follows the tabletop benchmark procedure.

tasks, and zero success on the rest. In contrast, UniSkill demonstrates generalization, successfully438

completing most tasks. Similarly, in Figure 4, Anubis prompts are collected in unseen environ-439

ments with a novel embodiment. While GCBC fails on all tasks under these conditions, UniSkill440

succeeds across them, as shown in Table 2b. This is further supported by the results in Table 4,441

where UniSkill achieves 48% success with human prompts while GCBC reaches only 9% (see Ap-442

pendix A.2). These results indicate that UniSkill is robust to scene variations in the prompt videos,443

consistently succeeding across the tabletop, kitchen, and simulation benchmarks. They also sup-444

port the conclusion that UniSkill can imitate behaviors from demonstration videos, regardless of the445

environment in which they were collected.446

A.2 Simulation Results on LIBERO447

A.2.1 Evaluation Protocol448

Figure 8: We created a prompt video
in which a human directly manipu-
lates objects after arranging them in a
real-world environment similar to the
LIBERO task. Here, we visualize only
2 out of the 8 tasks here for clarity.

We evaluate UniSkill on LIBERO [15], a benchmark de-449

signed for multi-task scenarios that features diverse object450

interactions, layouts, and tasks within a tabletop simula-451

tion environment using a Franka robot. Our evaluation452

encompasses 8 tasks across 2 distinct scenes in LIBERO.453

Detailed explanations of the tasks are provided in Ap-454

pendix B.4. Each task includes 50 expert demonstrations,455

which we use for policy learning.456

For evaluation, one demonstration per task is selected as457

the Franka prompt. To generate human prompts, we repli-458

cate the same tasks as those in the LIBERO benchmark.459

However, due to the nature of the simulation environment,460

it is not possible to create human prompts that exactly461

match the simulation settings. Instead, we align the num-462

ber and positions of objects to closely resemble the LIBERO environment while ensuring a realistic463

human demonstrations, as shown in Figure 8. As a result, the objects presented in the human prompts464

are largely novel and introduce previously unseen scenarios. This implies that, while the behaviors465

demonstrated may align with those in the LIBERO benchmark, the semantic attributes of the objects466

and environment may differ.467

To measure success rates, we use one demonstration per task and perform 20 rollouts per evaluation.468

A.2.2 Cross-Embodiment Skill469

Table 4 presents the evaluation results. In the top section, UniSkill outperforms the baselines on470

robot prompts across all tasks. Both GCBC and UniSkill are trained on expert demonstrations, but471

the result demonstrates the unique effectiveness of UniSkill’s skill representations compared to raw472

13



Prompt Method Scene1 Scene2 Avg
Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

LIBERO GCBC 0.00 0.55 0.90 0.30 0.70 0.95 0.25 0.35 0.51
UniSkill 0.90 0.80 1.00 1.00 1.00 1.00 0.90 0.70 0.91

Human
GCBC 0.05 0.00 0.25 0.00 0.25 0.00 0.05 0.15 0.09

UniSkill 0.70 0.00 0.80 0.00 0.40 0.20 0.70 0.80 0.48

GCBC-U 0.25 0.10 0.50 0.10 0.15 0.15 0.00 0.65 0.24

Table 4: Performance comparison on the LIBERO simulation benchmark. For each task, one demon-
stration is used with 20 rollouts, and success rates are averaged to evaluate the performance.

Figure 9: Comparison of the inference pipelines for GCBC, GCBC-U and UniSkill. All three meth-
ods use the same frame interval k. GCBC uses the It+k frames as the sub-goal and predictions the
actions required to achieve that state. In contrast, GCBC-U employs ISD and FSD to predict the
sub-goal based on the current observation. UniSkill is directly conditioned on the skill representa-
tion from ISD rather than relying on a pixel-level goal condition.

pixel inputs. This advantage is observed not only in real-world experiments but also in the simulation473

benchmark.474

The bottom section of Table 4 evaluates cross-embodiment performance. GCBC struggles to achieve475

meaningful performance when transitioning from LIBERO prompts to human prompts. Espe-476

cially, excluding tasks where both GCBC and UniSkill fail, GCBC’s maximum success rate is 25%,477

whereas UniSkill’s minimum success rate is 30%, surpassing GCBC’s best result.478

As shown in Figure 8, human prompts are not perfectly aligned with the simulation environment,479

making GCBC highly sensitive to such discrepancies. Because GCBC predicts actions based on480

sub-goal images, large visual mismatches lead to extremly poor performance. In contrast, UniSkill481

models the demonstrator’s behavior from video prompts, allowing it to generalize across variations482

in object semantics. This fundamental difference accounts for the significant performance gap be-483

tween UniSkill and GCBC.484

A.2.3 Improving GCBC with UniSkill485

Due to the embodiment-agnostic nature of its skill representation, UniSkill enables FSD to gener-486

ate future frames that reflect the encoded motion while preserving the original embodiment. This487

property can help resolve the embodiment mismatch issue in GCBC, where a sub-goal image from488

a human prompt not align with the robot’s embodiment.489

Building on this insight, we introduce GCBC-U, a variation of GCBC where the sub-goal image490

is replaced by one generated from FSD using UniSkill’s skill representation. As shown in Table 4,491

GCBC-U significantly improves upon standard GCBC (from 9% to 24%), despite the only change492

being the sub-goal input. This highlights that the major limitation of GCBC lies in the embodiment493

discrepancy between the goal image and the target robot. UniSkill’s embodiment agnostic property494

effectively resolves this issue.495
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Figure 10: Comparison with Uniskill FSD and LAPA. A skill (UniSkill) or latent action (LAPA)
was extracted between two frames, and the next frame was generated conditioned on the resulting
vector. UniSkill FSD successfully reconstructs the video dynamics, while LAPA produces blurry
images. (a): Result on DROID, (b): Result on XSkill.

The overall inference pipelines of GCBC, GCBC-U, and UniSkill are illustrated in Figure 9.496

A.3 Comparison with LAPA497

Both LAPA [18] and UniSkill utilize diverse video datasets, including human demonstrations, to498

learn latent action or skill representations. LAPA adopts Genie’s [17] transformer-based architecture499

trained with discrete latent actions.500

In contrast, UniSkill employs an image editing [23] based pipeline to jointly train the Forward Skill501

Dynamics (FSD) and Inverse Skill Dynamics (ISD) models. In this framework, the edited frame502

serves as the next frame, while the original frame is treated as the current frame. This design503

encourages the ISD model to encode motion-specific features into the skill representation, rather504

than static features like background appearance. As a result, UniSkill effectively captures the motion505

between two frames, which we refer to as a skill.506

Figure 10 compares future frame predictions from LAPA and UniSKill, using latent embeddings507

produced by their respective inverse models. We evaluate on two datasets: DROID [13], which is508

used for training, and XSkill [6], which is unseen during training.509

In Figure 10(a), on the seen DROID dataset, LAPA generates blurry and less informative future510

frames, while UniSkill produces sharp and accurate predictions. In Figure 10(b), using the XSkill511

dataset–which is not used for training either method–only UniSkill accurately predicts the next512

frame, while LAPA continues to generate blurry outputs. Notably, when tested on human demon-513

stration videos, UniSkill predicts precise future frames based on the extracted skill representation,514

whereas LAPA merely reproduces the input frame, failing to model motion dynamics. These results515

indicate that UniSkill’s skill representation effectively captures dynamic changes between frames,516

while LAPA fails to do so.517

A.4 Additional Comparison with XSkill518

A.4.1 Training XSkill on Large-Scale Datasets519

We observe low success rates for XSkill on our tabletop benchmark, even when using scene-aligned520

datasets–i.e., human and robot videos collected in the same environment and covering the same sub-521

tasks. Although XSkill is typically used with scene-aligned data, it can be extended to unaligned,522

large-scale video datasets for skill discovery training, resembling the skill representation learning523

stage of UniSkill. To enable a fairer comparison, we extend XSkill’s training to include large-scale524

datasets and evaluate two variants that mirror UniSkill’s training setup:525
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• XSkill-L uses the same datasets as UniSkill for skill discovery. This includes robot526

datasets: Droid [13], Bridge [14], and LIBERO [15] as well as human datasets: Something-527

Something V2 [11] and H2O [12].528

• XSkill-A builds on XSkill-L by additionally incorporating scene-aligned datasets collected529

in the tabletop environment.530

A.4.2 Progress-Based Success Metric531

In our primary evaluation, a task is marked as successful only if it is completed in full; otherwise,532

it is considered a failure. While this binary metric is effective for comparing compact and robust533

methods, it cannot distinguish between completely failed attempts and those that achieve partial534

progress.535

To address this, we introduce intermediate evaluation points for each task to define partial success.536

Full task definitions are provided in Appendix B.3, and the partial success criteria are listed below:537

• Pull out the tissue: Move to the left - 0.3; reach above the tissue - 0.5; grasp the tissue -538

0.7; fully pull out the tissue - 1.0.539

• Close the trash bin: Move to the right - 0.3; reach above the trash bin - 0.5; reach behind540

the lid - 0.7; fully close the lid - 1.0.541

• Open the trash bin: Move to the right - 0.3; reach above the trash bin - 0.5; fully open the542

lid - 1.0.543

• Pick the towel and place it in the bowl: Move downward - 0.3; touch the towel - 0.5; lift544

the towel - 0.7; place the towel in the bowl - 1.0.545

• Push the blue towel: Move downward - 0.3; touch the towel - 0.5; push without covering546

the mark - 0.7; push and cover the mark - 1.0.547

A.4.3 Effect of Dataset Scale and Alignment on XSkill548

Prompt Task XSkill-L XSkill-A UniSkill

Franka

Pull out the tissue 0.17 0.00 0.90
Push the blue towel 0.03 0.00 0.84
Close the trash bin 0.61 0.19 0.91
Open the trash bin 0.57 0.19 1.00
Pick the blue towel and place it in the bowl 0.33 0.06 0.90

Average 0.34 0.09 0.91

Human

Pull out the tissue 0.63 0.10 0.75
Push the blue towel 0.20 0.20 0.37
Close the trash bin 0.50 0.32 0.66
Open the trash bin 0.50 0.17 0.90
Pick the blue towel and place it in the bowl 0.00 0.04 0.21

Average 0.37 0.17 0.58

Table 5: Real-world robot experiment results on table-
top benchmark using the progress-based metric. For
both XSkill and UniSkill, each task is evaluated with
three prompts, and success rates are averaged over five
rollouts per prompt (UniSkill results are re-evaluated
accordingly).

Table 5 presents comparison results on549

tabletop benchmark using the progress-550

based success metric. The results show551

that UniSkill significantly outperforms552

both XSkill variants on Franka and hu-553

man prompts. UniSkill achieves near-554

perfect success (91%) across diverse tasks555

with Franka prompts and also attains the556

highest success rate on human prompts.557

In contrast, XSkill-L and XSkill-A per-558

form poorly, despite being trained on the559

same or more datasets used for UniSkill’s560

skill representation learning. This high-561

lights UniSkill’s scalability with large-562

scale training, whereas XSkill struggles563

to scale effectively. Notably, XSkill-L564

achieves only around 30% success, corresponding roughly to the first stage of the progress met-565

ric. This suggests that XSkill-L rarely completes tasks and often fails beyond the initial motion566

steps.567

When comparing XSkill-L and XSkill-A, where the only difference is the inclusion of scene-aligned568

tabletop data, XSkill-L actually performs better, even though XSkill-A uses additional data. This is569

likely because the added tabletop dataset contains only 1K videos, which is much smaller than the570

large-scale training set of over 200K videos. As a result, the additional data has minimal effect on571

performance. Moreover, this outcome reveals that XSkill’s training becomes unstable when scaled572

to large and diverse datasets.573
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These results highlight a key limitation of XSkill’s approach, which maps skill embeddings into a574

shared space using a fixed set of predefined prototypes. While this mechanism allows mapping into575

a continuous skill representation, the limited number of prototypes restricts the model’s ability to576

represent the wide variety of skills found in large-scale video datasets. This limitation contributes577

to failures in completing full tasks and leads to instability during training. For example, even under578

the progress-based metric, XSkill-L completely fails one task with a human prompt.579

In contrast, UniSkill emphasizes motion by focusing on the dynamic parts of a video through an580

image-editing pipeline. On the other hand, XSkill relies on learning objectives such as prototypes581

loss and time-contrastive learning, which are less effective at capturing motion patterns across video582

frames. By directly encoding motion, UniSkill captures features that generalize well across diverse583

embodiments. This allows it to demonstrate strong flexibility, even when responding to human584

demonstrations.585

Droid Robot XSkill Human Avg

✓ 0.25
✓ ✓ 0.19
✓ ✓ ✓ 0.19
✓ ✓ ✓ ✓ 0.49

✓ ✓ ✓ 0.48

(a)

Depth Augmentation Avg

✓ 0.44
✓ 0.00
✓ ✓ 0.48

(b)

k Prompt
Stage 1 Stage 2 LIBERO Human

[1, 20]
1 0.19 0.08
20 0.18 0.05

[20, 40]
20 0.91 0.45
40 0.79 0.34

[40, 60]
40 0.80 0.30
60 0.43 0.19

(c)

Table 6: Ablation studies on the LIBERO benchmark using human video prompts. All experi-
ments evaluate variations of UniSkill without relying on scene-aligned human-robot datasets. (a)
Effect of training datasets The last row shows our method trained without the scene-aligned dataset
(XSkill), yet achieving comparable performance. Robot: Bridge [14] and LIBERO [15]. Human:
Something-SomethingV2 [11] and H2O [12]. (b) Effect of training strategies. Both using augmen-
tation and depth improve performance. (c) Effect of skill interval k. Stage 1 (skill representation
learning) samples k from a range, while Stage 2 (policy learning) uses a fixed interval.

A.5 Ablation Studies586

All ablation studies are conducted in LIBERO benchmark with human prompt. To conduct ablation587

studies, evaluation protocol is the same as simulation experiment.588

Effect of Dataset for Pre-training. As shown in Table 1, we already observe the importance of589

scaling up dataset size with robot prompts. To further investigate the effect of pretraining datasets590

on cross-embodiment skill learning, we conduct ablation studies on various datasets with human591

prompt, with results presented in Table 6a. When large-scale human video datasets are used, per-592

formance more than doubles (from 19% to 49%), highlighting the importance of including human593

data. Interestingly, incorporating the XSkill dataset [6], which is scene-aligned, does not lead to594

meaningful improvements–likely due to its relatively small size. These findings suggest that the size595

and diversity of the dataset are more critical than whether it is scene-aligned.596

Effect of Depth Prediction. Table 6b demonstrates the importance of incorporating depth predic-597

tion. Because our objective is to encode dynamics that transfer across embodiments, the represen-598

tations should avoid overreliance on semantic cues that can entangle embodiment-specific features.599

This issue is amplified in real-world setting, which are more heterogeneous than simulation envi-600

ronments. As demonstrated in Figure 12 (b), removing depth prediction results in a substantial601

drop in K-means clustering accuracy from 82.0 to 31.7, indicating reduced skill separation across602

embodiments. A consistent trend appears on the Tabletop benchmark, where removing depth re-603

duces K-means clustering accuracy from 62.8 to 40.6. To mitigate this dependency, ISD explicitly604

incorporates depth predictions. When depth prediction is not used, overall performance decreases,605

highlighting its importance in ensuring an embodiment-agnostic skill representation.606
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Effect of Augmentation. We evaluate the effectiveness of augmenting ISD inputs during policy607

learning. As shown in Table 6b, eliminating this augmentation leads to large drop in performance.608

Because UniSkill encodes the dynamics of the video prompt, it is sensitive to changes in scene color609

and object appearance. These results indicate that our augmentation strategy effectively mitigates610

these challenges. We use colorjittering for the augmentation.611

Effect of Skill Interval. To validate our choice of the skill interval k, we conduct abla-612

tion studies on the LIBERO [15] benchmark. Training consists of two stages: skill repre-613

sentation learning and skill-conditioned policy learning. During skill representation learning,614

we define a range for k and sample a value from this range at each training iteration. For615

policy learning, we use a fixed skill interval denoted by k. As shown in Table 6c, our616

default setting for k achieves the best performance across both robot and human prompts.617
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Figure 11: Ablation studies on cam-
era speeds using human prompts on the
LIBERO benchmark. Each success rate
represents the average across all tasks in
the benchmark.

When k is too small, it becomes difficult to extract mean-618

ingful skill information between frames, leading to de-619

graded performance. On the other hand, if k is too large,620

it may exceed the feasible execution horizon of a skill,621

which also harms performance, as seen when the policy622

learning interval is set to 60.623

Effect of Speed. In Figure 11, we evaluate the robust-624

ness of UniSkill by varying the video speed of the human625

prompts. The best performance occurs at speeds of 1.00×626

and 1.25×. Notably, performance decreases as the speed627

slows down. When the speed is too low, the encoded skill628

interval becomes short to capture meaningful action se-629

quences.630

A.6 Additional Analyses631

A.6.1 Analysis of Skill-Conditioned Policy632

In addition to the embodiment-agnostic property of our skill representation, we further evaluate its633

effectiveness in policy learning. To isolate this effect, we train the skill representation using only the634

DROID [13] dataset.635

Table 7 presents the results on the Scene B environment, which features a different background,636

different objects, and added distractors, as introduced in Section 4.3. The strong performance in this637

unseen setting demonstrates the generalization capability and effectiveness of our skill representa-638

tion, even when trained on a limited, robot-only dataset.639

Task Scene B
GCBC UniSkill†

Pull out the tissue 0.42 0.92
Push the blue towel 0.43 0.33
Close the trash bin 0.08 0.48
Open the trash bin 0.52 0.78
Pick the blue towel and place it in the bowl 0.43 0.90

Average 0.38 0.68

Table 7: Real-world robot experiments on the tabletop benchmark comparing the performance of
UniSkill and XSkill using robot prompts. † indicates robot-only training, where only the DROID
dataset is used for skill representation learning.
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Figure 12: t-SNE visualization of UniSkill embeddings with and without depth on the XSkill dataset.
Circle markers represent skill embeddings from human prompts, while cross markers represent those
from robot prompts. Each color corresponds to a different task, with visual examples shown above
for both human and robot executions.

A.6.2 Analysis of Cross-Embodiment Skill640

We further analyze UniSkill’s ability to generalize across embodiments. As discussed in Section 4,641

UniSkill’s skill representations cluster by skill rather than embodiment.642

To investigate this further, we visualize the t-SNE plots of skill embeddings with and without depth643

information. As shown in Figure 12, the embeddings learned with depth are more compact and644

clearly separated by skill, while the embeddings without depth are more dispersed and overlapping.645

±4cm ±8cm ±12cm0cm
Position difference from prompt

Test Environment Success Rate with

different towel positions

Av
er

ag
e


Su
cc

es
s 

R
at

e

0.6 1.0 1.0

0.0

0.8

1.0

1.0

0.8

0.4

0.0

0.00.0

0.55

0.15

0.951.0

Figure 13: Visualization of the test
environment and success rates across
different initial towel positions. The
towel’s position is shifted up to ±12cm
from the prompt location to evaluate
UniSkill’s spatial sensitivity.

Quantitatively, using K-means clustering with K = 3,646

the depth-enabled model achieves higher clustering accu-647

racy. This suggests that incorporating depth improves the648

quality of the learned skill representation and enhances its649

embodiment-agnostic property.650

A.6.3 Analysis of Spatial Sensitivity of UniSkill651

UniSkill performs tasks by imitating motion patterns652

from demonstration videos. As a result, the difference653

of positions of interacted objects between prompt video654

and test environment can influence task performance. To655

investigate this, we design an experiment varying the po-656

sition of the target object.657

We select the task Push the blue towel and modify the658

initial position of the towel in the evaluation environment659

relative to its position in the prompt video. While the660

towel’s position is already randomized during evaluation,661

we extend this variation to more extreme displacements662

to test the limits of spatial generalization. As shown in663

Figure 13, the towel’s center is shifted by 0 cm, 4 cm, 8664

cm, and 12 cm from the original prompt position. The665

results show that as the position deviates further from the666

original, the success rate declines.667
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This drop in performance suggests that UniSkill, which emphasizes motion patterns over semantic668

cues, can be sensitive to spatial changes. Nevertheless, it sill demonstrates a reasonable level of669

robustness, successfully completing the task across a range of varied object positions.670

B Experiment Details671

B.1 Hardware Setup672

We adopt the hardware configuration utilized in DROID [13]. Specifically, our setup comprises a673

Franka Research 3 robot arm paired with a 2F-85 Robotiq gripper. For the camera setting, we use674

two cameras: a side camera and a wrist-mounted camera. The side camera employed is the Zed 2i,675

while the wrist-mounted camera is Zed Mini. Both cameras capture RGB images at a resolution of676

720× 1280 at 15 Hz. The overall settings are depicted in Figure 14.677

B.2 Implementation Detail678

Figure 14: Our experiments are con-
ducted in the DROID [13] environment.

For pre-training, we initialize the FSD using the Instruct-679

Pix2Pix model [23] and train the ISD from scratch. For680

the visual encoder, we adopt the ResNet-18 [28], and for681

depth prediction, we utilize the pre-trained DepthAny-682

thingV2 model [22] without further training. During pre-683

training, skill interval k is randomly selected between684

1.0s and 2.0s, with the specific values determined by the685

frame rate of the video datasets. The image resolution is686

set to 256 × 256. For policy learning, we employ dif-687

fusion policy [24] as the policy network. In real-world688

experiments, both UniSkill and GCBC are pre-trained on689

the DROID dataset [13] and fine-tuned on the collected690

dataset. During both training and inference, the skill in-691

terval k is fixed at 20 frames, the image resolution is692

128 × 128, and the action dimension is set to 7. The hy-693

perparameters are provided in Appendix C.694

B.3 Real-world Environments695

B.3.1 Tabletop Benchmark696

For the tabletop benchmark, we utilize four objects: a tissue box, bowl, towel, and trash bin. The697

positions of the tissue box and trash bin are fixed, while the pose of the tissue varies. For the bowl698

and towel, we define fixed regions and randomize their locations within those areas. The towel’s699

pose is also varied for each trial. Additionally, we standardize the initial trajectory for each task to700

prevent the policy from becoming conditioned on specific initial movements.701

Task definitions are as follows:702

• Pull out the tissue. Pull out the tissue from the tissue box. Success Criterion: The entire703

tissue is removed from the tissue box.704

• Close the trash bin. Close the lid of the trash bin. Success Criterion: The lid is fully705

closed.706

• Open the trash bin. Open the lid of the trash bin. Success Criterion: The lid is clearly707

opened without any partial closure.708

• Pick the towel and place it in the bowl. Pick up the blue towel and place it into the bowl.709

Success Criterion: More than half of the bowl’s area is covered by the towel.710

• Push the blue towel. Push the blue towel to the red mark. Success Criterion: The red mark711

is entirely covered by the blue towel.712
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Figure 15: We designed five tasks within a real-world scene. The tasks were designed to share
similar trajectories or involve the same objects across different tasks. This task setup allows for the
evaluation of various actions, including push, pull, and pick-and-place.

Figure 15 shows the examples of task execution from both robot and human videos. Note that human713

videos are not used during training.714

For the skill robustness experiments in Section 4.3, we construct two new scenes.715

• Scene A: As shown in Figure 16(a), we change the background (table), use a completely716

different towel in terms of shape, size, and color, and replace the trash bin and bowl with717

different colors.718

• Scene B: As shown in Figure 16(b), we introduce various distractor objects, including719

puppets, extra bowls, towels, and unrelated items, to increase visual complexity.720

(a) Scene A (b) Scene B

Figure 16: Unseen environments of tabletop benchmark used for skill robustness evaluation.

B.3.2 Kitchen Benchmark721

For the kitchen benchmark, we employ a toy sink similar to that presented in the BridgeV2722

dataset [14] and utilize three objects: faucet, carrot and plate. The data collection process mirrors723

that of the tabletop benchmark to maintain consistency across benchmarks.724

The task definitions are as follows:725

• Turn faucet front to right. Turn the head of faucet to the right direction. Success Crite-726

rion: The faucet is moved to the right relative to its original position.727

• Turn faucet front to left. Turn the head of faucet to the left direction. Success Criterion:728

The faucet is moved to the left relative to its original position.729

• Put the carrot on the plate. Pick up carrot and put it on the plate. Success Criterion: The730

entire carrot is placed on the plate without any part touching the sink surface.731

Figure 17 demonstrates examples of task executions using Franka, Anubis, and human embodi-732

ments. Anubis is an unseen robot embodiment not included in skill representation learning, and its733

demonstrations are collected in an unseen environment with a completely different background.734
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Figure 17: Prompt videos with different embodiments. To evaluate cross-embodiment imitation
using UniSkill, we record prompt videos with 3 different embodiments. Prompt videos are recorded
using a Anubis Robot (Top row), Franka arm (middle row) and a human hand (bottom row).

Anubis Prompt. Anubis is a custom-built robot inspired by Mobile ALOHA system [26]. It is735

a mobile, bimanual robot with two 6-DoF arms, each equipped with a wrist-cam-mounted parallel736

gripper, and a 3-wheel omni chassis. As a non-commercial, custom-designed platform, Anubis does737

not appear in any existing robot datasets. Therefore, it serves as a fully unseen embodiment in our738

evaluation.739

B.4 Simulation Environments740

For the LIBERO benchmark, we conduct experiments on four tasks within each of two distinct741

scenes, resulting in a total of eight tasks. These tasks are predefined within the LIBERO simulation742

environment, and their success is automatically determined by the simulation system.743

The task definitions are as follows:744

• Task1. put the red mug on the left plate.745

• Task2. put the red mug on the right plate.746

• Task3. put the white mug on the left plate.747

• Task4. put the yellow and white mug on the right plate.748

• Task5. put the chocolate pudding to the left of the plate.749

• Task6. put the chocolate pudding to the right of the plate.750

• Task7. put the red mug on the plate.751

• Task8. put the white mug on the plate.752

C Implementation Details753

C.1 Inference Procedure754

UniSkill’s policy is trained to produce actions conditioned on skill representations. At inference,755

given a video prompt, it derives a sequence of skill representations from the video using a sliding-756

window procedure. Specifically, let the frames be I1, . . . , Ip and fixed interval k. For each t =757

1, . . . , p − 1, we form the pair (It, Imin(t+k, p)) and extract a skill zt, so we obtain z1, . . . , zp−1.758

For the last k steps we use Ip as the future frame. For each timestep t, zt and observation obst is759

then fed into the policy, which outputs the action executed in the environment.760
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C.2 Skill Dynamics Modeling761

For skill dynamic modeling, UniSkill jointly trains the Inver Skill Dynamics (ISD) model and the762

Forward Skill Dynamics (FSD) model. The hyperparameters used for training are listed in Table 8a.763

Hyperparameter Value

Batch Size 1024
Training Epoch 50
Learning Rate 1e− 4
k [20, 40]
skill dim 256
Optimizer AdamW
Betas (0.9, 0.999)
Weight Decay 0.01
Image Resolution (256, 256)

(a)

Hyperparameter Value

Batch Size 128 (DROID, tabletop, Bridge)
256 (LIBERO)

Training Steps

50000 (DROID)
25000 (tabletop)
5000 (Bridge)
200000 (LIBERO)

Learning Rate 1e− 4
k 20
Optimizer Adam
Betas (0.9, 0.999)
Weight Decay 0.01
Image Resolution (128, 128)
Crop Size (116, 116)
Diffusion Model DDIM
Denoising Step 20
Observation Horizon 2
Prediction Horizon 16
Action Horizon 8

(b)

Table 8: Hyperparameters used in UniSkill: (a) FSD/ISD during pre-training and (b) policy learning.

C.2.1 Inverse Skill Dynamics Model764

For the Inverse Skill Dynamics model, we employ ResNet-18 [28] as the visual encoder and utilize765

the pre-trained DepthAnythingV2-small model [22] as the monocular depth estimator. During pre-766

training, the depth estimator remains fixed, and only the visual encoder is trained to encode visual767

features.768

To effectively capture spatial and temporal dependencies between frames It and It+k, we inte-769

grate ST-Transformer blocks [29]. Each ST-Transformer block comprises a spatial attention layer, a770

causal temporal attention layer, and a MLP layer. The ISD model incorporates a total of eight ST-771

Transformer blocks, enabling robust encoding of dynamic interactions between the sampled frame772

pairs. Prior to processing with the ST-Transformer blocks, the predicted depth maps are projected773

into depth features, which are then concatenated channel-wise with the visual features by the visual774

encoder for each timestep t and t+ k.775

C.2.2 Forward Skill Dynamics Model776

The Forward Skill Dynamics model adopts the architecture of InstructPix2Pix [23], with a key modi-777

fication: FSD is conditioned on the universal skill representation zt instead of language instructions.778

Consequently, while InstructPix2Pix freezes the text encoder and does not propagate gradients to it,779

we replace the text encoder with ISD and condition FSD on zt. Additionally, the ISD receives gra-780

dient updates from FSD during training. This adjustment ensures that FSD generates future frames781

based on the encoded motion patterns in zt, facilitating effective cross-embodiment imitation.782
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C.3 Universal Skill-Conditioned Policy783

We employed a diffusion policy[24] as our policy architecture and utilized a codebase based on784

Robomimic [30] and DROID [13]. In the training process, we first resize all image observations785

to 128 × 128 and use a resnet [28] visual encoder to extract visual features. These visual features786

are then concatenated with other observations to form a single vector. This observation vector is787

passed through an MLP to obtain a global condition. Typically, this global condition is fed into the788

Unet diffusion head to generate an action trajectory. However, in the case of our universal skill-789

conditioned policy, the global condition vector is concatenated with a universal skill representation790

before being processed by the diffusion Unet. We use an observation horizon of 2 and generated791

an action trajectory spanning 16 timesteps. During inference, the action prediction length is set to792

8, meaning that 8 steps of actions are executed in an open-loop manner. For the diffusion model,793

we employ DDIM [31] with 20 denoising steps for action prediction. The hyperparameters used for794

policy learning are reported in Table 8b.795

C.3.1 Real-World796

In real-world experiments, we use images from the ZED 2i camera and ZED Mini as image obser-797

vations, along with the 3D Cartesian position of the gripper and the gripper state as proprioception.798

ImageNet pretrained ResNet-50 [28] is used to encode the image observations. During training,799

skills are extracted from the left ZED 2i camera images of expert trajectories at intervals of 20800

timesteps. These skill representations are concatenated with the global condition for action denois-801

ing. During inference, skills are first extracted from the prompt video at intervals of 20 timesteps802

using ISD. These pre-extracted skills are then utilized as conditions corresponding to the current803

timestep for action denoising. Specifically, the skill relevant to the current timestep of prompt video804

is concatenated with the global condition, and the diffusion process is performed to predict the action805

trajectory.806

C.3.2 Simulation807

In the LIBERO [15] simulation setup, we use the robot’s agent view and wrist view as image obser-808

vations, with ResNet-18 [28] as the visual encoder. For low-dimensional observations, we include809

the end-effector’s orientation, position, gripper states, and joint states. Similar to the real-world810

experiment, we extract skills only from the agent view and not from the wrist view during training.811

These extracted skills are then concatenated with the global condition to predict actions. During in-812

ference, we extract skills from the prompt video with skill interval 20 and use the skill corresponding813

to the current timestep as a condition for action prediction.814

C.4 Goal-conditioned Behavioral Cloning815

The policy architecture of a goal-conditioned behavioral cloning policy (GCBC) employs the same816

diffusion policy as the Universal skill-conditioned policy, with all components being identical except817

for the conditioning. In the Universal skill-conditioned policy, the global condition is concatenated818

with the Universal skill representation for denoising, whereas in GCBC, the global condition is con-819

catenated with the goal image feature for denoising. The goal image feature is obtained by passing820

the corresponding view image through the same visual encoder used for encoding observations.821

During training, the goal image is sampled from the expert dataset using hindsight relabeling and is822

concatenated with the global condition for action prediction. During inference, to maintain consis-823

tency with the Universal skill-conditioned policy setup, the image from 20 timesteps ahead in the824

prompt video is used as the sub-goal image for the current timestep.825

C.4.1 Real-World826

The real-world setup for GCBC is largely consistent with that of the Universal Skill-Conditioned827

Policy. Similar to the UniSkill setup, the image from wrist camera is not used as the goal image, and828
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the image from the ZED 2i camera is utilized. During inference, the image from 20 timesteps ahead829

in the prompt video is used as the goal image for action denoising.830

C.4.2 Simulation831

The LIBERO [15] simulation setup is also identical to that of the Universal Skill-Conditioned Policy.832

The LIBERO simulation agent-view is used as the goal image, hence the goal image feature is833

obtained by passing the goal image through the visual encoder for agent-view observations.834

C.5 XSkill835

XSkill [6] proposes a cross-embodiment skill representation using a feature clustering ap-836

proach. While it does not require strictly paired datasets with identical motions be-837

tween humans and robot demonstrations, it sill imposes certain constraints. Specifi-838

cally, XSkill requires human demonstration videos for training, and those videos must be839

recorded in the same environment and cover the same tasks as the target robot setup.840

Hyperparameter Value

Video Clip Length l 8
Sample Frames T 100
Sinkhorn Iterations 3
Sinkhorn Epsilon 0.03
Prototype Loss Coef 0.5
Prototype Loss Temperature 0.1
TCN Loss Coef 1
TCN Positive Window wp 16
TCN Negative Window wp 16
TCN Positive Samples 1
TCN Temperature τtcn 0.1
Batch Size 20
Training Iteration 500
Learning Rate 1e− 4
Optimizer ADAM

(a)

Hyperparameter Value

Observation Horizon 2
Observation Dimension 7
Action Dimension 7
Batch Size 128
Training Iteration 150
Learning Rate 1e− 4
Optimizer ADAM

(b)

Table 9: Hyperparameters used for XSkill:
(a) Skill Discovery and (b) Skill Transfer
Composing.

To meet these requirements, we additionally col-841

lect 100 human demonstrations per task in the same842

scene as the target evaluation setup.843

Since the official XSkill codebase1 does not include844

complete inference code or training configurations845

for real-world, we re-implement the method for real-846

world experiments, following the paper and avail-847

able codebase as closely as possible. Unless other-848

wise noted, we keep the hyperparameters from the849

original XSkill setup without modifications, includ-850

ing the number of skill prototypes. For the reported851

results, we train XSkill three times and report the852

best performance among the runs. The training con-853

figurations used for XSkill are reported in Table 9a854

and Table 9b.855

D Failure Cases856

We analyze failure cases in the real-world tabletop857

benchmark. Figure 18 displays both successful and858

unsuccessful rollouts derived from the same human859

video prompts. A common failure mode is the in-860

ability to make proper contact with the target objects.861

Although our skill representation encodes motion862

patterns and the robot faithfully follows the demon-863

strated trajectory, it does not adapt when object in-864

teraction fails.865

In failure case (a), for example, the gripper slightly866

retracts toward the tissue, attempts to grasp it, but867

only opens without securing the object. In failure868

case (b), the gripper descends to grasp the towel but869

misses, resulting in a failure to secure the towel even870

though the robot proceeds to push toward the desired location.871

These observations suggest that while UniSkill effectively replicates the demonstrated trajectory,872

further enhancements in object interaction may yield additional performance gains.873

1https://github.com/real-stanford/xskill
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(a) Pull out the tissue

(b) Push the blue towel

Human

Prompt

Human

Prompt

Success

Fail

Success

Fail

Figure 18: Analysis of failure cases for UniSkill on the tabletop tasks Pull out the tissue and Push
the blue towel. In these cases, the primary failure mode is inaccurate contact with the target object.
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